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a b s t r a c t

This paper develops a decentralized predictor-based control for large-scale systems with large input
delays under the premise that the interconnections between subsystems are not strong. The local
controller operates independently. Given any large delays, the predictor which exponentially stabilizes
each uncoupled system, will stabilize the coupled one provided that the coupling is not solid. We
propose two methods for the delay compensation: the backstepping-based partial differential equation
(PDE) approach and the reduction-based ordinary differential equation (ODE) approach. We present
decentralized Lyapunov-based analysis under the two predictor methods. It appears that the first
predictor method leads to simpler conditions and manages with larger delays, whereas the second
is easily applied to decentralized asynchronous sampled-data implementation, both under continuous
and under discrete-time measurements. Through a benchmark example of two coupled cart–pendulum
systems, the proposed methods are demonstrated to be effective when the input delays are too large
for the system to be stabilized without a predictor.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past 60 years, the predictor feedback has been demon-
strated to be quite effective in compensating large delays, and
major breakthroughs have been successively reported, such as
the framework of ‘‘Smith predictor’’ and the ‘‘reduction’’ approach
in Artstein (1982), Smith (1959), Yue and Han (2005) and Zhou,
Lin, and Duan (2012). However, most of results about predictors
are limited to a single plant with a centralized controller (Karafyl-
lis & Krstic, 2012, 2017; Mazenc & Normand-Cyrot, 2013; Seliv-
anov & Fridman, 2016b). Utilizing the concept of a PDE
representation of delayed input (Krstic, 2009), the recent paper
(Liu, Sun, & Krstic, 2018) considers predictor-based stabilization
for two interconnected systems and the results are restricted to
continuous-time control.

With rapid development of computer, modern control usu-
ally employs digital technology for implementation. Networked
control systems (NCSs), where sensors and actuators exchange
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data through communication network, are quite popular in many
practical applications. Among the imperfections induced by net-
work, the presence of time-delay in communication is a non-
negligible factor to degrade the performance of the control loop
and even lead to instability of NCSs. A majority of existing lit-
erature on NCSs focus on robust stability with respect to small
communication delays, namely, they study the maximum upper
bound on delay that preserves the performance and formulate
the results in terms of linear matrix inequality (LMI) (Freirich
& Fridman, 2016; Fridman, 2014; Gao, Chen, & Lam, 2008; Gu,
Kharitonov, & Chen, 2003; Liu & Fridman, 2012; Park, Ko, & Jeong,
2011).

This paper extends the predictor feedback to decentralized
control for large-scale systems with large input delays, by both
continuous-time and sampled-data control. By large delays we
understand such input delays that do not preserve the stability of
the closed-loop system (which is stable without the delays), and
need compensation. Otherwise, the delays are called small. The
local control network of each subsystem is designed in a decen-
tralized manner without using information from other neighbors,
provided that the interactions in large-scale systems are not
strong. The input delays and sampling instants of each subsystem
may be distinct from each other. Note that decentralized control
of large-scale interconnected systems with local independent
controllers was studied in the presence of small delays in Freirich
and Fridman (2016), Heemels, Borgers, Wouw, Nesic, and Teel
(2013) and Dolk, Borgers, and Heemels (2017).
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We employ two predictor methods for the delay compensa-
tion: the backstepping-based PDE approach (Krstic, 2009) and
the reduction-based ODE approach (Artstein, 1982). For the sin-
gle system (Artstein, 1982), two predictor approaches in the
continuous-time lead to equivalent results. Our main objective
is comparison of two main predictor methods in application to
large-scale systems. As initiated in Freirich and Fridman (2016)
for the case of small delays, we present a decentralized Lyapunov–
Krasovskii method for the exponential stability analysis of the
whole system under decentralized predictors. Note that the de-
centralized Lyapunov method leads to simpler reduced-order
LMIs comparatively to Lyapunov method that is applied to the
whole system (see Section 2.1 and Example in Section 5). For
large-scale systems in the continuous-time, the PDE-based
method leads to simpler LMI conditions and manages with larger
delays, so that the PDE predictor is less conservative. In con-
trast, the ODE-based method is easily applied to asynchronous
sampled-data implementation under both, continuous-time and
sampled-data measurements. Finally, a benchmark example of
two coupled cart–pendulum systems (Dolk et al., 2017; Freirich
& Fridman, 2016; Heemels et al., 2013) is provided to verify the
proposed control scheme when the input delays are large enough
so that the predictor-free control (Dolk et al., 2017; Freirich &
Fridman, 2016; Heemels et al., 2013) is unable to handle.

A conference version of the paper was presented in Zhu
and Fridman (2019), where the sampled-data case is limited to
continuous-time measurements.

2. PDE-based continuous-time control

Consider large-scale interconnected linear systems with input
delays

ẋj(t) = Ajxj(t) + Bjuj(t − rj) +

∑
l̸=j

Fljxl(t), t ≥ 0 (1)

where j = 1, 2, . . . ,M is the subsystem index, xj(t) ∈ Rnj is
the state of the jth plant, uj(t) ∈ Rmj

is the local control input
of the jth plant which is subject to a large constant and known
input delay rj > 0, xl(t) ∈ Rnl are coupling terms, Aj, Bj and Flj
are matrices of appropriate dimensions. We assume that the pair
(Aj, Bj) is stabilizable. Let Kj be a matrix that leads to Hurwitz
Aj + BjKj.

The system (1) could be interpreted as large-scale systems
with large input delays shown in Fig. 1. As all signals are con-
tinuous, we use the PDE-based feedback to address delays.

