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New Bounded Real Lemma Representations for Time-Delay [l. THE BOUNDED REAL LEMMA
Systems and Their Applications A. Delay-Dependent BRL
E. Fridman and U. Shaked Given the following system:
Abstract—New delay-dependent/delay-independent bounded real #(t) = Z Aiz(t = hi) + Brw(?)
criteria are derived for linear continuous-time systems with delay in ) =0
the dynamics and in the objective function. A sufficient condition for 2(t) = col{Cox(t), Cra(t = hi), ..., Cua(t — huw)}
the system to possess & ..-norm that is less than a prescribed level, is 2() =0 Vte[=ho] 1)

given in terms of a linear matrix inequality (LMI). The proposed criteria

are less conservative than other existing criteria since they are based on

an augmented model that is equivalent to the original system and since Wherexz(t) € R" is the system state vectar(t) € L£4[0, o] is the
they require bounds for fewer terms. We apply the new bounded real exogenous disturbance signal ar{d) € R” is the state combination

criteria to state-feedback H .. control. The advantage of the new criteria it ; ; ;
; > k k objective function signal) to be attenuated. The time delays/,
is demonstrated by four examples. The first two compare our results with (obj gnal) 0 <

those obtained in the literature for the bounded real lemma and the other hi S hyi=1,...,mare asgumed to be known and the ma}trices
two examples treat the state-feedback control problem and compare our 4i, i =0, ..., m, By andC;, i = 0, ..., m are constant matrices
result with recently published designs. of appropriate dimensions. For a prescribed scalar 0, we define

Index Terms—Bounded real lemma, delay-dependent criteria, the performance index

H _-state-feedback control, linear matrix inequalities (LMIs), time-delay

systems. J(w) = / (zlv;/ —wlw)dr. )]
0
I. INTRODUCTION Following [3], we represent (1) in the equivalent descriptor form
Itis well-known (see, e.g., [1]-][3]) that the choice of an appropriate
Lyapunov—Krasovskii functional is crucial for deriving stability cri- (t) = y(t), y(t) = Z Aiz(t — hi) + Biw(t). 3)
teria. The same is true concerning bounded real criteria. Thus the gen- i=0

eral form of this functional leads to a complicated system of Riccati . . . . . .
type partial differential equations [4], [5] or inequalities [6]. Special he latter is e_quwalent_to the following descriptor system with dis-
forms of Lyapunov—Krasovskii functionals lead to simpler (but mor[erIbUted delay in the variablg:
conservative) delay-independent [7]-[12] and delay-dependent suffi-
cient conditions [10], [11], [13]. In this note, we derive adelay-depeq,-(t) =y(t), 0=—y(t)+ (Z Ai) x(t)
dent/delay-independent bounded real lemma (BRL). i—0
The conservatism of the delay-dependent criteria of [11] and [13] is m -t
twofold: the transformed system is not equivalent to the original one -3 A / y(s)ds+ Brw(t). (4)
(see [14]) and the bounds put on certain terms, when developing the =1 th
required criteria, are quite W§Ster|Z In the present note we_apply anew, Lyapunov—Krasovskii functional for the system (4) has the form
type of Lyapunov—Krasovskii functional based on an equivalent aug-
mented model—a “descriptor form” representation of the system. Such - . z(t)
a representation has been introduced in [3] for stability analysis. Ouft) = [z (1) y" (H]EP {U(t)}
approach significantly reduces the overdesign entailed in the existing T 0
methods since it is based on a model that is equivalent to the original + Z / / yT(s)Riy(s) dsdd (5)
system and since fewer bounds are applied. We demonstrate the appli- i1 Y —h 40
cability of our approach with three examples, where we compare our
method to the most efficient method published to date. where
Notation: Throughout this note, the superscrigf™ stands for I, 0 PO
matrix transpositionR” denotes the: dimensional Euclidean space, £ = { 0 0} P= {P P
R™™ is the set of alh x m real matrices, and the notatidn > 0, 2 3
for P € R"*" means thaf” is symmetric and positive—definite. The The second term of (5) corresponds to the delay-dependent condition
space of functions iffk? that are square integrable oV oc) iS  that we shall derive below.
denoted by 5[0, oc). We obtain the following.
Theorem 2.1: Consider the system of (1). For a prescribed>
0, the cost function (2) achieves(w) < 0 for all nonzerow €
L3210, co), if there existn x n-matrices) < Pi, P>, P3, andR; =
RY, i = 1,...,m that satisfy the linear matrix inequality (LMI)
shown in (7) at the bottom of the next page.
Proof: Note that if (7) holds, then the following LMI is feasible
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and, hence, differentiation of the first term of (5) with respectdgives For any matrix) < R; € R"*"
us, due to (4 T , x
@ i < hile" yT1PT H } R7'[0 AT1P {‘L}

