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Matrix Inequalities (LMIs) for both systems. These conditions are then utilized to synthesize H∞ static
output feedback boundary controllers of the systems in question.
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1. Introduction

Many important plants, such as flexible manipulators and
heat transfer processes are governed by partial differential
equations and are often described by models with a significant
degree of uncertainties. The existing results (Bensoussan, Da
Prato, Delfour, & Mitter, 1993; Curtain & Zwart, 1995; Foias,
Ozbay, & Tannenbaum, 1996; Ikeda, Azuma, & Uchida, 2001; van
Keulen, 1993) on robust control of distributed parameter systems,
operating under uncertainty conditions, extend the state space or
the frequency domainH∞ approach and are confined to the linear
case. Thus it is of interest to develop consistent methods that are
capable of utilizing nonlinear distributed parameter models and of
providing the desired system performance in spite of significant
model uncertainties. The LMI approach (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994) is definitely among such methods and
its extension to uncertain distributed parameter systems is the
primary concern of the present paper.
In our recent paper (Fridman&Orlov, 2009)wehave introduced

LMI approach to the stability analysis of linear heat and wave

I Thematerial in this paper was partially presented at CDC08, Cancun. This paper
was recommended for publication in revised form by Associate Editor Xiaobo Tan
under the direction of Editor Miroslav Krstic.
∗ Corresponding author. Tel.: +972 36408288; fax: +972 36407095.
E-mail addresses: emilia@eng.tau.ac.il (E. Fridman), yorlov@cicese.mx
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equations with the Dirichlet boundary conditions. In the present
paper we extend the LMI approach to the Neumann boundary
control stabilization and H∞ control of uncertain distributed
parameter systems. A conference version of the paper has been
presented in Fridman and Orlov (2008).
The paper is organized as follows. Exponential stability analysis

and L2-gain analysis are developed side by side in Sections 2
and 3 for scalar parabolic and, respectively, hyperbolic systems.
Sufficient exponential stability conditions with a given decay rate
are derived in the form of LMIs for these systems. Capabilities of
the LMI approach are then tested for designing H∞ static output
feedback boundary controllers of the systems in question.

1.1. Notation and preliminaries

The notation used throughout is fairly standard. The superscript
‘T ’ stands for matrix transposition, Rn denotes the n-dimensional
Euclidean space with the norm | · |, Rn×m is the set of all n × m
real matrices, and the notation P > 0 with P ∈ Rn×n means that P
is symmetric and positive definite. The symmetric elements of the
symmetric matrix will be denoted by ∗.
Functions, continuous in all arguments and, respectively,

continuously differentiable in all arguments, are referred to as of
class C and of class C1.
L2(a, b) is the Hilbert space of square integrable functions

z(ξ), ξ ∈ [a, b] with the corresponding norm ‖z‖L2 =√∫ b
a z
2(ξ)dξ . L2(0,∞; L2(a, b)) is the Hilbert space of square

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
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integrable functions w(·, t) ∈ L2(0,∞) with values w(ξ, ·) ∈
L2(a, b) andwith the corresponding norm.W l,2(a, b) is the Sobolev
space of absolutely continuous scalar functions z : [a, b] → Rwith
square integrable derivatives z(l) of the order l ≥ 1 and with the
norm ‖z‖2

W l,2
=
∫ b
a (z

(l))2(ξ)dξ .
For later use, we recall the following.

Lemma 1 (Wang, 1994). Let z ∈ W 1,2(a, b) be a scalar function
with z(a) = 0. Then∫ b

a
z2(ξ)dξ ≤

(b− a)2

2

∫ b

a
(z ′(ξ))2dξ, (1)

max
ξ∈[a,b]

z2(ξ) ≤ (b− a)
∫ b

a
(z ′(ξ))2dξ . (2)

2. Boundary stabilization of a semilinear parabolic system

2.1. Exponential stability

Consider the parabolic equation

zt(ξ , t) =
∂

∂ξ
[a(ξ)zξ (ξ , t)] + r0(ξ , t, z(ξ , t))z(ξ , t)

+ r1(ξ , t, z(ξ , t))z(1, t), t ≥ t0, 0 ≤ ξ ≤ 1 (3)

coupled to the mixed boundary condition

z(0, t) = 0, zξ (1, t) = −kz(1, t), t ≥ t0, (4)

where t0 ∈ R is an initial time instant, k ≥ 0 is a parameter.
Functions a(ξ) and ri(ξ , t, z), i = 0, 1 are of class C1 and may be
unknown. These functions satisfy the inequalities

|ri| ≤ βi, a ≥ a1 > 0 (5)

