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a b s t r a c t

The problem of stabilizing a linear continuous-time systemwith discrete-timemeasurements and a sam-
pled input with a pointwise constant delay is considered. In a first part, we design a continuous–discrete
observer which converges when the maximum time interval between two consecutive measurements is
sufficiently small. In a second part, we construct a dynamic output feedback by using a technique which
is strongly reminiscent of the reduction model approach. It stabilizes the system when the maximal time
between two consecutive sampling instants is sufficiently small. No limitation on the size of the delay is
imposed and an ISS property with respect to additive disturbances is established.
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1. Introduction

For linear, possibly time-varying, systems with continuous
measurements with a delayed input and no sampling, there are
in the literature several stabilization techniques. Some of them
are predictor based techniques and some of them are variants
of the reduction model approach. The main advantage of the
latter is to provide with globally asymptotically stabilizing control
laws for systems with an arbitrarily large pointwise or distributed
delay in the input. This technique has been developed in particu-
lar in Artstein (1982), Mayne (1968) andWitrant, Canudas-de-Wit,
Georges, and Alamir (2007) andmore recently in Mazenc andMal-
isoff (2014), Mazenc, Malisoff, and Niculescu (2014) and Mazenc,
Niculescu, and Krstic (2012) (see also the references therein).

Recently, in the contribution (Mazenc &Normand-Cyrot, 2013),
this control design technique has been adapted to linear systems
with piecewise constant inputs, in the case where the entire state
is continuously measured. But the problem of applying this tech-
nique when only some components of the state variables are mea-
sured and the measurements are available at discrete time only
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is still open. But the motivation for studying it is strong since,
in practice, in many cases, the measurements are discrete. In or-
der to solve it, one may try to adapt three classical techniques.
First, when the length of sampling time intervals and of the out-
put measurement intervals are the same and the delay is a multi-
ple of it, the system, in the time-invariant case, can be discretized
(see Kazantzis, Chong, and Parlos (2005)) and, in a second step,
stabilized via the design of an observer and the utilization of the
discrete-time version of the reduction model approach as done in
Castillo-Toledo, Di Gennaro, and Sandoval Castro (2010) and Gon-
zalez, Garcia, Albertos, Castillo, and Lozano (2012). The second pos-
sible strategy consists in applying the reduction model approach
in combination with continuous observers. The third possible at-
tempt consists in developing a technique of stabilization based on
observers of continuous–discrete type and a new version of the re-
ductionmodel approach, taking into account the discontinuous as-
pect of the observer. This is the objective we pursue the present
work, which is an extension of the preliminary paper (Mazenc &
Fridman, 2014). Before describing in more details its main results,
let usmention that continuous–discrete observers have been stud-
ied for a long time and the seminal papers (Deza, Busvelle, Gau-
thier, & Rakotopara, 1992; Jazwinski, 1970) have inspired many
theoretical and applied papers. For more information, the reader is
referred in particular to Andrieu and Nadri (2010), Goffaux, Vande
Wouwer, and Bernard (2009), Hammouri, Nadri, and Mota (2006),
Mazenc and Normand-Cyrot (2013), Nadri, Hammouri, and Mota
Grajales (2013) and Tellez-Anguiano et al. (2012) and the refer-
ences therein. These observers offer in some cases fundamental
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advantages. In particular, we show in the present work that they
can be successfully used in cases where neither a static piecewise
constant state feedback nor a continuous observer can be applied.

To the best of the authors’ knowledge, continuous–discrete ob-
servers have never been employed to design stabilizing output
feedbacks for systemswith delay andhavenever beenused in com-
bination with the reduction model approach. In fact, in spite of
the fact that delays, sampling, and discrete measurements are fre-
quently encountered simultaneously in control engineering prac-
tice, most of the available contributions studied each of these
phenomena separately (Wang, Tian, & Christov, 2014), with the
notable exceptions (Karafyllis & Krstic, 2012, 2013), where a non-
linear stabilization result is established for systemswith input sub-
ject to delay and zero-order hold, the measurements are discrete
and with a delay. When particularized to the case of linear time-
invariant systems, the main results in Karafyllis and Krstic (2012)
and Karafyllis and Krstic (2013) providewith a feedbackwhose ex-
pressions depend on a sum of past values of the feedback, as those
provided by the discretization approach. But it is worth pointing
out that they offer the advantage of being insensitive to perturba-
tions in the sampling schedule of the output.

An obstacle to the adaptation of the paper (Mazenc &Normand-
Cyrot, 2013) to continuous–discrete observers is due to the fact
that its main result relies on an operator which needs to be
differentiable along the trajectories of the system, but is not along
the trajectories of an impulsive system. To overcome this obstacle,
we shall use a dynamic extension similar to the one introduced in
Mondié and Michiels (2003).

The observer we shall design converges in the absence of
disturbances and is robust with respect to additive disturbances.
The system will be stabilized by the control law we shall propose,
provided that both the maximum time interval between two
consecutive measurements and the largest time interval between
two consecutive sampling instants are sufficiently small. We shall
prove that, in the case where the output is the entire state, there
is convergence of the observer, no matter how large the time
intervals between two consecutive measurements are. But the
destabilizing effect of the uncertainties on the error equation (i.e.
the ultimate bound on the error equation) is proportional to the
size of these intervals.

