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a b s t r a c t

The problem of estimating the initial state of 1-D wave equations with globally Lipschitz nonlinearities
from boundary measurements on a finite interval was solved recently by using the sequence of forward
and backward observers, and deriving the upper bound for exact observability time in terms of Linear
Matrix Inequalities (LMIs) (Fridman, 2013). In the present paper, we generalize this result to n-D wave
equations on a hypercube. This extension includes new LMI-based exponential stability conditions for n-
D wave equations, as well as an upper bound on the minimum exact observability time in terms of LMIs.
For 1-D wave equations with locally Lipschitz nonlinearities, we find an estimate on the region of initial
conditions that are guaranteed to be uniquely recovered from the measurements. The efficiency of the
results is illustrated by numerical examples.
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1. Introduction

Lyapunov-based solutions of various control problems for
finite-dimensional systems can be formulated in the form of Lin-
ear Matrix Inequalities (LMIs) (Boyd, El Ghaoui, Feron, & Balakr-
ishnan, 1994). The LMI approach to distributed parameter systems
is capable of utilizing nonlinearities and of providing the desired
system performance (see e.g. Castillo, Witrant, Prieur, & Dugard,
2012, Fridman & Orlov, 2009b, Lamare, Girard, & Prieur, 2013). For
1-D wave equations, several control problems were solved by us-
ing the direct Lyapunov method in terms of LMIs (Fridman, 2013;
Fridman & Orlov, 2009a). However, there have not been yet LMI-
based results for n-D wave equations, though the exponential sta-
bility of the n-D wave equations in bounded spatial domains has
been studied in the literature via the direct Lyapunov method (see
e.g. Ammari, Nicaise, & Pignotti, 2010, Fridman, Nicaise, & Valein,
2010, Guo, Zhou, & Yao, 2014, Zuazua, 1990).

The problem of estimating the initial state of 1-D wave equa-
tions with globally Lipschitz nonlinearities from boundary mea-
surements on a finite interval was solved recently by using the
sequence of forward and backward observers, and deriving the
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upper bound for exact observability time in terms of LMIs (Frid-
man, 2013). In the present paper, we generalize this result to n-
D wave equations on a hypercube. This extension includes new
LMI-based exponential stability conditions for n-D wave equa-
tions. Their derivation is based on n-D extensions of the Wirtinger
(Poincaré) inequality (Hardy, Littlewood, & Pólya, 1988) and of the
Sobolev inequality with tight constants, which is crucial for the ef-
ficiency of the results. As in 1-D case, the continuous dependence of
the reconstructed initial state on the measurements follows from
the integral input-to-state stability of the corresponding error sys-
tem, which is guaranteed by the LMIs for the exponential stability.
Some preliminary results on global exact observability of multidi-
mensional wave PDEs will be presented in Fridman and Terushkin
(2015).

Another objective of the present paper is to study regional ex-
act observability for systems with locally Lipschitz in the state
nonlinearities. Here we restrict our consideration to 1-D case, and
find an estimate on the region of initial conditions that are guar-
anteed to be uniquely recovered from the measurements. Note
that our result on the regional observability cannot be extended to
multi-dimensional case (see Remark 4 for explanation and for dis-
cussion on possible n-D extensions for different classes of nonlin-
earities). The efficiency of the results is illustrated by numerical
examples.

The presented simple finite-dimensional LMI conditions com-
plete the theoretical qualitative results of e.g. Ramdani, Tucsnak,
and Weiss (2010) (where exact observability of linear systems in
a Hilbert space was studied via a sequence of forward and back-
ward observers) and Baroun, Jacob, Maniar, and Schnaubelt (2013)
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(where local exact observability of abstract semilinear systemswas
considered).
Notation: Rn denotes the n-dimensional Euclidean space with the
norm | · |, Rn×m is the space of n × m real matrices. The notation
P > 0 with P ∈ Rn×n means that P is symmetric and positive
definite. For the symmetricmatrixM ,λmin(M) andλmax(M) denote
the minimum and the maximum eigenvalues of M respectively.
The symmetric elements of the symmetric matrix will be denoted
by ∗. Continuous functions (continuously differentiable) in all
arguments, are referred to as of class C (of class C1). L2(Ω) is the
Hilbert space of square integrable f : Ω → R, whereΩ ⊂ Rn, with

the norm ∥f ∥L2 =


Ω

|f (x)|2dx. For the scalar smooth function
z = z(t, x1, . . . , xn) denote by zt , zxk , ztt , zxkxj (k, j = 1, . . . , n)
the corresponding partial derivatives. For z : Ω → R define
∇z = zTx = [zx1 . . . zxn ]

T , 1z =
n

p=1 zxpxp . H1(Ω) is the
Sobolev space of absolutely continuous functions z : Ω → R with
the square integrable ∇z. H2(Ω) is the Sobolev space of scalar
functions z : Ω → R with absolutely continuous ∇z and with
1z ∈ L2(Ω).

2. Observers and exponential stability of n-D wave equations

2.1. System under study and Luenberger type observer

Throughout the paper we denote byΩ the n-D unit hypercube
[0, 1]n with the boundaryΓ . We use the partition of the boundary:

ΓD = {x = (x1, . . . , xn)T ∈ Γ : ∃p ∈ 1, . . . , n s.t. xp = 0}

ΓN,p = {x ∈ Γ : xp = 1}, ΓN =


p=1,...,n

ΓN,p.

Here subscripts D and N stand for Dirichlet and for Neumann
boundary conditions respectively.

We consider the following boundary value problem for the
scalar n-D wave equation:

ztt(x, t) = 1z(x, t)+ f (z, x, t) inΩ × (t0,∞),
z(x, t) = 0 on ΓD × (t0,+∞),

∂

∂ν
z(x, t) = 0 on ΓN × (t0,∞),

(2.1)

where f is a C1 function, ν denotes the outer unit normal vector to
the point x ∈ Γ and ∂

∂ν
z is the normal derivative. Let g1 > 0 be the

known bound on the derivative of f (z, x, t)with respect to z:

|fz(z, x, t)| ≤ g1 ∀(z, x, t) ∈ Rn+2. (2.2)

SinceΩ is a unit hypercube, the boundary conditions on ΓN can be
rewritten as

zxp(x, t)

xp=1

= 0 ∀xi ∈ [0, 1], i ≠ p, p = 1, . . . , n.