for all (ξ , t, z) ∈ [0, 1]×R2 and for some constantsβ0 ≥ 0, β1 ≥ 0,
a1 > 0, known a priori. Hereinafter, the dependence on time t
and spatial variable ξ is suppressed whenever possible and the
functions a and ri are written without arguments.
Subject to r1 ≡ 0, Eq. (3) describes the nonlinear propagation of

heat in a one-dimensional rod. Heat equation with the term z(1, t)
may describe the deviation from the steady state if the steady
state depends on the boundary value (similar to that of Boskovic
and Krstic (2003)). Due to the presence of the boundary-value
term z(1, t) in the state Eq. (3) with r1 6= 0, the above model
particularly captures significant features of thermal instability in
solid propellant rockets (Boskovic & Krstic, 2003).
Clearly, the boundary-value problem (3) and (4) can be

rewritten as the differential equation

ẋ(t) = Ax(t)+ F(t, x(t)), t ≥ t0 (6)

in the Hilbert spaceH = L2(0, 1)where the infinitesimal operator

A =
∂
[
a(ξ) ∂

∂ξ

]
∂ξ

possesses the dense domain

D(A) = {x ∈ W 2,2(0, 1) : x(0) = 0, xξ (1) = −kx(1)}, (7)

and the nonlinear term F : R × W 1,2(0, 1) → L2(0, 1) is defined
on potential solutions x(·, t) of (36) according to

F(t, x(·)) = r0(ξ , t, x(ξ , t))x(ξ , t)

+ r1(ξ , t, x(ξ , t))
∫ 1

0
xζ (ζ , t)dζ .

It is well known that the infinitesimal operator A generates
an analytical exponentially stable semigroup T (t), the induced
norm ‖T (t)‖ of which satisfies the inequality ‖T (t)‖ ≤ κe−δt
everywhere with some constant κ > 0 and decay rate δ > 0 (see,

e.g., Curtain and Zwart (1995) for details). The domain D(A) =
A−1H of such an operator A forms another Hilbert space with the
graph inner product (x, y)D(A) = 〈Ax, Ay〉, x, y ∈ D(A). The
domain D(A) of A is thus continuously embedded into H , i.e.,
D(A) ⊂ H, D(A) is dense in H and the inequality |x| ≤ ω|Ax|
holds for all x ∈ D(A) and some constant ω > 0.
Apart from this, the square root

√
A of the operator A is

rigorously introduced on D(A) as a positive definite solution X
of the algebraic operator equation X2 = A. Being extended by
continuity, this operator is well posed on the domain

D(
√
A) = {x ∈ W 1,2(0, 1) : x(0) = 0, xξ (1) = −kx(1)}, (8)

and continuously embedded into H whereasD(A) turns out to be
continuously embedded intoD(

√
A). Thus,D(A) ⊂ D(

√
A) ⊂ H

and the following inequalities

|x| ≤ ω|
√
Ax| for all x ∈ D(

√
A) (9)

|
√
Ax| ≤ ω|Ax| for all x ∈ D(A) (10)

hold with a generic constant ω > 0. All relevant background
material on fractional operator degrees can be found, e.g., in
Krasnoselskii, Zabreyko, Pustylnik, and Sobolevski (1976).
Since the functions r0 and r1 are smooth in their arguments the

following Lipschitz condition

‖F(t1, x1)− F(t2, x2)‖L2

≤ L[|t1 − t2| + ‖
√
A(x1 − x2)‖L2 ] (11)

on the nonlinear term F with some positive constant L is derived
locally in (ti, xi) ∈ R × D(

√
A), i = 1, 2 by employing (1) and

(2). Thus, Theorem 3.3.3 of Henry (1993) proves to be applicable
to (6), and by applying this theorem, a unique strong solution
of (6), initialized with x(t0) ∈ D(

√
A), is established to locally

exist. The latter implies the local existence of the strong solution
to the boundary-value problem (3) and (4) for an arbitrary initial
condition

z(ξ , t0) = φ(ξ) ∈ D(
√
A). (12)

It is well known (Boskovic & Krstic, 2003) that the linear system
(3) and (4) with k = 0 andwith constant coefficients r0 = 0, a = 1
and r1 > 2 is unstable. We are looking for exponential stability
conditions for uncertain nonlinear system (3) and (4) with k ≥ 0.
Consider the following Lyapunov–Krasovskii functional

V (z(·, t)) =
∫ 1

0
z2(ξ , t)dξ . (13)

We aim to find conditions guaranteeing that along the solutions
z(ξ , t) of (3) and (4) the inequality

d
dt
V (z(·, t))+ 2δV (z(·, t)) ≤ 0 (14)

holds. By the comparison principle argument (Khalil, 1992), it
would follow∫ 1

0
z2(ξ , t)dξ = V (z(·, t)) ≤ V (z(·, t0))e−2δ(t−t0)

= e−2δ(t−t0)
∫ 1

0
φ2(ξ)dξ .

