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In the present paper, sufficient conditions for the exponential stability and passivity analysis of nonlinear diffusion partial
differential equations (PDEs) with infinite distributed and discrete time-varying delays are derived. Such systems arise in
many applications, e.g. in population dynamics and in heat flows. The existing Lyapunov-based results on the stability of
diffusion nonlinear PDEs treat either systems with infinite delays or the ones with discrete slowly varying delays (with the
delay-derivatives upper bounded by d < 1), where the conditions are delay-independent in the discrete delays. In this paper,
we introduce the Lyapunov-based analysis of semilinear diffusion PDEs with fast-varying (without any constraints on the
delay-derivative) discrete and infinite distributed delays. Two novel methods are suggested leading to conditions in terms
of linear matrix inequalities. The first one provides delay-independent with respect to discrete delays stability criterion via
combination of Lyapunov–Krasovskii functionals and of the Halanay inequality. Note that the Halanay inequality is not
applicable to the passivity analysis. Therefore, the second method develops the direct Lyapunov–Krasovskii method via the
descriptor approach that leads to delay-dependent (in discrete delays) conditions for the exponential stability and passivity.
Numerical examples illustrate the efficiency of the methods.

Keywords: diffusion PDEs; time-delays; Lyapunov–Krasovskii method

1. Introduction

Diffusion partial differential equations (PDEs) with time-
delays are present in population dynamics (Capasso &
Liddo, 1994; Kolmanovskii & Myshkis, 1999), heat flows
(Fridman & Blighovsky, 2012) and other engineering appli-
cations. The existing results for the delayed diffusion PDEs
are mostly restricted to delay-independent conditions with
respect to the discrete delays and avoid the performance
analysis.

The objective of the present paper is to derive simple and
efficient conditions for the exponential stability and passiv-
ity analysis of diffusion PDEs with infinite distributed and
discrete time-varying delays. Two approaches are presented
leading to conditions in terms of linear matrix inequali-
ties (LMIs). The first one provides delay-independent (with
respect to discrete fast-varying delays) stability criterion,
which is derived via a novel combination of a Lyapunov–
Krasovskii functional (LKF) and of the Halanay inequality
(Halanay, 1966). Note that the Halanay inequality is not ap-
plicable to the passivity and L2-gain analysis. Moreover,
delay-dependent with respect to discrete delays criteria
via Krasovskii method are usually less restrictive. There-
fore, the second method develops the direct Lyapunov–
Krasovskii method via the descriptor approach, which leads
to delay-dependent conditions for the exponential stability
and passivity analysis. In our results the stabilising effect

∗
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of the diffusion terms under the Dirichlet boundary con-
ditions is taken into account with the help of Wirtinger’s
inequality. As a by-product, we provide also novel LMI
conditions for the stability and passivity analysis of nonlin-
ear ordinary differential equations (ODEs) with distributed
and discrete delays. Numerical examples from the literature
illustrate the efficiency of the presented methods and their
advantages over the existing results.

The paper is organised as follows. Section 2 presents
problem formulation and useful lemmas. Section 3 presents
the first method for the exponential stability via a combina-
tion of an LKF (that corresponds to the distributed delay)
with the Halanay inequality. Delay-dependent with respect
to discrete delays stability conditions and the passivity anal-
ysis are presented in Sections 4.1 and 4.2, respectively.
Finally, Section 5 presents three numerical examples that
illustrate the efficiency of the presented methods.

Notation: The superscript ‘T ’ stands for matrix trans-
position, the subscript ‘t’ stands for differentiation with
respect to time, subscript ‘xk’ stands for differentiation
with respect to spatial variable ‘xk’, k = 1, . . . , m and
∇x = [ ∂

∂x1
, . . . , ∂

∂xm
]T . Rn denotes the n-dimensional Eu-

clidean space with the norm | · |, Rn×m is the set of all
n × m real matrices. The notation P >0, for P ∈ Rn×n

means that P is symmetric and positive definite, whereas
λmin(P ) (λmax(P )) denotes its minimum (maximum)

C© 2014 Taylor & Francis
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eigenvalue. The notation In stands for the identity n × n

matrix and diag{l1, . . . , ln} stands for a diagonal n × n ma-
trix with the scalars l1, . . . , ln on its main diagonal. In sym-
metric block matrices we use ∗ for terms that are induced
by the symmetry.

Let � = {x = (x1, . . . , xm)T } be an open bounded do-
main in Rm with a smooth boundary ∂�. L2(�; Rn) (n =
1,2, . . .) is the Hilbert space of functions z : � → Rn with
‖z‖2

L2 = ∫
�

|z(x)|2dx < ∞. H1(�) is the Sobolev space
of absolutely continuous functions z = [z1, . . . , zn]T :
� → Rn with ||z||2

H 1 = ∑n
i=1 ||�x zi ||2L2

< ∞. The space
of continuous functions φ : (−∞, 0] → H1(�) with
the norm ‖φ‖C = sups∈(−∞,0] ||φ(·, s)||H 1 < ∞ is de-
noted by C(−∞, 0; H1(�)). The space of the continu-
ously differentiable functions φ : (−∞, 0] → H1(�) with
the norm ‖φ‖C1 = ‖φ‖C + ‖φ̇‖C < ∞ is denoted by
C1(−∞, 0; H1(�)).

2. Problem formulation and useful inequalities

Consider the following system governed by the diffusion
PDE

yt (x, t) = �Dy(x, t) − Ay(x, t) + A1f (y(x, t))

+A2g(y(x, t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ(y(x, t − s)) ds + I,

t > 0 (1)

under the Dirichlet

y(x, t) = y∗, (x, t) ∈ ∂� × (0,∞), (2)

or under the Neumann

∂y(x, t)

∂x
= 0 , (x, t) ∈ ∂� × (0,∞) (3)

boundary conditions. Here y(x, t) = [y1(x, t) . . .

yn(x, t)]T ∈ Rn is the space state vector that depends on
the spatial vector x ∈ � ⊂ Rm and the time t , yt (x, t)
stands for the vector derivative with respect to the time
t . Vector y∗ ∈ Rn is a steady state solution of (1) (see
assumption A1 below). Under the Dirichlet boundary
conditions we assume that � = [0, a1] × . . . × [0, am].

The diffusion term

�Dy(x, t)T =
[

m∑
k=1

D1k

∂2y1(x, t)

∂x2
k

, . . . ,

m∑
k=1

Dnk

∂2yn(x, t)

∂x2
k

]

is a vector Laplacian with constant diffusion coeffi-
cients Dik ≥ 0 , i = 1, . . . , n , k = 1, . . . , m. A ∈ Rn×n

is a self decay rate matrix, A1, A2, Ad ∈ Rn×n are connec-
tion weight matrices, K(s) ∈ L1(0,∞; [0,∞)) is a kernel
function for the distributed delay and I is an external con-

stant input. The continuous, nonlinear functions

f (y(x, t)) = [f1(y1(x, t)), . . . , fn(yn(x, t))]T ,

g(y(x, t − τ (t))) = [g1(y1(x, t − τ (t))), . . . ,

gn(yn(x, t − τ (t)))]T ,

ψ(y(x, s)) = [ψ1(y1(x, s)), . . . , ψn(yn(x, s))]T

stand for the activation functions, where τ (t) is a time-
varying discrete delay.