Consider the following initial conditions:

z(x, t0) = z0(x), zt(x, t0) = z1(x), x ∈ Ω. (2.3)

The boundary measurements are given by

y(x, t) = zt(x, t) on ΓN × (t0,∞). (2.4)

Similar to Fridman (2013), the boundary-value problem (2.1) can
be represented as an abstract differential equation by defining the
state ζ (t) = [ζ0(t) ζ1(t)]T = [z(t) zt(t)]T and the operators

A =


0 I
1z 0


, F(ζ , t) =


0

F1(ζ0, t)


,

where F1 : H1(Ω) × R → L2(Ω) is defined as F1(ζ0, t) =

f (ζ0(x), x, t) so that it is continuous in t for each ζ0 ∈ H1(Ω). The
differential equation is

ζ̇ (t) = Aζ (t)+ F(ζ (t), t), t ≥ t0 (2.5)
in the Hilbert space H = H1
ΓD
(Ω)× L2(Ω), where

H1
ΓD
(Ω) =


ζ0 ∈ H1(Ω)

ζ0|ΓD
= 0


and ∥ζ∥2

H = ∥∇ζ0∥
2
L2 + ∥ζ1∥

2
L2 . The operator A has the dense

domain

D(A) =


(ζ0, ζ1)

T
∈ H1

ΓD
(Ω)× H1

ΓD
(Ω)

1ζ0 ∈ L2(Ω)

and
∂

∂ν
ζ0|ΓN

= −bζ1|ΓN


,

where b = 0. Here the boundary condition holds in a weak sense
(as defined in Sect. 3.9 of Tucsnak &Weiss, 2009), i.e. the following
relation holds:

⟨1ζ0, φ⟩L2(Ω) + ⟨∇ζ0,∇φ⟩[L2(Ω)]n = −b⟨ζ0, φ⟩L2(ΓN )

∀φ ∈ H1
ΓD
(Ω).

The operator A is m-dissipative (see Proposition 3.9.2 of Tuc-
snak & Weiss, 2009) and hence it generates a strongly continuous
semigroup. Due to (2.2), the following Lipschitz condition holds:

∥F1(ζ0, t)− F1(ζ̄0, t)∥L2 ≤ g1∥ζ0 − ζ̄0∥L2 (2.6)

where ζ0, ζ̄0 ∈ H1
ΓD
(Ω), t ∈ R. Then by Theorem 6.1.2 of Pazy

(1983), a unique continuousmild solution ζ (·) of (2.5) inH initial-
ized by

ζ0(t0) = z0 ∈ H1
ΓD
(Ω), ζ1(t0) = z1 ∈ L2(Ω)

exists in C([t0,∞),H). If ζ (t0) ∈ D(A), then this mild solu-
tion is in C1([t0,∞),H) and it is a classical solution of (2.1) with
ζ (t) ∈ D(A) (see Theorem 6.1.5 of Pazy, 1983).

We suggest a Luenberger type observer of the form:

ztt(x, t) = 1z(x, t)+ f
z, x, t, t ≥ t0, x ∈ Ω (2.7)

under the initial conditions [z(·, t0),zt(·, t0)]T ∈ H and the
boundary conditionsz(x, t) = 0 on ΓD × (t0,∞)

∂

∂ν
z(x, t) = k


y(x, t)−zt(x, t) on ΓN × (t0,∞)

(2.8)

where k is the injection gain.
The well-posedness of (2.7), (2.8) will be established by

showing the well-posedness of the estimation error e = z − z.
Taking into account (2.1), (2.3) we obtain the following PDE for the
estimation error e = z −z:
ett(x, t) = 1e(x, t)+ ge(x, t) t ≥ t0, x ∈ Ω (2.9)

under the boundary conditions

e(x, t) = 0 on ΓD × (t0,∞)

∂

∂ν
e(x, t) = −ket(x, t) on ΓN × (t0,∞).

(2.10)

Here ge = f (z, x, t)− f (z − e, x, t) and

g = g(z, e, x, t) =

 1

0
fz(z + (θ − 1)e, x, t)dθ.

The initial conditions for the error are given by

e(x, t0) = z1(x)− z(·, t0),
et(x, t0) = z2(x)− zt(·, t0).

The boundary conditions on ΓN can be presented as

exp(x, t)

xp=1

= −ket(x, t) ∀xi ∈ [0, 1],

i ≠ p, p = 1, . . . , n.
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Let z be a mild solution of (2.1). Then z : [t0,∞) → H1 is
continuous and, thus, the function F2 : H1

× [t0,∞) → L2(0, 1)
defined as

F2(ζ0, t) = f (z, x, t)− f (z − ζ0, x, t)

satisfies the Lipschitz condition (2.6), where F1 is replaced by F2. By
the above arguments,where in the definition ofD(A)wehave b =

k, the error system (2.9), (2.10) has a uniquemild solution {e, et} ∈

C([t0,∞),H) initialized by [e(·, t0), et(·, t0)]T ∈ H . Therefore,
there exists a unique mild solution {ẑ, ẑt} ∈ C([t0,∞),H) to
the observer system (2.7), (2.8) with the initial conditions [ẑ(·, t0),
ẑt(·, t0)]T ∈ H . If [e(·, t0), et(·, t0)]T ∈ D(A), then {e, et} ∈

C1([t0,∞),H) is a classical solution of (2.9), (2.10) with [e(·, t),
et(·, t)] ∈ D(A) for t ≥ t0. Hence, if [ẑ(·, t0), ẑt(·, t0)]T ∈ D(A)
and [z0, z1]T ∈ D(A), there exists a unique classical solution
{ẑ, ẑt} ∈ C1([t0,∞),H) to the observer system (2.7), (2.8) with
[ẑ(·, t), ẑt(·, t)]T ∈ D(A) for t ≥ t0.

2.2. Lyapunov function and useful inequalities

Wewill derive further sufficient conditions for the exponential
stability of the error wave equation (2.9) under the boundary
conditions (2.10). Let

E(t) =
1
2


Ω


|∇e|2 + e2t


dx, (2.11)

be the energy of the system. Consider the following Lyapunov
function for (2.9), (2.10):

V (t) = E(t)+ χ


Ω


2(xT · ∇e)+ (n − 1)e


etdx

+χ
k(n − 1)

2


ΓN

e2dΓ

with some constant χ > 0. Note that the above Lyapunov function
without the last term was considered in Ammari et al. (2010),
Fridman et al. (2010) and Zuazua (1990). The time derivative of
this new term of V cancels the same term with the opposite sign
in the time derivative of χ


Ω
[(n − 1)e]etdx (cf. (2.23)) leading to

LMI conditions for the exponential convergence of the error wave
equation.