By virtue of this, the solution of (3), (4) and (12)would be uniformly
bounded in L2(0, 1) on its domain of existence and it would satisfy,
due to (11), the following inequality

‖F(t, x)‖L2 ≤ L‖
√
Ax‖L2 (15)
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for all t ≥ t0. Then according to Exercise 1 on p. 58 of Henry (1993),
such a solution of the boundary-value problem (3) and (4)would be
globally continuable to the right. Hence, this solutionwould satisfy
the inequality

‖z(·, t)‖L2 ≤ e
−δ(t−t0)‖φ(·)‖L2 , ∀t ≥ t0, (16)

thereby ensuring that the parabolic process (3) and (4) is
exponentially stable in L2(0, 1)with the decay rate δ.
Differentiating V along (3), integrating by parts and taking into

account (4), we find that

d
dt
V + 2δV = 2

∫ 1

0
z(ξ , t)zt(ξ , t)dξ + 2δ

∫ 1

0
z2(ξ , t)dξ

= 2
∫ 1

0
z(ξ , t)

[
∂

∂ξ
[azξ (ξ , t)] + r0z(ξ , t)+ r1z(1, t)

]
dξ

+ 2δ
∫ 1

0
z2(ξ , t)dξ = −2kaz2(1, t)− 2

∫ 1

0
az2ξ (ξ , t)dξ

+ 2
∫ 1

0
(δ + r0)z2(ξ , t)dξ + 2r1

∫ 1

0
z(ξ , t)z(1, t)dξ

≤ −2ka1z2(1, t)− 2
∫ 1

0
a1z2ξ (ξ , t)dξ

+ 2(δ + β0)
∫ 1

0
z2(ξ , t)dξ + 2r1

∫ 1

0
z(ξ , t)z(1, t)dξ . (17)

Applying inequality (1) yields

−2a1

∫ 1

0
z2ξ dξ ≤ −4a1

∫ 1

0
z2(ξ , t)dξ .

We thus derive that

d
dt
V + 2δV ≤

∫ 1

0
[z(ξ , t) z(1, t)]Ψ [z(ξ , t) z(1, t)]Tdξ

≤ 0 (18)

provided that the following LMI

Ψ
∆
=

[
−4a1 + 2(δ + β0) r1

r1 −2ka1

]
≤ 0 (19)

is feasible. Since LMI (19) is affine in r1 and r1 ∈ [−β1, β1], the
latter LMI is feasible if the following LMI[
−4a1 + 2(δ + β0) β1

β1 −2ka1

]
≤ 0 (20)

is feasible.
We note that the condition β0 < 2a1 is necessary for

the feasibility of (20). For β1 = 0 the system (3) and (4) is
exponentially stable for all k ≥ 0with δ = 2a1−β0. For β1 > 0 (3)
and (4) is exponentially stablewith thedecay rate 0 < δ < 2a1−β0
for large enough k > 0 that can be found from the inequality

− 4a1 + 2(δ + β0)+
β21

2ka1
≤ 0. (21)

Summarizing, the following result is concluded.

Theorem 1. Consider the boundary-value problem (3), (4) and (12)
with the assumptions above and with β0 < 2a1. Given δ ∈ (0, 2a1 −
β0], let there exist k such that LMI (20) is feasible. Then a unique strong
solution of (3), (4) and (12) is globally continuable to the right and it
satisfies (16).

2.2. H∞ boundary control

Let us, along with the homogeneous parabolic process (3),
consider its perturbed version

zt(ξ , t) =
∂

∂ξ
[azξ (ξ , t)] + r0z(ξ , t)+ r1z(1, t)

+ bw(ξ, t), t ≥ t0, 0 ≤ ξ ≤ 1 (22)

wherew(ξ, t) ∈ L2(0,∞; L2(0, 1)) is an external disturbance; b =
b(ξ , t, z) is a function of class C1, which is assumed to be uniformly
bounded, i.e., |b(ξ , t, z)| ≤ b1 for all (ξ , t, z) ∈ [0, 1] × R2 and
some b1 > 0.
While internally stabilizing the parabolic process, the influence

of the admissible external disturbance w(ξ, t) ∈ L2(0,∞;
L2(0, 1)) on the controlled output

z̄(ξ , t) = [α(ξ, t, z(ξ , t))z(ξ , t) d(t, z(1, t))u(t)]T, (23)

is to be attenuated through the boundary actuation at ξ = 1:

z(0, t) = 0, zξ (1, t) = u(t), t ≥ t0. (24)

Hereinafter, u(t) is the control input, d and α are continuous
functions, which are uniformly bounded

|α(ξ, t, z)| ≤ α1, |d(t, z)| ≤ d1, (25)

for all (ξ , t, z) ∈ [0, 1] × R2, where α1 ≥ 0 and d1 ≥ 0 are some
constants. Collocated sensing y(t) = z(1, t) at the boundary ξ = 1
is the only available information on the process.
The following H∞ control problem is thus under study. Given