Note that in many cases a system with a matrix inte-
grable kernel K(θ ) ∈ Rn×n can be presented as a system
with multiple delays and scalar kernels Ki(s) ∈ [0,∞)

yt (x, t) = �Dy(x, t) − Ay(x, t) + A1f (y(x, t))

+A2g(y(x, t − τ (t))) +
q∑

i=1

Adi

×
∫ ∞

0
Ki(s)ψ(y(x, t − s)) ds + I, (4)

where Adi ∈ Rn×n. The results will also be applicable to a
finite distributed delay hd < ∞, where K(s) = 0, s > hd .

We assume the following:

A1: There exists a steady state solution y∗ ∈ Rn of (1).
A2: The scalar functions fi(yi(x, t)), gi(yi(x, t)),

ψi(yi(x, t)), i = 1, . . . , n are continuous and
satisfy

f −
i ≤ fi(u1) − fi(u2)

u1 − u2
≤ f +

i ,

g−
i ≤ gi(u1) − gi(u2)

u1 − u2
≤ g+

i ,

ψ−
i ≤ ψi(u1) − ψi(u2)

u1 − u2
≤ ψ+

i ,

∀u1 = u2, u1, u2 ∈ R1, i = 1, . . . , n,

with some scalars f −
i , f +

i , g−
i , g+

i , ψ−
i , ψ+

i .
A3: The kernel K ∈ L1(0,∞; [0,∞)) satisfies the

inequality

∫ ∞

0
K(s) e2δmaxsds < ∞ (5)

with some δmax > 0.

Under A1, we obtain the following differential equation
with respect to the deviation ŷ(x, t) = y(x, t) − y∗ from the
steady state solution y∗ of Equation (1):

ŷt (x, t) = �Dŷ(x, t) − Aŷ(x, t) + A1f̂ (y(x, t))

+A2ĝ(y(x, t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ̂(y(x, t − s)) ds (6)
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International Journal of Control 3

where

f̂ (y(x, t)) = f (y(x, t)) − f (y∗),

ĝ(y(x, t)) = g(y(x, t)) − g(y∗),

ψ̂(y(x, t)) = ψ(y(x, t)) − ψ(y∗),

under the Dirichlet boundary conditions

ŷ(x, t) = 0 , (x, t) ∈ ∂� × (0,∞), (7)

or the Neumann boundary conditions

∂ŷ(x, t)

∂x
= 0 , (x, t) ∈ ∂� × (0,∞). (8)

Denote

Fi = max{|f −
i |, |f +

i |}, Gi = max{|g−
i |, |g+

i |},
�i = max{|ψ−

i |, |ψ+
i |}, i = 1, . . . , n,

F = diag{F1, . . . , Fn}, G = diag{G1, . . . ,Gn},
� = diag{�1, . . . , �n}.

Under A2 for all diagonal n × n matrices Si ≥ 0, i =
1, 2, 3, the following holds (Sabri, 2003; Zhou, Xu, Zhang,
& Shen, 2012):

∫
�

[ŷT (x, t)F 2S1ŷ(x, t) − f̂ T (y(x, t))S1f̂ (y(x, t))]dx ≥ 0,∫
�

[ŷT (x, t)G2S2ŷ(x, t) − ĝT (y(x, t))S2ĝ(y(x, t))]dx ≥ 0,∫
�

[ŷT (x, t)�2S3ŷ(x, t) − ψ̂T (y(x, t))S3ψ̂(y(x, t))]dx ≥ 0.

(9)

If additionally f −
i , g−

i , ψ−
i ≥ 0, ∀i = 1, . . . , n, then for

all diagonal n × n matrices S4, S5, S6 ≥ 0, the following
holds:

2
∫

�

[f̂ T (y(x, t))FS4ŷ(x, t) − f̂ T (y(x, t))S4f̂ (y(x, t))]dx ≥ 0,

2
∫

�

[ĝT (y(x, t))GS5ŷ(x, t) − ĝT (y(x, t))S5ĝ(y(x, t))]dx ≥ 0,

2
∫

�

[ψ̂T (y(x, t))�S6ŷ(x, t) − ψ̂T (y(x, t))S6ψ̂(y(x, t))]dx ≥ 0.

(10)

System (6) is said to be exponentially stable with a
decay rate δ > 0 if there exists a constant b ≥ 1 such that
the following exponential estimate holds for the solution of
Equation (6) initialised with φ − y∗ ∈ C(−∞, 0; H1(�)):

‖ŷ(·, t)‖2
L2

≤ be−2δt‖φ − y∗‖2 ∀t ≥ 0, (11)

where ‖φ − y∗‖ �= ‖φ − y∗‖C . Here φ(x, θ ) = y(x, θ ),
x ∈ �, θ ∈ (−∞, 0] is the initial function for Equation
(1). The objective of the present paper is to derive suffi-
cient conditions for the exponential stability of Equation
(6). For φ − y∗ ∈ C1(−∞, 0; H1(�)) we will find less re-
strictive exponential stability conditions, where in Equation
(11) ‖φ − y∗‖ = ‖φ − y∗‖C1 . The results will further be
extended to the passivity analysis.

Remark 1: A3 with δmax > 0 is assumed for the exponen-
tial stability with a given decay rate. For the exponential
stability with a small enough decay rate, δmax can be chosen
to be 0 in Equation (5).

We present several useful lemmas:

Lemma 2.1 (Halanay’s inequality; Halanay, 1966): Let
0 < δ1 < δ0 and let V : [t0 − h,∞) → [0,∞) be an abso-
lutely continuous function that satisfies

V̇ (t) ≤ −2δ0V (t) + 2δ1 sup
−h≤θ≤0

V (t + θ ), t ≥ t0.

Then

V (t) ≤ e−2δ(t−t0) sup
−h≤θ≤0

V (t0 + θ ), t ≥ t0,

where δ > 0 is a unique positive solution of δ = δ0 −
δ1e

2δh.

Lemma 2.2 (Wirtinger’s inequality; Tucsnak &
Weiss, 2009): Suppose that � = [0, a1] × · · · × [0, am],
f : � → R and f ∈ H1

0(�), where

H1
0(�) = {f ∈ H1(�) | f |∂� = 0},

then

Cp||f ||L2 ≤ ||∇f ||L2

Here Cp = ∑m
i=1

π2

a2
i

.

Lemma 2.3 (Extended Jensen’s inequality; Solomon &
Fridman, 2013): Given an n × n matrix R > 0, a scalar
function α : [0,∞) → (0,∞), a scalar τ ≥ 0 and a vector
function φ : [0,∞) → Rn such that the integrations con-
cerned are well defined. Then the following inequalities
hold:

∫ ∞

0
α(θ )|K(θ )|φT (θ )Rφ(θ ) dθ

≥ K0
−1

∫ ∞

0
K(θ )φT (θ ) dθR

∫ ∞

0
K(θ )φ(θ ) dθ,

K0 =
∫ ∞

0
α−1(θ )|K(θ )|dθ (12)
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4 O. Solomon and E. Fridman

and ∫ ∞

0

∫ t

t−θ

α(θ )|K(θ )|φT (s)Rφ(s)ds dθ

≥ K1
−1

∫ ∞

0

∫ t

t−θ

K(θ )φT (s) ds dθ

×R

∫ ∞

0

∫ t

t−θ

K(θ )φ(s) ds dθ,

K1 =
∫ ∞

0
α−1(θ )|K(θ )|θdθ. (13)

3. Exponential stability via a combination of LKF
and Halanay’s inequality

In the absence of discrete delay, the following LKF

V (t) = VP1 (t) + VGd
(t),

VP1 (t) =
∫

�

ŷT (x, t)P1ŷ(x, t) dx,

VGd
(t) =

∫
�

∫ ∞

0

∫ t

t−θ

K(θ )e2δ0(s−t)ψ̂T (y(x, s))

×Gdψ̂(y(x, s)) ds dθ dx (14)

with positive n × n matrices P1 and Gd can be used for
the exponential stability analysis of Equation (6), where
g = ĝ = 0 (i.e. of the system with the distributed delay
only). The Gd -term of V generalises the similar construc-
tion of Solomon and Fridman (2013) and Kolmanovskii and
Richard (1999) to the diffusion nonlinear PDEs. We will use
the above V (t) and Halanay’s inequality to treat the discrete
delay in Equation (6). Note that the combination of an LKF
with the Halanay inequality was introduced in Fridman and
Blighovsky (2012), where sampled-data stabilisation of a
one-dimensional (1D) heat equation was studied.