Based on Krstic (2009), the system with input delays (1) could
be represented by the ODE–PDE cascade as follows:

ẋj(t) = Ajxj(t) + Bjvj(0, t) +

∑
l̸=j

Fljxl(t), t ≥ 0 (2)

∂tvj(σ , t) = ∂σ vj(σ , t), σ ∈ [0, rj] (3)

vj(rj, t) = uj(t) (4)

with the solution of transport PDE (3)–(4) being

vj(σ , t) = uj(t + σ − rj), σ ∈ [0, rj]. (5)

The prediction-based boundary controller is designed as

uj(t) = vj(rj, t) = Kj

(
eAjrjxj(t) +

∫ rj

0
eAj(rj−δ)Bjvj(δ, t)dδ

)
(6)

For stability analysis, we bring in the invertible backstepping
transformation

wj(σ , t) = vj(σ , t) − Kj

(
eAjσ xj(t)

+

∫ σ

0
eAj(σ−δ)Bjvj(δ, t)dδ

)
(7)

vj(σ , t) = wj(σ , t) + Kj

(
e(Aj+BjKj)σ xj(t)

+

∫ σ

0
e(Aj+BjKj)(σ−δ)Bjwj(δ, t)dδ

)
(8)

through which the ODE–PDE cascade (2)–(4) is converted into the
target system as follows:

ẋj(t) = (Aj + BjKj)xj(t) + Bjwj(0, t) +

∑
l̸=j

Fljxl(t), (9)

∂twj(σ , t) = ∂σ wj(σ , t) − KjeAjσ
∑
l̸=j

Fljxl(t), σ ∈ [0, rj] (10)

wj(rj, t) = 0 (11)

Remark 1. Substituting σ = rj into (7), the boundary condi-
tion (11) is guaranteed by the feedback law (6). In later analysis,
it is evident that the boundary condition (11) plays an important
role in the stabilization of the target cascade (9)–(11). However,
in the sampled-data control, the continuous-time feedback (6)
is replaced by the sampled-data feedback uj(t) = vj(rj, t) =

Kj

(
eAjrjxj(t

j
k) +

∫ rj
0 eAj(rj−δ)Bjvj(δ, t

j
k)dδ

)
, t ∈ [t jk, t

j
k+1), k ∈ Z+

0

where t jk is the sampling instant of the jth subsystem, Z+

0 stands
for the set of non-negative integrals. Substituting the above
sampled-data control law into (7), the boundary condition (11)
becomes non-homogeneous such that

wj(rj, t) = Kj

(
eAjrj

(
xj(t

j
k) − xj(t)

)
+

∫ rj

0
eAj(rj−δ)Bj

(
vj(δ, t

j
k) − vj(δ, t)

)
dδ
)

̸= 0,

t ∈ [t jk, t
j
k+1), k ∈ Z+

0

Thus it is difficult to apply the PDE-based method to sampled-
data control. ■

Theorem 1. Consider the closed-loop system consisting of plant
(2)–(4) and controller (6). Given tuning parameters 0 < ε < α,
let parameters λj > 0, and nj

×nj matrices Pj > 0, mj
×mj matrices

Uj > 0, nl
× nl matrices Pl > 0 for l = 1, . . . ,M and l ̸= j, satisfy

the LMIs:

Φj =

⎡⎢⎣φj PjBj 0 PjFj
∗ −Uj 0 0
∗ ∗ −λjInj −λjFj
∗ ∗ ∗ −Πj

⎤⎥⎦ < 0 (12)

Ψj =

[
Uj UjKj

K T
j U

T
j

λj
δj
Imj

]
> 0 (13)

where Φj is a symmetric matrix, I is a unit matrix with appropriate
dimension, δj = rje2(1+2α)rj+2|Aj|rj with |Aj| =

√
λmax

(
AT
j Aj
)
, and

φj = (Aj + BjKj)TPj + Pj(Aj + BjKj) + 2αjPj,

Πj = diagl=1,...,M

{
2ε

M − 1
Pl, l ̸= j

}
,

Fj = rowl=1,...,M
{
Flj, l ̸= j

}
.

Then the closed-loop large-scale system is exponentially stable
with a decay rate ρ = α − ε. ■

Proof. The PDE-based Lyapunov–Krasovskii functional (LKF) is
selected as

Vj(t) = VPj (t) + VUj (t) (14)
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Fig. 1. Large-scale continuous-time systems under input delays.

where

VPj (t) = xTj (t)Pjxj(t), Pj > 0 (15)

VUj (t) =

∫ rj

0
e(1+2α)σ wT

j (σ , t)Ujwj(σ , t)dσ , Uj > 0 (16)

As suggested in Freirich and Fridman (2016) for decentralized
control, if the Lyapunov candidate (14) along the solution of
closed-loop system (9)–(11) satisfies

V̇j(t) + 2αVj(t) ≤
2ε

M − 1

∑
l̸=j

Vl(t) (17)

then we have

V̇ (t) + 2(α − ε)V (t) ≤ 0 (18)

where V (t) =
∑M

j=1 Vj(t), which implies the exponential stability
of the closed-loop system.