γ > 0, it is required to find a linear static output feedback

u(t) = −kz(1, t), (26)

that exponentially stabilizes the unperturbed process (4) and (22)
and leads to a negative performance index

J =
∫
∞

t0

∫ 1

0
[z̄T(ξ , t)z̄(ξ , t)− γ 2w2(ξ , t)]dξdt < 0 (27)

for all admissible external disturbances 0 6= w(ξ, t) ∈

L2(t0,∞; L2(0, 1)), under which the solutions of (22) and (24),
being initialized with the zero data z(ξ , t0) = 0, are globally
continuable to the right. We note that if u(t) is stabilizing and w
is C1 in ξ, t , then by arguments of the previous section, the strong
solutions of (22) and (24) exist and they are continuable for t ≥ t0.
In order to solve the problem we carry out conditions that

guarantee the following:

W (t) ∆
= p

d
dt
V +

∫ 1

0
[z̄T(ξ , t)z̄(ξ , t)− γ 2w2(ξ , t)]dξ

< 0, (28)

where p > 0, V is given by (13) and the temporal derivative is
computed along the trajectories of the closed-loop system (4) and
(22). Then integrating (17) in t from t0 to∞ and taking into account
that V ≥ 0 and V (0) = 0 would yield (27).
It is worth noticing that∫ 1

0
z̄T(ξ , t)z̄(ξ , t)dξ ≤

∫ 1

0
α21z

2(ξ , t)dξ + d21k
2z2(1, t).

Then using (18) and (19) and setting ζ = [z(ξ , t) z(1, t) w(ξ, t)]T,
we find that

W ≤
∫ 1

0
ζ TΨγ ζdξ < 0

if

Ψγ
∆
=

−4a1p+ 2β0p+ α21 r1p bp
∗ −2kap+ d21k

2 0
∗ ∗ −γ 2

 < 0 (29)
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is feasible. By Schur complements, the latter inequality holds if−4a1p+ 2β0p+ α
2
1 r1p bp 0

∗ −2ka1p 0 d1k
∗ ∗ −γ 2 0
∗ ∗ ∗ −1

 < 0. (30)

Multiplying (30) by diag{p−1, p−1, 1, 1} from the right and from
the left, we denote q = p−1 and g = p−1k. By Schur complements
formula we arrive at
−4a1q+ 2β0q r1 b 0 qα21

∗ −2ga1 0 d1g 0
∗ ∗ −γ 2 0 0
∗ ∗ ∗ −1 0
∗ ∗ ∗ ∗ −α21

 < 0. (31)

LMI (31) is affine in r1 and b and it is therefore feasible for all
r1 ∈ [−β1, β1], b ∈ [−b1, b1] if it is feasible for r1 = ±β1 and
b = ±b1, thereby yielding 4 LMIs. It is easy to see that these 4 LMIs
are equivalent to the following LMI
−4a1q+ 2β0q β1 b1 0 qα21

∗ −2ga1 0 d1g 0
∗ ∗ −γ 2 0 0
∗ ∗ ∗ −1 0
∗ ∗ ∗ ∗ −α21

 < 0. (32)

Thus, we proved the following.

Theorem 2. Consider the perturbed input–output system (22)–(24)
with the assumptions above and with β0 < 2a1. Given γ > 0, let
there exist q > 0 and g such that the LMI (32) is satisfied. Then the
static output feedback (26) with k = q−1g internally exponentially
stabilizes the boundary-value problem (22) and (24) and attenuates
the admissible perturbations w(ξ, t) ∈ L2(0,∞; L2(0, 1)) in the
sense of (27).

2.3. Example

Consider (22)–(25) with

a1 = 1, b1 = 1, β0 = 1, β1 = 3,
d1 = 0.1, α1 = 1.

In this example β0 < 2a1 and β1 > 0. Therefore, by Theorem 1
the static output feedback (26) with large enough k > 0 internally
exponentially stabilizes the system which appears to be unstable
for k = 0 (since β1 > 2a1; cf. Boskovic and Krstic (2003)). By using
LMI toolbox of Matlab to verify the feasibility of LMI (32), we find
that the static output feedback (26) with k = 10.1744 internally
exponentially stabilizes the system and leads to the disturbance
attenuation level γ = 3. Substituting the resulting k into (21),
we find that this gain exponentially stabilizes the system with
δ = 0.7789.
A lower L2-gain γ = 1.1 is achieved by a higher gain k =

