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Abstract

The Lyapunov second method is developed for linear coupled systems of delay dif-
ferential and functional equations. By conventional approaches such equations may be
reduced to the neutral systems and the known results for the latter may be exploited. In
the present paper we introduce a new approach by constructing a Lyapunov–Krasovskii
functional that corresponds directly to the descriptor form of the system. Moreover, by
representing a neutral system in the descriptor form we obtain new stability criteria for
neutral systems which are less conservative than the existing results. Sufficient conditions
for delay-dependent/delay-independent stability and for robustness of stability with respect
to small delays are given in terms of linear matrix inequalities. Illustrative examples show
the effectiveness of the method.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Delay differential–algebraic equations, which have both delay and algebraic
constraints, often appear in various engineering systems, including aircraft sta-
bilization, chemical engineering systems, lossless transition lines, etc. (see, e.g.,
[3,13,15,18,25,29] and references therein). Depending on the area of application,
these models are called singular or implicit or descriptor systems with delay. As
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has been pointed out in [4,5], descriptor systems with delay may in fact be systems
of advanced type. Being a more general class than neutral systems, descriptor
systems may be destabilized by small delay in the feedback [22].

A particular case of such systems (the so-called lossless propagation models)

ẋ1(t) = Ax1(t) +Bx2(t − h), x2(t) = Cx1(t)+Dx2(t − h) (1)

has been treated as a special class of neutral systems either by lettingx2(t) = ż(t)

[26] or by writing the second equation as [16,25]

d

dt

[
x2(t)−Cx1(t)−Dx2(t − h)

]= 0. (2)

Stability of a general neutral type descriptor equations with a single delay

Eẋ(t) +Ax(t)+Bẋ(t − h) +Cx(t − h) = 0 (3)

and singular matrixE has been studied in [29] by analyzing its characteristic
equation

det
[
sE +A+ (sB +C)exp(−hs)

]= 0

and finding frequency domain conditions which guarantee that all roots of the
latter equation have negative real parts bounded away from 0.

In the present paper we consider a descriptor system with multiple and distrib-
uted delays. We construct a Lyapunov–Krasovskii functional that corresponds di-
rectly to the descriptor system. We derive delay-independent and delay-dependent
conditions in terms of linear matrix inequalities (LMIs). For information on the
LMI approach to delay-independent and delay-dependent stability criteria for
linear retarded and neutral type systems see [2,11,17,20,21,23,24,28]. Note that
LMIs give only sufficient conditions, which are more conservative than those ob-
tained by analysis of the characteristic equation. However, the method is better
adapted for robust stability of systems with uncertainties (see, e.g., [20]) and for
other control problems.

A Lyapunov–Krasovskii functional for descriptor system with delay was
suggested (as a conjecture) in [10] on the basis of the traditional (for delay-
dependent stability) transformation of the delay system

ẋ(t) = Ax(t)+Bx(t − h)

in the form (see, e.g., [15, p. 156])

ẋ(t) = (A+B)x(t)−B

0∫
−h

Ax(t − h + s) ds.

The conservatism of conditions based on this transformation is twofold: the trans-
formed system is not equivalent to the original one having a double distributed
delay (see [8]) and bounds should be obtained (completion of the squares) for
certain terms.
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Recently, for linear differential systems a new Lyapunov–Krasovskii func-
tional has been introduced in [11]. It is based on equivalent augmented model—a
“descriptor form” representation of the system and it leads to less conservative
conditions. In the present paper we adopt this approach to descriptor systems
with delay. We develop the second method of Lyapunov for descriptor equations
with delay. By defining appropriate descriptor Lyapunov–Krasovskii functionals
we derive stability conditions in terms of LMIs.

Notations. LetRn be Euclidean space with vector norm| · |,Cn[a, b] be the space
of continuous functionsφ : [a, b] → Rn with the supremum norm| · |, andL2[a, b]
be the space of square integrable functions. Denote byxt (θ) = x(t + θ) (θ ∈
[−h,0]). The notationP > 0 for (n × n)-matrix P means thatP is symmetric
and positive definite. Symmetric terms in symmetric matrices are denoted by∗;
e.g., [

A B

∗ C

]
=
[

A B

BT C

]
.