Taking the time derivative of (15) along (9), we have

V̇Pj (t) + 2αVPj (t)

= xTj (t)
(
2Pj(Aj + BjKj) + 2αPj

)
xj(t)

+ 2xTj (t)PjBjwj(0, t) + 2xTj (t)Pj
∑
l̸=j

Fljxl(t) (19)

Taking the time derivative of (16) along (10), employing (11) and
the integration by parts in σ , we have

V̇Uj (t) + 2αVUj (t)

= 2
∫ rj

0
e(1+2α)σ wT

j (σ , t)Uj∂σ wj(σ , t)dσ

− 2
∫ rj

0
e(1+2α)σ wT

j (σ , t)UjKjeAjσdσ
∑
l̸=j

Fljxl(t)

+ 2α
∫ rj

0
e(1+2α)σ wT

j (σ , t)Ujwj(σ , t)dσ

= −wT
j (0, t)Ujwj(0, t) − 2ξ T

j (t)
∑
l̸=j

Fljxl(t)

−

∫ rj

0
e(1+2α)σ wT

j (σ , t)Ujwj(σ , t)dσ (20)

where ξ T
j (t) =

∫ rj
0 e(1+2α)σ wT

j (σ , t)UjKjeAjσdσ .
Utilizing Jensen’s inequality, ξ T

j (t) on the right side of (20)
satisfies⏐⏐ξ T

j (t)
⏐⏐2 =

⏐⏐⏐⏐∫ rj

0
e(1+2α)σ wT

j (σ , t)UjKjeAjσdσ
⏐⏐⏐⏐2

≤ rj

∫ rj

0

⏐⏐e(1+2α)σ wT
j (σ , t)UjKjeAjσ

⏐⏐2 dσ
≤ rj

∫ rj

0
e2(1+2α)σ

⏐⏐wT
j (σ , t)UjKj

⏐⏐2 ⏐⏐eAjσ ⏐⏐2 dσ

≤ rje2(1+2α)rj+2|Aj|rj  
δj

∫ rj

0

⏐⏐wT
j (σ , t)UjKj

⏐⏐2 dσ (21)

Combining (19) with (20), applying S-procedure (see e.g. Sec-
tion 3.2.3 of Fridman (2014)) with λj > 0, where we employ (21),
we have

V̇j(t) + 2αVj(t) −
2ε

M − 1

∑
l̸=j

Vl(t)

+
1
λj

(
δj

∫ rj

0

⏐⏐wT
j (σ , t)UjKj

⏐⏐2 dσ −
⏐⏐ξ T

j (t)
⏐⏐2)

≤ −

∫ rj

0
wT

j (σ , t)
(
Uj −

1
λj

δjUjKjK T
j U

T
j

)
wj(σ , t)dσ

+ ηT
j (t)diag

{
I, I,

1
λj

I, I
}

Φjdiag
{
I, I,

1
λj

I, I
}

ηj(t). (22)

Here ηj(t) = col{xj(t), wj(0, t), ξj(t), coll=1,...,M{xl(t), l ̸= j}}, I is
the unit matrix of appropriate dimension.

Applying Schur complement lemma, inequalities (17)–(18) are
implied by LMI-condition (12)–(13). ■

Remark 2. Given any large delays, as long as the couplings
among the large-scale systems are not solid, the PDE-based LMIs
(12)–(13) are always feasible. Indeed, for Flj = 0 in (1), which im-
plies there is no interaction among subsystems, the LMIs
(12)–(13) are reduced to[
φj PjBj
∗ −Uj

]
< 0 (23)

Since (Aj+BjKj) are assumed to be Hurwitz, for some α > 0, there
exist Pj such that φj < 0. Then there exist Uj that satisfy (23). Fix
next ε ∈ (0, α). Applying Schur complement to (13) and (12) with
Pj,Uj subject to (23), respectively, we obtain

Uj −
1
λj

δjUjKjK T
j U

T
j > 0, and[

φj PjBj 0
∗ −Uj 0
∗ ∗ −λjInj

]
+

[
PjFj
0

−λjFj

]
Π−1

j

[
FT

j PTj 0 −λjF
T
j

]
=

[
φj+PjFjΠ

−1
j FT

j PTj PjBj −λjPjFjΠ
−1
j FT

j
∗ −Uj 0

∗ ∗ −λjInj+λ2j FjΠ
−1
j FT

j

]
< 0,

⇕

φj + PjBjU−1
j BT

j P
T
j +

M−1
2ε Pj

∑
l̸=j

(
FljP−1

l F T
lj

)
PT
j

+ λ2
j
(M−1)2

4ε2
Pj
∑
l̸=j

(
FljP−1

l F T
lj

)
×

(
λjInj −

λ2j (M−1)

2ε

∑
l̸=j

(
FljP−1

l F T
lj

))−1

×
∑
l̸=j

(
FljP−1

l F T
lj

)
PT
j < 0

(24)
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Let λj (j = 1, . . . ,M) be large scalars. By selecting Flj such that

FljF T
lj ≤

1
λj

λ−1
max

(
Pl−1) I (25)

where λmax(·) denotes the maximum eigenvalue of the matrix, we
achieve the feasibility of LMIs (12)–(13). ■

2.1. Comparison between the decentralized and centralized analysis

In this section, treating the large-scale system as a global sys-
tem, we apply a full-order LKF to stability analysis, and compare
the conventionally centralized method with the decentralized
one of Theorem 1.