We will employ the following n-D extensions of the classical
inequalities:

Lemma 1. Consider e ∈ H1(Ω) such that e

x∈ΓD

= 0. Then the

following n-D Wirtinger’s inequality holds:
Ω


4
π2n

|∇e|2 − e2

dx ≥ 0. (2.12)

Moreover,
ΓN

e2dΓ ≤


Ω

|∇e|2dx. (2.13)

Proof. Since e

x1=0

= 0, by the classical 1-DWirtinger’s inequality

(Hardy et al., 1988) 1

0
e2dx1 ≤

4
π2

 1

0
e2x1dx1.

Integrating the latter inequality in x2, . . . , xn we obtain
Ω

e2dx ≤
4
π2


Ω

e2xpdx

with p = 1. Clearly the latter inequality holds for all p = 1, . . . , n,
which after summation in p yields (2.12).
Since e

x1=0

= 0 we have by Sobolev’s inequality

e2(x)

x1=1

≤

 1

0
e2x1dx1 ∀xi ∈ [0, 1], i ≠ 1,

that after integration in x2, . . . , xn leads to
ΓN,p

e2dΓ ≤


Ω

e2xpdx

with p = 1. The latter inequality holds ∀p = 1, . . . , n leading after
summation in p to (2.13). �

2.3. Exponential stability of n-D wave equation

In this section we derive LMI conditions for the exponential
stability of the estimation error equation. We start with the
conditions for the positivity of the Lyapunov function:

Lemma 2. Let there exist positive scalars χ and λ0 such that

Φ0 ,


1
2

− λ0
4
π2n

√
nχ 0

∗
1
2

n − 1
2

χ

∗ ∗ λ0

 > 0. (2.14)

Then the Lyapunov function V (t) is bounded as follows:

αE(t) ≤ V (t) ≤ βE(t), α = 2λmin(Φ0),

β = 2

1 +

2
π2n


λmax(Φ0)+ χk(n − 1).

(2.15)

Proof. By Cauchy–Schwarz inequality we have

|xT · ∇e| ≤ |x| |∇e| ≤
√
n|∇e|. (2.16)

Thenχ 
Ω


2(xT · ∇e)+ (n − 1)e


etdxr


≤ χ


Ω

[2
√
n|∇e| |et | + (n − 1)|e| |et |]dx,

leading to

V (t) ≥
1
2


Ω


e2t + |∇e|2


dx

−χ


Ω

[2
√
n|∇e| |et | + (n − 1)|e| |et |]dx. (2.17)

Taking into account the n-DWirtinger inequality (2.12), we further
apply S-procedure (Yakubovich, 1971),1where we subtract from
the right-hand side of (2.17) the nonnegative term

λ0


Ω


4
π2n

|∇e|2 − e2

dx (2.18)

with λ0 > 0:

V (t) ≥
1
2


Ω

{e2t + |∇e|2}dx

−χ


Ω

[2
√
n|∇e| |et | + (n − 1)|e| |et |]dx

− λ0


Ω


4
π2n

|∇e|2 − e2

dx =


Ω

ηTΦ0η,

where η = col{|∇e|,−|et |, |e|}.

1 Let Ai ∈ Rp×p, i = 0, 1. Then the inequality ξ TA0ξ ≥ 0 holds for any ξ ∈ Rp

satisfying ξ TA1ξ ≥ 0 iff there exists a real scalar λ ≥ 0, such that A0 − λA1 ≥ 0.
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Similarly

V (t) ≤
1
2


Ω


e2t + |∇e|2


dx

+χ


Ω


2
√
n|∇e| |et | + (n − 1)|e| |et |


dx

+χ
k(n − 1)

2


ΓN

e2dΓ

≤ ηT1Φ0η1 + χ
k(n − 1)

2


ΓN

e2dΓ (2.19)

with η1 = col{|∇e|, |et |, |e|}.
Then (2.15) follows from

λmin(Φ0)


2E(t)+


Ω

e2dx


≤ V (t)

≤ λmax(Φ0)


2E(t)+


Ω

e2dx


+ χ
k(n − 1)

2


ΓN

e2dΓ

and from the inequalities (2.12) and (2.13). �

We are looking next for conditions that guarantee V̇ (t) +

2δV (t) ≤ 0 along the classical solutions of the wave equation
initiated from [z0, z1]T , [ẑ(·, t0), ẑt(·, t0)]T ∈ D(A). Then V (t) ≤

e−2δ(t−t0)V (t0) and, thus, (2.15) yields
Ω

[|∇e|2(x, t)+ e2t (x, t)]dx

≤
β

α
e−2δ(t−t0)


Ω

[|∇(z0(x)− ẑ(x, t0))|2

+ (z1(x)− ẑt(x, t0))2]dx. (2.20)

Since D(A) is dense in H the same estimate (2.20) remains
true (by continuous extension) for any initial conditions [z0, z1]T ,
[ẑ(·, t0), ẑt(·, t0)]T ∈ H . For such initial conditions we have mild
solutions of (2.1), (2.3).

Theorem 1. Given k > 0 and δ > 0, assume that there exist positive
constants χ, λ0 and λ1 that satisfy the LMI (2.14) and the following
LMIs:

Ψ1 , −k + (1 + k2n)χ ≤ 0,

Ψ2 ,


ψ2 2δ

√
nχ

√
ng1χ

∗ −χ + δ
1
2
g1 + δ(n − 1)χ

∗ ∗ −λ1 + g1(n − 1)χ

 ≤ 0,

ψ2 = −χ + δ(1 + χk(n − 1))+ λ1
4
π2n

.

(2.21)

Then, under the condition (2.2), solutions of the boundary-value
problem (2.9), (2.10) satisfy (2.20), whereα andβ are given by (2.15),
i.e. the system governed by (2.9), (2.10) is exponentially stable with a
decay rate δ > 0.

Proof. Differentiating V in time we obtain

V̇ (t) = Ė(t)+ χ
d
dt


Ω


2(xT · ∇e)+ (n − 1)e


etdx


+χk(n − 1)


ΓN

eetdΓ .

We have

Ė(t) =


Ω


(∇e)T∇(et)+ etett


dx.
Applying Green’s formula to the first integral term, substituting
ett = 1e + ge and taking into account (2.2), we find

Ė(t) =


Γ

et
∂e
∂ν

dΓ −


Ω

et1edx +


Ω

et [1e + ge]dx

≤ −k

ΓN

e2t dΓ + g1


Ω

|e| |et |dx.

Furthermore, we have

d
dt


Ω

[2xT∇e + (n − 1)e]etdx


=


Ω

d
dt

[2xT∇e + (n − 1)e]etdx

+


Ω

[2xT∇e + (n − 1)e][1e + ge]dx.