2. A class of descriptor system with delay. Existence and uniqueness of
solution

2.1. Preliminaries on descriptor systems

Consider a linear autonomous system without delay:

Eẋ(t) = A0x(t), (4)

wherex(t) ∈ Rn, E andA0 aren× n matrices, rankE = n1 < n. We assume that
(4) is regular, i.e., the characteristic polynomial det(sE − A0) does not vanish
identically in s. It is well known that descriptor system may have impulsive
solutions. The existence of the latter solutions is usually studied in terms of the
Weierstrass canonical form and theindex of the system which are defined as
follows [6,7,22]: there exist nonsingular matricesP,Q ∈ Rn×n such that

QEP =
[
In1 0
0 N

]
, QA0P =

[
J 0
0 In2

]
, (5)

and (4) for the new variabley = col{y1, y2} = P−1x has the canonical form

ẏ1(t) = Jy1(t), Nẏ2(t) = y2(t), (6)

wheren1 + n2 = n, N ∈ Rn2×n2 andJ ∈ Rn1×n1 are in Jordan form. The matrix
N is nilpotent of indexν, i.e.,Nν = 0,Nν−1 �= 0. The index of (4) is the index of
nilpotencyν of N .



E. Fridman / J. Math. Anal. Appl. 273 (2002) 24–44 27

It is well known that (6) admits impulsive solutions iffν > 1:

y1(t) = eJ ty1(0), y2(t) = −
ν−2∑
i=0

δi(t)Ni+1y2(0−),

whereδ is the Dirac delta-function and superscripti denotes theith distributional
derivative.

In the case of system with delay

Eẋ(t) = A0x(t)+A1x(t − h), (7)

for P andQ as above andy = P−1x we obtain the following canonical form:

ẏ1(t) = Jy1(t) +C1y1(t − h) +C2y2(t − h),

Nẏ2(t) = y2(t) +C3y1(t − h)+C4y2(t − h), (8)

where

QA1P =
[
C1 C2
C3 C4

]
.

By the index of descriptor system with delay (7) we mean the index of the
corresponding descriptor system without delay (4).

As in the case without delay (8) admits impulsive solutions forν > 1. Thus for
t ∈ [0, h) we obtain

y1(t) = eJ ty1(0)+
t∫

0

eJ (t−s)
[
C1y1(s − h) +C2y2(s − h)

]
ds,

y2(t) = −
ν−2∑
i=0

δi(t)Ni+1y2(0−)−
ν−1∑
i=0

Ni
[
C3y

(i)
1 (t − h)+C4y

(i)
2 (t − h)

]
.

That is why for stability analysis we restrict ourselves to descriptor systems of
index one.

2.2. Descriptor systems with delay

In the present paper we analyze the stability of the following system:

Eẋ(t) =
m∑
i=0

Aix(t − hi) +
0∫

−h

B(s)x(t + s) ds, (9)

wherex(t) = col{x1(t), x2(t)}, x1(t) ∈ Rn1, x2(t) ∈ Rn2, h0 = 0, hi > 0, h > 0,
i = 1, . . . ,m, E andAi are constant(n1 + n2) × (n1 + n2)-matrices,B(s) is
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a piecewise-continuous and uniformly bounded(n1 + n2) × (n1 + n2)-matrix-

function. Denoten
�= n1 + n2. We assume that the matrices in (9) have the

following structure:

E =
[
In1 0
0 0

]
,

Ai =
[
Ai1 Ai2
Ai3 Ai4

]
, i = 0, . . . ,m, detA04 �= 0,

B =
[
B1 B2
B3 B4

]
. (10)

If (4) has index one then (9) can be put in the form of (9) and (10) (e.g., as de-
scribed in Section 2.1).

Note that (9) and (10) includes a class of neutral descriptor system[
ẋ1(t) −∑m

i=1Diẋ1(t − hi)

0

]

=
m∑
i=0

Aix(t − hi)+
0∫

−h

B(s)x(t + s) ds, (11)

whereE andA0 are given by (10). Really, considering an augmented system

ẋ1(t) = y,[
y(t)−∑m

i=1Diy(t − hi)

0

]

=
m∑
i=0

Aix(t − hi)+
0∫

−h

B(s)x(t + s) ds, (12)

we obtain a particular case of (9) and (10).
System (9) is the system of functional differential equations:

ẋ1(t) =
2∑

j=1

m∑
i=0

Aij xj (t − hi)+
2∑

j=1

0∫
−h

Bj xj (t + s) ds, (13a)

0 =
2∑

j=1

m∑
i=0

Ai,j+2xj (t − hi)+
2∑

j=1

0∫
−h

Bj+2xj (t + s) ds. (13b)

Consider the following initial conditions for (9):

x1(t) = φ1(t), x2(t) = φ2(t), t ∈ [−h,0]. (14)
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Substituting initial functionφ = col{φ1, φ2} into the second (functional) equation
of (13) we have

2∑
j=1

m∑
i=0

Ai,j+2φj (−hi)+
2∑

j=1

0∫
−h

Bj+2φj (s) ds = 0. (15)

Proposition 1. For any continuousφ = col{φ1, φ2} that satisfies(15) there exists
a unique functionx(t) defined and continuous on[−h,∞) that satisfies system
(9) on [0,∞) and initial conditions(14).

