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New Bounded Real Lemma Representations for Time-Delay
Systems and Their Applications

E. Fridman and U. Shaked

Abstract—New delay-dependent/delay-independent bounded real
criteria are derived for linear continuous-time systems with delay in
the dynamics and in the objective function. A sufficient condition for
the system to possess a -norm that is less than a prescribed level, is
given in terms of a linear matrix inequality (LMI). The proposed criteria
are less conservative than other existing criteria since they are based on
an augmented model that is equivalent to the original system and since
they require bounds for fewer terms. We apply the new bounded real
criteria to state-feedback control. The advantage of the new criteria
is demonstrated by four examples. The first two compare our results with
those obtained in the literature for the bounded real lemma and the other
two examples treat the state-feedback control problem and compare our
result with recently published designs.

Index Terms—Bounded real lemma, delay-dependent criteria,
-state-feedback control, linear matrix inequalities (LMIs), time-delay

systems.

I. INTRODUCTION

It is well-known (see, e.g., [1]–[3]) that the choice of an appropriate
Lyapunov–Krasovskii functional is crucial for deriving stability cri-
teria. The same is true concerning bounded real criteria. Thus the gen-
eral form of this functional leads to a complicated system of Riccati
type partial differential equations [4], [5] or inequalities [6]. Special
forms of Lyapunov–Krasovskii functionals lead to simpler (but more
conservative) delay-independent [7]–[12] and delay-dependent suffi-
cient conditions [10], [11], [13]. In this note, we derive a delay-depen-
dent/delay-independent bounded real lemma (BRL).

The conservatism of the delay-dependent criteria of [11] and [13] is
twofold: the transformed system is not equivalent to the original one
(see [14]) and the bounds put on certain terms, when developing the
required criteria, are quite wasteful. In the present note we apply a new
type of Lyapunov–Krasovskii functional based on an equivalent aug-
mented model—a “descriptor form” representation of the system. Such
a representation has been introduced in [3] for stability analysis. Our
approach significantly reduces the overdesign entailed in the existing
methods since it is based on a model that is equivalent to the original
system and since fewer bounds are applied. We demonstrate the appli-
cability of our approach with three examples, where we compare our
method to the most efficient method published to date.

Notation: Throughout this note, the superscript “T ” stands for
matrix transposition,Rn denotes then dimensional Euclidean space,
Rn�m is the set of alln �m real matrices, and the notationP > 0,
for P 2 Rn�n means thatP is symmetric and positive–definite. The
space of functions inRq that are square integrable over[0 1) is
denoted byLq

2
[0; 1).
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II. THE BOUNDED REAL LEMMA

A. Delay-Dependent BRL

Given the following system:

_x(t) =

m

i=0

Aix(t� hi) +B1w(t)

z(t) = colfC0x(t); C1x(t� h1); . . . ; Cmx(t� hm)g

x(t) = 0 8 t 2 [�h 0] (1)

wherex(t) 2 Rn is the system state vector,w(t) 2 Lq2[0; 1] is the
exogenous disturbance signal andz(t) 2 Rp is the state combination
(objective function signal) to be attenuated. The time delays0 = h0 <

hi � h, i = 1; . . . ; m are assumed to be known and the matrices
Ai; i = 0; . . . ; m; B1 andCi; i = 0; . . . ; m are constant matrices
of appropriate dimensions. For a prescribed scalar > 0, we define
the performance index

J(w) =
1

0

(zT z � 
2
w
T
w)d�: (2)

Following [3], we represent (1) in the equivalent descriptor form

_x(t) = y(t); y(t) =

m

i=0

Aix(t� hi) +B1w(t): (3)

The latter is equivalent to the following descriptor system with dis-
tributed delay in the variabley:

_x(t) = y(t); 0 = �y(t) +

m

i=0

Ai x(t)

�

m

i=1

Ai

t

t�h

y(s)ds+B1w(t): (4)

A Lyapunov–Krasovskii functional for the system (4) has the form

V (t) = [xT (t) yT (t)]EP
x(t)

y(t)

+

m

i=1

0

�h

t

t+�

y
T (s)Riy(s)ds d� (5)

where

E =
In 0

0 0
P =

P1 0

P2 P3
; P1 > 0; Ri > 0: (6)

The second term of (5) corresponds to the delay-dependent condition
that we shall derive below.