Denote

K0 =
∫ ∞

0
K(θ )dθ , Kδ0 =

∫ ∞

0
e2δ0θK(θ )dθ.

Differentiation of Equation (14) along the trajectories of
Equation (6) yields

V̇ (t) + 2δ0V (t) ≤ 2
∫

�

ŷT (x, t)P1

[
�Dŷ(x, t)

−Aŷ(x, t) + A1f̂ (y(x, t)) + A2ĝ(y(x, t − τ (t)))

+Ad

∫ ∞

0
K(θ )ψ̂(y(x, t − θ )) dθ

]
dx

+
∫

�

ψ̂T (y(x, t))K0Gdψ̂(y(x, t)) dx

−
∫

�

∫ ∞

0
K(θ )e−2δ0θ ψ̂T (y(x, t − θ ))

×Gdψ̂(y(x, t − θ )) dθ dx

+ 2δ0

∫
�

ŷT (x, t)P1ŷ(x, t) dx. (15)

By using the extended Jensen’s inequality we have

−
∫

�

∫ ∞

0
K(θ )e−2δ0θ ψ̂T (y(x, t − θ ))Gdψ̂

× (y(x, t − θ )) dθ dx

≤ −K−1
δ0

∫
�

∫ ∞

0
K(θ )ψ̂T (y(x, t − θ )) dθGd

×
∫ ∞

0
K(θ )ψ̂(y(x, t − θ )) dθ dx. (16)

Denote Dk = diag{D1k, . . . , Dnk}. Taking into account
the boundary conditions (7) or (8) and applying Green’s
formula, we obtain

2
∫

�

ŷT (x, t)P1�Dŷ(x, t) dx

= −2
m∑

k=1

∫
�

ŷT
xk

(x, t)DkP1ŷxk
(x, t) dx

= −
m∑

k=1

∫
�

ŷT
xk

(x, t)(DkP1 + P1Dk)ŷxk
(x, t) dx.

(17)

Assume that for some λ ≥ 0

DkP1 + P1Dk ≥ λI, k = 1, . . . , m. (18)

Then

−
m∑

k=1

∫
�

ŷT
xk

(x, t)(DkP1 + P1Dk)ŷxk
(x, t) dx

≤ −λ

m∑
k=1

∫
�

ŷT
xk

(x, t)ŷxk
(x, t)dx

≤ −λ

n∑
i=1

∫
�

∇T
x ŷi(x, t)∇x ŷi(x, t)dx

≤ −λCp

∫
�

ŷT (x, t)ŷ(x, t) dx, (19)

where Cp = ∑m
i=1

π2

a2
i

under the Dirichlet and Cp = 0 un-

der the Neumann boundary conditions. Note that the last
inequality of Equation (19) follows from the Wirtinger in-
equality (Lemma 2.2).

We further apply the Halanay inequality, where

−2δ1 sup
θ∈[−h,0]

V (t + θ ) ≤ −2δ1V (t − τ (t))

≤ −2δ1

∫
�

ŷT (x, t − τ (t))P1ŷ(x, t − τ (t)) dx. (20)

Denote

η(t) = col

{
ŷ(x, t), f̂ (y(x, t)), ĝ(y(x, t − τ (t))),∫ ∞

0
K(θ )ψ̂(y(x, t − θ )) dθ ), ψ̂(y(x, t)

}
.
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International Journal of Control 5

Taking into account Equations (15), (16), (19) and (20), and
adding to V̇ (t) + 2δV (t) the nonnegative left-hand sides of
Equation (9) and, for the case of f −

i , g−
i ≥ 0 and ψ−

i ≥ 0
(i = 1, . . . , n), the nonnegative left-hand sides of Equa-
tion (10), we arrive at

V̇ (t) + 2δ0V (t) − 2δ1

∫
�

ŷT (x, t − τ (t))P1ŷ(x, t − τ (t)) dx

≤
∫

�

[ηT (t)ϒη(t) + ŷT (x, t − τ (t))ϒ0ŷ(x, t − τ (t))]dx ≤ 0

if the following LMIs hold:

ϒ0 = −2δ1P1 + G2S2 < 0 (21)

and

ϒ =

⎡
⎢⎢⎢⎢⎣

ϒ11 P1A1 + FS4 P1A2 + GS5 P1Ad �S6

∗ −S1 − 2S4 0 0 0
∗ ∗ −S2 − 2S5 0 0
∗ ∗ ∗ −K−1

δ0
Gd 0

∗ ∗ ∗ ∗ K0Gd − S3 − 2S6

⎤
⎥⎥⎥⎥⎦ < 0, (22)

where

ϒ11 = 2δ0P1 − λCpI − (P1A + AT P1) + F 2S1 + �2S3.

(23)

Let y(x, θ ) = φ(x, θ ) ∈ C(−∞, 0; H1(�)) be the ini-
tial condition for Equation (1). If Equations (21)–(23) are
satisfied, then by Halanay’s inequality

λmin(P )
∫

�

|y(x, t) − y∗|2dx ≤ V (t) ≤ e−2δt sup
−h≤θ≤0

V (θ )

where

sup
−h≤θ≤0

V (θ ) ≤ λmax(P ) sup
−h≤θ≤0

∫
�

|φ(x, θ ) − y∗|2dx

+ λmax(Gd ) sup
−∞≤θ≤0

∫
�

|ψ(φ(x, θ )) − ψ(y∗)|2dx

×
∫ ∞

0
sK(s)ds

and δ = δ0 − δ1e
2δh. Therefore, the following bound is

achieved:

∫
�

|y(x, t) − y∗|2dx ≤ βe−2δt sup
−∞≤θ≤0

∫
�

|φ(x, θ ) − y∗|2dx,

β =
[
λmax(P ) + λmax(�2)λmax(Gd )

∫ ∞

0
sK(s)ds

]/
λmin(P ),

i.e. the system (6) is exponentially stable with a decay rate
δ. We have proved the following:

Theorem 3.1 Assume A1–A3. Given δ0 > δ1 > 0, let
there exist n × n matrices P1 > 0 and Gd > 0, diagonal
matrices Si > 0 (i = 1, . . . , 6) and a scalar λ ≥ 0 such
that the LMIs (18), (21) and (22) with notation (23) are
feasible. Then for all τ (t) ≤ h and for f , g and ψ with
nonnegative f −

i , g−
i , ψ−

i (i = 1, . . . , n), the system (6) is

exponentially stable with a decay rate δ, where δ is a unique
solution of δ = δ0 − δ1e

2δh. If the above inequalities hold
with δ1 = δ0 then the system (6) is exponentially stable with
a small enough decay rate. Moreover, if the above LMIs hold
with S4 = S5 = S6 = 0, then the system (6) is exponentially
stable for f , g and ψ with any sign of f −

i , g−
i , ψ−

i (i =
1, . . . , n).