Please note the delay rj of each subsystem appears in the
limit of integration of (16). In order to construct a global LKF,
this should be avoided. Thus we apply the rescaled unity-interval
notation to (5) so that (5) becomes vj(σ , t) = uj(t + rj(σ − 1)),
σ ∈ [0, 1]. Accordingly, the target closed-loop system (9)–(11)
becomes

ẋj(t) = (Aj + BjKj)xj(t) + Bjwj(0, t) +

∑
l̸=j

Fljxl(t), (26)

rj∂twj(σ , t) = ∂σ wj(σ , t) − rjKjeAjrjσ
∑
l̸=j

Fljxl(t) (27)

wj(1, t) = 0, σ ∈ [0, 1] (28)

To analyze the large-scale systems as a global system, we inte-
grate (26)–(28) for j = 1, 2, . . . ,M into

ẋ(t) = Āx(t) + B̄w(0, t) (29)

R̄∂tw(σ , t) = ∂σ w(σ , t) − K̄ Ē(σ )F̄ x(t) (30)

w(1, t) = 0 (31)

where x(t) =

⎡⎣ x1(t)
x2(t)
...

xM (t)

⎤⎦, w(σ , t) =

⎡⎣ w1(σ ,t)
w2(σ ,t)

...
wM (σ ,t)

⎤⎦, and Ā =⎡⎢⎣
A1+B1K1 F21 ··· FM1

F12 A2+B2K2 ··· FM2
...

...
...

...
F1M F2M ··· AM+BMKM

⎤⎥⎦, B̄ =

⎡⎣ B1 0 ··· 0
0 B2 ··· 0
...

...
...

...
0 0 ··· BM

⎤⎦, K̄ =

⎡⎢⎣
r1K1 0 ··· 0

0 r2K2 ··· 0
...

...
...

...
0 0 ··· rMKM

⎤⎥⎦, F̄ =

⎡⎢⎣
0 F21 ··· FM1

F12 0 ··· FM2
...

...
...

...
F1M F2M ··· 0

⎤⎥⎦, Ē(σ ) =

⎡⎣ eA1r1σ 0 ··· 0
0 eA2r2σ

··· 0
...

...
...

...
0 0 ··· eAM rM σ

⎤⎦, R̄ =

⎡⎢⎣
r1Im1

r2Im2

...
rM ImM

⎤⎥⎦
Proposition 1. Consider the closed-loop system consisting of plant
(2)–(4) and controller (6). Given tuning parameters ρ > 0 and
µ > max{r1, . . . , rM}, let a parameter λ > 0, (n1

+ · · · + nM ) ×

(n1
+ · · · + nM ) matrix P̄ > 0, (m1

+ · · · +mM )× (m1
+ · · · +mM )

matrix Ū > 0, satisfy the LMIs:

Φ =

⎡⎣ĀT P̄ + P̄ Ā + 2ρP̄ P̄ B̄ −λF̄ T

∗ −R̄Ū 0
∗ ∗ −λI

⎤⎦ < 0 (32)

Ψ =

[
2ρR̄Ū

(
µI − R̄

)
R̄Ū K̄

K̄ T Ū R̄ λ
δ
I

]
> 0 (33)

where Φ is a symmetric matrix, I is a unit matrix with appro-
priate dimension, δ = e4ρµ

⏐⏐diag{e2|A1|r1 , . . . , e2|AM |rM }
⏐⏐. Then the

closed-loop system is exponentially stable with a decay rate ρ. ■

Proof. The global LKF is selected as

V (t) = VP̄ (t) + VŪ (t) (34)

where

VP̄ (t) = xT (t)P̄x(t), P̄ > 0 (35)

VŪ (t) =

∫ 1

0
e2ρµσ wT (σ , t)R̄Ū R̄w(σ , t)dσ , Ū > 0 (36)

Note that the tuning parameter µ > 0 is inserted into VŪ of (36)
in order to take into account the asymmetric structure of (27)
with rj multiplying ∂twj. Taking the time-derivative of (35)–(36)
along (29)–(31), and following a similar argument of the proof of
Theorem 1, we conclude that the inequality V̇ (t)+ 2ρV (t) ≤ 0 is
implied by (32)–(33). ■

Comparing the LMIs (12)–(13) derived by the decentralized
analysis proposed in the paper with the LMIs (32)–(33) derived
by the conventional method using a full-order LKF, it is evident
that (12)–(13) have essentially less decision variables and are
of smaller order comparatively to (32)–(33). In the sampled-
data case with asynchronous sampling, the decentralized analy-
sis leads to essentially simpler results than the centralized one,
where multiple integral terms should be inserted into LKF to take
care of multiple samplings.

3. ODE-based sampled-data control under continuous-time
measurements

In this section, we consider a more complicated case.
As revealed in Fig. 2, the sensor is able to continuously mea-

sure the plant state xj(t), whereas the continuously changing
control signal uj(t) is sampled at the time instants ζ

j
k and sent

through a controller-to-actuator network subject to a large delay
rj. As analyzed in Remark 1, when the control signals are sampled,
the PDE-based method may not be applied trivially to NCSs.
Instead, the ODE-based approach is employed.

The sampling series {ζ
j
k} satisfy

0 = ζ
j
0 < ζ

j
1 < ζ

j
2 < · · · , lim

k→∞

ζ
j
k = ∞, ζ

j
k+1 − ζ

j
k ≤ hj (37)

The actuator is a zero-order hold and is assumed to be event-
driven (update its output once it receives new data). Therefore,
the updating instants of the actuator satisfies

t jk = ζ
j
k + rj, t jk < t jk+1, k ∈ Z+

0 (38)

As a consequence, the plant (1) is converted into

ẋj(t) = Ajxj(t)+ Bjuj(ζ
j
k)+

∑
l̸=j

Fljxl(t), t ∈ [t jk, t
j
k+1), k ∈ Z+

0 (39)

Based on (1), the predictor state is introduced below

zj(t) = eAjrjxj(t) +

∫ t

t−rj

eAj(t−τ )Bjuj(τ )dτ (40)

and the control input is designed as

uj(t) = Kjzj(t) = Kj

(
eAjrjxj(t) +

∫ t

t−rj

eAj(t−τ )Bjuj(τ )dτ
)

(41)

For stability analysis, taking the time-derivative of (40) along
(39), the dynamics of zj(t) satisfies

żj(t) = Ajzj(t) + Bjuj(t) + eAjrjBj
(
uj(ζ

j
k) − uj(t − rj)

)
+ eAjrj

∑
l̸=j

Fljxl(t), t ∈ [t jk, t
j
k+1), k ∈ Z+

0 (42)
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Fig. 2. Large-scale sampled-data NCSs with continuous-time measurement under controller-to-Actuator delays.