We obtain the following.
Theorem 2.1:Consider the system of (1). For a prescribed >

0, the cost function (2) achievesJ(w) < 0 for all nonzerow 2
Lq2[0; 1), if there existn � n-matrices0 < P1; P2; P3, andRi =
RT
i , i = 1; . . . ; m that satisfy the linear matrix inequality (LMI)

shown in (7) at the bottom of the next page.
Proof: Note that if (7) holds, then the following LMI is feasible

as shown in (8) at the bottom of the next page and, thus, (1) is asymp-
totically stable [3].

To prove thatJ < 0, we note that

[xT y
T ]EP

x

y
= x

T
P1x
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and, hence, differentiation of the first term of (5) with respect tot gives
us, due to (4)

d

dt
[xT (t) yT (t)]EP

x(t)

y(t)

= 2xT (t)P1 _x(t)

= 2[xT (t) yT (t)]PT _x(t)

0

= 2[xT (t) yT (t)]PT

�

y(t)

�y(t) +

m

i=0

Ai x(t)

�

m

i=1

Ai

t

t�h

y(s)ds+B1w(t) : (9)

From (9), we obtain (10) shown at the bottom of the page, where
 

�
= colfx(t); y(t); w(t)g and

�i(t)
�
= �2

t

t�h

[xT (t) yT (t)]PT 0

Ai

y(s)ds:

For any matrix0 < Ri 2 Rn�n

�i � hi[x
T
y
T ]P T 0

Ai

R
�1

i [0 AT
i ]P

x

y

+
t

t�h

y
T (s)Riy(s)ds: (11)

From (3) and the fact, [due to the asymptotic stability ofx(t) from
(8)], thatx(t) andw(t) are square integrable on[0; 1), it follows that
y 2 Ln2 [0; 1). We substitute (11) into (10) and integrate the resulting
inequality int from 0 to1. Because

1

0

z
T
z dt =

m

i=0

1

0

x
T (t� hi)C

T
i Cix(t� hi)dt

=

m

i=0

1

0

x
T (t)CT

i Cix(t)dt

we obtain (by Schur complements) thatJ < 0 if the following LMI
holds, as shown in (12) at the bottom of the next page, where

	 = P
T

0 I

m

i=0

Ai �I
+

0

m

i=0

AT
i

I �I

P

+

m

i=0

CT
i Ci 0

0

m

i=1

hiRi

: (13)

LMI (7) results from the latter LMI by expansion of the block ma-
trices.

m

i=0

AT
i P2 + P T

2

m

i=0

Ai +

m

i=0

CT
i Ci P1 � P T

2 +

m

i=0

AT
i P3 P T

2 B1 h1P
T
2 A1 � � � hmP

T
2 Am

P1 � P2 + P T
3

m

i=0

Ai �P3 � P T
3 +

m

i=1

hiRi P T
3 B1 h1P

T
3 A1 � � � hmP

T
3 Am

BT
1 P2 BT

1 P3 �2Iq 0 � � � 0

h1A
T
1 P2 h1A

T
1 P3 0 �h1R1 � � � �

� � � � � � � �

� � � � � � � 0

hmA
T
mP2 hmA

T
mP3 � � � � � �hmRm

< 0: (7)

m

i=0

AT
i P2 + P T

2

m

i=0

Ai P1 � P T
2 +

m

i=0

AT
i P3 h1P

T
2 A1 � � � hmP

T
2 Am

P1 � P2 + P T
3

m

i=0

Ai �P3 � P T
3 +

m

i=1

hiRi h1P
T
3 A1 � � � hmP

T
3 Am

h1A
T
1 P2 h1A

T
1 P3 �h1R1 � � � 0

� � � � � � �

� � � � � � 0

hmA
T
mP2 hmA

T
mP3 � � � � �hmRm

< 0: (8)

dV (t)

dt
+ z

T (t)z(t)� 
2
w
T (t)w(t) =  

T
P T

0 I

m

i=0

Ai �I
+

0

m

i=0

AT
i

I �I

P P T 0

B1

0 BT
1 P �2Iq

 