Remark 2: The results can be easily extended to the
case of multiple distributed delays as in Equation (4), un-
der the assumption that there exists δmax > 0 such that∫ ∞

0 Ki(θ )e2δmaxθdθ < ∞, i = 1, . . . , q. Then the corre-
sponding LMIs have the form

ϒ0 = −2δ1P1 + G2S2 < 0 (24)

ϒ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϒ11 P1A1 + FS4 P1A2 + GS5 . . . P1Adq �S6

∗ −S1 − 2S4 0 . . . 0 0
∗ ∗ −S2 − 2S5 . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ −(Kq

δ0
)−1Gdq 0

∗ ∗ ∗ 0
∑q

i=1 K0iGdi − S3 − 2S6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (25)

where ϒ11 is given by Equation (23) and

K0i =
∫ ∞

0
Ki(θ )dθ, Ki

δ0
=

∫ ∞

0
e2δ0θKi(θ )dθ.

Remark 3: The exponential stability criterion of Theo-
rem 3.1 is novel also for finite-dimensional delayed models
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6 O. Solomon and E. Fridman

governed by ODEs with delays

ẏ(t) = −Ay(t) + A1f (y(t)) + A2g(y(t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ(y(t − s)) ds. (26)

In this case the conditions of Theorem 3.1 with λ = 0 guar-
antee the exponential stability of Equation (26).

4. Delay-dependent stability and passivity:
the descriptor approach

In this section we assume that the discrete delay is bounded
from above: τ (t) ≤ h and that it is either slowly varying
(differentiable with τ̇ (t) ≤ d < 1) or fast-varying (without
any constrains on the delay derivative). The function ψ is
supposed to be differentiable.

Remark 4: For ODE systems with time-delay there are
two main delay-dependent LKF-based methods (Fridman
& Orlov, 2009) (for computation of V̇ ): the first one is based
on the direct substitution of the state derivative by the right-
hand side of the ODE, the second one is the descriptor
method (Fridman, 2001) that avoids this substitution and
uses some additional free matrices P2 and P3. The first
method for diffusion PDEs leads to the quadratic positive
diffusion terms that may complicate the analysis. In 1D
scalar case it was shown in Fridman and Orlov (2009) that
the descriptor method, where (differently from ODE) P3

appears in V , leads to efficient conditions for diffusion
PDEs.

We will derive below the delay-dependent conditions
by extending the descriptor method to m-D vector diffusion
PDEs.

4.1 Delay-dependent stability

Consider the following LKF:

V (t) = VP1 (t) + VP3 (t) + VR(t) + VQ(t)

+VS(t) + VGd
(t) + VH (t),

VP1 (t) =
∫

�

ŷT (x, t)P1ŷ(x, t) dx,

VP3 (t) = 1

2

m∑
k=1

∫
�

ŷT
xk

(x, t)Mkŷxk
(x, t) dx,

Mk = DkP3 + P T
3 Dk,

VR(t) = h

∫
�

∫ 0

−h

∫ t

t+θ

e2δ(s−t)ŷT
s (x, s)Rŷs(x, s) ds dθ dx,

VQ(t) =
∫

�

∫ t

t−τ (t)
e2δ(s−t)ŷT (x, s)Qŷ(x, s) ds dx,

VS(t) =
∫

�

∫ t

t−h

e2δ(s−t)ŷT (x, s)Sŷ(x, s) ds dx,

VGd
(t) =

∫
�

∫ ∞

0

∫ t

t−θ

K(θ )e2δ(s−t)ψ̂T (y(x, s))Gdψ̂

× (y(x, s)) ds dθ dx,

VH (t) =
∫

�

∫ ∞

0

∫ θ

0

∫ t

t−ζ

K(θ )e2δ(s−t) ∂

∂s

[
ψ̂T (y(x, s))

]
×H

∂

∂s

[
ψ̂(y(x, s))

]
dsdζdθdx (27)

with n × n constant matrices P1 > 0, S > 0, R > 0,Gd >

0, P3 and a diagonal matrix H > 0. To guarantee that
V (t) ≥ α||ŷ||L2 for some α > 0 we assume the following:

Mk = DkP3 + P T
3 Dk ≥ 0, k = 1, . . . , m. (28)

Here VP1 , VP3 , VR, VQ and VS extend the Lyapunov con-
struction of Fridman and Orlov (2009) to n-D vector state.
VGd

and VH are added to V (t) to treat the distributed delay.
The latter terms extend the constructions of Solomon and
Fridman (2013), Chen and Zheng (2007) and Sun, Liu, and
Chen (2009) to diffusion nonlinear PDEs.

Denote

K0 =
∫ ∞

0
K(θ )dθ, K0δ =

∫ ∞

0
e2δθK(θ )dθ,

K1 =
∫ ∞

0
K(θ )θdθ, K1δ =

∫ ∞

0
e2δθK(θ )θdθ.

Differentiating Equation (27) along the trajectories of Equa-
tion (6) we have

V̇ (t) + 2δV (t) ≤ 2
∫

�

ŷT (x, t)P1ŷt (x, t) dx

+
m∑

k=1

∫
�

ŷT
xk

(x, t)Mkŷxkt (x, t) dx

+ h2
∫

�

ŷT
t (x, t)Rŷt (x, t) dx

− h

∫
�

∫ t

t−h

e2δ(s−t)ŷT
s (x, s)Rŷs(x, s) ds dx

+
∫

�

ŷT (x, t)Sŷ(x, t) dx − e−2δh

×
∫

�

ŷT (x, t − h)Sŷ(x, t − h) dx

+
∫

�

ŷT (x, t)Qŷ(x, t) dx − (1 − d)e−2δh

×
∫

�

ŷT (x, t − τ (t))Qŷ(x, t − τ (t)) dx

+ K0

∫
�

ψ̂T (y(x, t))Gdψ̂(y(x, t)) dx

−
∫

�

∫ ∞

0
K(θ )e−2δθ ψ̂T (y(x, t − θ ))Gdψ̂

× (y(x, t − θ )) dθ dx
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International Journal of Control 7

+ 2δ

∫
�

ŷT (x, t)P1ŷ(x, t) dx

+ δ

m∑
k=1

∫
�

ŷT
xk

(x, t)Mkŷxk
(x, t) dx

+ K1

∫
�

∂

∂t

[
ψ̂T (y(x, t))

]
H

∂

∂t

[
ψ̂(y(x, t))

]
dx

−
∫

�

∫ ∞

0

∫ t

t−θ

e−2δθK(θ )
∂

∂s

[
ψ̂T (y(x, s))

]
× H

∂

∂s

[
ψ̂(y(x, s))

]
dsdθdx. (29)

Denote ξ (x, t) = col{(ŷ(x, t)−ŷ(x, t−τ (t)), (ŷ(x, t−
τ (t)) − ŷ(x, t − h))}. Following Park, Ko, and Jeong
(2011) and by using the extended Jensen’s inequality we
obtain