Combining (40) with (41), the inverse transformation is brou-
ght in as

xl(t) = e−Alrlzl(t) −

∫ t

t−rl

eAl(t−τ−rl)Blul(τ )dτ

= e−Alrlzl(t) −

∫ t

t−rl

eAl(t−τ−rl)BlKlzl(τ )dτ

= e−Alrlzl(t) − ξl(t) (43)

where

ξl(t) =

∫ t

t−rl

eAl(t−τ−rl)BlKlzl(τ )dτ

=

∫ rl

0
eAl(θ−rl)BlKlzl(t − θ )dθ (44)

Substituting (41) and (43) into (42), we get the dynamics of
zj(t) for stability analysis as follows:

żj(t) = (Aj + BjKj)zj(t) + eAjrjBjKj
(
zj(t

j
k − rj) − zj(t − rj)

)
+ eAjrj

∑
l̸=j

Flj
(
e−Alrlzl(t) − ξl(t)

)
= (Aj + BjKj)zj(t) − eAjrjBjKjvj(t)

+ eAjrj
∑
l̸=j

Flj
(
e−Alrlzl(t) − ξl(t)

)
, (45)

t ∈ [t jk, t
j
k+1), k ∈ Z+

0

where vj(t) = zj(t − rj) − zj(ζ
j
k) = zj(t − rj) − zj(t

j
k − rj).

Theorem 2. Consider the closed-loop system consisting of plant (39)
and controller (41). Given tuning parameters 0 < ε < α, let
nj

× nj matrices Pj,Wj,Uj > 0 and nl
× nl matrices Pl,Wl > 0

for l = 1, . . . ,M and l ̸= j, satisfy the LMI:[
Φj Ψj
∗ −Hj

]
< 0 (46)

where

Ψj =

⎡⎢⎢⎢⎢⎣
(Aj + BjKj)THj

−K T
j B

T
j e

ATj rjHj(
F z

j

)T eATj rjHj(
F

ξ

j

)T
eA

T
j rjHj

⎤⎥⎥⎥⎥⎦ , Hj = h2
j e

2αhjUj (47)

and Φj is a symmetric matrix such that

Φj =

⎡⎢⎢⎣
φj −Pje

AjrjBjKj Pje
AjrjFz

j Pje
AjrjF

ξ
j

∗ −
π2
4 e−2αrjUj 0 0

∗ ∗ −Πz
j 0

∗ ∗ ∗ −Π
ξ
j

⎤⎥⎥⎦ (48)

with

φj = (Aj + BjKj)TPj + Pj(Aj + BjKj) + 2αPj + rjW̄j

W̄j = K T
j B

T
j

(∫ rj

0
eA

T
j (θ−rj)WjeAj(θ−rj)dθ

)
BjKj

Π z
j =

2ε
M − 1

diagl=1,...,M{Pl, l ̸= j},

Π
ξ

j =
1

M − 1
diagl=1,...,M{e−2αrlWl, l ̸= j},

F z
j = rowl=1,...,M{Flje−Alrl , l ̸= j},

F
ξ

j = rowl=1,...,M{−Flj, l ̸= j}.

Then the closed-loop system is exponentially stable with a decay rate
ρ = α − ε. ■

Proof. The Lyapunov–Krasovskii functional is selected as

Vj(t) = VPj (t) + VWj (t) + VUj (t) (49)

where

VPj (t) = zTj (t)Pjzj(t), Pj > 0 (50)

VWj (t) = rj

∫ rj

0

∫ t

t−θ

e2α(s−t)zTj (s)K
T
j B

T
j e

ATj (θ−rj)Wj

× eAj(θ−rj)BjKjzj(s)dsdθ, Wj > 0 (51)

VUj (t) = h2
j e

2αhj

∫ t

t jk−rj

e2α(s−t)żTj (s)Ujżj(s)ds

−
π2

4

∫ t−rj

t jk−rj

e2α(s−t)
[zj(s) − zj(t

j
k − rj)]TUj

× [zj(s) − zj(t
j
k − rj)]ds, Uj > 0, (52)

t ∈ [t jk, t
j
k+1), k ∈ Z+

0

where VUj (t) > 0 and VUj ((t
j
k)

−1) ≥ VUj (t
j
k) by Wirtinger’s inequal-

ity in Liu and Fridman (2012), Selivanov and Fridman (2016a) and
Section 7.4 of Fridman (2014). The term VWj (t) is employed to
compensate ξl(t) in (45), whereas VUj (t) is utilized to compensate
vj(t) in (45).