+

m

i=1

hiy
T (t)Riy(t)�

t

t�h

y
T (s)Riy(s)ds+ �i + z

T
z (10)
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Remark 1: Our method entails an overdesign due to the over-
bounding in (11). It is, however, less conservative than the method of
[11], where more terms have to be bounded. In the case of a single
delay (which is considered in [11]) by using the relation

x(t� h1) = x(t)�
t

t�h

[A0x(� ) + A1x(� � h1)] d�

�
t

t�h

B1wd�

the following system transformation is obtained:

_x(t) = [A0 + A1]x(t)� A1

t

t�h

[A0x(� ) + A1x(� � h1)] d�

�A1
t

��h

B1wd� +B1w(t):

By choosing (as was done in [11]) a Lyapunov–Krasovskii functional
of the formV (t)

�
= xT (t)P1x(t), whereP1 = P T

1 � 0, it is found
that

dV (t)

dt
= x

T (A0 + A1)
T
P1 + P1(A0 + A1) x+ (�1 + �2 + �3)

where

�1(t)
�
= �2

t

t�h

x
T (t)PA1A0x(� )d�;

�2(t)
�
= �2

t

t�h

x
T (t)PA1A1x(� � h1)d�

�3(t)
�
= �2

t

t�h

x
T (t)PA1B1w(�)d� + 2xT (t)PB1w(t):

Three cross terms:�1; �2 and�3 should then be bounded, while by the
method of Theorem 2.1 only one such term,�1 of (11), should be coped
with. In the case of1 < m delays there arem2 +m more cross terms
to be overbounded by the method of [11] than by our method.

The result of Theorem 2.1 can be used to verify whether or not
system (1) is stable and, in case it is, to find itsH1-norm. In the fol-
lowing example we apply the theorem to a simple system, taken from
the literature, and compare our results to those obtained there.

Example 1 [11]: We consider the following system:

_x(t) = A0x(t) + A1x(t� h) +B1w; z(t) = C0x(t)

where

A0 =
�2 0

0 �0:9
A1 =

�1 0

�1 �1

B1 = [�0:5 1 ]T C0 = [ 1 0 ] :

In [11], for h = 0:846 a minimum value of = 2 is found. The actual
H1 norm of the system turns out to be0:2364. Applying Theorem 2.1

for h = 0:846 we obtain a minimum value of = 0:32, a result that is
quite close to the actualH1-norm. Forh = 0:8 we obtain = 0:28
and forh � 0:7 our minimum value of = 0:24 is almost equal to the
actualH1-norm of the system.

By Theorem 2.1 we find that the system is stable for allh < 1.
The same result is obtained using the method of [11]. We then look for
theH1-norm of the system for, say,h = 0:99 sec. The BRL of [11]
possesses a solution for100 � , whereas our BRL has a solution for
1:2 � .

B. Delay-Dependent/Delay-Independent BRL

The above results can be generalized for the following system:

_x(t) =

m

i=0

Aix(t� hi) +

k

i=1

Fix(t� gi) +B1w

z = colfC0x(t); C1x(t� h1); . . . ; Cmx(t� hm)

Cm+1x(t� g1); . . . ; Cm+kx(t� gk)g (14)

wheregi � 0, i = 1; . . . ; k. We are looking for a bounded real cri-
terion which is delay-dependent with respect tohi; i = 1; . . . m and
delay-independent with respect togi; i = 1; . . . k. We represent this
system in the following descriptor form:

_x(t) = y(t); y(t) =

m

i=0

Ai x(t)�

m

i=1

Ai

t

t�h

y(s)ds

+

k

i=1

Fix(t� gi) +B1w(t): (15)

The corresponding Lyapunov–Krasovskii functional has the fol-
lowing form:

V (t) = [xT (t) yT (t)]EP
x(t)

y(t)

+

m

i=1

0

�h

t

t+�

y
T (s)Riy(s)dsd�

+

k

i=1

t

t�g

x
T (s)Uix(s)ds (16)

whereRi > 0, Ui > 0, andE andP are given by (6). Similar to
Theorem 2.1 and [3], we obtain the following.