−h

∫
�

∫ t

t−h

e2δ(s−t)ŷT
s (x, s)Rŷs(x, s) ds dx ≤

−he−2δh

∫
�

∫ t−τ (t)

t−h

ŷT
s (x, s)Rŷs(x, s) ds dx

−he−2δh

∫
�

∫ t

t−τ (t)
ŷT

s (x, s)Rŷs(x, s) ds dx ≤

− e−2δh

∫
�

[
h

τ (t)
ξT (x, t)

[
R 0
0 0

]
ξ (x, t)

+ h

h − τ (t)
ξT (x, t)

[
0 0
0 R

]
ξ (x, t)dx

]
≤

−
∫

�

e−2δhξT (x, t)�ξ (x, t)dx,

(30)

if

� =
[

R S12

∗ R

]
≥ 0. (31)

The distributed kernel term can be upper bounded
by using Jensen’s extended inequalities (12) and (13) as
follows:

−
∫

�

∫ ∞

0
K(θ )e−2δθ ψ̂T (y(x, t − θ ))Gdψ̂

× (y(x, t − θ )) dθ dx ≤
−K−1

0δ

∫
�

∫ ∞

0
K(θ )ψ̂T (y(x, t − θ )) dθ

×Gd

∫ ∞

0
K(θ )ψ̂(y(x, t − θ )) dθ dx

and

−
∫

�

∫ ∞

0

∫ t

t−θ

e−2δθK(θ )
∂

∂s

[
ψ̂T (y(x, s))

]
×H

∂

∂s

[
ψ̂(y(x, s))

]
dsdθdx ≤

−K−1
1δ

∫
�

∫ ∞

0

∫ t

t−θ

K(θ )
∂

∂s

[
ψ̂T (y(x, s))

]
dsdθ

×H

∫ ∞

0

∫ t

t−θ

K(θ )
∂

∂s

[
ψ̂(y(x, s))

]
dsdθdx

= −K−1
1δ

∫
�

ζ T (x, t)

[
K0I

−I

]
H [K0I − I ]ζ (x, t)dx,

where ζ (x, t) = col {ψ̂(y(x, t))
∫ ∞

0 K(θ )ψ̂(y(x, t −
θ ))dθ}.

Note that ψ̂y(y) = diag{ψy1 (y1), . . . , ψyn
(yn)} and,

thus,

ψ̂T
y (y(x, t))Hψ̂y(y(x, t))ŷt (x, t) ≤ ŷT

t (x, t)�2Hŷt (x, t).

Then

K1

∫
�

∂

∂t

[
ψ̂T (y(x, t))

]
H

∂

∂t

[
ψ̂(y(x, t))

]
dx

= K1

∫
�

ŷT
t (x, t)ψ̂T

y (y(x, t))Hψ̂y(y(x, t))ŷt (x, t)dx

≤ K1

∫
�

ŷT
t (x, t)�2Hŷt (x, t)dx. (32)

We take into account the dynamics of Equation (6)
through the use of the descriptor method (Fridman, 2001;
Fridman & Orlov, 2009), where we add to V̇ (t) + 2δV (t)
the right-hand side of

0 = 2
[
ŷT (x, t)P T

2 + ŷT
t (x, t)P T

3

] [
−ŷt (x, t) + �Dŷ(x, t)

−Aŷ(x, t) + A1f̂ (y(x, t)) + A2ĝ(y(x, t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ̂(y(x, t − s)) ds

]
(33)

with a free n × n matrix P2. Taking into account the bound-
ary conditions (7) or (8) and applying Green’s formula, we
obtain

2
∫

�

ŷT
t (x, t)P T

3 �Dŷ(x, t) dx

= −2
m∑

k=1

∫
�

ŷT
xkt

(x, t)DkP3ŷxk
(x, t) dx

= −
m∑

k=1

∫
�

ŷT
xk

(x, t)Mkŷxkt (x, t) dx. (34)

When combined with Equation (29), Equation (34) cancels
the term

∑m
k=1

∫
�

ŷT
xk

(x, t)Mkŷxkt
(x, t) dx.

Similarly

∫
�

ŷT (x, t)P T
2 �Dŷ(x, t)

= −
m∑

k=1

∫
�

ŷT
xk

(x, t)[DkP2 + P T
2 Dk]ŷxk

(x, t) dx.
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8 O. Solomon and E. Fridman

Denote Jk = DkP2 + P T
2 Dk and χk = Jk − δMk =

Dk(P2 − δP3) + (P2 − δP3)T Dk , where Mk and Jk are
symmetric n × n matrices. Assume that for some λ ≥ 0
and every Dk , k = 1, . . . , m,

Dk(P2 − δP3) + (P2 − δP3)T Dk ≥ λI. (35)

Then by combining the terms

δ

m∑
k=1

∫
�

ŷT
xk

(x, t)Mkŷxk
(x, t) dx

−
∫

�

ŷT
xk

(x, t)Jkŷxk
(x, t) dx

= −
m∑

k=1

∫
�

ŷT
xk

(x, t)χkŷxk
(x, t) dx (36)

and applying Wirtinger’s inequality we arrive at

−
m∑

k=1

∫
�

ŷT
xk

(x, t)χkŷxk
(x, t) dx

≤ −λ

m∑
k=1

∫
�

ŷT
xk

(x, t)ŷxk
(x, t) dx

≤ −λ

n∑
i=1

∫
�

∇T
x ŷT

i (x, t)∇x ŷi(x, t) dx

≤ −λCp

∫
�

ŷT (x, t)ŷ(x, t) dx.

Further denoting

η(x, t) = col

{
ŷ(x, t), ŷt (x, t), ŷ(x, t − h), ŷ(x, t − τ (t)),

f̂ (y(x, t)), ĝ(y(x, t − τ (t))),

ψ̂(y(x, t)),
∫ ∞

0
K(θ )ψ̂(y(x, t − θ )) dθ

}

and adding to V̇ (t) + 2δV (t) the nonnegative left-hand
sides of Equation (9) and, for the case of f −

i , g−
i ≥ 0

and ψ−
i ≥ 0 (i = 1, . . . , n), the nonnegative left-hand

sides of Equation (10), we find that V̇ (t) + 2δV ≤∫
�

ηT (t)�η(t)dx ≤ 0 if the following LMI is feasible

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 P1 − P T
2 − AT P3 e−2δhS12 e−2δh(R − S12) �15 �16 �S6 P T

2 Ad

∗ �22 0 0 P T
3 A1 P T

3 A2 0 P T
3 Ad

∗ ∗ −e−2δh(S + R) e−2δh(R − ST
12) 0 0 0 0

∗ ∗ ∗ �44 0 0 0 0
∗ ∗ ∗ ∗ −S1 − 2S4 0 0 0
∗ ∗ ∗ ∗ ∗ −S2 − 2S5 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 �78

∗ ∗ ∗ ∗ ∗ ∗ ∗ �88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (37)

Here

�11 = S + Q + 2δP1 − e−2δhR − (P T
2 A + AT P2)

−λCpI + F 2S1 + �2S3,

�15 = P T
2 A1 + FS4, �16 = P T

2 A2 + GS5,

�22 = h2R − P3 − P T
3 + K1�dH,

�44 = G2S2 − e−2δh[2R − S12 − ST
12 + (1 − d)Q],

�77 = K0Gd − S3 − 2S6 − K−1
1δ K2

0 H,

�78 = K−1
1δ K0H, �88 = −K−1

0δ Gd − K−1
1δ H. (38)