A Y

+ / y7(5)Ruy(s)ds. (1)

—h;
From (3) and the fact, [due to the asymptotic stability:¢f) from
(8)], thatz(#) andw(t) are square integrable ¢i o), it follows that

it [="(t)y" (1) EP B(t)”

(t)

Q.|Q_‘
I ——

22 () Pi(t)

= 2Lt (1) 4" (1)) PF (t) y € L3]0, oc). We substitute (11) into (10) and integrate the resulting
o I 0 inequality int from O toco. Because
-9 e : A ) 1 OO m o0 ‘
2z () y OIP / Tedt = Z / :ET(t — hi)CiTCiw(t — h;)dt
y(t) 0 i=0 /0
I N Ry e
—y(t) + (ZAz') (1) = ;/0 x” (H)C; Csa(t) dt
= we obtain (by Schur complements) that< 0 if the following LMI
” -t holds, as shown in (12) at the bottom of the next page, where
— A; / y(s)ds + Biw(t)] . 9 0 T m
i=1 t—hi 0 (> Al
U = PT m =+ g P
A T =
— I
From (9), we obtain (10) shown at the bottom of the page, where ZC?'TCZ' 0
P 2 col{x(t), y(t), w(t)} and 4+ | =0 . (13)
0 Z hiR;
i=1
. ! o + 10 LMI (7) results from the latter LMI by expansion of the block ma-
nit) & =2 / [ (1) 4" (1)) P [ 4} y(s) ds. L) yexp O
t—h; A :
(Z A’f’) P+ Py (Z AZ) +> clfci P-Pf+ (Z 41) P; PYBy hmPYA - haPfA,
=0 =0 =0 =0
P - P+ P ZA,-) -P-P 4+ Zh,;R; PIB, hPTA - hwPTA,,
1=0 =1
B P, BT P, —21, 0 . 0 < 0. @)
hAT P, hy AT Py 0 —hi Ry
L h”“—/lg,; PZ hm flfn P3 . . e _h'm,an -
<Z A?) P+ P <Z 4) P -PI'+ <Z A?) Py P'A, --- h,PlA,
=0 =0 i=0
P —P 4+ P <Z4> —Py— P +> iR mP{A - ho Pl AR
=0 ) =1 < O (8)
hlf/l?Pz hlf1{P‘J —th1 0
. . . 0
L hon AL Py ho AL, P : oo =hp Ry
i , 0 A; 10
- . Pl m + . 1 P Pl |: :|
WD 470yt = 20" () = o7 (Z 4) e N P Biulle
dt i=0
[0B]P -1,

m ot

—1—2 |:hin(t)Riy(t)—/ yT(s)Riy(s)ds—i—m + T2 (10)
t

i=1 —h;
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Remark 1: Our method entails an overdesign due to the ovefer i = (.846 we obtain a minimum value of = (.32, a result that is
bounding in (11). It is, however, less conservative than the methodafite close to the actudf ..-norm. Forh = 0.8 we obtainy = 0.28
[11], where more terms have to be bounded. In the case of a singhad for < 0.7 our minimum value of, = 0.24 is almost equal to the

delay (which is considered in [11]) by using the relation actualH..-norm of the system.
. By Theorem 2.1 we find that the system is stable forhalk 1.
w(t—hy) = 2(t) — / [Aoa(r) + Ava(r — hy)] dr The same result is obtained using the method of [11]. We then look for
‘ t—hy ’ the H..-norm of the system for, sal, = 0.99 sec. The BRL of [11]

-t possesses a solution fo00 < ~, whereas our BRL has a solution for
—/ Blil'dT 12 < ~.
t—hy -

the following system transformation is obtained: B. Delay-Dependent/Delay-Independent BRL
The above results can be generalized for the following system:

2411‘—11 ZFlt—g)+Blw

-t
#(t) = [Ao + A1Ja(t) — A, / [Aoa(r) + Aya(r — h)]dr
t—hy

~t
— A / Biwdr + Biw(t). i=1
r—hy g_col{Coa, t), Ciax(t —h1), ..., Copa(t — hyy)
By choosing (as was done in [11]) a Lyapunov—Krasovskii functional Compr(t = g1)s oy Crpree(t = gi) } (14)
Fry AT N _ pT o

of the formV'(¢) = " (1) Pr(t), wherePr = Py > 0, itis found \yherey. > 0,7 = 1, .... k. We are looking for a bounded real cri-
that terion which is delay-dependent with respeckto i = 1, ... m and
dv(t) delay-independent with respectdn i = 1, ... k. We represent this

pran ! [(‘40 + A1) P+ P40+ Al)] x+ (m+n2+n3)  system in the following descriptor form:

where () =y(t), yt)= <ZA ) x(t) — Z A; / y(s)ds

ot hz
m(t) = =2 / 2" () PA, Agx(7) dr,
t—hy

>

+ Z Fix(t — g;) + Biw(t). (15)

-t
n2(t) 2 / ,rT(f)PAlAl,r(T — hy)dr =1
t_jhl The corresponding Lyapunov—Krasovskii functional has the fol-
n3(t) 22 / ¥ (H)PA, Byw(7)dr + 22" (t)PByw(t). lowing form:
t—hq ;
Three cross terms; , 772 andss; should then be bounded, while by the Vi) = [‘r )y (t)]EP Lét”
method of Theorem 2.1 only one such termpf (11), should be coped
with. In the case of < m delays there are»* + m more cross terms + Z / N /H y' (s)Riy(s)dsdf

to be overbounded by the method of [11] than by our method.
The result of Theorem 2.1 can be used to verify whether or not i —
system (1) is stable and, in case it is, to find&s,-norm. In the fol- + Z / v’ (s)Uix(s)ds (16)
lowing example we apply the theorem to a simple system, taken from ' o
the literature, and compare our results to those obtained there. whereR; > 0,U; > 0, andE andP are given by (6). Similar to

Example 1 [11]: We consider the following system: Theorem 2.1 and [3], we obtain the following.
Theorem 2.2: Consider the system of (14). For a prescribed>
#(t) = Apx(t) + Ara(t — h) + Biw,  z(t) = Cox(t) 0, the cost function (2) achievef(w) < 0 for all nonzerow €
L£2[0, c0), if there existn x n-matricesP, > 0, P, P53, R, = RY,
where i=1,....,mandlU; =U],i =1, ..., kthatsatisfy the LMI shown
_9 0 _1 0 in (17) at the bottom of the next page.
Ao = { 0 -0 9} Ay = {_1 _1} The LMI (17) has the block-matrix form shown in (18) at the bottom

of the next page, where

B, =[-05 1] Co=[1 0]. k
Z Ui] 0
In [11], for 7 = 0.846 a minimum value of, = 2 is found. The actual U, =¥+ |\ (19)
H, norm of the system turns out to Be2364. Applying Theorem 2.1 0 0

+70 +70 0
T T T
v e [0 e [0] e[ 0]
[0B]P —2T 0 0
<0 (12)
1[0 A?]P 0 —hi Ry e 0

B [0 4,,L]P 0 0 cer —hmBRm
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and ¥ is given by (13). This form will be utilized in the next sectionin[11], the conditions of the delay-independent BRL are not satisfied in
to obtain a representation which is amenable to state-feedback contingd case for alty > 0. Applying theorem 2.2, we obtain the minimum
solutions. achievable value of is v = 4.37.
Example 2 [11]: Consider the system
Ill. STATE-FEEDBACK CONTROL
J}(t) = Aol’(t) + FLJ}(t - gl) + Biw,