Finally, it is worth observing that the control laws we propose
keep the simplicity in their formula of those proposed in Mazenc
and Normand-Cyrot (2013) and that using Wirtinger’s inequality
(see Liu and Fridman (2012)), we obtain, through the construction
of a continuous–discrete Lyapunov–Krasovskii functional, stabi-
lization conditions in terms of a linear matrix inequality that leads
to less restrictive conditions on the size of the sampling intervals
than those obtained in Mazenc and Normand-Cyrot (2013) in the
state feedback case.

The paper is organized as follows. An introductory exam-
ple is given in Section 2. A stabilization result using a continu-
ous–discrete observer is given in Section 3. The result is compared
with other control strategies in Section 4. Concluding remarks in
Section 5 end the contribution.
Notation, definitions. The notation will be simplified whenever
no confusion arise from the context. By | · |, we denote the
Euclidean norm of vectors of any dimension and the induced norm
of matrices of any dimensions. Any k × n matrix, whose entries
are all 0 is denoted 0. I denotes the identity matrix in Rn×n, where
n is an arbitrary integer. We adopt the following convention: if i,
j are two integers such that i < j, then {j, . . . , i} = ∅ and if
r , s are two real numbers such that r < s then [s, r] = ∅. Let
ω1 > 0, ω2 > be two constants and the sequence ti be such that
t0 = 0, ti+1 − ti ∈ [ω1, ω2], ∀i ∈ N. Let f : [0,+∞) → Rl

be a function that is continuous over each interval [ti, ti+1) and
such that lim t→ti

t<ti
f (t) exists. Then, for all integer k ∈ N, we let
f (t−k ) = lim t→tk
t<tk

f (t). The notation P > 0, for P ∈ Rn×n means that

P is symmetric and positive definite. In symmetric block matrices
we use ∗ for terms that are induced by the symmetry.

2. Motivating example and preliminaries

2.1. Motivating example

In this section, we present an example to illustrate the obstacles
to the asymptotic stabilization of systems through feedback in
the case where only discrete measurements are available. In
Section 3, we will show how these obstacles can be overcome
by employing continuous–discrete observers. Consider the two-
dimensional system
ẋ1(t) = x2(t)+ ϕ1(t)
ẋ2(t) = −x1(t)+ u(t − h)+ ϕ2(t),

(1)

with the state x = (x1, x2) ∈ R2, the nonnegative constant delay
h, the output

y(t) = x(si)+ ϵi ∈ R2 for all t ∈ [si, si+1), (2)

the sequence si defined by s0 = 0, si+1 = si + 2π, i ∈ N,
the sequence ϵi = (ϵ1,i, ϵ2,i) ∈ R2 which represents errors
of measurements, the function ϕ = (ϕ1, ϕ2) which represents
disturbances.
Stabilization without observer. Even when h = 0, ϕ1(t) = ϕ2(t)
for all t ≥ 0 and ϵi = 0 for all i ∈ N, no feedback of the type
u(t) = f (y(t)), where f is a continuous function, stabilizes the
system (1) asymptotically. This result is proved in Mazenc and
Fridman (2014).
Classical continuous observer. In Mazenc and Fridman (2014), we
established that, for some arbitrarily small disturbances, classical
continuous candidate observers admit solutions which diverge
from those of (1). We considered the system defined, for all i ∈ N
and for all t ∈ [si, si+1), by

ẋ1(t)= x2(t)+ k1[x1(si)+ ϵ1,i − x1(si)]
+ k2[x2(si)+ ϵ2,i − x2(si)]

ẋ2(t)= −x1(t)+ u(g1(t)− h)
+ k3[x1(si)+ ϵ1,i − x1(si)]
+ k4[x2(si)+ ϵ2,i − x2(si)],

(3)

where the kj’s, j = 1 to 4 are arbitrary constants and proved that
limi→+∞ |x(si)− x(si)| = +∞. Thus, even if the system (3) was an
observer for the system (1), it would possess very poor robustness
properties. However, in the ideal case, for all i ∈ N, ϵi = 0, ϕ is
not present and one can initialize (3) with x(0) = y(0) = x(0) so
that x(t) = x(t) for all t ≥ 0 which implies that the system can
be asymptotically stabilized with a feedback using x(t). However,
in general ϵ0 ≠ 0 and the disturbances ϕ1 and ϕ2 are acting and
then the solutions of (3) may diverge from those of (1). It follows
that it cannot be used to asymptotically stabilize the system (1) or
to stabilize it in the Input to State Stability sense (for details about
the ISS property, see for instance Angeli, Sontag, and Wang (2003)
and Sontag (2001)).

2.2. Preliminary result

In this section, we present a technical result. We introduce two
constantsλ,λ satisfying 0 < λ < λ and a sequence of real numbers
λi such that for all i ∈ N,

λi ∈ [λ, λ]. (4)

We define a sequence of positive numbers ti by

ti+1 = ti + λi, (5)
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for all integer i ≥ 1 and t0 = 0. To simplify the notation, we also
introduce a piecewise constant function:

g0(t) = ti, ∀t ∈ [ti, ti+1). (6)

Next, we consider the impulsive system defined, for all i ∈ N, by

ż(t) = Az(t)+ ϕ(t), ∀t ∈ (ti, ti+1), (7)

z(ti) = Miz(t−i )+ ε(g0(ti)), (8)

with z ∈ Rn, A ∈ Rn×n, Mi ∈ Rn×n and where ε : [0,+∞) → Rn

and ϕ : [0,+∞) → Rn are continuous functions. We introduce a
classical assumption:

Assumption A. There exists a constant M > 0 such that

|Mi| ≤ M, ∀i ∈ N. (9)

There exists a symmetric positive definite matrix S ∈ Rn×n such
that the matrix inequality
Mi+1eAλi

⊤
SMi+1eAλi − S ≤ −I (10)

is satisfied for all i ∈ N.