106.01. The decay rate by the latter gain is found to be δ = 0.9788.

3. Boundary stabilization of a semilinear hyperbolic equation

3.1. Exponential stability

Consider the hyperbolic equation

ztt(ξ , t) =
∂

∂ξ
[azξ (ξ , t)] + r0zt(ξ , t)+ r1zξ (ξ , t),

t ≥ t0, 0 ≤ ξ ≤ 1
(33)

coupled to the mixed boundary condition

z(0, t) = 0, zξ (1, t) = −kzt(1, t), t ≥ 0, (34)

with a parameter k > 0. where k > 0 is a parameter, a =
a(ξ), r0 = r0(ξ , t, z, zt), and r1 = r1(ξ) are functions of class
C1. Subject to r1 ≡ 0, Eq. (33) describes nonlinear oscillations of
a string whereas its general form is of academic interest. As in the
parabolic equation (3), the functions ri, i = 0, 1 are admitted to be
unknown subject to inequalities (5) that hold for all (ξ , t, z, zt) ∈
[0, 1]×R3 with a priori known constants βi ≥ 0, i = 0, 1. Function
a satisfies the bound

0 < a1 ≤ a(ξ) ≤ a2, ∀ξ ∈ [0, 1] (35)

with a priori known constants a1, a2.
To facilitate exposition, we have ignored restoring stiffness

of the string, implicitly assuming that the corresponding term
r(ξ , t, z, zt)z(ξ , t) is negligible. Since the above simplified model
captures all the essential features of the general treatment, the
extension to a hyperbolic model with a nontrivial stiffness is
indeed possible.
The boundary-value problem (33) and (34) can be represented

as the differential equation

ẋ(t) = Ax(t)+ F(t, x1(t), x2(t)), t ≥ t0 (36)

in the Hilbert space H = W 1,2(0, 1) × L2(0, 1). In the above
equation, the infinitesimal operator

A =

 0 1
∂
[
a(ξ) ∂

∂ξ

]
∂ξ

+ r2
∂

∂ξ
0

 (37)

possesses the dense domain

D(A) = {(x1, x2) ∈ W 2,2(0, 1)× L2(0, 1) : xi(0) = 0,
xiξ (1) = −kxi(1), i = 1, 2} (38)

and generates a strongly continuous semigroup whereas the
second component

F2(t, x1, x2) : R×W 1,2(0, 1)× L2(0, 1)→ L2(0, 1)

of the nonlinear term F = (0, F2) is defined on potential solutions
(x1(ξ , t), x2(ξ , t))T of (6) according to

F2(t, x1, x2) = r0(ξ , t, x1(ξ , t), x2(ξ , t))x2(ξ , t)
+ r1(ξ , t, x1(ξ , t), x2(ξ , t))x1ξ (ξ , t). (39)

Since r0 and r1 are smooth, and hence, the following Lipschitz
condition

‖F2(t1, x11, x12)− F2(t2, x21, x22)‖L2
≤ L[|t1 − t2| + ‖x11 − x21‖W1,2 + ‖x21 − x22‖L2 ] (40)

holds locally in (ti, xi1, xi2) ∈ R × W 1,2(0, 1) × L2(0, 1), i = 1, 2
with some generic constant L > 0, a unique strong solution of (36),
initialized with (x1(t0), x2(t0)) ∈ W 1,2(0, 1) × L2(0, 1), xi(0) =
0, xiξ (1) = −kxi(1) (i = 1, 2) turns out to locally exist (see, e.g.,
Theorem 23.4 of Krasnoselskii et al. (1976)). Thus, there exists a
unique local strong solution to the boundary-value problem (33)
and (34) for an arbitrary initial condition

z(ξ , t0) = φ(ξ) ∈ W 1,2(0, 1) : φ(0) = 0,
φξ (1) = −kφ(1),
zt(ξ , t0) = φ1(ξ) ∈ L2(0, 1) : φ1(0) = 0,
φ1ξ (1) = −kφ1(1). (41)

As in the heat equation case, only strong solutions of (33), (34) and
(41) are under study.
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We note that the linear system (33) and (34), specified with
k = 0, a = 1, and ri = 0, i = 0, 1, generates oscillating solutions
and it is therefore asymptotically unstable. Our aim is to carry
out exponential stability conditions for uncertain nonlinear system
(33) and (34) with k > 0.
On solutions of (33) and (34), consider the Lyapunov–Krasovskii

functional

V (zξ (·, t), zt(·, t)) =
∫ 1

0
[zξ zt ]P[zξ zt ]Tdξ, (42)

proposed inNicaise and Pignotti (2006)with some constants p > 0
and χ > 0, and

P =
[
ap χξ
χξ p

]
≥

[
a1p χξ
χξ p

]
> 0, ∀ξ ∈ [0, 1].