Proof. Differentiating the second equation of (13) with respect tot and taking
into account thatx1(t) is differentiable we obtain the neutral type system (13a)
and

d

dt

[
A04x2(t) +

2∑
j=1

m∑
i=1

Ai,j+2xj (t − hi)+
2∑

j=1

0∫
−h

Bj+2xj (t + s) ds

]

+A03

[
2∑

j=1

m∑
i=0

Aijxj (t − hi)+
2∑

j=1

0∫
−h

Bjxj (t + s) ds

]
= 0. (16)

The latter system has a unique continuous on[−h,∞) solution satisfying initial
conditions (14) [15]. If additionally (15) holds, then this solution is a unique
solution of (13), (14). ✷

3. Second Lyapunov method for descriptor systems with delay

We define stability of the trivial solution of (9) similarly to stability in the case
of non-descriptor system with delay [9,15,18]:

Definition 1. The trivial solution of (9) is said to be stable if for anyε > 0 there
exists aδ(ε) such that for all continuousφ = col{φ1, φ2}, with φ satisfying (15)
and|φ| < δ, the solution to (9), (14)x(φ)(t) satisfies inequality|x(φ)(t)| < ε for
all t � 0. The trivial solution of (9) is said to be asymptotically stable if it is stable
and furthermore

lim
t→∞x(φ)(t) = 0.

In the latter case the system (9) is said to be asymptotically stable.
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Consider the operatorD :Cn2[−h,0] → Rn2:

D(x2t ) = x2(t) +
m∑
i=1

A−1
04Ai4x2(t − hi)+

0∫
−h

A−1
04 B4(s)x2(t + s) ds.

We assume:

(A1) The operatorD is stable (i.e., equationDx2t = 0 is asymptotically stable).

Sufficient condition for (A1) is given by

(A1′) Let

m∑
i=1

∣∣A−1
04Ai4

∣∣+
0∫

−h

∣∣A−1
04 B4(s)

∣∣ds < 1.

For a continuous functionalV :Cn[−h,0] → R define

V̇ (φ) = lim sup
h→0+

1

h

[
V
(
xt+h(t, φ)

)− V (φ)
]
,

wherext (t0, φ) is a solution to (9) such thatxt0 = φ.

Lemma 1. Under (A1), if there exist positive numbersα,β, γ and a continuous
functionalV :Cn[−h,0] → R such that

β
∣∣φ1(0)

∣∣2 � V (φ) � γ |φ|2, (17a)

V̇ (φ) � −α
∣∣φ(0)∣∣2, (17b)

and the functionV̄ (t) = V (xt ) is absolutely continuous forxt satisfying(9), then
(9) is asymptotically stable.

Proof. Integrating (17b), whereφ = xs , with respect tos from 0 to t we have

V (xt )− V (φ) � −α

t∫
0

∣∣x(s)∣∣2ds. (18)

From (17a) and (18) it follows that

β
∣∣x1(t)

∣∣2 � V (xt ) � V (φ) � γ |φ|2. (19)

Hence,x1 is bounded and small for small|φ|. From (13b) we find thatx2(t) is a
solution of
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Dx2t = h(t),

h(t) = −
m∑
i=0

A−1
04Ai3x1(t − hi)−

0∫
−h

A−1
04 B3(s)x1(t + s) ds, (20)

whereh(t) is bounded and small for small|φ|. Then under (A1) by Theorem 3.5
[15, p. 275]x2(t) is bounded and small for small|φ|. Hence, (9) is stable.