We establish this natural result:

Lemma 1. Let the system (7)–(8) satisfy Assumption A. Then there
are constants ζj > 0, j = 1, 2, such that, for all real numbers ta, tb,
tb ≥ ta, the inequality

|z(tb)| ≤ ζ1e
−

ln(2)
2λ

(tb−ta)
|z(ta)|

+ ζ2 sup
l∈[ta,tb]

{|ε(g0(l))| + |ϕ(l)|} (11)

holds.

Proof. See Appendix A.

Remark 1. In accordance with the intuition, the smaller is λ the
larger is the rate of convergence. Moreover, from the proof one
can see that the constants ζ1 and ζ2 in general increase when λ
increases.

3. Main results

This section is dedicated to the problem of adapting the reduc-
tion model approach to the case of linear time-invariant systems
whose input is affected by sampling and a constant pointwise de-
lay and for which only some components of the state variable are
measured at discrete time instants.

3.1. System under study

Let us present the system we study. To begin with, we define
two sequences of real numbers ti and si, supposed to be known, as
follows: for all i ∈ N,

t0 = 0, ti+1 = ti + µi, (12)

with µi ∈ [µ,µ], where µ and µ > 0 are constants and

s0 = 0, si+1 = si + νi, (13)

with νi ∈ [ν, ν], where ν > 0 and ν > 0 are constants. To simplify
the notation, we define two piecewise constant functions:

g1(t) = ti, ∀t ∈ [ti, ti+1),

g2(t) = si, ∀t ∈ [si, si+1).
(14)

The system we consider is defined as:
ẋ(t)= Ax(t)+ Bu(g1(t)− h)+ ϕ(t)
y(t)= Cx(g2(t))+ ϵ(g2(t)),

(15)
where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, u ∈ Rp is the
input, y ∈ Rq is the output, h ≥ 0 is a constant pointwise delay and
ϕ(t) and ϵ(g2(t)) are unknown disturbances affecting respectively
the plant and the measurements. Both ϕ and ϵ are supposed to be
continuous.

We introduce two assumptions:

Assumption 1. There exist a positive definitematrix S ∈ Rn×n and
a matrix L ∈ Rn×q such that the linear matrix inequality
Mi+1eAνi

⊤
SMi+1eAνi − S ≤ −I (16)

with

Mi = I + νiLC (17)

is satisfied for all i ∈ N.

Remark 2. (i) When, for all i ∈ N, νi = ν then Assumption 1
is equivalent to the existence of a matrix L∗

∈ Rn×q such that
eAν + L∗C is Schur stable. (ii) When the pair (A, C) is detectable
and for all i ∈ N, νi = ν, one can determine a constant ν∗ > 0
such that for all ν ∈ (0, ν∗), Assumption 1 is satisfied. This fact
can be established by observing that the first order approximation
with respect to ν of Mi+1eAν is the matrix I + ν(A + LC), which is
Schur stable if L is so that the matrix A + LC is Hurwitz and ν is
small enough.

Remark 3. Instead of using the dynamic extension involving the
variable β that is introduced in the theorem below, we could try to
apply the reduction model approach with the following auxiliary
variable:

z(t) = eAhx̂(t)+

 t

t−h
eA(t−m)BKz(m)dm

= eAhx(t)+

 t

t−h
eA(t−m)BKz(m)dm − eAhx̃(t), (18)

which is similar to the one that was introduced in Mazenc and
Normand-Cyrot (2013). But when one applies this strategy, then
one needs to differentiate z(t), which leads to an impulsive system
that cannot be easily analyzed. This obstacle leads us to use a
dynamic extension of the type of the one introduced inMondié and
Michiels (2003).

Assumption 2. There exist constant matrices Af ∈ Rp×p, Bf ∈

Rp×n, and a positive definite matrix P ∈ R(n+p)×(n+p) such that the
linear matrix inequality

G⊤P + PG ∆
= −Q < 0, (19)

with

G =


A B
Bf Af


∈ R(n+p)×(n+p), (20)

is satisfied.

Remark 4. When the pair (A, B) is stabilizable, Assumption 2
is satisfied. This fact can be proved by applying the celebrated
backstepping technique (for another type of constructions of Af
and Bf , see Mondié and Michiels (2003)).

Let us define two matrices

B1 =


0

−Bf eAh


and B2 =


0 eAhB
0 0


. (21)
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Assumption 3. The constant µ is such that for some matrix W =

W⊤ the following linear matrix inequality holds:−Q PB2 µG⊤W

∗ −
π2

4
W µB⊤

2 W
∗ ∗ −W

 < 0. (22)

Remark 5. Note that there always exists W > 0 that satisfies the
inequality
−Q PB2

∗ −
π2

4
W


< 0.

Then by Schur complement the LMI (22) holdswith a small enough
value of µ.