Then Green’s formula leads to (see (11.35) of Lions, 1988)

d
dt


Ω

[xT∇e + (n − 1)e]etdx


= 2

ΓN

xT∇e
∂e
∂ν

dΓ −


ΓN

(xTν)|∇e|2dΓ

+ (n − 2)

Ω

|∇e|2dx +


ΓN

(xTν)e2t dΓ − n

Ω

e2t dx

+ (n − 1)

Ω

e2t dx + (n − 1)

ΓN

e
∂e
∂ν

dΓ

− (n − 1)

Ω

|∇e|2dx +


Ω

[2xT∇e + (n − 1)e]gedx. (2.22)

Noting that xTν = 1 on ΓN and taking into account the boundary
conditions we obtain
d
dt


Ω

[2xT∇e + (n − 1)e]etdx


= −


Ω

{e2t + |∇e|2 + [2xT∇e + (n − 1)e]ge}dx

−


ΓN


|∇e|2 + 2kxT∇eet


dΓ

+


ΓN


e2t − k(n − 1)eet


dΓ . (2.23)

By inequalities (2.16) and (2.2) we have
Ω

[2xT∇e + (n − 1)e]gedx

≤


Ω


2|xT∇e| |g| |e|dx + (n − 1)g1e2


dx

≤


Ω

[2
√
ng1|∇e| |e| + (n − 1)g1e2]dx.

Further due to (2.16)

−


ΓN

2kxT∇eetdΓ

≤ 2k

ΓN

|xT∇e| |et |dΓ ≤ 2k
√
n


ΓN

|∇e| |et |dΓ .

Then by completion of squares we find

−


ΓN


|∇e|2 + 2kxT∇eet


dΓ

≤


ΓN


k2ne2t −


|∇e| − k

√
n|et |

2
dΓ ≤ k2n


ΓN

e2t dΓ .
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Summarizing we obtain

V̇ (t) ≤ [χ(1 + k2n)− k]

ΓN

e2t dΓ −


Ω


χ [e2t + |∇e|2]

−

2
√
nχg1|∇e| |e| + (n − 1)χg1e2 + g1|e| |et |


dx. (2.24)

Therefore, employing (2.19) we arrive at

V̇ (t)+ 2δV (t)

≤


ΓN

[Ψ1e2t + δχk(n − 1)e2]dΓ

− (χ − δ)


Ω


e2t + |∇e|2


dx

+


Ω


2
√
nχg1|∇e| |e| + (n − 1)χg1e2

+ [g1 + 2δχ(n − 1)]|e| |et | + 4δχ
√
n|∇e| |et |


dx. (2.25)

By taking into account Wirtinger’s inequality (2.12), we add to
(2.25) the nonnegative term (2.18), whereλ0 is replaced byλ1 > 0.
Denote η2 = col{|∇e|, |et |, |e|}. Then after employing the bound
(2.13) we arrive at
d
dt

V (t)+ 2δV (t) ≤ Ψ1


ΓN

e2t dΓ +


Ω

ηT2Ψ2η2dx ≤ 0

if the LMIs (2.21) are feasible. �

Remark 1. For n > 1 the term χ

Ω
(n − 1)eetdx of V leads to

−χ

Ω

|∇e|2dx in V̇ (cf. (2.22)).

3. Exact observability of n-D wave equation

Our next objective is to recover (if possible) the unique initial
state (2.3) of the solution to (2.1)–(2.3) from the measurements on
the finite time interval
y(x, t) = zt(x, t) on ΓN × [t0, t0 + T ], T > 0. (3.1)

Definition 1 (Fridman, 2013). The system (2.1), (2.3) with the
measurements (3.1) is called exactly observable in time T , if
(i) for any initial condition [z0, z1]T ∈ H = H1

ΓD
(Ω) × L2(Ω) it

is possible to find a sequence [zm0 , z
m
1 ]

T
∈ H(m = 1, 2, . . .)

from the measurements (3.1) such that limm→∞ ∥[zm0 , z
m
1 ]

T
−

[z0, z1]T∥H = 0 (i.e. it is possible to recover the unique initial
state as [z0, z1]T = limm→∞[zm0 , z

m
1 ]

T );
(ii) there exists a constant C > 0 such that for any initial condi-

tions [z0, z1]T ∈ H and [z̄0, z̄1]T ∈ H leading to the measure-
ments y(x, t) and ȳ(x, t) and to the corresponding sequences
[zm0 , z

m
1 ]

T and [z̄m0 , z̄
m
1 ]

T , the following holds:

∥ lim
m→∞

[zm0 , z
m
1 ]

T
− lim

m→∞
[z̄m0 , z̄

m
1 ]

T
∥
2
H

≤ C
 t0+T

t0


ΓN

|y(x, t)− ȳ(x, t)|2dΓ dt. (3.2)

The time T is called the observability time.
The system is called regionally exactly observable if the above

conditions hold for all [z0, z1]T ∈ H with ∥[z0, z1]T∥H ≤ d0 for
some d0 > 0.

Note that (3.2) means the continuous dependence of the
reconstructed initial state on the measurements. In this section
we will derive LMI sufficient conditions for n-D wave equations
with globally Lipschitz in the first argument f , where (2.2) holds
globally in z. In Section 4, we will present LMI-based conditions
for the regional observability for 1-D wave equation, where (2.2)
holds locally in z.
3.1. Iterative forward and backward observer design

In order to recover the initial state of the solution to (2.1)
from the measurements (3.1) we use the iterative procedure as in
Ramdani et al. (2010). Define the sequences of forward z(m) and
backward observers zb(m), m = 1, 2, . . . with the injection gain
k > 0:

z(m)tt (x, t) = 1z(m)(x, t)+ f (z(m)(x, t), x, t),
z(m)(x, t) = 0, x ∈ ΓD,
∂

∂ν
z(m)(x, t) = k[y(x, t)− z(m)t (x, t)], x ∈ ΓN ,

t ∈ [t0, t0 + T ],

z(m)(x, t0) = zb(m−1)(x, t0),
z(m)t (x, t0) = zb(m−1)

t (x, t0),

(3.3)

where zb(0)(x, t0) = zb(0)t (x, t0) ≡ 0, and

zb(m)tt (x, t) = 1zb(m)(x, t)+ f (zb(m)(x, t), x, t),
zb(m)(x, t) = 0, x ∈ ΓD,
∂

∂ν
zb(m)(x, t) = −k[y(x, t)− zb(m)t (x, t)], x ∈ ΓN ,

t ∈ [t0, t0 + T ],

zb(m)(x, t0 + T ) = z(m)(x, t0 + T ),
zb(m)t (x, t0 + T ) = z(m)t (x, t0 + T ).