To prove asymptotic stability we use Barbalat’s lemma [1,12]. We note that
the right-hand side of (13a) and thusẋ1 are bounded. Hence,x1(t) is uniformly
continuous on[0,∞). Moreover,x2(t) is a bounded solution of (20), where
h(t) is uniformly continuous and bounded. Then under (A1) by Lemma 7.1
[15, p. 291]x2(t) is uniformly continuous on[0,∞). From (18) it follows that
x(t) ∈ L2[0,∞). Therefore by Barbalat’s lemmax(t) → 0 for t → ∞. ✷

4. Delay-independent with respect to discrete delays stability

4.1. Main results

The descriptor type Lyapunov–Krasovskii functional for the system (9) has the
following form:

V (xt ) = xT (t)EPx(t) + V1 + V2, (21)

where

P =
[
P1 0
P2 P3

]
, P1 = PT

1 > 0, (22)

V1 =
m∑
i=1

t∫
t−hi

xT (s)Qix(s) ds, Qi > 0, (23)

and

V2 =
0∫

−h

t∫
t+θ

xT (s)BT (θ)RB(θ)x(s) ds dθ, R > 0. (24)

The first term of (21) corresponds to the descriptor system (see, e.g., [27]),V1
corresponds to the delay-independent stability with respect to the discrete delays
andV2 to delay-dependent stability with respect to the distributed delays (see [17,
19]). The functional (21) isdegenerate(i.e., nonpositive definite) as it is usual for
descriptor systems.

We obtain the following:
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Theorem 1. Under(A1′), (9) is asymptotically stable if there exist(n×n)-matrix
P of (22), with (n1 × n1)-matrix P1 and (n2 × n2)-matrix P3, and (n × n)-
matricesQi = QT

i , i = 1, . . . ,m, R = RT that satisfy the following LMI:




PT A0 +AT
0P +∑m

i=1Qi

+ ∫ 0
−h B

T (s)RB(s) ds PT A1 . . . P T Am hPT

∗ −Q1 . . . 0 0
...

...
. . .

...
...

∗ ∗ ∗ −Qm 0
∗ ∗ ∗ ∗ −hR



< 0. (25)

Proof. Note thatxT EPx = xT1 P1x1 and, hence,

d

dt

[
xT (t)EPx(t)

]= 2xT1 (t)P1ẋ1(t) = 2xT (t)P T

[
ẋ1(t)

0

]
. (26)

Differentiating (21) int and substituting (9) in (26) we obtain

V̇ (xt )= ξT




PT A0 +AT
0 P +∑m

i=1Qi

+ ∫ 0
−h B

T (s)RB(s) ds PT A1 . . . P T Am

∗ −Q1 . . . 0
...

...
. . .

...

∗ ∗ ∗ −Qm


 ξ

+ η(t)−
0∫

−h

xT (t + θ)BT (θ)RB(θ)x(t + θ) dθ, (27)

whereξ
�= col{x(t), x(t − h1), . . . , x(t − hm)},

η(t)
�= −2

t∫
t−h

xT (t)P T B(s)x(t + s) ds. (28)

For any(n× n)-matricesR > 0

η(t) � hxT PT R−1Px +
t∫

t−h

xT (t + s)BT (s)RB(s)x(t + s) ds. (29)

Equations (27) and (29) yield (by Schur complements) thatV̇ < 0 if (25) holds.
Therefore functionalV satisfies (17) and by Lemma 1 system (9) is asymptoti-
cally stable. ✷
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4.2. LMI condition for delay-independent stability of the difference operator

LMI (25) yields the following inequality:

AT

04P3 + PT
3 A04 +∑m

i=1Qi4 PT
3 A14 . . . P T

3 Am4

∗ −Q14 . . . 0
...

...
. . .

...

∗ ∗ . . . −Qm4


< 0, (30)

whereQi4 is a (2,2) block of Qi . If there exists a solution to (25), then there
exists a solution to (30). We shall show that (30) guarantees delay-independent
stability of D with B4 = 0, which is equivalent to the following condition (see
[15, p. 286, Theorem 6.1]):

(A1′′) If σ(B) is the spectral radius of matrixB, thenσ0 < 1 where

σ0
�= sup

{
σ

(
m∑

k=1

A−1
04Ak4e

iθk

)
: θk ∈ [0,2π], k = 1, . . . ,m

}
.

(31)

Lemma 2. If there exist(n2 × n2)-matricesP3, Q14, . . . ,Qm4 that satisfy(30),
thenA04 is nonsingular and

(i) (A1 ′′) holds;
(ii) the difference operator

D(x2t ) = x2(t) +
m∑
i=1

A−1
04 Ai4x2(t − hi)

is stable for allhi > 0;
(iii) under additional assumption thatP3 > 0, the “fast system”

ẋ2(t) = A04x2(t)+
m∑
i=1

Ai4x2(t − hi) (32)

is asymptotically stable for allhi > 0.