3.2. Continuous–discrete observer

In this section, we assume that the system (15) satisfies
Assumptions 1 and 2 and show that the error equation between
the continuous–discrete observer defined, for all i ∈ N, by

˙̂x(t) = Ax̂(t)+ Bu(g1(t)− h), ∀t ∈ (si, si+1)

x̂(si)= x̂(s−i )− νiL[y(si)− Cx̂(s−i )],
(23)

where x̂ ∈ Rn and the system (15) is Input to State Stable with
respect to (ϕ(t), ϵ(g2(t))). We introduce the error variable:

x̃(t) = x(t)− x̂(t). (24)

From (15) and (23), it follows that, for all i ∈ N and t ∈ (si, si+1),
˙̃x(t) = Ax̃(t)+ ϕ(t)
x̃(si)= x̃(s−i )+ νiLCx̃(s−i )+ ϵ(si)

= Mix̃(s−i )+ ϵ(g2(t)).
(25)

Since Assumption 1 is satisfied, Lemma 1 applies and ensures that
there are constants ηp > 0, p = 1, 2 such that the solutions of
(25) satisfy, for all real numbers s and t ≥ s ≥ 0 the inequality

|x̃(t)| ≤ η1e−
ln(2)
2ν (t−s)

|x̃(s)| + η2 sup
l∈[s,t]

{|ϕ(l)| + |ε(g2(l))|} . (26)

Constants ηp can be found from the proof of Lemma 1.

3.3. Input-to-state-stabilization by dynamic output-feedback

We are ready to state the main result of the paper.

Theorem 1. Let the system (15) satisfy Assumptions 1–3. Then the
dynamic output feedback defined, for all i ∈ N, by

u(t) = β(t)

β̇(t)= Af β(t)+ Bf


eAhx̂(t)+

 t

t−h
eA(t−m)Bβ(m)dm


˙̂x(t) = Ax̂(t)+ Bu(g1(t)− h), ∀t ∈ (si, si+1)

x̂(si)= x̂(s−i )− νiL[y(si)− Cx̂(s−i )],

(27)

leads to a closed-loop impulsive system (15), (27), which rewrites as,
ẋ(t) = Ax(t)+ Bβ(g1(t)− h)+ ϕ(t)

β̇(t)= Af β(t)+ Bf


eAhx̂(t)+

 t

t−h
eA(t−m)Bβ(m)dm


˙̂x(t) = Ax̂(t)+ Bβ(g1(t)− h), ∀t ∈ (si, si+1)

x̂(si)= x̂(s−i )− νiL[Cx(si)− Cx̂(s−i )+ ϵ(si)],

(28)
which is such that the inequality

|ϱ(t)| ≤ κ1


|x(s)| + |x̂(s)| + sup

l∈[s−h,s]
|β(l)|


eκ3(s−t)

+ κ2 sup
l∈[s,t]

{|ϕ(l)| + |ϵ(g2(l))|} , (29)

with ϱ(t) = (x(t), β(t), x̂(t)), is satisfied for some constants κp >
0, p = 1, 2, 3, for all real numbers t ≥ s ≥ 0.

Proof of Theorem 1. see Appendix B.

Remark 6. It is worthmentioning that in Theorem 1, no constraint
on the size of the delay h is imposed.

Remark 7. The example (1) also illustrates how the technique we
propose may be useful to lazy samplers, i.e. in the case where only
a low number of sampling instants is desired. Indeed, the system
(1) satisfies Assumption 2 because it is controllable and it satisfies
Assumption 1 because L = −

1
2π I givesMi = 0 for all i ∈ N. There-

fore Theorem1 applies and provideswith exponentially stabilizing
control laws for (1) for arbitrarily large measurement sampling in-
tervals.

Remark 8. By induction, one can prove that, for any initial
condition x(0), x̂(0) and β(l), l ∈ [−h, 0], where β is continuous
function, there is a unique absolutely continuous solution of the
system (28) on any interval [si, si+1).

Remark 9. From Remark 1 and the proof of Theorem 1, it appears
that the size of ν has an influence on the ISS inequality (29).
Roughly speaking, the smaller is ν, the smaller is the right-hand-
side of (29). We also wish to point out that the proof of Theorem 1
is constructive: the values of the constants κi can always be
determined.

Remark 10. Theorem 1 is a result for a system with additive dis-
turbances only. It may be worth considering other types of uncer-
tainties. In particular, by borrowing ideas from the contribution
(Chen, Yang, & Lu, 2014), we conjecture that we can extend Theo-
rem 1 to the case, important from an applied point of view, where
there are uncertainties on the matrices A and C .

4. Comparison with other stabilization techniques

In this section, we show that Theorem 1 applies in cases where
other classical techniques do not.

4.1. Stabilization through state feedback

Now we show that Theorem 1 can be used to determine
asymptotically stabilizing control laws in cases where the output
is given by y(t) = x(si), for all integer i and t ∈ [si, si+1) and
no time invariant static feedback renders the origin of system
(15) asymptotically stable. For the sake of simplicity, consider the
system (15) with h = 0, g1(t) = t , and for all i ∈ N, si+1 − si =

ν > 0. Suppose in addition that it satisfies Assumption 2 i.e. that
the pair (A, B) is stabilizable. Hence, the system is defined for all
i ∈ N by
ẋ(t)= Ax(t)+ Bu(t)
y(t)= x(si)+ ϵ(si), ∀t ∈ [si, si+1).