(3.4)

This results in the sequence of the forward e(m) = z − z(m) and the
backward eb(m) = z − zb(m), m = 1, 2, . . . errors satisfying

e(m)tt (x, t) = 1e(m)x (x, t)+ g(m)e(m)(x, t),

e(m)(x, t)

x∈ΓD

= 0,
∂

∂ν
e(m)(x, t) = −ke(m)t (x, t)


x∈ΓN

,

t ∈ [t0, t0 + T ],

e(m)(x, t0) = eb(m−1)(x, t0),
e(m)t (x, t0) = eb(m−1)

t (x, t0),

(3.5)

where eb(0)(x, t0) = z0(x), e
b(0)
t (x, t0) = z1(x) and

eb(m)tt (x, t) = 1eb(m)(x, t)+ gb(m)eb(m)(x, t),

eb(m)(x, t)

x∈ΓD

= 0,
∂

∂ν
e(m)(x, t) = ke(m)t (x, t)


x∈ΓN

,

t ∈ [t0, t0 + T ],

eb(m)(x, t0 + T ) = e(m)(x, t0 + T ),
eb(m)t (x, t0 + T ) = e(m)t (x, t0 + T ).

(3.6)

Here

g(m) = g(z, e(m), x, t) =

 1

0
fz(z + (θ − 1)e(m), x, t)dθ,

gb(m)
= g(z, eb(m), x, t) =

 1

0
fz(z + (θ − 1)eb(m), x, t)dθ.

(3.7)

3.2. LMIs for the exact observability time

For (3.5) and (3.6) we consider for t ∈ [t0, t0 + T ] the Lyapunov
functions

V (m)(t) = E(m)(t)+ χ
k(n − 1)

2


ΓN

(e(m))2dΓ

+χ


Ω


2(xT · ∇e(m))+ (n − 1)e(m)


e(m)t dx,

E(m)(t) =
1
2


Ω


|∇e(m)|2 + (e(m)t )2


dx

(3.8)
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and

V b(m)(t) = Eb(m)(t)− χ
k(n − 1)

2


ΓN

(eb(m))2dΓ

−χ


Ω


2(xT · ∇eb(m))+ (n − 1)eb(m)


eb(m)t dx,

Eb(m)(t) =
1
2


Ω


|∇eb(m)|2 + (eb(m)t )2


dx

(3.9)

with some constant χ > 0. Then for χ and λ0 > 0 subject to (2.14)
we have (cf. (2.15))

αE(m)(t) ≤ V (m)(t) ≤ βE(m)(t), t ≥ t0,
αEb(m)(t) ≤ V b(m)(t) ≤ βEb(m)(t),

(3.10)

where α and β are given by (2.15).

Lemma 3. Consider V (m) and V b(m) given by (3.8) and (3.9) respec-
tively with χ > 0 satisfying (2.14). Assume there exist δ > 0 and
T > 0 such that for all m = 1, 2, . . . and for all t ∈ [t0, t0 + T ] the
inequalities

V̇ (m)(t)+ 2δV (m)(t) ≤ 0 (3.11)

and

V̇ b(m)(t)− 2δV b(m)(t) ≥ 0 (3.12)

hold along (3.5) and (3.6) respectively. Assume additionally that for
some T ∗

∈ (0, T )

V (m)(t0)e−2δT∗

≤ V b(m−1)(t0),
V b(m)(t0 + T )e−2δT∗

≤ V (m)(t0 + T ).
(3.13)

Then the iterative algorithm converges on [t0, t0 + T ]:

V b(m)(t0) ≤ qV b(m−1)(t0) ≤ qmV b(0)(t0), (3.14)

q = e−4δ(T−T∗) is the convergence rate.
Moreover, for all t ∈ [t0, t0 + T ] and m = 1, 2, . . .

max{V (m)(t), V b(m)(t)} ≤ e2δT
∗

V b(0)(t0). (3.15)

Proof. The inequalities (3.11), (3.12) yield

V b(m)(t0) ≤ V b(m)(t0 + T )e−2δT ,

V (m)(t0 + T ) ≤ V (m)(t0)e−2δT .

Hence, (3.13) implies (3.14):

V b(m)(t0) ≤ V b(m)(t0 + T )e−2δT
≤ V (m)(t0 + T )

√
q

≤ V (m)(t0)
√
qe−2δT

≤ V b(m−1)(t0)q.

The bound (3.15) follows from the following inequalities:

V (m+1)(t) ≤ V (m+1)(t0) ≤ e2δT
∗

V b(m)(t0)
≤ V b(m)(t0 + T ) ≤ V (m)(t0 + T )e2δT

∗

≤ V (m)(t0) ≤ · · · ≤ V (1)(t0) ≤ e2δT
∗

V b(0)(t0),

V b(m)(t) ≤ V b(m)(t0 + T ) ≤ e2δT
∗

V b(0)(t0). �

We are in a position to formulate sufficient conditions for the exact
observability:

Theorem 2. Given positive tuning parameters T ∗ and δ, let there exist
positive constants χ, λ1 and λ2 that satisfy the LMIs (2.21) and

Φ ,


Φ11

√
n[1 + e−2δT∗

]χ 0

∗ −
1
2
[1 − e−2δT∗

]
n − 1
2

[1 + e−2δT∗

]χ

∗ ∗ −λ2

 < 0.

Φ11 = −
1
2
[1 − e−2δT∗

] + λ2
4
π2n

.

(3.16)
Then

(i) the system (2.1)–(2.3) with the measurements (2.4) is exactly
observable in time T ∗;

(ii) for all 1T > 0 the iterative algorithm with T = T ∗
+ 1T

converges
Ω


|∇eb(m)(x, t0)|2 + [eb(m)t (x, t0)]2


dx

≤
β

α
qm


Ω


|∇z0|2(x)+ z21(x)


dx, (3.17)

where q = e−4δ1T , and the following bound holds:

max


Ω


|∇eb(m)(x, t)|2 + [eb(m)t (x, t)]2


dx,

Ω


|∇e(m)(x, t)|2 + [e(m)t (x, t)]2


dx


≤
β

α
e2δT

∗


Ω


|∇z0|2(x)+ z21(x)


dx,

t ∈ [t0, t0 + T ].

(3.18)

Here α and β are given by (2.15).