Proof. (iii) is well known (see, e.g., [17]) and (ii) is equivalent to (i). To prove (i)
note that

f (θ1, . . . , θm)
�= σ

(
m∑

k=1

A−1
04Ak4e

iθk

)

is a continuous function on the compact set[0,2π] × · · · × [0,2π] and thus it
achieves it maximum value on this set. Therefore it is sufficient to prove that

f (θ1, . . . , θm) < 1 ∀θ1, . . . , θm ∈ [0,2π] × · · · × [0,2π].
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By Schur complements (30) implies

PT
3 A04 +AT

04P3 +
m∑

k=1

(
Qk4 + PT

3 Ak4Q
−1
k4 A

T
k4P3

)
< 0. (33)

SinceQ14, . . . ,Qm4 must be positive definite, it follows from (33) thatA04 is
nonsingular. Multiplying (33) byy ∈ Rn from the right and byyT from the left
we have

−2
∣∣yT AT

04P3y
∣∣+ m∑

k=1

[∣∣Q1/2
k4 y

∣∣2 + ∣∣Q−1/2
k4 AT

k4A
−T
04 AT

04P3y
∣∣2]< 0,

whereA−T
04 = (A−1

04 )
T . Since∣∣Q1/2

k4 y
∣∣2 + ∣∣Q−1/2

k4 AT
k4A

−T
04 AT

04P3y
∣∣2 � 2

∣∣yT AT
k4A

−T
04 AT

04P3y
∣∣,

we obtain from the previous inequality that

−∣∣yT AT
04P3y

∣∣+ m∑
k=1

∣∣yT AT
k4A

−T
04 AT

04P3y
∣∣< 0.

Choosey to be an eigenvector of(
∑m

k=1A
−1
04Ak4e

iθk ), θk ∈ [0,2π], that cor-
responds to the eigenvalueλ. From the latter inequality and the inequality

m∑
k=1

∣∣yT AT
k4A

−T
04 AT

04P3y
∣∣�

∣∣∣∣∣yT
(

m∑
k=1

AT
k4A

−T
04 eiθk

)
AT

04P3y

∣∣∣∣∣
we conclude that

−∣∣yT AT
04P3y

∣∣+ |λ|∣∣yT AT
04P3y

∣∣< 0

and thus |λ| < 1. Hence,f (θ1, . . . , θm) < 1 ∀θ1, . . . , θm ∈ [0,2π] × · · · ×
[0,2π]. ✷
Remark 1. From Lemma 2 it follows that in the case ofB4 = 0, Theorem 1 holds
without assumption (A1′).

Remark 2. In the scalar case delay-independent stability of the fast system
implies that

∑m
i=1 |A−1

04Ai4| � 1 [14]. From Lemma 2 it follows that (30) implies
(A1′′) and thus

∑m
i=1 |A−1

04Ai4| < 1.

4.3. A special form of term with distributed delay

Consider (9) with a special form of term with distributed delay,

0∫
−h

B(s)x(t + s) ds =
m∑
i=1

hiBi

0∫
−hi

x(t + s) ds, (34)
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i.e., a system of the form

Eẋ(t) =
m∑
i=0

Aix(t − hi) +
m∑
i=1

hiBi

0∫
−hi

x(t + s) ds, (35)

whereBi are constant matrices. Lyapunov–Krasovskii functional for (35) has a
form of (21), whereP andV1 are given by (22) and (23), whileV2 is defined by

V2 =
m∑
i=1

0∫
−hi

t∫
t+θ

xT (s)Rix(s) ds dθ, Ri > 0.

Assumption (A1′) for this case has the following form:

(Ā1) Let
m∑
i=1

[|Ai4| + hi |Bi4|
]
< 1.

We obtain the following result:

Theorem 2. Under(Ā1), (35) is stable if there exist(n×n)-matrixP of (22), with
(n1 × n1)-matrix P1 and (n2 × n2)-matrix P3, and (n × n)-matricesRi = RT

i ,
Qi = QT

i , i = 1, . . . ,m, that satisfy the following LMI:


PT A0 +AT
0 P +∑m

i=1Qi

+∑m
i=1 hiRi P T A1 . . . P T Am h1P

T B1 . . . hmPT Bm

∗ −Q1 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∗ ∗ ∗ −Qm 0 . . . 0
∗ ∗ ∗ ∗ −h1R1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∗ ∗ ∗ ∗ ∗ . . . −hmRm




< 0. (36)

Proof is similar to that of Theorem 1, where in the second line of (27) we obtain

η −
m∑
i=1

0∫
−hi

xT (t + θ)Rix(t + θ) dt

and

η =
m∑
i=1

2

0∫
−hi

xT (s)P T Bix(t + s) ds
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�
m∑
i=1

[
hix

T (t)P T BiR
−1
i BT

i x(t) +
0∫

−hi

xT (t + s)Rix(t + s) ds

]
.