The latter inequality holds for all ξ ∈ [0, 1] iff[
a1p χ
χ p

]
> 0. (43)

Our aim is to find conditions that would guarantee that along
(33) the inequality ddt V + 2δV ≤ 0 holds. Then by the comparison
principle argument (Khalil, 1992), it would follow that

V (zξ (·, t), zt(·, t)) ≤ V (zξ (·, t0), zt(·, t0))e−2δ(t−t0). (44)

Due to (43) and (35), we have 0 < mI < P < MI for some scalars
0 < m < M . Therefore, the solution of (33), (34) and (41) would
satisfy the bound∫ 1

0
[z2ξ (ξ , t)+ z

2
t (ξ , t)]dξ

≤
M
m
e−2δ(t−t0)

∫ 1

0
[φ2ξ (ξ)+ φ

2
1(ξ)]dξ (45)

and would be globally continuable to the right (see Theorem 23.5
of Krasnoselskii et al. (1976)).
For later use, we derive that

d
dt

(
2
∫ 1

0
ξztzξdξ

)
= 2

∫ 1

0
ξzttzξdξ + 2

∫ 1

0
ξztzξ tdξ

= 2
∫ 1

0
ξ
∂

∂ξ
[azξ (ξ , t)]zξdξ + 2

∫ 1

0
ξztzξ tdξ

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ

=

∫ 1

0

1
a
ξ
∂

∂ξ
(azξ )2dξ + 2

∫ 1

0
ξztzξ tdξ

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ

= −

∫ 1

0
az2ξ dξ + a|ξ=1z

2
ξ (1, t)+ 2

∫ 1

0
ξzt(ξ , t)zξ tdξ

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ .

After integrating by parts, we obtain

2
∫ 1

0
ξztzξ tdξ = −2

∫ 1

0
ξzξ tztdξ − 2

∫ 1

0
z2t dξ + 2z

2
t (1, t).

Therefore, 2
∫ 1
0 ξztzξ tdξ = −

∫ 1
0 z
2
t dξ + z

2
t (1, t), that results in

d
dt

(
2
∫ 1

0
ξztzξdξ

)
= −

∫ 1

0
(z2t + az

2
ξ )dξ + z

2
t (1, t)

+ a|ξ=1z2ξ (1, t)+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ .

Thus, differentiating V along (33), we obtain

d
dt
V + 2δV ≤ 2p

∫ 1

0
azξ (ξ , t)ztξ (ξ , t)dξ

+ 2p
∫ 1

0
zt(ξ , t)ztt(ξ , t)dξ +

d
dt

(
2χ
∫ 1

0
ξztzξdξ

)
+

∫ 1

0
2δ[apz2ξ (ξ , t)+ 2χξzξ (ξ , t)z

2
t (ξ , t)+ pz

2
t (ξ , t)]dξ

= 2p
∫ 1

0
[azξ (ξ , t)ztξ (ξ , t)+ zt(ξ , t)

∂

∂ξ
[azξ (ξ , t)]]dξ

+ 2p
∫ 1

0
zt(ξ , t)[r0zt(ξ , t)+ r1zξ (ξ , t)]dξ

+χ

[
−

∫ 1

0
(z2t + az

2
ξ )dξ + z

2
t (1, t)+ a|ξ=1k

2z2t (1, t)

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ

]
+

∫ 1

0
2δ[az2ξ (ξ , t)+ 2χξzξ (ξ , t)zt(ξ , t)+ z

2
t (ξ , t)]dξ .

Now integrating by parts and taking into account (33) and (34)
yield
d
dt
V + 2δV ≤ −2a|ξ=1kpz2t (1, t)

+ 2p
∫ 1

0
zt(ξ , t)[r0zt(ξ , t)+ r1zξ (ξ , t)]dξ

+χ

[
−

∫ 1

0
(z2t + az

2
ξ )dξ + (1+ a|ξ=1k

2)z2t (1, t)

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξdξ

]
+

∫ 1

0
2δ[apz2ξ (ξ , t)+ 2χξzξ (ξ , t)zt(ξ , t)+ pz

2
t (ξ , t)]dξ . (46)

Taking into account

2
∫ 1

0
χξ [r0zt(ξ , t)+ r1zξ (ξ , t)]zξ (ξ , t)dξ

≤

∫ 1

0
ξ

[
χ2β20

s0
z2t (ξ , t)+ s0 + 2χβ1z

2
ξ (ξ , t)

]
dξ

for some s0 > 0, setting ζ T(ξ , t) = [zt(1, t) zξ (ξ , t) zt(ξ , t)] and
using a ≥ a1, we conclude that

d
dt
V + 2δV ≤

∫ 1

0
ζ T(ξ , t)Ψ ζ (ξ, t)dξ ≤ 0,

if

Ψ =


ψ1 0 0
∗ ψ2 2χδξ + pr1

∗ ∗ ψ3 +
χ2β20

s0
ξ

 ≤ 0 (47)

where

ψ1 = −2a1kp+ (1+ a1k2)χ,
ψ2 = −a1χ + 2δa1p+ s0ξ + 2χξβ1,
ψ3 = −χ + 2pβ0 + 2δp.