If the Lyapunov candidate (49) along the solution of closed-
loop system (45) satisfies

V̇j(t) + 2αVj(t) + e−2αrjξ T
j (t)Wjξj(t)

≤
2ε

M − 1

∑
l̸=j

Vl(t) +
1

M − 1

∑
l̸=j

e−2αrlξ T
l (t)Wlξl(t) (53)

then we have

V̇ (t) + 2(α − ε)V (t) ≤ 0 (54)

where V (t) =
∑M

j=1 Vj(t), which implies the exponential stability
of the closed-loop system.
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Taking the time-derivative of (50), we have

V̇Pj (t) + 2αVPj (t) = 2zTj (t)Pjżj(t) + 2αzTj (t)Pjzj(t) (55)

By Jensen’s inequality in Gu et al. (2003) and Sections 3.5.5 and
3.8 of Fridman (2014), it is not hard to calculate

V̇Wj (t) + 2αVWj (t)

= rjzTj (t)K
T
j B

T
j

(∫ rj

0
eA

T
j (θ−rj)WjeAj(θ−rj)dθ

)
BjKjzj(t)

− rj

∫ rj

0
e−2αθ zTj (t − θ )K T

j B
T
j e

ATj (θ−rj)

× WjeAj(θ−rj)BjKjzj(t − θ )dθ

≤ rjzTj (t)W̄jzj(t)

− e−2αrj

(∫ rj

0
zTj (t − θ )K T

j B
T
j e

ATj (θ−rj)dθ
)

× Wj

(∫ rj

0
eAj(θ−rj)BjKjzj(t − θ )dθ

)
= rjzTj (t)W̄jzj(t) − e−2αrjξ T

j (t)Wjξj(t) (56)

where W̄j has been given underneath (48).
Taking the time-derivative of (52), we have

V̇Uj (t) + 2αVUj (t)

= h2
j e

2αhj żTj (t)Ujżj(t) −
π2

4
e−2αrjvT

j (t)Ujvj(t) (57)

Synthesizing (55)–(57) and substituting (45), we get

V̇j(t) + 2αVj(t) + e−2αrjξ T
j (t)Wjξj(t)

−
2ε

M − 1

∑
l̸=j

Vl(t) −
1

M − 1

∑
l̸=j

e−2αrlξ T
l (t)Wlξl(t) (58)

≤ ηT
j (t)Φjηj(t) + ηT

j (t)ΨjH−1
j Ψ T

j ηj(t) (59)

where η(t) = col{zj(t), vj(t), coll=1,...,M{zl(t), l ̸= j},
coll=1,...,M{ξl(t), l ̸= j}}, and Φj, Ψj and Hj have been given in
(47)–(48). By the Schur complement, inequalities (53)–(54) are
implied by LMI-condition (46). ■

When hj = 0 in (37), (52) and (47), we derive the following
corollary for the ODE-based continuous-time control.

Corollary 1. Consider the closed-loop system consisting of plant (1)
and controller (41). Given tuning parameters 0 < ε < α, let nj

× nj

matrices Pj,Wj > 0 and nl
×nl matrices Pl,Wl > 0 for l = 1, . . . ,M

and l ̸= j, satisfy the LMI:

Φj =

⎡⎣ φj Pje
AjrjFz

j Pje
AjrjF

ξ
j

∗ −Πz
j 0

∗ ∗ −Π
ξ
j

⎤⎦ < 0 (60)

where all elements of Φj in (60) are defined exactly the same as
those corresponding elements in (48). Then the closed-loop system
is exponentially stable with a decay rate ρ = α − ε. ■

Remark 3. Similar to Remark 2, we check the feasibility of the
ODE-based LMI (60) for non-strong coupling. When Flj = 0 in (1),
which implies there is no interaction among subsystems, the LMI
(60) is reduced to

φ̄j = (Aj + BjKj)TPj + Pj(Aj + BjKj) + 2αPj < 0. (61)

Given α > ε > 0, applying Schur complement to (60) with Pj
subject to (61), we obtain

φ̄j + rjK T
j B

T
j

(∫ rj
0 eA

T
j (θ−rj)WjeAj(θ−rj)dθ

)
BjKj

+
M−1
2ε PjeAjrj

∑
l̸=j

(
Flje−AlrlPl−1e−ATl rlF T

lj

)
eA

T
j rjPT

j

+ (M − 1)PjeAjrj
∑
l̸=j

e2αrl
(
FljWl

−1FljT
)
eA

T
j rjPT

j < 0

(62)

Set Wj = wjI (j = 1, . . . ,M), where wj > 0 is a small scalar and
I is a unit matrix. By selecting Flj such that

FljF T
lj ≤ w2

l I, FljF T
lj ≤ wlλ

−1
max

(
e−AlrlPl−1e−ATl rl

)
I, (63)

we achieve the feasibility of LMI (60). ■

4. ODE-based sampled-data control under discrete-time mea-
surements

In this section, we consider the most complicated case of
sampled-data feedback with sampled-data measurements. As
shown in Fig. 3, let {sjk} with k ∈ Z+

0 be sampling instants of the
jth subsystem such that

0 = sj0 < sj1 < sj2 < · · · , lim
k→∞

sjk = ∞, sjk+1 − sjk ≤ hj (64)

The state xj(t) is sampled by the sensor at sampling time sjk, and
the sampled-data xj(s

j
k) is transmitted to the controller by the

communication network subject to a known constant sensor-to-
controller delay r0j > 0. A control signal is calculated by the
controller and transmitted to the actuator (which is a zero-order
hold) through the communication network subject to a known
constant controller-to-actuator delay r1j > 0. The controller and
actuator are assumed to be event-driven, which means they up-
date their outputs as soon as they receive new data. Therefore the
updating instants of the controller and actuator are respectively
ζ
j
k = sjk + r0j and t jk = ζ

j
k + r1j = sjk + rj, where rj = r0j + r1j .

There are two different cases about the communication delay:
(1) small delay which is not greater than sampling interval (see
Fig. 4, left), (2) large delay (see Fig. 4, right). In the first case, the
delay is limited to be ‘‘small’’ and the system may be stabilized
without predictor. Thus the predictor-based controller proposed
in this section concentrates on the second case that the delay
length is allowed to be large.