From Lemma 2 it follows that in the case ofBi4 = 0, i = 1, . . . ,m, Theorem 2
holds without assumption (Ā1).

4.4. The case of neutral type descriptor systems

For system (11) we consider a continuous initial functionφ = col{φ1, φ2} with
continuously differentiableφ1. Stability of (11) is defined similar to Definition 1
with the only difference thaṫφ1 ∈ Cn1[−h,0] and instead of|φ| < δ we have
|φ|+|φ̇1| < δ. By representing (11) in two different retarded type descriptor forms
we obtain two different criteria.

First we put (11) in the retarded type descriptor form (12) that we rewrite as

Ē ˙̄x(t) =
m∑
i=0

Āi x̄(t − hi)+
0∫

−hi

B̄(s)x̄(t + s) ds, (37)

where

x̄ =

 x1

y

x2


 , Ē =


 In1 0 0

0 0n1 0
0 0 0n2


 ,

Ā0 =

 0 I 0
A01 −In1 A02
A03 0 A04


 ,

Āi =

 0 0 0
Ai1 Di Ai2
Ai3 0 Ai4


 , i = 1, . . . ,m,

B̄ =

 0 0 0
B1 0 B2
B3 0 B4


 . (38)

OperatorD̄ for (37) has a “triangular” form:

D̄(yt , x2t ) =



y(t)−∑m

i=1Diy(t − hi)−∑m
i=1Ai2x2(t − hi)

− ∫ m

i=1B2(s)x2(t + s) ds

x2(t) +∑m
i=1A

−1
04 Ai4x2(t − hi)

+ ∫ 0
−h A

−1
04 B4(s)x2(t + s) ds


 .

To guarantee stability of̄D independently with respect toh1, . . . , hm we assume
(A1′) ((A1′′) for the case ofB4 = 0) and
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(A2) Let the difference operatorD0yt = y(t) −∑m
i=1Diy(t − hi) be stable for

all hi > 0.

Due to Lemma 2 (A2) holds if there exist(n1 × n1) functionsP0,U1, . . . ,Um

that satisfy the following LMI:


−P0 − PT
0 +∑m

i=1Ui PT
0 D1 . . . P T

0 Dm

∗ −U1 . . . 0
...

...
. . .

...

∗ ∗ . . . −Um


< 0. (39)

Under (A1′) and (A2) a counterpart of Lemma 1 for (37) holds true and
Theorem 1 implies the following result:

Corollary 1. Under (A1′) ((A1′′) for the case ofB4 = 0) and (A2), (11) is
asymptotically stable if there exist a matrixP of (22), with (n1 × n1)-matrix
P1 and(n× n)-matrixP3, and(n1 + n)× (n1 + n)-matricesR = RT , Qi = QT

i ,
i = 1, . . . ,m, that satisfy the following LMI:



PT Ā0 + ĀT
0 P̄ +∑m

i=1Qi

+ ∫ 0
−h B̄

T (s)RB̄(s) ds PT Ā1 . . . P T Ām hPT

∗ −Q1 . . . 0 0
...

...
. . .

...
...

∗ ∗ ∗ −Qm 0
∗ ∗ ∗ ∗ −hR



< 0. (40)

In the case of (34), (37) has the form

Ē ˙̄x(t) =
m∑
i=0

Āi x̄(t − hi) +
m∑
i=1

hiB̄i

0∫
−hi

x̄(t + s) ds, (41)

whereĒ, x̄ andĀi are defined as above and

B̄i =

 0 0 0
Bi1 0 Bi2
Bi3 0 Bi4


 .

From Theorem 2 the following result follows:

Corollary 2. Under(Ā1) ((A1′′) for the case ofB4i = 0) and(A2), (11)with (34)
is asymptotically stable if there exist a matrixP of (22), with (n1 × n1)-matrix
P1 and(n×n)-matrixP3, and(n1 +n)× (n1 +n)-matricesRi = RT

i , Qi = QT
i ,

i = 1, . . . ,m, that satisfy the following LMI:
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PT Ā0 + ĀT
0 P̄ +∑m

i=1Qi

+∑m
i=1hiRi P T Ā1 . . . P T Ām h1P

T B̄1 . . . hmPT B̄m

∗ −Q1 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∗ ∗ ∗ −Qm 0 . . . 0
∗ ∗ ∗ ∗ −h1R1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∗ ∗ ∗ ∗ ∗ . . . −hmRm