(30)

It iswell-known that, in general, there are real numbers ν > 0 such
that there does not exist a constant matrix F such that the system
(30) is stabilized by the control

u(t) = Fx(si), ∀t ∈ [si, si+1), (31)
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even if ϵ is identically equal to zero. We have seen in Section 2
through an example that in some cases there does not even exist a
nonlinear feedback defined as u(t) = f (x(si)) for all t ∈ [si, si+1)

that asymptotically stabilizes this system in the absence of ϵ.
Now, observe that, with the notation of Section 3.1, C = I and

νi = ν for all i ∈ N, so that the choice L = −
1
ν
I givesMi = 0 for all

i ∈ N. Therefore Assumption 1 is satisfied with S = I . Then for any
ν > 0, Theorem 1 provideswith control laws rendering the system
(30). Input to State Stable with respect to the uncertainty ϵ(g2(t)).
Notice that in this particular case, the dynamic output feedback is
defined, for all i ∈ N, by

u(t) = β(t)

β̇(t)= Af β(t)+ Bf


eAhx̂(t)+

 t

t−h
eA(t−m)Bβ(m)dm


˙̂x(t) = Ax̂(t)+ Bu(g1(t)− h), ∀t ∈ (si, si+1)
x̂(si)= y(si) = x(si)+ ϵ(si),

(32)

for suitably chosen matrices Af and Bf .

Example. Consider the system (15), where n = 2 and

A =


0 1
0 −0.1


, B =


0
0.1


, C = I. (33)

The stability analysis of the unperturbed closed-loop system under
the controller

u(g1(t)− h) = Fx(tk − h), F = −[3.75 11.5], (34)

for all tk ≤ t < tk+1, with h ≥ 0 and tk+1 − tk ≤ ν has been
studied e.g. in Liu and Fridman (2012). Note that the system with
the continuous control u(t) = Fx(t − h) is input-to-state stable
for h ≤ 1.16 and becomes unstable for h > 1.17 (see p. 308 of
Fridman (2014)). Thismeans that the existingmethods for systems
with a delay belonging to the interval [h, h +µ) (see Liu and Frid-
man (2012) and the references therein) cannot guarantee the sta-
bility of the closed-loop sampled-data system if h > 1.17 (even for
small µ).

We consider next the dynamic output-feedback (32) and choose
Af = FA+F and Bf = FB− I , where A and B are thematrices in (33)
(we designed Af and Bf by applying the backstepping approach).
Note that this choice leads to eig(G) = eig(A + BF)


eig(−I).

Thus, the eigenvalues of G are −0.5,−0.75 and −1. As mentioned
above, for the case of continuous-time control with g1(t) = t ,
the feedback (32) leads to input-to-state stability with respect to
(ϕ, ϵ(g2)) for all h > 0 and ν > 0.

Consider further the case of the zero-order hold with g1(t) =

ti. By verifying the feasibility of the LMI (22) for the values of h
given in Table 1, we find the resulting maximum values of µ that
preserve input-to-state-stability. As expected, by the predictor-
based control we are able to stabilize systems for arbitrary large
values of h (and not only for small enough h as in the existing
sampled-data literature). Since A is not Hurwitz and, after a small
threshold, |B2| (cf. (21)) grows for growing h, the resulting values of
µ become smaller for larger h. Therefore, in case of the zero-order
hold, our approach allows arbitrary large measurement sampling
intervals (bounded by ν > 0), whereas it requires fast enough
updating times of the zero-order hold bounded by µ. This is
an advantage over the predictor-based approach of Mazenc and
Normand-Cyrot (2013), where the measurements of the state are
supposed to be continuous, whereas updating intervals are small
enough.
Table 1
Max. value of µ for different h.

µ 2 5 10 20 100
h 0.91 0.83 0.77 0.72 0.69

4.2. Continuous observers

The following type of continuous observer:

ẋ(t) = Ax(t)+ Bu(g1(t)− h)+ L[y(si)− Cx(si)], (35)

for all t ∈ [si, si+1) and i ∈ N, where x ∈ Rn and L ∈ Rn×q is
a constant matrix, is classically used when the system with dis-
crete measurements (15) is considered (Fridman, 2014; Seuret,
Michaut, Richard, & Divoux, 2006). One can check readily that an
observer of this type can be easily combined with the reduction
model approach, and in particular with the result of Mazenc and
Normand-Cyrot (2013). However, as illustrated in Section 2, con-
tinuous–discrete observers converge to (15) in cases where none
of the observers of the type (35) does.

5. Conclusion

We solved an observer-based output feedback stabilization
problem for linear time-invariant systems with a pointwise
arbitrarily large constant delay and zero-order-hold input and
discrete measurements. The proposed technique relies on the
introduction of a continuous–discrete observer and the adaptation
of the celebrated reduction model approach. Much remains to be
done. Other types of delays and time-varying systems may be
considered. Nonlinear extensions borrowing ideas from Karafyllis
and Krstic (2012) and Nadri, Hammouri, and Astorga (2004) may
be the subject of further studies.

Appendix A. Proof of Lemma 1

Let i ∈ N. By integrating (7), we obtain

z(t−i+1) = eAλiz(ti)+

 ti+1

ti
e(ti+1−ℓ)Aϕ(ℓ)dℓ. (A.1)

Then (8) gives

ri+1 = Mi+1eAλi ri +ϖi (A.2)

with the simplifying notations ri = z(ti)

ϖi = ε(g0(ti+1))+

 ti+1

ti
Mi+1e(ti+1−ℓ)Aϕ(ℓ)dℓ.