Under the sampled-data and zero-order hold, the plant (1) is
transformed into

ẋj(t) = Ajxj(t)+ Bjuj(s
j
k)+

∑
l̸=j

Fljxl(t), t ∈ [t jk, t
j
k+1), k ∈ Z+

0 (65)

To construct a predictor-based controller for (65), define a
piece-wise function such that

uj(s) = uj(s
j
k), s ∈ [sjk, s

j
k+1), k ∈ Z+

0 (66)

and uj(s) ≡ 0 for s < 0. By (66), the plant (65) recovers the form
of (1) such that

ẋj(t) = Ajxj(t) + Bjuj(t − rj) +

∑
l̸=j

Fljxl(t), t ∈ [t jk, t
j
k+1), k ∈ Z+

0

(67)

According to (66)–(67), the change of variable is introduced as

zj(t) = eAjrjxj(t) +

∫ t

t−rj

eAj(t−θ )Bjuj(θ )dθ, t ≥ 0 (68)

and zj(t) ≡ 0 for t < 0.
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Fig. 3. Large-scale sampled-data NCSs under transmission delays.

Fig. 4. Two different cases of transmission delay: (1) the delay is less than or equal to a sampling interval, (2) the delay is larger than sampling interval.

The control law is designed as

uj(s
j
k) = Kjzj(s

j
k) = Kj

(
eAjrjxj(s

j
k)

+

∫ sjk

sjk−rj

eAj(s
j
k−θ )Bjuj(θ )dθ

)
, k ∈ Z+

0 (69)

Taking the time-derivative of (68) along (67), the dynamics of
zj(t) for stability analysis is derived as

żj(t) = Ajzj(t) + Bjuj(t) + eAjrj
∑
l̸=j

Fljxl(t), (70)

t ∈ [t jk, t
j
k+1), k ∈ Z+

0

According to (66) and (69), we have

uj(t) = uj(s
j
k) = Kjzj(s

j
k) = Kjzj

(
t − (t − sjk)

)
, (71)

t ∈ [sjk, s
j
k+1), k ∈ Z+

0

The inverse transformation of (68) is calculated as

xl(t) = e−Alrlzl(t) −

∫ t

t−rl

eAl(t−θ−rl)Blul(θ )dθ

= e−Alrlzl(t) − ξl(t) (72)

where

ξl(t) =

∫ t

t−rl

eAl(t−θ−rl)Blul(θ )dθ

=

∫ 0

−rl

eAlsBlul(t − s − rl)ds (73)

Substituting (71) and (72) into (70), we get the closed-loop time-
delay systems as follows:

żj(t) = Ajzj(t) + BjKjzj
(
t − τj(t)

)
+ eAjrj

∑
l̸=j

Flj
(
e−Alrlzl(t) − ξl(t)

)
, t ≥ 0. (74)

where τj(t) = t − sjk, t ∈ [sjk, s
j
k+1), k ∈ Z+

0 and 0 ≤ τj(t) ≤ hj.
To compensate the distributed input term ξl(t) on the right

side of (74) which comes from (72)–(73), we use the following

equality.

|ξl(t)|2 =

⏐⏐⏐∫ 0
−rl

eAlsBlul(t − s − rl)ds
⏐⏐⏐2

≤ rl
∫ 0

−rl

⏐⏐eAlsBlul(t − s − rl)
⏐⏐2 ds

≤ rl
∫ 0

−rl

⏐⏐eAlsBl
⏐⏐2 |ul(t − s − rl)|2 ds

≤ rl
∫ 0

−rl

⏐⏐eAlsBl
⏐⏐2 ds supθ∈[−hl−rl,0] |Klzl(t + θ )|2

= δl supθ∈[−hl−rl,0] |zl(t + θ )|2

(75)

where δl = rl
∫ 0

−rl

⏐⏐eAlsBl
⏐⏐2 ds |Kl|

2. Thus we have

δl sup
θ∈[−hl−rl,0]

|zl(t + θ )|2 − |ξl(t)|2 ≥ 0 (76)

Theorem 3. Consider the closed-loop system consisting of plant (65)
and controller (69). Given positive tuning parameters ε1, ε2 and α

such that ε1 + ε2 < α, let a parameter λl > 0, nj
× nj matrices

Pj,Uj > 0, nj
× nj matrices P2j, P3j, and nl

× nl matrices Pl > 0 for
l = 1, . . . ,M and l ̸= j, satisfy the LMIs:

Φj
⏐⏐
τj(t)→0 < 0, Φj

⏐⏐
τj(t)→hj

< 0, Pl − λlδlInl > 0, (77)

where Φj = {Φ
j
ij} is the symmetric matrix composed of

Φ
j
11 = (Aj + BjKj)TP2j + PT

2j(Aj + BjKj) + 2αjPj
Φ

j
12 = (Aj + BjKj)TP3j − PT

2j + Pj, Φ
j
13 = −τj(t)PT

2jBjKj,

Φ
j
14 = PT

2je
Ajrjrowl=1,...,M{Flje−Alrl , l ̸= j},

Φ
j
15 = PT

2je
Ajrjrowl=1,...,M{−Flj, l ̸= j},

Φ
j
22 = −P3j − PT

3j + (hj − τj(t))Uj, Φ
j
23 = −τj(t)PT

3jBjKj,

Φ
j
24 = PT

3je
Ajrjrowl=1,...,M{Flje−Alrl , l ̸= j},

Φ
j
25 = PT

3je
Ajrjrowl=1,...,M{−Flj, l ̸= j},

Φ
j
33 = −e−2αhjτj(t)Uj,

Φ
j
44 = −

2ε1
M−1diagl=1,...,M{Pl, l ̸= j}

Φ
j
55 = −

2ε2
M−1diagl=1,...,M{λlIl, l ̸= j}

with Inl ∈ Rnl×nl being an identity matrix.
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Table 1
The results with different feedback schemes.