z(t) = Cox(t) We apply the results of the previous section to the infi-

nite-horizon state-feedback control problem. Given the system

with S(Zo,zh B1,B27€17D12)
0 1 0 0.9 #(t) = Apa(t) + Arx(t — h) + Biw(t) + Bau(t),
Ag = |:_2 _3:| k= |:_1_3 _1'9:| z=col{Cix, Disu}, x(t)=0Vtec[-h0] (20)
B, — 0 o= o wherez andw are defined in Section Iy € R* is the control input,
L o=[1 0] Ao, A1, By, B, are constant matrices of appropriate dimensiois,
— m m m—+k k m
(Sar)rr (Sa)+ Seressio norms (Sar)n
=0 i=0 =0 =1 i=0
P — P+ PJ (Z 4) —Py— P +> hiR;
i=0 i=1
B{ P B P
AT P, hy AT Ps
Tem AL, Po Tem AL, Ps
FTp, Fl'Py
L FlP, Fl'Py
P;_B1 h1 Pszl] hm PzTAm, PZTF1 PZTFk
P{Bi P4 P P{Fy
—~2I 0 e 0 0 . 0
_thl e 0 0 N 0
0 0 0
hvan 0 0
0 -t 0
0 0 -U
r 0 0 0 0 011
T T T T T
R R RS PR EI R
[0B]P -1 0 0 0 0
hi [0 A7) P 0 —h1 Ry 0 0 0
. . . . <0 (18)
ho [0 AL P 0 0 ~hm R 0 0
[0 F]P 0 0 0 -U: - 0
L [oF]P 0 0 0 0 Uk |
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the objective vectol’; € RP*™ andD, € R"™**. For a prescribed we multiply (12) byA” andA, on the left and on the right, respec-
scalary > 0, we consider the performance index of (2). We treat twtively. Applying the Schur formula to the quadratic term(hand to
different cases. The first one allows for instantaneous state-feedb&cK' , h; R;, we obtain the following inequality:
while the second case is based on a delayed measurement of the state.
T'n <0
A. Instantaneous State Feedback
We look for the state-feedback gain matfixwhich, via the control Where itis shown in (24) at the bottom of the page.
law Noticing thatin (20y» = 1 [and in (23)C; = 0] we substitute (22)
into (24), denotdi () by Y, and obtain the following.
u(t) = Ka(t) 1) Lemma 3.1: Consider the system of (20) and the cost function of
‘ (2). For a prescribe < ~, the state-feedback law of (21) achieves,
J(w) < 0 for all nonzerow € L350, oo) if there existQ: > 0,
E=TF =R, Qs Qs, € R"*" andY € R**" that satisfy the
LMI shown in (25) at the bottom of the page.
The state-feedback gain is then given by

achieves/(w) < 0 for all nonzerow € L1[0, o).
Substituting (21) into (20), we obtain the structure of (1) with

Ao :Xo —+ BQI(, A= K],
clc,=Cctc, + K" DL,Dy, K. (22) K=vQr' (26)

Applying the BRL of Section Il to the above matrices, results in a non- Example 3: We consider a state-feedback example, taken from [13],

linear matrix inequality because of the terfi$ Bo K and P Bo K. where

We, therefore, consider another version of the BRL which is derived

from (12). I 0 0 o -1 -1 B — 1
It is obvious from the requirement 6f< Py, and the fact that in (7) o 1] "7 0 -09 '

— (P + P]") must be negative definite, th&is nonsingular. Defining

B {ﬂ Ci=[0 1] and D2 =0.1.

P =Q= [(* 0 } A = diag{Q. Tymen}
Q2 s Applying the method of [13] (Corollary 3.2 there) we find that the
and . system is stabilizable for all < 1. For, say = 0.999 a minimum
c=[cd - ot (23a-c) value ofy = 1.8822 results fork = —[0.104 520342 749057.7].
Q2+ Q3 @ = Q3 + Qs (Z 41) 0 0 o0 Qz
=0
Q%F - Q2+ <Z Ai) Q1 -Qs3 — Q%F B, hiAr - ha AL 0 Q%F
=0
0 BT —~21, 0 e . . 0
r,2 0 hy AT 0 -mR
0 hnL‘A;{z " : et _hrn an -
C’Ql 0 . . . . -1, 0
m =1
Q2 Qs 0 . 0 | (Z hiRZ)
- =1 - (24)
r Q2 + Q3 Qs — Q3 +Q1(AF + A1) +Y ' By 0 0  Cl Y'D{, hQj1
OF — Qo+ (Ao + A1)Q1 + BoY —Qs — QF B, hAR O 0 hQ4
0 BY %I, 0 . . 0
0 hRAT 0 —hR . . .| <0. (29)
CiQi 0 . . -I, . 0
DY 0 . . . —1I. 0
L hQa hQs 0 . 0 0 —hR]
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By Lemma 3.1, we obtain, for the same valué.p& minimum value Denoting further
of v = 0.228 44 with the state-feedback gain &f = [0 — 182193.8]. 0
M2Q - { } Y (31)