Theorem 2.2:Consider the system of (14). For a prescribed >

0, the cost function (2) achievesJ(w) < 0 for all nonzerow 2
Lq2[0; 1), if there existn � n-matricesP1 > 0; P2; P3, Ri = RT

i ,
i = 1; . . . ; m andUi = UT

i , i = 1; . . . ; k that satisfy the LMI shown
in (17) at the bottom of the next page.

The LMI (17) has the block-matrix form shown in (18) at the bottom
of the next page, where

	1 = 	+

k

i=1

Ui 0

0 0

(19)

	 P T 0

B1

h1P
T 0

A1
� � � hmP

T 0

Am

0 BT
1 P �2I 0 � � � 0

h1[0 A
T
1 ]P 0 �h1R1 � � � 0

� � � � � � �

hm[0 AT
m]P 0 0 � � � �hmRm

< 0 (12)
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and	 is given by (13). This form will be utilized in the next section
to obtain a representation which is amenable to state-feedback control
solutions.

Example 2 [11]: Consider the system

_x(t) = A0x(t) + F1x(t� g1) +B1w; z(t) = C0x(t)

with

A0 =
0 1

�2 �3
F1 =

0 0:9

�1:3 �1:9

B1 =
0

1
C0 = [1 0]:

In [11], the conditions of the delay-independent BRL are not satisfied in
this case for all > 0. Applying theorem 2.2, we obtain the minimum
achievable value of is  = 4:37.

III. STATE-FEEDBACK CONTROL

We apply the results of the previous section to the infi-
nite-horizon state-feedback control problem. Given the system
S(A0; A1; B1; B2; C1; D12)

_x(t) =A0x(t) + A1x(t� h) +B1w(t) +B2u(t);

z = colfC1x; D12ug; x(t) = 0 8 t 2 [�h 0] (20)

wherex andw are defined in Section II,u 2 R` is the control input,
A0, A1; B1; B2 are constant matrices of appropriate dimension,z is

m

i=0

AT

i P2 + P T

2

m

i=0

Ai +

m+k

i=0

CT

i Ci +

k

i=1

Ui P1 � P T

2 +

m

i=0

AT

i P3

P1 � P2 + P T

3

m

i=0

Ai �P3 � P T

3 +

m

i=1

hiRi

BT

1 P2 BT

1 P3

h1A
T

1 P2 h1A
T

1 P3

� �

� �

hmA
T

mP2 hmA
T

mP3

F T

1 P2 F T

1 P3

� �

F T

k P2 F T

k P3

P T

2 B1 h1P
T

2 A1 � � � hmP
T

2 Am P T

2 F1 � � � P T

2 Fk

P T

3 B1 h1P
T

3 A1 � � � hmP
T

3 Am P T

3 F1 � � � P T

3 Fk

�2I 0 � � � 0 0 � � � 0

0 �h1R1 � � � 0 0 � � � 0

� � � � � � � � � � �

� � � � � 0 0 � � � 0

� � � � � �hmRm 0 � � � 0

� � � � � 0 �U1 � � � 0

� � � � � � � � � � �

� � � � � 0 0 � � � �Uk

< 0: (17)

	1 P T
0

B1

h1P
T

0

A1

� � � hmP
T

0

Am

P T
0

F1
� � � P T

0

Fk

0 BT

1 P �2I 0 � � � 0 0 � � � 0

h1 0 AT

1 P 0 �h1R1 � � � 0 0 � � � 0

� � � � � � � � � � � �

hm 0 AT

m P 0 0 � � � �hmRm 0 � � � 0

0 F T

1 P 0 0 � � � 0 �U1 � � � 0

� � � � � � � � � � � �

0 F T

k P 0 0 � � � 0 0 � � � �Uk

< 0 (18)
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the objective vector,C1 2 Rp�n andD12 2 Rr�`. For a prescribed
scalar > 0, we consider the performance index of (2). We treat two
different cases. The first one allows for instantaneous state-feedback
while the second case is based on a delayed measurement of the state.