To analyze (A.2), we introduce the candidate Lyapunov function
V(r) = r⊤Sr . Then

V(ri+1) = r⊤

i


Mi+1eAλi

⊤
SMi+1eAλi ri

+ 2

Mi+1eAλi ri

⊤
Sϖi +ϖ⊤

i Sϖi. (A.3)

Since S is symmetric and positive definite, for any a > 0,

V(ri+1) ≤ (1 + a)r⊤

i


Mi+1eAλi

⊤
SMi+1eAλi ri

+


1 +

4
a


ϖ⊤

i Sϖi. (A.4)

From Assumption A, we deduce that

V(ri+1) ≤ (1 + a)r⊤

i (S − I)ri +

1 +

4
a


ϖ⊤

i Sϖi

≤ (1 + a)

1 −

1
|S|


V(ri)+


1 +

4
a


|S| |ϖi|

2. (A.5)
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From (10), we deduce that 1 ≤ |S|. Choosing a such that a(1 −

|S|) ≤
1

2|S|
, we obtain

V(ri+1) ≤


1 −

1
2|S|


V(ri)+ α0|ϖi|

2

≤
1
2

V(ri)+ α0|ϖi|
2 (A.6)

with α0 = (1 + 8|S|(|S| − 1)) |S|. Then, for all integers i and j ≥ i,
the following inequality holds:

V(rj) ≤
1

2j−i
V(ri)+ 2α0 sup

m∈{i,...,j−1}
{|ϖm|

2
}. (A.7)

Let sm be the smallest eigenvalue of S. From this inequality, we
deduce that, for all integers i and j ≥ i, the inequality

|z(tj)| ≤ α1e−
ln(2)
2 (j−i)

|z(ti)| + α2 sup
m∈{i,...,j−1}

{|ϖm|} (A.8)

with α1 =


|S|

sm
and α2 =


2α0
sm

is satisfied.

Next, let us consider two real numbers ta < tb. Then, there
exists a unique pair of integers (j, k) such that

tj ≤ tb < tj+1, tk ≤ ta < tk+1. (A.9)

Let us distinguish between 2 cases:
First case: j = k. Then we deduce from (7) and (4) that

|z(tb)| ≤ eλ(|A|+1)−(tb−ta)
|z(ta)| + α3 sup

ℓ∈[ta,tb]
{|ϕ(ℓ)|} (A.10)

with α3 = eλ|A|.
Second case: j > k. Then, necessarily the inequalities ta <

tk+1 ≤ tj ≤ tb are satisfied. From (A.9), we deduce that

|z(tb)| ≤ α3|z(tj)| + α3

 tb

tj
|ϕ(ℓ)|dℓ. (A.11)

From (A.8) we deduce that

|z(tb)| ≤ α3α1e−
ln(2)
2 (j−k−1)

|z(tk+1)|

+α2α3 sup
m∈{k+1,...,j−1}

{|ϖm|} + α3

 tb

tj
|ϕ(ℓ)|dℓ. (A.12)

From (8) and (9), it follows that

|z(tk+1)| ≤ M|z(t−k+1)| + |ϵ(g0(tk+1))|. (A.13)

Bearing in mind (A.9), by integrating (7) and using (4), we obtain
that

|z(t−k+1)| ≤ α3|z(ta)| + α3

 tk+1

ta
|ϕ(ℓ)|dℓ, (A.14)

which, in combination with (A.13), implies that

|z(tk+1)| ≤ Mα3|z(ta)| + |ϵ(g0(tk+1))|

+ Mα3

 tk+1

ta
|ϕ(ℓ)|dℓ. (A.15)

This inequality and (A.12) give

|z(tb)| ≤ α2
3α1e−

ln(2)
2 (j−k−1)M|z(ta)|

+α3α1e−
ln(2)
2 (j−k−1)

|ϵ(g0(tk+1))|

+α2
3α1e−

ln(2)
2 (j−k−1)M

 tk+1

ta
|ϕ(ℓ)|dℓ

+α2α3 sup
m∈{k+1,...,j−1}

{|ϖm|} + α3

 tb

tj
|ϕ(ℓ)|dℓ. (A.16)
Now, observe that (4) implies that

tb − ta ≤ tj − tk + λ ≤ λ(j − k + 1). (A.17)

From the last inequality and (A.16) we can deduce (11).

Appendix B. Proof of Theorem 1

Consider a trajectory (x(t), β(t), x̂(t)) of the system (15)–(27).
Denote

r(t) = eAhx(t)+

 t

t−h
eA(t−l)Bβ(l)dl. (B.1)

Then, simple calculations give, for all i ∈ N and t ∈ [ti, ti+1),
ṙ(t) = Ar(t)+ Bβ(t)

+ eAhB[β(ti − h)− β(t − h)] + eAhϕ(t)
β̇(t)= Af β(t)+ Bf r(t)− Bf eAhx̃(t).