< 0. (42)

The second representation of neutral system (11) is obtained by introducing a
new variabley = x1 −∑m

i=1Dix1(t − hi) and it has a form (37) (or (41) forB of
(34)), where

x̄ =

 y

x1
x2


 , Ē =


 In1 0 0

0 0n1 0
0 0 0n2


 ,

Ā0 =

 0 A01 A02
In1 −In1 0
0 A03 A04


 ,

Āi =

 0 Ai1 Ai2

0 Di 0
0 Ai3 Ai4


 , i = 1, . . . ,m,

B̄ =

 0 B1 B2

0 0 0
0 B3 B4


 , B̄i =


 0 Bi1 Bi2

0 0 0
0 Bi3 Bi4


 . (43)

Corollaries 1 and 2 hold also with matrices given by (43), i.e., for the second
representation.

Remark 3. The case of non-descriptor system (11), wheren2 = 0, with a special
distributed delay term (34) has been considered in [11] by applying the first
descriptor form representation. For this case results of Corollary 2 coincide with
results of [11].

The two different descriptor representations of neutral systems may lead to
complementary results: for some systems conditions of Corollary 1 (or 2) for one
of representations hold and for another do not. We illustrate this by two examples
of non-descriptor neutral systems.

Example 1. Consider a non-descriptor neutral system

ẋ(t)−D1ẋ(t − g) = A0x(t)+A1x(t − h), (44)
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where

A0 =
[−2 0

0 −15

]
, A1 =

[
1 3

−3 1

]
,

D1 =
[−0.8 0

0.2 −0.8

]
. (45)

Since there is no distributed delay term we may apply both corollaries. We apply
Corollary 1. We use an LMI Toolbox of Matlab for solution of LMIs. The stability
conditions of [28] and of Corollary 1 for the second representation do not hold
for this system. Applying Corollary 1 for the first representation we find that this
system is stable for all delays.

Example 2. Considering the system (44) with

A0 =
[

0 1
−2 −3

]
, A1 =

[
0 0.9

−1.3 −1.9

]
,

andD1 as above, we find that stability conditions of Corollary 1 for the first
representation do not hold. By [28] and by Corollary 1 for the second represen-
tation the system is asymptotically stable for all delays.

5. Delay-dependent stability. Effects of small delays on stability of
descriptor systems

5.1. Delay-dependent stability conditions

We are looking for delay-dependent conditions with respect to slow vari-
ablex1. With respect to discrete delays in the fast variables, the results will be
delay-independent. The latter guarantees robust stability with respect to small
changes of delay. We apply to (11) a descriptor representation introduced in [11]
for non-descriptor case:

ẋ1(t) = y(t),[
y(t) −∑m

i=1Diy(t − hi)

0

]

=
[∑m

i=0Ai1 A02∑m
i=0Ai3 A04

]
x(t)+

m∑
i=1

[
Ai2
Ai4

]
x2(t − hi)

−
m∑
i=1

[
Ai1
Ai3

] 0∫
−hi

y(t + s) ds +
0∫

−h

B(s)x(t + s) ds. (46)

The latter system can be represented in the form
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Ē ˙̄x(t) =
m∑
i=0

Āi x̄(t − hi)+
m∑
i=1

hiB̄i

0∫
−hi

x̄(t + s) ds

+
0∫

−h

B̄(s)x̄(t + s) ds, (47)

where

x̄ =

 x1

y

x2


 , Ē =


 In1 0 0

0 0n1 0
0 0 0n2


 ,

Ā0 =

 0 I 0∑m

i=0Ai1 −In1 A02∑m
i=0Ai3 0 A04


 ,

Āi =

 0 0 0

0 Di Ai2
0 0 Ai4


 , i = 1, . . . ,m,

B̄i =

 0 0 0

0 −Ai1 0
0 −Ai3 0


 , B̄ =


 0 0 0
B1 0 B2
B3 0 B4


 . (48)

From Theorems 1 and 2 the following result follows:

Theorem 3. Under (A1′) ((A1′′) for the case ofB4 = 0) and (A2), (11) is
asymptotically stable if there exist a matrixP of (22), with (n1 × n1)-matrix
P1 and(n×n)-matrixP3, and(n1 +n)× (n1 +n)-matricesRi = RT

i , Qi = QT
i ,

i = 1, . . . ,m, R = RT that satisfy the following LMI:


Ψ PT Ā1 . . . P T Ām h1P
T B̄1 . . . hmP

T B̄m hPT

∗ −Q1 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...