Let y(x, θ ) = φ(x, θ ) ∈ C1(−∞, 0; H1(�)) be the ini-
tial condition for Equation (1). If Equations (37) and (38)
are satisfied, then

λmin(P1)
∫

�

|y(x, t) − y∗|2dx ≤ V (t) ≤ e−2δtV (0),

V (0) ≤ λmax(P1)
∫

�

|φ(x, 0) − y∗|2dx

+ 1

2

m∑
k=1

λmax(Mk)
∫

�

|φxk
(x, 0)|2dx

+
[
h(λmax(Q) + λmax(S)) + λmax(Gd )λmax(�2)

×
∫ ∞

0
sK(s)ds

]
sup

−∞≤θ≤0

∫
�

|φ(x, θ ) − y∗|2dx

+
[
h3

2
λmax(R) + 1

2
λmax(H�2)

×
∫ ∞

0
s2K(s)ds

]
sup

−∞≤θ≤0

∫
�

|φθ (x, θ )|2dx,

i.e. the system is exponentially stable with a decay rate δ.
We have proved the following:

Theorem 4.1: Assume A1–A3. Given δ > 0, h > 0, 0 ≤
d < 1, let there exist n × n matrices P1 > 0, S > 0, R >

0,Q > 0,Gd > 0, P2, P3 and S12, diagonal n × n matri-
ces Si > 0 (i = 1, . . . , 6),H > 0 and a scalar λ ≥ 0, such
that the LMIs (28), (31), (35) and (37) with notation (38)
are feasible. Then for all discrete delays τ (t) ∈ [0, h], the
system (6) with nonnegative f −

i , g−
i , ψ−

i (i = 1, . . . , n) is
exponentially stable with a decay rate δ. If the LMI (37)
is feasible for Q = 0, then the system (6) is exponentially
stable for all fast-varying delays τ (t) ∈ [0, h]. Moreover,
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International Journal of Control 9

if the above LMIs hold with S4 = S5 = S6 = 0, then
the system (6) is exponentially stable for any sign of
f −

i , g−
i , ψ−

i (i = 1, . . . , n).

Remark 5: The results can be easily extended to the
case of multiple distributed delays as in Equation (4).
Here it is assumed that there exists δmax > 0 such that∫ ∞

0 Ki(θ )e2δmaxθdθ < ∞, i = 1, . . . , q. Then the corre-
sponding LMI has the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 P1 − P T
2 − AT P3 e−2δhS12 e−2δh(R − S12) �15 �16 �S6 . . . P T

2 Adq

∗ �22 0 0 P T
3 A1 P T

3 A2 0 . . . P T
3 Adq

∗ ∗ −e−2δh(S + R) e−2δh(R − ST
12) 0 0 0 . . . 0

∗ ∗ ∗ �44 0 0 0 . . . 0
∗ ∗ ∗ ∗ −S1 − 2S4 0 0 . . . 0
∗ ∗ ∗ ∗ ∗ −S2 − 2S5 0 . . . 0
∗ ∗ ∗ ∗ ∗ ∗ �77 . . . �7q

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . �8q

...
...

...
...

...
...

...
. . .

...
∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . �qq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (39)

where

K0i =
∫ ∞

0
Ki(θ )dθ , Ki

0δ =
∫ ∞

0
e2δθKi(θ )dθ,

K1i =
∫ ∞

0
Ki(θ )θdθ , Ki

1δ =
∫ ∞

0
e2δθKi(θ )θdθ,

and

�11 = S + Q + 2δP1 − e−2δhR − (P T
2 A + AT P2)

−λCpI + F 2S1 + �2S3,

�22 = h2R − P3 − P T
3 +

q∑
i=1

K1i�dHi,

�44 = G2S2 − e−2δh[2R − S12 − ST
12 + (1 − d)Q],

�15 = P T
2 A1 + FS4, �16 = P T

2 A2 + GS5,

�77 =
q∑

i=1

K0iGdi − S3 − 2S6 −
q∑

i=1

(Ki
1δ)−1K2

0iHi,

�7q = (Kq
1δ)−1K0qHq, �8q = 0,

�qq = −(Kq
0δ)−1Gdq − (Kq

1δ)−1Hq. (40)

Remark 6: Consider the case of Ad ∈ Rn×n that can
be presented in the form of Ad = DT Al

dC, with D ∈
Rl×n, C ∈ Rp×n, Al

d ∈ Rl×p and l, p < n. Here the
reduced-order LMIs can be derived by choosing LKFs as
above, where H and Gd are changed by CT H̄C (provided
this matrix is diagonal) and CT ḠdC, respectively, with
the positive H̄ , Ḡd ∈ Rp×p. Changing

∫ ∞
0 K(θ )ψ̂(y(x, t −

θ )) dθ by
∫ ∞

0 K(θ )Cψ̂(y(x, t − θ )) dθ in η(x, t), one can
arrive at the modified LMIs. Thus, in the delay-independent

LMIs (21) and (22) we obtain

ϒ14 = P1D
T Al

d, ϒ44 = −K−1
δ0

Ḡd,

ϒ55 = K0C
T ḠdC − S3 − 2S6,

and in the delay-dependent condition (37) we have

�18 = P T
2 DT Al

d,

�22 = h2R − P3 − P T
3 + K1�

2CT H̄C,

�28 = P T
3 DT Al

d,

�77 = K0C
T ḠdC − S3 − 2S6 − K−1

1δ K2
0 CT H̄C,

�78 = K−1
1δ K0H̄CT , �88 = −K−1

0δ Ḡd − K−1
1δ H̄ ,

4.2 Passivity analysis

Consider the following system:

ŷt (x, t) = �Dŷ(x, t) − Aŷ(x, t) + A1f̂ (y(x, t))

+A2ĝ(y(x, t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ̂(y(x, t − s)) ds + B1u(x, t),

(41)

where the notations defined previously hold with the addi-
tional input u(x, t) ∈ Rq and B1 ∈ Rn×q . Consider also the
following output of the system:

z(x, t) = [C1 C2 C3]

⎡
⎣ ŷ(x, t)

f̂ (y(x, t))
ψ̂(y(x, t))

⎤
⎦ + Zu(x, t), (42)

where C1, C2, C3 ∈ Rq×n and Z ∈ Rq×q are constant
matrices.
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10 O. Solomon and E. Fridman

It is said that system (41), (42) is passive if there exists
a scalar γ ≥ 0 such that,

2
∫

�

∫ tp

0
zT (x, t)u(x, t) dtdx

≥ −γ

∫
�

∫ tp

0
uT (x, t)u(x, t) dtdx ∀tp ≥ 0, (43)

for all the solutions of system (41) with the zero initial
conditions and under the boundary conditions (7) or (8).