A. Instantaneous State Feedback

We look for the state-feedback gain matrixK which, via the control
law

u(t) = Kx(t) (21)

achievesJ(w) < 0 for all nonzerow 2 Lq2[0; 1).
Substituting (21) into (20), we obtain the structure of (1) with

A0 =A0 +B2K; A1 = A1;

C
T
0 C0 =C

T
1 C1 +K

T
D
T
12D12K: (22)

Applying the BRL of Section II to the above matrices, results in a non-
linear matrix inequality because of the termsP T

2 B2K andP T
3 B2K.

We, therefore, consider another version of the BRL which is derived
from (12).

It is obvious from the requirement of0 < P1, and the fact that in (7)
�(P3+P

T
3 ) must be negative definite, thatP is nonsingular. Defining

P
�1 =Q =

Q1 0

Q2 Q3

� = diagfQ; Iq+m�ng

and
~C = [CT

0 � � � CT
m ]T (23a-c)

we multiply (12) by�T and�, on the left and on the right, respec-
tively. Applying the Schur formula to the quadratic term inQ and to

m

i=1
hiRi, we obtain the following inequality:

�h < 0

where it is shown in (24) at the bottom of the page.
Noticing that in (20)m = 1 [and in (23)C1 = 0] we substitute (22)

into (24), denoteKQ1 by Y , and obtain the following.
Lemma 3.1: Consider the system of (20) and the cost function of

(2). For a prescribed0 < , the state-feedback law of (21) achieves,
J(w) < 0 for all nonzerow 2 Lq2[0; 1) if there existQ1 > 0,
R = R

T
= R�11 , Q2; Q3; 2 Rn�n andY 2 R`�n that satisfy the

LMI shown in (25) at the bottom of the page.
The state-feedback gain is then given by

K = Y Q
�1
1 : (26)

Example 3: We consider a state-feedback example, taken from [13],
where

A0 =
0 0

0 1
A1 =

�1 �1

0 �0:9
B1 =

1

1

B2 =
0

1
C1 = [ 0 1 ] and D12 = 0:1:

Applying the method of [13] (Corollary 3.2 there) we find that the
system is stabilizable for allh < 1. For, say,h = 0:999 a minimum
value of = 1:8822 results forK = �[0:104 520342 749057:7].

�h
�
=

Q2 +QT
2 Q3 �QT

2 +Q1

m

i=0

AT
i 0 0 � � � 0 Q1

~CT QT
2

QT
3 �Q2 +

m

i=0

Ai Q1 �Q3 �QT
3 B1 h1A1 � � � hmAm 0 QT

3

0 BT
1 �2Iq 0 � � � � � 0

0 h1A
T
1 0 �h1R1 � � � � � �

� � � � � � � � � �

� � � � � � � � � �

0 hmA
T
m � � � � � �hmRm � �

~CQ1 0 � � � � � � �Ip 0

Q2 Q3 0 � � � � 0 0 �

m

i=1

hiRi

�1

:

(24)

Q2 +QT
2 Q3 �QT

2 +Q1(A
T
0 +AT

1 ) + Y TBT
2 0 0 Q1C

T
1 Y TDT

12 hQT
2

QT
3 �Q2 + (A0 +A1)Q1 +B2Y �Q3 �QT

3 B1 hA1R 0 0 hQT
3

0 BT
1 �2Iq 0 � � 0

0 hRAT
1 0 �hR � � �

C1Q1 0 � � �Ip � 0

D12Y 0 � � � �Ir 0

hQ2 hQ3 0 � 0 0 �hR

< 0: (25)
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By Lemma 3.1, we obtain, for the same value ofh, a minimum value
of  = 0:228 44 with the state-feedback gain ofK = [0�182193:8].