Proof. (i) From Theorem 1 it follows that LMIs (2.21) yield
(3.11). By the similar derivations, LMIs (2.21) imply (3.12) for the
backward system. Taking into account that e(m)(x, t0 + T ) =

eb(m)(x, t0 + T ) and e(m)t (x, t0 + T ) = eb(m)t (x, t0 + T ), the bound
(2.19) and the n-DWirtinger inequality we obtain for some λ2 > 0

V b(m)(t0 + T )e−2δT∗

− V (m)(t0 + T )

=
1
2
[−1 + e−2δT∗

]


Ω

[(e(m)t )2

+ |∇e(m)|2]dx + k(n − 1)

ΓN

(e(m))2dΓ


−χ [1 + e−2δT∗

]


Ω


2(xT · ∇e(m))+ (n − 1)e


e(m)t dx

≤
1
2
[−1 + e−2δT∗

]


Ω

[(e(m)t )2 + |∇e(m)|2]dx

+χ [1 + e−2δT∗

]


Ω


2
√
n|∇e(m)| + (n − 1)|e(m)|


|e(m)t |dx

+ λ2


Ω


4
π2n

|∇e(m)|2 − (e(m))2

dx ≤


Ω

ηT2Φη2dx ≤ 0,

where

η2 = col{|∇e(m)(x, t)|, |e(m)t (x, t)|, |e(m)(x, t)|} (3.19)

and where t = t0 + T , if (3.16) is feasible. Similarly (3.16)
guarantees V (m)(t0)e−2δT∗

≤ V b(m−1)(t0). The feasibility of the LMI
(3.16) yields the feasibility of (2.14), i.e. the positivity of V (m) and
V b(m). Moreover, the strict LMI (3.16) guarantees (3.13) with T ∗

changed by T ∗
− 1T , where 1T > 0 is small enough, implying

due to Lemma 3 the convergence of the iterative algorithm with
T = T ∗.

To prove the exact observability in time T ∗, consider initial
states ζ (t0) ∈ H and ζ̄ (t0) ∈ H of (2.1)–(2.3) that lead to
the measurements y(x, t) and ȳ(x, t) and to the corresponding
forward and backward observers z(m), zb(m) and z̄(m), z̄b(m). Note
that z̄(m), z̄b(m) satisfy (3.3) and (3.4), where z(m), zb(m) and y are
replaced by z̄(m), z̄b(m) and ȳ. The resulting e(m) = z(m) − z̄(m),
eb(m) = zb(m)−z̄b(m) satisfy (3.5), (3.6)with the perturbed boundary



E. Fridman, M. Terushkin / Automatica 63 (2016) 1–10 7
conditions at x ∈ ΓN :

∂

∂ν
e(m) = −ke(m)t + w, w , k[y(x, t)− ȳ(x, t)],

∂

∂ν
eb(m) = keb(m)t − w, x ∈ ΓN , t ≥ t0.

(3.20)

Let V (m) and V b(m) be defined by (3.8) and (3.9). LMI (3.16) implies
inequalities (3.13).

We will show next that the feasibility of (2.21) implies

V̇ (m)(t)+ 2δV (m)(t)− γ


ΓN

w2dΓ ≤ 0,

V̇ b(m)(t)− 2δV b(m)(t)+ γ


ΓN

w2dΓ ≥ 0
(3.21)

for t ≥ t0 and some γ > 0. Taking into account w-term in (3.20),
by the arguments of Theorem 1 we have

Ė(m)(t) =


ΓN


−k


e(m)t

2
+ e(m)t w


dΓ + g1


Ω

|e(m)| |e(m)t |dx,

and

d
dt


Ω

[2xT∇e(m) + (n − 1)e(m)]e(m)t dx


= −


Ω

{(e(m)t )2 + |∇e(m)|2 + [2xT∇e(m) + (n − 1)e(m)]ge(m)}dx

−


ΓN


|∇e(m)|2 + 2xT∇e(m)[ke(m)t − w]


dΓ

+


ΓN


(e(m)t )2 − (n − 1)e[ke(m)t − w]


dΓ .

Then after bounding and completion of squares we find

d
dt

V (m)(t)+ 2δV (m)(t)

≤ Ψ1


ΓN

(e(m)t )2dΓ +


Ω

ηT2Ψ2η2dx

+


ΓN


|e(m)t | |w| + χ(n − 1)|e(m)| |w|

+χk2n

2|e(m)t | |w| + w2


dΓ ≤ 0,

where η2 is given by (3.19). By Young’s inequality with some r > 0
and by (2.13)

χ(n − 1)

ΓN

|e(m)| |w|dΓ ≤
χ(n − 1)

r


ΓN

(e(m))2dΓ

+χ(n − 1) r

ΓN

w2dΓ

≤
χ(n − 1)

r


Ω

|∇e(m)|2dx + χ(n − 1) r

ΓN

w2dΓ .

Then the first inequality (3.21) holds ifΨ1 χ
1
2

+ k2n


∗ −γ + χk2n + χ(n − 1) r

 < 0,

Ψ2 +
χ(n − 1)

r
[1 0 0]T [1 0 0] < 0.

(3.22)

It is easy to see that the latter inequalities are feasible for large
enough r andγ ifΨ1 < 0 andΨ2 < 0, i.e. if LMIs (2.21) are satisfied.
Table 1
Nonlinearity vs. minimal observability time.

g1 δ T ∗

0 0.0001 3.28
0.01 0.01 4.3
0.1 0.01 12.2
0.3 0.01 38

Then, by the comparison principle (see e.g. Khalil, 2002),

V (m)(t) ≤ e−2δ(t−t0)V (m)(t0)+ γ

 t

t0


ΓN

|w(x, s)|2dΓ ds.

Similarly, LMIs (2.21) guarantee the second inequality (3.21) for
large enough γ > 0, and, thus,

V b(m)(t) ≥ e2δ(t−t0)V b(m)(t0)

− γ

 t

t0


ΓN

e2δ(t−s)
|w(x, s)|2dΓ ds.

Note that the strict inequalities (3.16) guarantee (3.13) with δ
changed by δ + δ0 for small enough δ0 > 0. Therefore,

V b(m)(t0) ≤ e−2(δ+δ0)T∗

V b(m)(t0 + T ∗)

+ γ

 t0+T∗

t0


ΓN

|w(x, s)|2dΓ ds

≤ e−2δ0T∗

V (m)(t0 + T ∗)+ γ

 t0+T∗

t0


ΓN

|w(x, s)|2dΓ ds

≤ e−4δ0T∗

V b(m−1)(t0)

+ (e−2δ0T∗

+ 1)γ
 t0+T∗

t0
|


ΓN

|w(x, s)|2dΓ ds.