(48)

By Schur complements (47) holds ifψ1 0 0 0
∗ ψ2 2χδξ + pr1 0
∗ ∗ ψ3 β0χξ
∗ ∗ ∗ −s0ξ

 ≤ 0. (49)
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It is worth noticing that given k, (49) is LMI which is affine in
ξ ∈ [0, 1], r1 ∈ [−β1, β1]. Therefore, LMI (49) is feasible if the
following LMIs in the four vertices are feasible:
ψ1 0 0 0
∗ ψ

(j)
2 2χδξ (j) + pr (l)1 0

∗ ∗ ψ3 β0χξ
(j)

∗ ∗ ∗ −s0

 ≤ 0,
j = 1, 2; l = 1, 2; (50)

ψ
(j)
2 = −a1χ + 2δa1p+ s0 + 2χξ

(j)β1,

r (1)1 = β1, r (2)1 = −β1, ξ (1) = 0, ξ (2) = 1.

We note that for the stability analysis, p = 1 can be chosen.
Moreover, feasibility of (50) implies ψ3 ≤ 0 and, thus, χ > 0.
Summarizing, we obtain the following:

Theorem 3. Given k > 0 and δ > 0, let the LMIs (43) and (50) with
notations (48) and p = 1 hold for someχ and s0. Then a unique strong
solution of the boundary-value problem (33), (34) and (41) is globally
continuable to the right and it satisfies (45) for all t ≥ t0.

3.2. H∞ boundary control

In addition to the hyperbolic equation (33), let us now consider
its perturbed version

ztt(ξ , t) =
∂

∂ξ
[azξ ] + r0zt(ξ , t)+ r1zξ (ξ , t)

+ bw(ξ, t), t ≥ 0, 0 ≤ ξ ≤ 1 (51)

where w(ξ, t) ∈ L2(0,∞; L2(0, 1)) is an external disturbance;
b = b(ξ , t, z) is a function of class C1, which is assumed to be
uniformly bounded, i.e., |b(ξ , t, z)| ≤ b1 for all (ξ , t, z) ∈ [0, 1] ×
R2 and some b1 > 0. While internally stabilizing the hyperbolic
process, the influence of the admissible external disturbance on the
controlled output

z̄(ξ , t) = [αz(ξ , t) ᾱzt(ξ , t) du(t)]T, (52)

is to be attenuated through the boundary actuation at ξ = 1:

z(0, t) = 0, zξ (1, t) = u(t), t ≥ t0. (53)

Hereinafter, u(t) is the control input, d = d(t, zt(1, t)) and α =
α(ξ, t, z, zt), ᾱ = ᾱ(ξ , t, z, zt) are continuous functions, which
are uniformly bounded

|α(ξ, t, z, zt)| ≤ α0, |ᾱ(ξ , t, z, zt)| ≤ α1,
|d(t, zt(1, t))| ≤ d1,

for all (ξ , t, z, zt) ∈ [0, 1] × R3, where αi ≥ 0, i = 0, 1 and
d1 ≥ 0 are some constants. Collocated sensing y(t) = zt(1, t)
at the boundary ξ = 1 is the only available information on the
process.
TheH∞ control problem of interest is stated as follows. Given

γ > 0, find a linear static output feedback

u(t) = −kzt(1, t), (54)

that exponentially stabilizes the unperturbed system (33) and (34)
and leads to a negative performance index

J =
∫
∞

t0

∫ 1

0
[z̄T(ξ , t)z̄(ξ , t)− γ 2w2(ξ , t)]dξdt < 0 (55)

for all admissible external disturbances 0 6= w(ξ, t) ∈

L2(0,∞; L2(0, 1)), under which the solutions of (51) and (53),
being initialized with the zero data z(ξ , t0) = zt(ξ , t0) = 0, are
globally continuable to the right.

For solving the stated problem, let us find conditions that
guarantee the following:

W (t) ∆
=
d
dt
V +

∫ 1

0
[z̄T(ξ , t)z̄(ξ , t)− γ 2w2(ξ , t)]dξ < 0, (56)

where V is given by (42), and the temporal derivative is computed
along the closed-loop system (51) and (53). First, employing (1),
we obtain∫ 1

0
z̄T(ξ , t)z̄(ξ , t)dξ

≤

∫ 1

0

[
α20z

2(ξ , t)+ α21z
2
t (ξ , t)+ d

2
1k
2z2t (1, t)

]
dξ

≤

∫ 1

0

[
1
2
α20z

2
ξ (ξ , t)+ α

2
1z
2
t (ξ , t)+ d

2
1k
2z2t (1, t)

]
dξ .