Under the decay rate ρ = α − ε = 0.001

Input delay r Sampled interval h

Continuous-time Predictor-free (uj(t) = Kjxj(t), Section 3.6.2 of Fridman (2014)) 0.061 –
Sampled-data Predictor-free (uj(s

j
k) = Kjxj(s

j
k), Section 7.4.2 of Fridman (2014)) 0.06 0.001

Continuous-time Predictor-based (Backstepping-based PDE method, Theorem 1) 0.37 –
Continuous-time Predictor-based (Reduction-based ODE method, Corollary 1) 0.2 –
Sampled-data Predictor-based with Continuous-time Measurement (Theorem 2) 0.15 0.001

Fig. 5. Two coupled cart–pendulum systems.

Fig. 6. Decentralized feedback under small delay r1 = r2 = 0.2 s without
predictor.

Then the closed-loop system is exponentially stable with a decay
rate ρ which is a unique positive solution of the equation ρ = α −

ε1 − ε2e2ρ(h+r). ■

Proof. For stability analysis, the Lyapunov–Krasovskii functional
is selected as Vj(t) = VPj (t) + VUj (t), where

VPj (t) = zTj (t)Pjzj(t), Pj > 0
VUj (t) = (hj − τj(t))

∫ t
t−τj(t)

e2α(s−t)żTj (s)Ujżj(s)ds, Uj > 0 (78)

The term VUj (t) is used to compensate τj(t) in (74).
Taking the time-derivative of the first equation of (78), we

have

V̇Pj (t) + 2αVPj (t) = 2zTj (t)Pjżj(t) + 2αzTj (t)Pjzj(t) (79)

Table 2
Comparison between centralized and decentralized LMIs.
Theorem No. of decision

variables
No. of lines No. of tuning

parameters

Theorem 1 24 13 × 13, 2 × 2 2
Proposition 1 40 18 × 18, 4 × 4 2

By Jensen’s inequality, the time-derivative of the second equation
of (78) satisfies

V̇Uj (t) + 2αVUj (t) = −
∫ t
t−τj(t)

e2α(s−t)żTj (s)Ujżj(s)ds

+(hj − τj(t))żTj (t)Ujżj(t)

≤ −e−2αhjτj(t)vT
j (t)Ujvj(t)

+(hj − τj(t))żTj (t)Ujżj(t)

(80)

where vj(t) =
1

τj(t)

∫ t
t−τj(t)

żj(s)ds with limτj(t)→0 vj(t) = żj(t). By
the descriptor representation of (74), we have

0 = 2
[
zTj (t)P

T
2j + żTj (t)P

T
3j

] [
(Aj + BjKj)zj(t) − τj(t)BjKjvj(t)

+eAjrj
∑
l̸=j

Flj
(
e−Alrlzl(t) − ξl(t)

)
− żj(t)

]
(81)

Above all, synthesizing (79), (80), (81), (76), we get

V̇j(t) + 2αVj(t) −
2ε1
M−1

∑
l̸=j

Vl(t)

−
2ε2
M−1

∑
l̸=j

supθ∈[−hl−rl,0] Vl(t + θ )

2ε2
M−1

∑
l̸=j

λl
(
δl supθ∈[−hl−rl,0] |zl(t + θ )|2 − |ξl(t)|2

)
≤ ηT

j (t)Φjηj(t)

−
2ε2
M−1

∑
l̸=j

supθ∈[−hl−rl,0] z
T
l (t + θ )

(
Pl − λlδlInl

)
× supθ∈[−hl−rl,0] zl(t + θ )

(82)

where ηj(t) = col{zj(t), żj(t), vj(t), coll=1,...,M{zl(t), l ̸= j},
coll=1,...,M{ξl(t), l ̸= j}}. ■

5. Example

In this section, we use an example of two coupled inverted
pendulums on two carts (shown in Fig. 5) from Freirich and
Fridman (2016), Heemels et al. (2013) and Dolk et al. (2017)
under the decentralized control scheme.

The system matrices are A1 = A2 =

[
0 1 0 0

2.9156 0 −0.0005 0
0 0 0 1

−1.6663 0 0.0002 0

]
, B1 =

B2 =

[
0

−0.0042
0

0.0167

]
, F21 = F12 =

[
0 0 0 0

0.0011 0 0.0005 0
0 0 0 0

−0.0003 0 −0.0002 0

]
. The control

gains are selected as K1 = [ 11396 7196.2 573.96 1199.0 ], K2 =

[ 29241 18135 2875.3 3693.9 ].
The simulation results under different feedback schemes are

shown in Tables 1–2 and Figs. 6–7. Given the decay rates and
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Fig. 7. Decentralized feedback under large delay r1 = r2 = 2 s with predictor.

sampled intervals, the predictor-based controller in this exam-
ple always leads to a larger input delay than the predictor-free
controller.

As revealed in Table 2, the LMIs of Theorem 1 (decentralized
LKFs) have less decision variables and are of reduced-order com-
paratively to LMIs of Proposition 1 (a centralized LKF). The advan-
tage should be more apparent when the number of subsystems
M is large.
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