∗ ∗ ∗ −Qm 0 . . . 0 0
∗ ∗ ∗ ∗ −h1R1 . . . 0 0
...

...
. . .

...
...

. . .
...

...

∗ ∗ ∗ ∗ ∗ . . . −hmRm 0
∗ ∗ ∗ ∗ ∗ . . . ∗ −hR




< 0, (49)

where

Ψ = PT Ā0 + ĀT
0 P̄ +

m∑
i=1

Qi +
m∑
i=1

hiRi +
0∫

−h

B̄T (s)RB̄(s) ds.
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For the case of special distributed delay term (34) we obtain (47) withĒ, x̄, Āi

given by (48), and

B̄ = 0, B̄i =

 0 0 0
Bi1 −Ai1 Bi2
Bi3 −Ai3 Bi4


 .

For this case Theorem 3 holds under (Ā1) and (A2).

Remark 4. In the case of non-descriptor system (11) with a special distributed
delay term (34) Theorem 3 gives the same delay-dependent conditions as [11].

5.2. Sufficient conditions for robustness of stability with respect to small delays

It is well known [22] that small delays may change the stability of a descriptor
system. Necessary conditions and sufficient conditions for robust stability of
descriptor systems with respect to small delays are given in [22] in terms of
the spectral radius of a certain transfer matrix. Theorem 3 yields the following
effective LMI criterion for robust stability:

Corollary 3. Assume that(A2) holds. Then,(11) is asymptotically stable for all
small enoughhi � 0 andh � 0 if there exist a matrixP of (22), with (n1 × n1)-
matrix P1 and (n × n)-matrix P3, and(n1 + n) × (n1 + n)-matricesQi = QT

i ,
i = 1, . . . ,m, that satisfy the following LMI:


PT Ā0 + ĀT

0 P̄ +∑m
i=1Qi PT Ā1 . . . P T Ām

∗ −Q1 . . . 0
...

...
. . .

...

∗ ∗ ∗ −Qm


< 0. (50)

Proof. If (50) holds, then forRi = R = In1+n and small enough delays (49) holds
and result follows from Theorem 3.✷

Note that (50) guarantees delay-independent stability for the following de-
scriptor system without terms with distributed delay and with zero-delay in the
slow variable:[

ẋ1(t)−∑m
i=1Diẋ1(t − hi)

0

]
=

m∑
i=0

Ai

[
x1(t)

x2(t − hi)

]
.

5.3. Illustrative examples

We consider two simple examples from [22] and [10].
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Example 3 [22]. Consider the system[−1 1
1 −1

]
ẋ(t) =

[−1 0
0 −1

]
x(t)+

[
1

−1

]
u(t),

u(t) = [1 −1]x(t − h), (51)

wherex(t) = col{x1(t), x2(t)} ∈ R2. The closed-loop system (51) has a following
canonical form:

ẋ1(t) = 0.5x1(t) − x1(t − h), (52a)

0 = −x1(t)− x2(t). (52b)

Stability of (52) is equivalent to stability of the first retarded type equation and
thus stability is robust with respect to small delays. By well-known frequency
domain results (see, e.g., [9, Chapter 3, Section 3]), (52a) is asymptotically stable
for h < h∗ and unstable forh > h∗, whereh∗ = arccos0.5/

√
(3/4) ≈ 1.2092.

Applying to (52a) more conservative LMI criteria of [17,20] we obtain that the
system is stable forh � 0.33. By LMI criterion of Theorem 3 we obtain the less
restrictive result: (51) is asymptotically stable forh � 1.

Example 4 [10]. Consider the system[
1 0
0 ε

]
ẋ(t) =

[
0 1

−2 −1

]
x(t) +

[
1 0
0 0.5

]
x(t − h), (53)

whereε = 0. By applying LMI of [10] we find that the system is asymptotically
stable forh � 0.14. By applying delay-independent stability criterion of Theo-
rem 1 we find that the corresponding LMI has a solution. Therefore the system is
asymptotically stable for all delays.

Note that solving the algebraic equation of (53) with respect tox1 and substi-
tuting the resulting expression into the differential equation of (53), we obtain the
following decoupled system of equations:

ẋ2(t) − 0.5ẋ2(t − h) = −2x2(t) + x2(t − h)− 0.5x2(t − 2h),

x1(t) = −0.5x2(t) + 0.25x2(t − h).

By well-known results [14] the first scalar equation of the latter system is as-
ymptotically stable for all delays. Hence, the latter system and system (53) are
asymptotically stable for all delays.
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