B. Delayed State-Feedback

The situation wherein the time delayh appears in the state measure-
ment equation (or in the actuators), results in the state-feedback law of
the form

u(t) = Kx(t� h) (27)

which can also be solved via the LMI of (25). This is accomplished by
considering the following asymptotically stable subsystem:

_u(t) = ��u(t) + �u(t)

for 1 � �. The state of this subsystem is almost identical tou(t)
when� ! 1 and the open-loop system of (20) can, therefore, be
approximated by the following augmented system:

_�(t) = ~A0� + ~A1�(t� h) + ~B2u(t) + ~B1w(t) (28)

where�
�
= colfx; ug

~A0 =
A0 0

0 ��I`
; ~A1 =

A1 B2

0 0
; ~B2 =

0

�I`
;

~B1 =
B1

0
and 1� �:

The objective vector that corresponds to the one in (20) is then given
by

z(t) = colf ~C0�(t); ~C1�(t� h)g

where ~C0 = [C1 0] and ~C1 = [0 D12]. The state-feedback control
problem then becomes one of finding the gain matrix~K = [K1 K]
which, via the control law of

u(t) = ~K�(t) (29)

achievesJ(w) < 0 for all nonzerow 2 Lq2[0; 1), whereJ is defined
in (2).

Based on the result of Lemma 3.1 we obtain the following.
Corollary 3.2: Consider the system of (28) for0 < �. For

a prescribed0 < , the state-feedback law of (29) achieves,
J(w) < 0 for all nonzerow 2 Lq2[0; 1) if there existQ1 > 0,
R = R

T
; Q2; Q3; 2 R

(n+`)�(n+`) andY 2 R`�(n+`) that satisfy
the LMI shown in (30) at the bottom of the page. The state-feedback
gain of (29) is then given by~K = Y Q�11 .

Denoting further

M
�
= Q1 �

0

I`
Y (31)

there exists1� � for which the solution of (30) (if exists) provides a
state-feedback gain of (27), given by

K = YM
�1 In

0
(32)

which achievesJ(w) < 0 for the system of (20) and (27).
Proof: The result of (32) stems from[K1 K] = Y Q�11 and

from the fact thatu(t) = K1x(t) +K u(t). Fors = j!, ! 2 [0 !B ],
!B being the maximum of the open and the closed-loop bandwidths of
the system, the transfer function matrix fromx(t�h) tou is thus given
by Tu; x = (I �K(s+ �)�1�)�1�(s+ �)�1K1 = (I �K)�1K1 +
O(��1), wheres is the Laplace transform variable. For�� !B ,Tu; x
is almost identical to(I �K)�1K1 in the significant frequency range
of [0 !B] where theH1-norm of the closed-loop system is determined
by the maximum singular value ofTu; x over this range. The transfer
function matrix(I � K)�1K1 is expressed byK of (32) using the
definition ofM in (31).

The nonsingularity ofM is not always guaranteed. However, since
a nearly singularM implies large state-feedback gains and since the
latter is encountered either whenD12 is nearly singular or when we
compute the gains for the minimum, a possible singularity ofM
can be avoided in cases whereD12 is not singular and is above the
minimum possible level of attenuation.

Example 4: We consider the system of Example 3 but, instead of
applying the state-feedback law of (21), we use (27). We take� = 1010

and obtain a solution for allh � 0:99 s. Forh = 0:9 s, a near minimum
value of = 52:74 results with

Q1 =

3:185� 108 �7:648� 10�2 1:7635� 10�2

�7:648� 10�2 7:447� 10�2 �1:299� 10�2

1:763� 10�2 �1:299� 10�2 2:267� 10�3

Y = [ 1:763� 10�2 �1:299� 10�2 2:267� 10�3 ] :

The corresponding values of~K andM are then given by

~K = [0; �3:24� 10�6 0:9999814]

and

M =

3:185� 108 �7:648� 10�2 1:763� 10�2

�7:648� 10�2 7:447� 10�2 �1:299� 10�2

4:416� 10�12 0 1:040� 10�13
:

The resulting state-feedback gain then becomes:K = [0 �0:1745],
and the actualH1-norm that is achieved is 45.05.