B. Delayed State-Feedback I,

The situation wherein the time delayappears in the state measurethere existd < p for which the solution of (30) (if exists) provides a
ment equation (or in the actuators), results in the state-feedback lavegfte-feedback gain of (27), given by
the form

u(t) = Ka(t — h) (27 K=vyM* {Ig} (32)
which can also be solved via the LMI of (25). This is accomplished by
considering the following asymptotically stable subsystem: which achieved (w) < 0 for the system of (20) and (27).
Proof: The result of (32) stems froffy; K] = Y Q7' and
W(t) = —pu(t) + pu(t) from the fact that.(t) = K (t) + K u(t). Fors = jw,w € [0 wg],

wp being the maximum of the open and the closed-loop bandwidths of

the system, the transfer function matrix fror(rt —h)towisthus given
for 1 < p. The state of this subsystem is almost identical (o) by Tu y —(I=K(s4p)"p) " pls+p)" K1 = (I - K)" 'K, +

whenp — oo and the open-loop system of (20) can, therefore, t@ ), wheres is the Laplace transform variable. Fot> ws, T »
approximated by the following augmented system: is aImost identical t¢ — &)~ 'K, in the significant frequency range
of [0 wr] where theH .. -norm of the closed-loop system is determined
E(t) = Aok + A1 £(t — h) + Bou(t) + Biw(t) (28) by the maximum singular value df;, .. over this range. The transfer
function matrix(I — k) 'K, is expressed by of (32) using the
A B definition of M in (31). O
where§ = col{w, u} The nonsingularity ofi/ is not always guaranteed. However, since
a nearly singulafld implies large state-feedback gains and since the
= |:K0 0 } i = {E Bz:| B { 0 } latter is encountered either whéh» is nearly singular or when we
0 —pl, 0o 0|’ B ol compute the gains for the minimum a possible singularity ofi/

B can be avoided in cases whdre; is not singular and, is above the
B { l} and 1<« p. minimum possible level of attenuation.
0 Example 4: We consider the system of Example 3 but, instead of
applying the state-feedback law of (21), we use (27). We piakel 0°
The objective vector that corresponds to the one in (20) is then giveAd obtain a solution for all < 0.99's. Forh = 0.9 s, a near minimum
by value of~ = 52.74 results with

2(t) = col{Co€(t), C1&(t — h)}

whereCo = [Cy 0] andCy = [0 Di5]. The state-feedback control —7.648 x 10_:2 7.447 x 10_:2 —1.299 x 10~*
problem then becomes one of finding the gain maltix= [K, K] 1.763 x 107% —1.299 x 107%  2.267 x 107?

which, via the control law of Y = [L763x 1072 —1.200 x 107% 2.267 x 107°].

3.185 x 10° —7.648 x 1072 1.7635 x 1072
Q=

u(t) = KL() (29)  The corresponding values &f and M are then given by

;c?zit)aves](w) < 0 forall nonzerow € £[0, ), whereJ is defined K =[0; —3.24 x 10~° 0.999981 4]
Based on the result of Lemma 3.1 we obtain the following. and a _ o . o
Corollary 3.2: Consider the system of (28) fd¥ < p. For 3.185 % 10 ) —7.648 x 10 . 1.763 x 10 .

a prescribed0 < ~, the state-feedback law of (29) achieves, M = | —7.648 x 107" 7.447x 107" —1.299 x 107~
J(w) < 0 for all nonzerow ¢ £2]0, o) if there existQ; > 0, 4.416 x 107" 0 1.040 x 107"