We arrive at

α

 1

0


[eb(m)x (x, t0)]2 + [eb(m)t (x, t0)]2


dx

≤ V b(m)(t0) ≤ (e−4δ0T∗

)2V b(m−2)(t0)

+ (e−6δ0T∗

+ e−4δ0T∗

+ e−2δ0T∗

+ 1)γ
 t

t0


ΓN

|w(s)|2dΓ ds

≤ e−4mδ0T∗

V b(0)(t0)+ αC
 t0+T∗

t0


ΓN

|w(s)|2dΓ ds

which implies (3.2), where C =
γ

α[1−e−2δ0T∗
]
.

(ii) follows from (3.14), (3.15) and (3.10). �

Remark 2. As a by-product, we have derived new LMI conditions
(3.22) for input-to-state stability of the n-D wave equation (3.5)
with the perturbed boundary condition on ΓN as in (3.20).

Remark 3. Note that for n = 1 and g = 0 the LMIs of Theorem 2
are equivalent to the corresponding conditions of Fridman (2013)
that are not conservative (in the sense that they lead to the
analytical value of the minimal observability time T ∗

an). However,
for n = 2 and g = 0 the conditions of Theorem 2 lead to an upper
bound on T ∗

an only (see Example 1). This mirrors the conservatism
of the conditions for n > 1.

Example 1. Consider (2.1)–(2.3), where n = 2 with the values
of g1 as given in Table 1. We use the sequence of forward and
backward observers (3.3) and (3.4) with k = 1. By verifying the
conditions of Theorem 2, we find the minimal values of T ∗ and
the corresponding δ for the convergence of the iterative algorithm
and, thus, for the exact observability. Note that for g1 = 0 the
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observability time is T ∗
= 3.28, which is not too far from the

analytical value 2
√
2 ≈ 2.82. For simulation results in the linear

case see Example 2 of Ramdani et al. (2010).

4. Regional observability of 1-D wave equation with locally
Lipschitz nonlinearity

In this section we consider 1-D wave equation (2.1), where
Ω = [0, 1]:

ztt(x, t) = zxx(x, t)+ f (z, x, t), x ∈ [0, 1], t > t0,
z(0, t) = 0, zx(1, t) = 0, (4.1)

whereas the measurements are given by

y(t) = zt(1, t), t ∈ [t0, t0 + T ]. (4.2)

Assume that f (0, x, t) ≡ 0 and that f is locally Lipschitz in the
first argument uniformly on the others. The latter means that we
can find a d > 0 such that

|fz | ≤ g1 ∀|z| ≤ d, x ∈ [0, 1], t ≥ t0. (4.3)

We present

f (z, x, t) = f1z, f1 =

 1

0
fz(θz, x, t)dθ. (4.4)

Recall that in 1-D case H = H1
ΓD
(0, 1)× L2(0, 1), where

H1
ΓD
(0, 1) =


ζ0 ∈ H1(0, 1)

ζ0(0) = 0


and

D(A) =


(ζ0, ζ1)

T
∈ H2(0, 1)


H1
ΓD
(0, 1)× H1

ΓD
(0, 1)ζ0x(1) = 0


.

Consider a region of initial conditions defined by

Xd0 =


z0, z1

T
∈ H

  1

0


z02x + z21


dx ≤ d20


, (4.5)

where d0 > 0 is some constant.We are looking for an estimateXd0
(with d0 as large as possible) on the region of initial conditions, for
which the iterative algorithm defined in Section 3 converges. This
gives an estimate on the region of exact observability, where the
initial conditions of the system can be recovered uniquely from the
measurements on the interval [t0, t0 + T ].

The convergence of the iterative algorithm in Theorem 2 has
been proved for the forward and the backward error systems
(3.5) and (3.6) with globally Lipschitz nonlinearities given by (3.7)
subject to

|fz(z + (θ − 1)e(m), x, t)| ≤ g1,
|fz(z + (θ − 1)eb(m), x, t)| ≤ g1,

∀t ∈ [t0, t0 + T ], x, θ ∈ [0, 1], z, e(m), eb(m) ∈ R.
(4.6)

For the locally bounded nonlinearity as in (4.3) we have to find a
region Xd0 of initial conditions starting from which solutions of
(4.1), (3.5) and (3.6) satisfy the bound

[z0, z1]T ∈ Xd0 ⇒ |z(x, t)+ (θ − 1)e(m)(x, t)| ≤ d,

|z(x, t)+ (θ − 1)eb(m)(x, t)| ≤ d,
∀t ∈ [t0, t0 + T ], x, θ ∈ [0, 1]. (4.7)

The latter implication yields

[z0, z1]T ∈ Xd0 ⇒ max{|f1|, |g(m)|, |gb(m)
|} ≤ g1,

∀t ∈ [t0, t0 + T ], x, θ ∈ [0, 1].
(4.8)
We will employ Sobolev’s inequality

max
x∈[0,1]

z2(x, t) ≤

 1

0
z2x (x, t)dx, t ≥ t0 (4.9)

that holds since z

x=0

= 0, and similar bounds on e(m) and eb(m). In
order to guarantee (4.7) we start with a bound on the solutions of
(4.1). Since this system is not stable we give a simple energy-based
bound on the exponential growth of z. Define the energy

Ezeq(t) =
1
2

 1

0


z2x + z2t


dx.

Proposition 1. Consider (4.1) with f (0, x, t) ≡ 0 subject to |fz | ≤

g1 for all (z, x, t) ∈ R3. Then solutions of this system satisfy the
following inequality:

Ezeq(t) ≤ e
2g1
π (t−t0)Ezeq(t0), t ≥ t0.

Proof. It is sufficient to show that

W , Ėzeq −
2g1
π

Ezeq ≤ 0

along (4.1). Differentiating, integrating by parts, taking into
account the boundary conditions (that imply zx(1, t) = zt(0, t) =

0) and further applying Wirtinger’s inequality we have

W =

 1

0
[zxzxt + zt(zxx + f )]dx −

2g1
π

Ezeq

=

 1

0
zt f1zdx −

2g1
π

Ezeq

≤ g1

 1

0
|zt | |z|dx −

g1
π

 1

0

π2

4
z2 + z2t


dx

= −
g1
π

 1

0

π
2

|z| − |zt |
2

dx ≤ 0. �

Due to (4.9), given d > 0 the solution z of (4.1) satisfies the bound

z2(x, t) ≤ 0.25d2 ∀x ∈ [0, 1], t ∈ [t0, t0 + T ] (4.10)

if

max
x∈[0,1]

z2(x, t) ≤

 1

0


zx(x, t)2 + zt(x, t)2


dx

≤ e
2g1
π (t−t0)


Ω


|z0(x)|2 + z1(x)2


dx ≤

d2

4
. (4.11)

In order to bound e(m) and eb(m), we use Theorem 2. The LMIs (2.21)
for n = 1 are reduced to

−k + (1 + k2)χ < 0,
−χ + δ + λ1

4
π2

2δχ g1χ

∗ −χ + δ
1
2
g1

∗ ∗ −λ1

 ≤ 0,
(4.12)

where χ and λ1 are positive scalars. The LMI (3.16) for n = 1 has a
form−

1
2
[1 − e−2δT∗

] [1 + e−2δT∗

]χ

∗ −
1
2
[1 − e−2δT∗

]

 < 0. (4.13)
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The LMI (2.14) has a form Φ0 > 0, where 2Φ0 =


1 2χ
∗ 1


, leading

to α = 2λmin(Φ0) and β = 2λmax(Φ0) in the bounds (3.10). Hence,
α = (1 − 2χ) and β = (1 + 2χ).