Q2 +QT
2 Q3 �QT

2 +Q1( ~A
T
0 + ~AT

1 ) + Y T ~BT
2 0 0 Q1

~CT
0 Q1

~CT
1 hQT

2

QT
3 �Q2 + ( ~A0 + ~A1)Q1 + ~B2Y �Q3 �QT

3
~B1 h ~A1R 0 0 hQT

3

0 ~BT
1 �2Iq 0 � � 0

0 hR ~AT
1 0 �hR � � �

~C0Q1 0 � � �Ip � 0
~C1Q1 0 � � � �Ir 0

hQ2 hQ3 0 � 0 0 �hR

< 0: (30)
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In the delay-dependent/delay-independent case of Section II-B, de-
notingQ = P�1, we obtain the following inequality by multiplying
(18) by� = diagfQ; Iq+(m+k)�ng, on the right, and by�T on the
left, respectively

0 0 Q1

F1 Fk 0

�h � � � � � �

� � �

0 0 0

0 F T
1 � � 0 �U1 � � � � 0

� � � � � � � � � � �

� � � � � � � � � � �

0 F T
k � � 0 � � � � �Uk �

Q1 0 � � 0 � � � � � �

k

0

Ui

�1

< 0 (33)

where�h is defined in (24). The latter inequality can be used, as above,
to solve a delayed state-feedback control problem whereu is given by
(27) and the delay in the dynamics isg 6= h. Here, a time-dependent
result forh and a time-independent result forg can be easily derived
from (33), by noting thatm = k = 1. In this situation, there is hardly
any interest in solving foru = Kx(t � g), since a state-feedback
control law that is independent of the delay implies, in fact,u � 0.

IV. CONCLUSION

A new delay-dependent BRL has been proposed for linear time-in-
variant systems with multiple time delays in the system dynamics and
in the objective function. The ensuing lemma provides a sufficient con-
dition, in the form of a LMI, in order for the system to possess an
H1-norm that is less than a prescribed value. Although this condi-
tion is not necessary, the overdesign entailed is minimal since it is
based on an equivalent system transformation and on the bounding of
a small number of terms. The new BRL extends the results of [3] and
applies Lyapunov–Krasovskii functionals depending on derivatives. It
is most efficient in analyzing the stability and finding theH1-norm
of time-delay systems. It also provides a solution to the state-feedback
control problem.

The LMI representation of the new BRL also allows solutions for
the uncertain case where the system parameters lie within an uncer-
tainty polytope. The convex nature of the LMI obtained ensures that
a simultaneous solution to the LMIs that correspond to the vertices of
the polytope, if it exists, will lead to an attenuation level that is smaller
than the prescribed level for all of the parameters in the polytope.

The convexity of the LMI of the BRL with respect to the delays
implies that a solution, if it exists, will hold for all delays less than
or equal to the one solved for.
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Speed Control of Electrical Machines: Unknown Load
Torque Case

Hossam A. Abdel Fattah and Kenneth A. Loparo

Abstract—The problem of specifying a desired torque trajectory to
achieve speed tracking in passivity-based control of induction motors is
addressed. This note presents a solution to the problem that does not
require an acceleration measurement nor knowledge of the load torque. To
prove the main result a variant of Sontag’s input to state stability is used.

Index Terms—Author, please supply your own keywords or send a blank
e-mail to keywords@ieee.org to receive a list of suggested keywords.

I. INTRODUCTION

Passivity-based control methods, already successful in robotics ap-
plications [1], have been proposed by several authors as a very pow-
erful tool to solve the induction motor torque control problem [2]–[6].
The method has also been shown to be adequate for a more general
class of smooth air gap electromechanical machines, generally known
as Blondel–Park transformable [7]. Passivity-based methods are char-
acterized by their robustness, a property that is usually lacking in feed-
back linearization methods (see among others [8], [9] and more re-
cently [10]) that heavily depend on cancelling of the system nonlinear-
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