R=TF", Q. Qs, € R"TOX(H0 gndy € R +0 that satisfy

the LMI shown in (30) at the bottom of the page. The state-feedbatke resulting state-feedback gain then beconigs: [0 —0.1745],

gain of (29) is then given bft = Y Q7. and the actuaH .-norm that is achieved is 45.05.
r Q2+ Q7 Qs — Q7 +Qi(AJ + A)+Y"B] 0 0 QC; QiCT hQiq
Q? — Q2 + (.F:i[) + 4-/].1)@1 + BQX/ —Q;;N— Q? Bl hfilﬁ 0 0 }LQ;
0 BT 21, 0 . . 0
0 hRAT 0 "y . . . <0. (30
CoQ 0 . : —1I, - 0
C1Q1 0 - . . -I 0
L hQ2 hQs 0 . 0 0 —hR ]
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layed systems,3yst. Control Letf.vol. 33, pp. 105-114, 1998.
----- . s . . [11] U. Shaked, I. Yaesh, and C. de Souza, “Bounded real criteria for linear

0 0 Q [8] S.-I. Niculescu, C. de Souza, J.-M. Dion, and L. Dugard, “Rol#list
Fy F 0 memoryless control for uncertain linear systems with time-varying
T, . . . delay,” in 3rd European Control Conf.Roma, Italy, 1995, pp.
1814-1818.
[9] S.-l. Niculescu, H .. memoryless control with.-stability constraint for
0 0 0 time-delay systems: An LMI approachfEEE Trans. Automat. Conir.
oF" .0 -U, --- . 0 <0 (33 vol. 43, pp. 739-743, 1998.

0 FkT .0 . R 4 . time-delay systems,TEEE Trans. Automat. Confrvol. AC-43, pp.
. -1 1016-1022, July 1998.
- [12] M. Mahmoud, Robust Control and Filtering for Time-Delay Sys-
@10 0 - (Z L’l) tems New-York: Marcel Dekker, 2000.
- 0 - [13] C.E.deSouzaand X. Li, “Delay-dependent roltdst control of uncer-

tain linear state-delayed systemAyitomaticavol. 35, pp. 1313-1321,

; : ; ; ; 1999.
wherel';, is defined in (24). The latter inequality can be used, as aboverl4] V. Kharitonov and D. Melchor-Aguilar, “On delay-dependent stability

to solve a delayed state-feedback control problem whésegiven by conditions,”Syst. Control Lett.vol. 40, pp. 71-76, 2000.
(27) and the delay in the dynamicsgs# h. Here, a time-dependent

result fork and a time-independent result fgrcan be easily derived

from (33), by noting thatn = k& = 1. In this situation, there is hardly

any interest in solving fon = Kux(t — g), since a state-feedback

control law that is independent of the delay implies, in fact 0.

IV. CONCLUSION

A new delay-dependent BRL has been proposed for linear time-in- . .
variant systems with multiple time delays in the system dynamics andSPeed Control of Electrical Machines: Unknown Load
in the objective function. The ensuing lemma provides a sufficient con- Torque Case
dition, in the form of a LMI, in order for the system to possess an
H..-norm that is less than a prescribed value. Although this condi-
tion is not necessary, the overdesign entailed is minimal since it is
based on an equivalent system transformation and on the bounding ofAbstract—The problem of specifying a desired torque trajectory to
a small number of terms. The new BRL extends the results of [3] agghieve speed tracking in passivity-based control of induction motors is
applies Lyapunov—Krasovskii functionals depending on derivatives.ddidressed. This note presents a solution to the problem that does not
is most efficient in analyzing the stability and finding th&.-norm require an acceleration measurement nor knowledge of the load torque. To
of time-delay systems. It also provides a solution to the state-feedb&RERve the main result a variant of Sontag’s input to state stability is used.
control problem. Index Terms—Author, please supply your own keywords or send a blank

The LMI representation of the new BRL also allows solutions fog-mail to keywords@ieee.org to receive a list of suggested keywords.
the uncertain case where the system parameters lie within an uncer-
tainty polytope. The convex nature of the LMI obtained ensures that
a simultaneous solution to the LMIs that correspond to the vertices of
the polytope, if it exists, will lead to an attenuation level that is smaller Passivity-based control methods, already successful in robotics ap-
than the prescribed level for all of the parameters in the polytope. plications [1], have been proposed by several authors as a very pow-

The convexity of the LMI of the BRL with respect to the delayserful tool to solve the induction motor torque control problem [2]-[6].
implies that a solution, if it exists, will hold for all delays less tharThe method has also been shown to be adequate for a more general
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or equal to the one solved for. class of smooth air gap electromechanical machines, generally known
as Blondel-Park transformable [7]. Passivity-based methods are char-
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