Consider the LKF (27) with δ = 0. Then the following
inequality

V̇ (t) − 2
∫

�

zT (x, t)u(x, t)dx − γ

∫
�

uT (x, t)u(x, t)dx ≤ 0

(44)

yields Equation (43). Indeed, integration of Equation (44)
implies

V (tp) − V (0) − γ

∫
�

∫ tp

0
uT (x, t)u(x, t)dtdx

≤ 2
∫

�

∫ tp

0
zT (x, t)u(x, t)dtdx, ∀tp > 0

and thus Equation (43), because V (tp) ≥ 0 and V (0) = 0.
By applying the descriptor method, we arrive at the

LMIs (28), (31), (35) and

ϒ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| P T
2 B1 − CT

1
| P T

3 B1

� | 0
| 0
| −CT

2
| 0
| −CT

3
| 0

− − −
∗ | −γ I − Z − ZT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (45)

We have proved the following:

Corollary 4.2: Assume A1–A3. Given γ > 0, δ = 0,
h > 0 and 0 ≤ d < 1, let there exist n × n matrices
P1 > 0, S > 0, R > 0,Q > 0,Gd > 0 ∈ Rn×n, full matri-
ces P2, P3, S12 ∈ Rn×n, diagonal matrices n × n matrices
Si > 0 (i = 1, . . . , 6),H > 0 and a scalar λ ≥ 0, such
that the LMIs (28), (31), (35) and (45) with notations
(37) and (40) are feasible. Then the system (6) is inter-
nally exponentially stable and is passive for all discrete
delays τ (t) ∈ [0, h] with τ̇ (t) ≤ d and for f, g and ψ with
nonnegative f −

i , g−
i , ψ−

i (i = 1, . . . , n). If the LMI (45) is
feasible for Q = 0, then Equation (6) is exponentially sta-
ble and passive for all fast-varying delays τ (t) ∈ [0, h]. If
the above LMIs hold with S4 = S5 = S6 = 0, then Equa-
tion (6) is exponentially stable and passive for any sign of
f −

i , g−
i , ψ−

i (i = 1, . . . , n).

Remark 7: The conditions of Theorem 4.1 and of Corol-
lary 4.2, where the LMIs (28) and (35) are omitted and
λ = 0, can be applied to the exponential stability and pas-
sivity analysis of the ODE delayed model (26). Moreover,
for the ODE model the LMIs (37) and (45) can be modified
by using additional free-weighting matrices. Thus, using
P4

0 = 2uT (t)P T
4

[
− ẏ(t) − Ay(t) + A1f̂ (y(t))

+A2ĝ(y(t − τ (t)))

+Ad

∫ ∞

0
K(s)ψ̂(y(t − s))ds + B1u(t)

]

leads to the following modified terms in the last column
and row of the matrix in LMI (45):

�19 = P T
2 B1 − CT

1 − AT P4,

�59 = AT
1 P4 − CT

2 , �69 = AT
2 P4,

�89 = AT
d P4, �99 = −γ I − Z − ZT + P T

4 B1 + BT
1 P4.

Note that for the ODE model, the corresponding LMIs can
be derived without the descriptor slack variables P2 and P3 –
by the direct substitution of ẏ(t) by the right-hand side
of Equation (26). The resulting LMI for the passivity and
stability analysis has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 e−2δhS12 e−2δh(R − S12) �14 �15 �S6 P1Ad �18 �19

∗ −e−2δh(S + R) e−2δh(R − ST
12) 0 0 0 0 0 0

∗ ∗ �33 0 0 0 0 0 0
∗ ∗ ∗ −S1 − 2S4 0 0 0 −CT

2 �49

∗ ∗ ∗ ∗ −S2 − 2S5 0 0 0 �59

∗ ∗ ∗ ∗ ∗ �66 �67 −CT
3 0

∗ ∗ ∗ ∗ ∗ ∗ �77 0 �79

∗ ∗ ∗ ∗ ∗ ∗ ∗ �88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (46)
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where

�11 = S + Q + 2δP1 − e−2δhR − (P1A + AT P1)

+F 2S1 + �2S3,

�14 = P T
1 A1 + FS4, �15 = P T

1 A2 + GS5,

�18 = P1B1 − CT
1 ,

�19 = −AT (Rh2 + K1�
2H ),

�33 = G2S2 − e−2δh[2R − S12 − ST
12 + (1 − d)Q],

�49 = AT
1 (Rh2 + K1�

2H ), �59 = AT
2 (Rh2 + K1�

2H ),

�66 = K0Gd − S3 − 2S6 − K−1
1δ K2

0 H, �67 = K−1
1δ K0H,

�77 = −K−1
0δ Gd − K−1

1δ H, �88 = −γ I − Z − ZT ,

�79 = AT
d (Rh2 + K1�

2H ), �99 = −(Rh2 + K1�
2H ).

(47)

Example 5.3 below illustrates that P4 may improve the
passivity analysis (comparatively to the direct substitution-
based analysis).

For the passivity of discrete-time nonlinear systems
with discrete and distributed delays see Wu, Shi, Su, and
Chu (2011).

5. Examples

In this section, examples from the literature illustrate the
efficiency of the presented methods.

Example 5.1 (Gue & Liu, 2011): Consider the two cells
finite-dimensional delayed neural-network

ẏ(t) = −
(

2 0

0 3

)
y(t) +

(
1
5

1
4

1 3
2

)
f (y(t))

+
(

2
5

1
2

4
5

1
2

)
g(y(t − τ (t)))

+
(

1
5

2
3

2
5 1

) hd∫
0

K(θ )ψ(y(t − θ )) +
(

3
2

)
,

where y(t) = [y1(t), y2(t)]T denotes the potential (or volt-
age) of each cell at time t , K(s) = 2se−s2

, f1(y1(t)) =
g1(y1(t)) =ψ1(y1(t)) =cos(y1(t)/3)+y1(t)/3andf2(y2(t))
= g2(y2(t)) = ψ2(y2(t)) = cos(y2(t)/2) + y2(t)/4. The co-
efficients of the matrices that multiply the nonlinear terms
denote the strengths of connectivity between the cells. By
using the Brouwer’s fixed point theorem, it was shown
in Gue and Liu (2011) that for τ (t) = 0.06|sin(t)| and
hd = 0.06 the system has an exponentially stable steady
state y∗.

By verifying the LMIs of the Halanay-based Theo-
rem 3.1 we will show that y∗ is exponentially stable for
all τ (t) and essentially larger hd and will find the resulting
decay rate. Note that f2(y2(t)) = g2(y2(t)) = ψ2(y2(t)) has
a sign changing time-derivative, so the LMIs are considered

Table 1. Example 1 – maximum decay rate for different delay
upper bounds.

h hd δ0 δ1 δmax

0.4 0.1 1 0.307 0.5306
0.4 0.5 1 0.692 0.1926
0.4 0.8 0.5 0.341 0.1235

with S4 = S5 = S6 = 0. Since this is the ODE model, we
take the zero Wirtinger’s constant: Cp = 0 (or λ = 0). The
diagonal matrices F,G and � are chosen with

F1 = G1 = �1 = 2

3
, F2 = G2 = �2 = 3

4
.

It appears that for δ0 = δ1 = 0.135 the LMIs are feasi-
ble, i.e. the system preserves the exponential stability for
hdmax = 1.134. We have also verified Theorem 3.1 for the
exponential stability. Table 1 shows the maximum achiev-
able decay rate, for different delay upper bounds h and hd .

Example 5.2 (Wang & Zhang, 2010): Consider the two
cells neural-network in the 1D domain � = [0, π ] governed
by the diffusion PDE

yt (x, t) = �Dy(x, t) −
(

5 0
0 5

)
y(x, t)

+
(

0.2787 0.5743
−0.7458 −3.3207

)
f (y(x, t))

+
(

0.6465 0.4423
−0.1892 0.2912

)
g(y(x, t − τ (t)))

+
∫ ∞

0

( −1.5e−θ 0.55e−1.1θ

3.33e−0.9θ −3.8e−1.9θ

)
×ψ(y(x, t − θ ))dθ.