(B.2)

Moreover, from the result in Section 3.2, we deduce that x̃(t) =

x(t)− x̂(t) satisfies an inequality of the type (26).
Now, let us analyze the Input to State Stability of (B.2) with

respect to (ϕ, x̃) regarded as the input. Denoting ξ = (r⊤ β⊤)⊤,
we rewrite this system as follows, for all t ∈ [ti, ti+1),

ξ̇ (t) = Gξ(t)+ B2[ξ(ti − h)− ξ(t − h)] + B1x̃(t)+ B3ϕ(t), (B.3)

with B1 and B2 defined in (21) and

B3 =


eAh

0


. (B.4)

Now, consider the following piecewise-continuous in time Lya-
punov–Krasovskii functional, define with an abuse of notation, by

V (t) = ξ(t)⊤Pξ(t)+ VD(t)−
π2

4
VW (t),

VD(t) = µ2e2αµ
 t

ti−h
e−2α(t−s)ξ̇⊤(s)W ξ̇ (s)ds

VW (t) =

 t−h

ti−h
[ξ(s)− ξ(ti − h)]⊤W [ξ(s)− ξ(ti − h)]ds,

(B.5)

for all i ∈ N, t ∈ [ti, ti+1) and where P and W are the matrices
given by Assumptions 2 and 3 and α > 0 is a tuning parameter.
Let us mention that the integral terms of V with α = 0 were
introduced in Liu and Fridman (2012) for the stability analysis of
sampled-data systems. Since [ξ(s) − ξ(ti − h)]|s=ti−h = 0, by the
Wirtinger’s inequality (see for instance Liu and Fridman (2012)),
we obtain VD(t) −

π2

4 VW (t) ≥ 0. Moreover, VD(t) −
π2

4 VW (t)
vanishes at t = ti. Hence, the condition

V (t−i ) ≥ V (ti) (B.6)

holds. Then, by using arguments of Fridman (2010) one can
prove that, the following condition along the trajectories of (B.2)
guarantees its Input to State Stability:

Ω(t) = V̇ (t)+ ρV (t)− γ

|x̃(t)|2 + |ϕ(t)|2


≤ 0, (B.7)

where ρ > 0, γ > 0 are some constants.
Differentiating V along the trajectories of (B.2), we obtain, for

all t ∈ [ti, ti+1),

V̇ (t) = −2αVD(t)+ µ2e2αµξ̇⊤(t)W ξ̇ (t)
+ 2ξ(t)⊤P[Gξ(t)+ B2(ξ(ti − h)− ξ(t − h))+ B1x̃(t)]

−
π2

4
[ξ(t − h)− ξ(ti − h)]⊤W [ξ(t − h)− ξ(ti − h)]

+ 2ξ(t)⊤PB3ϕ(t). (B.8)
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Next, taking into account Assumption 2, we obtain

V̇ (t) ≤ −ξ(t)⊤Q ξ(t)− 2αVD(t)+ 2ξ(t)⊤PB2v(t)

+µ2e2αµξ̇⊤(t)W ξ̇ (t)−
π2

4
v(t)⊤Wv(t)

+ 2ξ(t)⊤PB1x̃(t)+ 2ξ(t)⊤PB3ϕ(t), (B.9)

with v(t) = ξ(ti − h) − ξ(t − h). As an immediate consequence,
we have,

Ω(t) ≤ −ξ(t)⊤Q ξ(t)− 2αVD(t)+ 2ξ(t)⊤PB2v(t)

+µ2e2αµξ̇⊤(t)W ξ̇ (t)−
π2

4
v(t)⊤Wv(t)

+ 2ξ(t)⊤PB1x̃(t)+ ρV (t)

− γ

|x̃(t)|2 + |ϕ(t)|2


+ 2ξ(t)⊤PB3ϕ(t). (B.10)

Now, observe that V (t) ≤ aξ(t)⊤Q ξ(t)+ VD(t), with a =
|P|

λmin(Q )
.

It follows that

Ω(t) ≤ (−1 + aρ) ξ(t)⊤Q ξ(t)+ (ρ − 2α) VD(t)
+ 2ξ(t)⊤PB2v(t)+ µ2e2αµξ̇⊤(t)W ξ̇ (t)

−
π2

4
v(t)⊤Wv(t)+ 2ξ(t)⊤PB1x̃(t)

− γ

|x̃(t)|2 + |ϕ(t)|2


+ 2ξ(t)⊤PB3ϕ(t). (B.11)

Denote η(t) = (ξ(t)⊤ v(t)⊤ x̃(t)⊤)⊤ and let ρ be smaller that 2α.
Then

Ω(t) ≤ (−1 + aρ) ξ(t)⊤Q ξ(t)+ 2ξ(t)⊤PB2v(t)

+µ2e2αµξ̇⊤(t)W ξ̇ (t)−
π2

4
v(t)⊤Wv(t)

+ 2ξ(t)⊤PB1x̃(t)− γ |x̃(t)|2 + 2ξ(t)⊤PB3ϕ(t)
≤ η⊤(t)Ξη(t)+ µ2e2αµξ̇⊤(t)W ξ̇ (t)

+ 2ξ(t)⊤PB3ϕ(t), (B.12)

where

Ξ =


− (1 − aρ)Q PB2 PB1 PB3

∗ −
π2

4
W 0 0

∗ ∗ −γ I 0
∗ ∗ ∗ −γ I

 . (B.13)

Finally, using the expression of ξ̇ (t) and applying the Schur
complements to µ2e2αµξ̇⊤(t)W ξ̇ (t) in (B.12) we conclude thatΩ
is nonnegative if the linear matrix inequality:

− (1 − aρ)Q PB2 PB1 PB3 µeαµG⊤W

∗ −
π2

4
W 0 0 µeαµB⊤

2 W

∗ ∗ −γ I 0 µeαµB⊤

1 W

∗ ∗ ∗ −γ I µeαµB⊤

3 W
∗ ∗ ∗ ∗ −W

 < 0

is satisfied. Note that (22) implies that the latter inequality holds
for small enough ρ > 0, α > 0 and large enough γ . Then it follows
that there are constants ςp > 0, p = 1, 2, 3, such that, for all
t ≥ s ≥ 0, the inequality

|ξ(t)| ≤ ς1e−ς2(t−s)
|ξ(s)| + ς3 sup

l∈[s,t]
{|ϕ(t)| + |x̃(l)|} (B.14)

is satisfied. This property and (26) imply that there are constants
ςp > 0, p = 4, 5, 6 such that, for all t ≥ s,

|ξ(t)| + |x̃(t)| ≤ ς4e−ς5(t−s)(|ξ(s)| + |x̃(s)|)
+ ς6 sup

l∈[s,t]
{ψ(l)}, (B.15)
with ψ(l) = |ε(g2(l))| + |ϕ(l)|. From the definition of r , the
inequality |r(t)| ≤ |ξ(t)| and (B.15), we obtain

x(t) ≤ eh|A|
|r(t)| + eh|A|

|B|Sβ(t)

≤ ς7eς5(s−t)(|ξ(s)| + |x̃(s)|)
+ ς8 sup

l∈[s,t]
{ψ(l)} + ς9Sβ(t) (B.16)

with ς7 = eh|A|ς4, ς8 = eh|A|ς6 and ς9 = eh|A|
|B| and the

simplifying notation x(t) = |x(t)| and Sβ(t) = supl∈[t−h,t]{|β(l)|}.
Then consider the case where s ∈ [t − h, t]. Then, by using the

fact that Sβ(t) ≤ Sβ(s) + supl∈[s,t]{|ξ(l)|}, from (B.16), it follows
that

x(t) ≤ ς7(|r(s)| + |x̃(s)|)+ ς8 sup
l∈[s,t]

{ψ(l)}

+ ς10Sβ(s)+ ς9 sup
l∈[s,t]

{|ξ(l)|} (B.17)

with ς10 = ς7 + ς9. Using (B.15), we obtain, after lengthy but
simple calculations,

x(t) ≤ ς12|r(s)| + ς13Sβ(s)+ ς14|x̃(s)| + ς11 sup
l∈[s,t]

{ψ(l)} (B.18)

with ς11 = ς9ς6 + ς8, ς12 = ς7 + ς9ς4, ς13 = ς10 + ς9ς4, and
ς14 = ς7 + ς9ς4.

Next, from the definition of r and the inequality |x̃(t)| ≤ x(t)+
|x̂(t)|, we obtain

x(t) ≤ ς12

eh|A|x(s)+ eh|A|

|B|Sβ(s)


+ ς13Sβ(s)+ ς14x(s)+ ς14|x̂(s)| + ς11 sup
l∈[s,t]

{ψ(l)}

≤ ς15es−t x(s)+ Sβ(s)+ |x̂(s)|

+ ς11 sup

l∈[s,t]
{ψ(l)}, (B.19)

with ς15 = eh max{ς12eh|A|
+ ς14, ς12ς9 + ς13, ς14}, where the last

inequality is a consequence of s ∈ [t − h, t].
Now, consider the casewhere s < t−h. Then the last inequality

in (B.16) implies that

x(t) ≤ ς7e−ς5(t−s)(|r(s)| + |β(s)| + |x̃(s)|)+ ς8 sup
l∈[s,t]

{ψ(l)}

+ ς9 sup
m∈[t−h,t]


ς4e−ς5(m−s)(|ξ(s)| + |x̃(s)|)

+ ς6 sup
l∈[s,m]

{ψ(l)}


≤ ς7e−ς5(t−s)(|r(s)| + |β(s)| + |x̃(s)|)
+ ς9ς4e−ς5(t−h−s)(|r(s)| + |β(s)| + |x̃(s)|)

+ ς8 sup
l∈[s,t]

{ψ(l)} + ς9ς6 sup
l∈[s,t]

{ψ(l)}. (B.20)

By grouping the terms and using the definition of r , we obtain

x(t) ≤ ς16e−ς5(t−s)(|r(s)| + |β(s)| + |x̃(s)|)+ ς17 sup
l∈[s,t]

{ψ(l)}

≤ ς16e−ς5(t−s) eh|A|x(s)+ ς9Sβ(s)+ |β(s)| + |x̃(s)|


+ ς17 sup
l∈[s,t]

{|ε(g2(l))| + |ϕ(l)|}

≤ ς18e−ς5(t−s) eh|A|x(s)+ ς16Sβ(s)+ |x̃(s)|


+ ς17 sup
l∈[s,t]

{ψ(l)}, (B.21)

with ς16 = ς7 + ς9ς4eς5h, ς17 = ς8 + ς9ς6 and ς18 = eh|A|
|B| + 1.

It follows that

x(t) ≤ ς18eς5(s−t) ς19x(s)+ ς16Sβ(s)+ |x̂(s)|


+ ς17 sup
l∈[s,t]

{ψ(l)}, (B.22)

withς19 = eh|A|
+1. This inequality and (B.19) allowus to conclude.
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