Then, in analogy to (46), we have
d
dt
V ≤ −2a|ξ=1kpz2t (1, t)

+ 2p
∫ 1

0
zt(ξ , t)[r0zt(ξ , t)+ r1zξ (ξ , t)+ bw]dξ

+χ

[
−

∫ 1

0
(z2t + az

2
ξ )dξ + (1+ a|ξ=1k

2)z2t (1, t)

+ 2
∫ 1

0
ξ [r0zt(ξ , t)+ r1zξ (ξ , t)+ bw]zξdξ

]
.

Along with this, for some s0 > 0 and s1 > 0, the following holds:

2
∫ 1

0
χξ [r0zt(ξ , t)+ r1zξ (ξ , t)+ bw]zξ (ξ , t)dξ

≤

∫ 1

0

[
χ2β20

s0
z2t (ξ , t)+

χ2b21
s1

w2

+ (s0 + s1 + 2χβ1)z2ξ (ξ , t)
]
dξ .

Finally, by taking into account a ≥ a1, we conclude that

W =
d
dt
V +

∫ 1

0
[z̄Tz̄ − γ 2w2]dξ ≤ ζ̄ TΨγ ζ̄ ,

where

ζ̄ T = [zt(1, t) zξ (ξ , t) zt(ξ , t) w(ξ, t)],

Ψγ =


ψ1 + d21k

2 0 0 0
∗ ψ2γ pr1 0

∗ ∗ ψ3γ +
β20χ

2

s0
pb

∗ ∗ ∗ −γ 2 +
b21χ

2

s1

 ,
and

ψ1 = −2a1kp+ (1+ a1k2)χ,

ψ2γ = −a1χ + s0 + s1 +
1
2
α20 + 2χβ1,

ψ3γ = −χ + 2pβ0 + α21 .

(57)

Hence,W < 0 if Ψγ < 0, i.e. by Schur complements, if
ψ1 + d21k

2 0 0 0 0 0
∗ ψ2γ pr1 0 0 0
∗ ∗ ψ3γ pb β0χ 0
∗ ∗ ∗ −γ 2 0 b1χ
∗ ∗ ∗ ∗ −s0 0
∗ ∗ ∗ ∗ ∗ −s1

 < 0. (58)



Author's personal copy

2066 E. Fridman, Y. Orlov / Automatica 45 (2009) 2060–2066

LMI (58) is affine in r1 ∈ [−β1, β1], and b ∈ [−b1, b1]. Therefore,
it is feasible if it holds in the vertices r1 = ±β1 and b = ±b1. It is
easy to see that the four LMIs in the vertices are equivalent to the
following one
ψ1 + d21k

2 0 0 0 0 0
∗ ψ2γ pβ1 0 0 0
∗ ∗ ψ3γ pb1 β0χ 0
∗ ∗ ∗ −γ 2 0 b1χ
∗ ∗ ∗ ∗ −s0 0
∗ ∗ ∗ ∗ ∗ −s1

 < 0. (59)

We note that if (59) is feasible, then the LMIs (50) for
exponential stability hold with small enough δ > 0. We thus
proved the following.

Theorem 4. Consider the perturbed input–output system (51)–(53)
with the assumptions above. Given γ > 0 and k > 0, let there exist
p > 0, χ, s0 and s1 such that the LMIs (43) and (59) are satisfied
with the notations given by (57). Then the static output feedback
(54) internally exponentially stabilizes the boundary-value problem
(51) and (53) and attenuates the external disturbances w(ξ, t) ∈
L2(0,∞; L2(0, 1)) in the sense of (55).

3.3. Example

Consider (51)–(53) with

a1 = 2, β0 = 0.2, β1 = 0.3, α0 = α1 = 1,
d1 = 0.1.

As mentioned above, the open-loop system is unstable. By using
LMI toolbox of Matlab to verify LMIs (43) and (59), we find that the
static output feedback (54) with k = 1 internally exponentially
stabilizes the system and attenuates the external disturbances
with γ = 4.3. By verifying (50) in the four vertices, we find that
the resulting closed-loop system is internally exponentially stable
with the decay rate δ = 0.13.

4. Conclusions

In the present paper an LMI approach is extended toH∞ bound-
ary control of uncertain semilinear parabolic and hyperbolic
systems. The uncertainties are admitted to be time-, space- and
state-dependent with a priori known upper/lower bounds. Suffi-
cient conditions for static output feedback stabilization are given
in terms of LMIs. Numerical examples illustrate the efficiency of
the method.
The proposed method seems to be extendible to dynamic

output feedback H∞ control and to other classes of distributed
parameter systems. LMIs are thus expected to provide effective
tools for robust control of distributed parameter systems.
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