Here D1 = diag{1, 1} and

fi(yi(x, t)) = gi(yi(x, t)) = ψi(yi(x, t))

= tanh(yi(x, t)), i = 1, 2.

In Wang and Zhang (2010) the delay-independent with re-
spect to slowly varying delays LMIs were derived (see The-
orem 3.1). It was found that the system under the Neumann
boundary conditions remains globally asymptotically stable
for all τ (t) with τ̇ (t) ≤ 0.5.

We show below that the Halanay-based method guar-
antees the exponential stability of the system for all fast-
varying delays. The system can be presented in the form of
Equation (4) with four distributed delays, where

K1(θ ) = e−θ , K2(θ ) = 1.1e−1.1θ ,

K3(θ ) = 0.9e−0.9θ , K4(θ ) = 1.9e−1.9θ
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12 O. Solomon and E. Fridman

Table 2. Example 2 – decay rate for h = 1.

Halanay Descriptor (S6 = 0) Descriptor (S6 = 0)

δ0 δ1 δmax δmax δmax

Neumann 0.192 10−5 0.192 0.196 0.231
Dirichlet 0.261 10−5 0.261 0.265 0.284

and

Ad1 =
(−1.5 0

0 0

)
= −1.5

[
1
0

]
[1 0],

Ad2 =
(

0 0.5
0 0

)
= 0.5

[
1
0

]
[0 1],

Ad3 =
(

0 0
3.7 0

)
= 3.7

[
0
1

]
[1 0],

Ad4 =
(

0 0
0 −2

)
= −2

[
0
1

]
[0 1].

(48)

Here d
dt

tanh(yi) = cosh−2(yi) ∈ (0, 1) and, thus, F = G =
� = I2.

We verify the reduced-order LMIs with l = 1 (as
explained in Remark 6), where the decision variables
G1

d1, . . . ,G
1
d4 and H 1

1 , . . . , H 1
4 are scalars. Under the Neu-

mann (Cp = 0, λ = 0) and the Dirichlet (Cp = 1) bound-
ary conditions, the Halanay-based conditions (Remark 2)
with δ0 = δ1 = 0.1 and S1 = S2 = S6 = 0 guarantee the
exponential stability for all fast-varying discrete delays τ ,
whereas the descriptor-based conditions (Remark 5 with
δ = 0 and S1 = S2 = S6 = 0) guarantee the exponential
stability for all τ (t) ≤ h ≈ 1017. Note that nonzero S1, S2

and S6 in this example do not improve the results. How-
ever, the LMIs with S4 = S5 = 0 and nonzero S1, S2, S3

appeared to be unfeasible.
Table 2 compares the maximum decay rate achieved

using the Halanay approach and the descriptor approach
for fast-varying delays and h = 1 under the both boundary
conditions. It is seen that for the both approaches, the decay
rate under the Dirichlet boundary conditions is larger than
the one under the Neumann boundary conditions. More-
over, the descriptor-based approach may yield larger values
for the decay rate δ over the Halanay-based one. However,
the latter approach has less decision variables. Thus, un-
der the Neumann boundary conditions the number of the
scalar decision variables for the asymptotic stability is 13

for Wang and Zhang (2010) and 14 for the Halanay-based
exponential stability conditions (including the tuning pa-
rameter δ0 = δ1), whereas it is 40 for the descriptor-based
LMIs (including S6).

Example 5.3: Consider the following model of a two cells
neural-network:

yt (x, t) = �Dy(x, t) −
(

2.2 0
0 1.8

)
y(x, t)

+
(

1.2 1
−0.2 0.3

)
f (y(x, t))

+
(

0.8 0.4
−0.2 0.1

)
g(y(x, t − τ (t)))

+Ad

∫ hd

0
K(θ )ψ(y(x, t − θ ))dθ + u(x, t),

z(x, t) = f (y(x, t))

(49)

with y(x, t) = [y1(x, t), y2(x, t)]T , fi(y) = gi(y) =
0.5(|y + 1| − |y − 1|) (i = 1, 2), x ∈ � ⊂ Rm under the
Neumann boundary conditions. The activation functions
have nonnegative f −

i , g−
i and F = G = I2. The finite-

dimensional counterpart of Equation (49) with y = y(t)
and Ad = 0 (i.e. ODE with discrete delays) was analysed in
Xu, Zheng, and Zou (2009). It was found that for the slowly
varying delay with τ̇ ≤ 0.2 the system is exponentially
stable and, thus, passive for τ (t) ≤ 0.4683. Here Theo-
rem 4.1 guarantees the internal exponential stability for all
τ (t) ≤ h � 1019. For h = 10, Theorem 4.1 leads to a larger
decay rate δ = 0.1999 than the one δ = 0.023 guaranteed
by Theorem 3.1.

Consider next a nonzero distributed delay matrix Ad =( −1 0
−1 −1

)
,ψi(yi(x, t)) = tanh(yi(x, t)) (i = 1, 2), i.e. � =

I2, under Neumann boundary conditions and K(θ ) = 1. For
h = 0.4683, d = 0.2 and hd = 0.5 the minimum values of
γ guaranteed by Corollary 4.2 are given in Table 3. It is
seen that in the case of Hurwitz Ad , the additional H -term

Table 3. Example 3 – passivity factor γ .

PDE Gd, H = 0 Gd = 0, H = 0 Gd = 0, H = 0 ODE LMI (45), P4 = 0 LMI (46)

γ 0.517 0.626 Not feasible γ 0.147 0.403
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in V may lead to a better performance (to smaller values of
γ ) than the use of the Gd -term only.

Finally for the case of the ODE model with h = 0.4683,
d = 0.2, hd = 0.5 and H = 0,Gd = 0, the maximum de-
cay rate (of the input-free model) achieved by the LMI
(46) of Remark 7 and the descriptor method was the same:
δmax = 0.155. For the passivity analysis, the LMI (46)
guarantees a smaller value of γ = 0.403 comparatively to
γ = 0.517 that was achieved via the descriptor method with
P2 and P3 only (see Table 3). The LMI of Remark 7 with
the additional matrix P4 essentially improves the passivity
analysis leading to a smaller value of γ = 0.147 compara-
tively to γ = 0.403 that follows from Equation (46).

6. Conclusions

In the present paper, simple LMI conditions have been de-
rived for the exponential stability and passivity of nonlin-
ear, infinite-dimensional diffusion PDEs with infinite dis-
tributed and discrete time-varying delays. Such systems are
motivated by various applications in biology and engineer-
ing, such as population dynamics and heat transfer pro-
cesses. For the first time, the exponential stability and the
passivity analysis have been provided for diffusion PDEs
with fast-varying discrete and infinite distributed delays.
Two novel Lyapunov-based methods have been developed:
the delay-independent with respect to the discrete-delay that
combines the LKFs with the Halanay inequality, and the
direct descriptor-based Lyapunov–Krasovskii method that
has been applied both, to the stability and to the passivity
analysis. The stabilising effect of diffusion terms under the
Dirichlet boundary conditions has been taken into account
by using Wirtinger’s inequality. As a by-product, new LMI
conditions have been derived for the stability and passivity
analysis of nonlinear ODEs with distributed and discrete
delays. Three numerical examples have illustrated the effi-
ciency of the new methods.

Topics for future research may include application of
the presented stability and passivity analysis to different
control problems.
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