Similarly to (4.11), if the LMIs (4.12) are feasible, then

max

[e(m)(x, t)]2, [eb(m)(x, t)]2


≤

d2

4
∀x ∈ [0, 1], t ∈ [t0, t0 + T ] provided (cf. (3.18))

max

max
x∈[0,1]

[e(m)(x, t)]2, max
x∈[0,1]

[eb(m)(x, t)]2


≤
1 + 2χ
1 − 2χ

e2δT
∗

 1

0


z20x(x)+ z21(x)


dx ≤

d2

4
. (4.14)

Denote

d0 ,
d
2

· min

e−

g1
π T ,


1 − 2χ
1 + 2χ

e−δT∗

. (4.15)

Then due to (4.11) for all solutions of (4.1) initiated from (4.5) the
bound (4.10) holds. Moreover, due to (4.14) for all the resulting
e(m)(x, t) and eb(m)(x, t) that satisfy (3.5) and (3.6) respectively the
implication (4.7) holds:

|z(x, t)+ (θ − 1)e(m)(x, t)|2 ≤ 2z2(x, t)+ 2[e(m)(x, t)]2 ≤ d2,
|z(x, t)+ (θ − 1)eb(m)(x, t)|2 ≤ 2z2(x, t)+ 2[eb(m)(x, t)]2 ≤ d2,
∀t ∈ [t0, t0 + T ], x ∈ [0, 1], θ ∈ [0, 1].

The latter bounds guarantee (4.8). Then from Theorem 2 we
conclude the following:

Corollary 1. Given g1 and positive tuning parameters T ∗ and δ, let
there exist positive constantsχ and λ1 that satisfy the LMIs (4.12) and
(4.13). Then for all T ≥ T ∗ the system (4.1) subject to f (0, x, t) ≡ 0
and (4.3)with themeasurements (4.2) is regionally exactly observable
on [t0, t0 + T ] for all initial conditions from Xd0 given by (4.5), where
d0 is defined by (4.15).

Remark 4. The result on the regional observability cannot be
extended to multi-dimensional case since the bound (4.9) does
not hold in n-D case. One could extend the regional result to n-D
case if f would depend on


Ω

|∇z|2dx or on

Ω
z2dx,


ΓN

z2dΓ (by
employing the inequalities of Lemma 1).

The global results of Sections 2 and 3 can be extended to more
general functions f = f (z,∇z, zt)with uniformly bounded fz, |f∇z |

and fzt . Note that in Fridman (2013) such more general functions
were considered for 1-D wave and for beam equations. However,
the regional result in 1-D case seems to be not extendable to these
more general nonlinearities due to difficulties of employing the
bound (4.9) with z replaced by zx or zt .

Remark 5. The result on the regional observability can be easily
extended to 1-D wave equations with variable coefficients as
considered in Fridman (2013)

ztt(x, t) =
∂

∂x
[a(x)zx(x, t)] + f (z(x, t), x, t),

t ≥ t0, x ∈ [0, 1],

where a is a C1 functionwith ax ≤ 0 and a(1) > 0. This can be done
by modifying Lyapunov and energy functions, where the square of
the partial derivative in x should be multiplied by a(x). Note that
an extension of forward and backward observers to observability
of 1-D wave equations with non-Lipschitz coefficients (as studied
e.g. in Castro & Zuazua, 2002; Fanelli & Zuazua, 2013) seems to be
problematic.
Fig. 1. Initial condition recovery after 10 iterations.

Table 2
Computation time for 10 iterations.

T Computation time (s)

2.10 3.0469
3.00 3.6875
5.00 4.2813

10.00 5.9219

Example 2. Consider (4.1) with f = 0.05z2. Here |fz | = |0.1z| ≤

g1 if |z| ≤ 10g1 = d. Choose g1 = 0.1, meaning that (4.3)
holds with d = 1. Also here we use the sequence of forward
and backward observers (3.3) and (3.4) with k = 1. Verifying the
feasibility of LMIs (4.12) and (4.13) (subject to minimization of χ
that enlarges the resulting d0), we find that the system is exactly
observable in time T ∗

= 3.78,where δ = 0.1 andχ = 0.1803. This
leads to the estimate (4.5) with d0 = 0.2348 for the region of exact
observability, where the initial conditions of the system can be
recovered uniquely from the measurements on the interval [0, T ]

for all T ∈ [3.78, 23.5]. Note that the convergence of the iterative
algorithm is faster for larger T (in the sense that (3.14) holds with
a smaller q). Increasing the nonlinearity twice to f = 0.1z2 and
choosing g1 = 0.2, we find d = 1. The LMIs (4.12) and (4.13) are
feasible with δ = 0.09, T ∗

= 5.49 and χ = 0.2275. We arrive at a
smaller d0 = 0.1867, whereas T ∈ [5.49, 15.4].

Simulations of the initial state recovery in the case of f = 0.1z2

and z0(x) = z1(x) = 0.2733 · x(1 −
x
2 ), where

 1
0


z02x + z21


dx =

0.18672, show the convergence of the iterative algorithm on the
predicted observation interval [0, 5.49]. Moreover, the algorithm
converges on shorter observation intervals with T ≥ 2.1 that
illustrates the conservatism of the LMI conditions. See Fig. 1 for
the case of 10 forward and backward iterations with T = 1.8 (no
convergence) and T = 2.1 (convergence). The computation times
for 10 iterations for several values of T are given in Table 2.

5. Conclusions

The LMI approach to observers and initial state recovering
of semilinear N-D wave equations on a hypercube has been
presented. In the linear 2-D case our results lead to an upper bound
on the exact observability time, which is close to the analytical
value, but does not recover it as it happened in 1-D case. For 1-
D systems with locally Lipschitz nonlinearities we have found a
(lower) bound on the region of initial values that are uniquely
recovered from the measurements on the finite interval.
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