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Finite Horizon H., State-Feedback Control of and whereM; = M{, M. = M, are matrices denoting the initial
Continuous-Time Systems with State Delays weightning condition. The problem is to find a state-feedback con-
troller which ensures thal < 0 for all w € L,[0,¢s] and for all
Emilia Fridman and Uri Shaked initial conditionszo € La[—h, 0].

In theinfinite horizoncase such a controller (for zero initial condition

- . L xo = 0) has been designed in [1]-[6] (see also references therein). In
Abstract—The finite horizon H,,, control of time-invariant linear sys- . . . .
tems with a finite number of point and distributed time delays is consid- [1] and [2] the controller has been obtained by solving Riccati operator

ered. The controller is obtained by solving coupled Riccati-type partial dif-  €quations. In [3] and [4] delay-independent and in [6] delay-dependent
ferential equations. The solutions to these equations and the resulting con- memoryless controllers have been designed. In [5] the controller (with

trollers are approximated by series expansions in powers of the largest memory) has been derived from Riccati-type partial differential equa-

delay. Unlike the infinite horizon case, these approximations possess both .. . L :
regular and boundary layer terms. The performance of the closed-loop tions (RPDES) or inequalities, and the solution of the RPDEs has been

system under the memoryless zero-approximation controller is analyzed. @PProximated by expansions in the powers of the delay. In [7] the gra-

. - dient of.J with respect td: ath = 0 has been computed. In [8] and [9]
Index Terms—Asymptotic approximations, H .,—state-feedback control, o . . . "
Riccati type partial differential equations, singular perturbations, time-  Pounded real criteria have been obtained. Asymptotic series solutions

delay systems. of systems with small delay have been constructed in [10]-[12].
In many engineering cases (target maneuver, missile guidance, etc.)
a control session of limited time length is needed. In such cases the ef-
. PROBLEM FORMULATION fect of the initial conditions is most important and the results of [1]-[6]
Throughout this paper we denote py| the Euclidean norm of a cannot provide a satisfactory control strategy. In the present paper, we
vector or the appropriate norm of a matrix. Given> 0, letL,[0,¢;] ~generalize the results of [5] to tHimite horizoncase. Unlike [5], the
be the space of the square integrable functions with the lorffr., required controllers are time-varying, they are obtained by solving cou-
and letC[a, b] be the space of the continuous functiongerb] with ~ pled finite horizon RPDEs. For small delays, similarly to the case of
the norm||- || ... We denoter; = x(t+6),y* = y(t—0).6 € [—h,0]. singularly perturbed systems (see [10]-[13]), the controllers are af-

Prime denotes the transpose of a matrix an¢.caj } denotes a column fected by the boundary-layer phenomenon. The main contribution of
vector with components andy. the paper is the construction, for the first time, of an asymptotic solu-

Consider the system tion to the important class of finite horizon RPDESs that are encountered
s , , with the finite-horizon LQ control (see [14]), and with tf&., control.
#(t) = L{@:(-)) + Bu(t) + Du(?) Proofs of Theorem 1 and Lemma 2 are given in the Appendix.
z(t) = col{Ca(t),u(t)}, t>0

x(8) = xo(6), 6 € [-h,0] (1) Il. MAIN RESULTS

wherez(t) € R" is the state vector(t) € R' is the control signal, A. H_..-Controller Design
w(t) € R is the exogenous disturbancét) € R” s the observation Consider the following RPDES with respect to thex n-matrices
vector, andB, C, andD are constant matrices of appropriate dimenl-j(t) Q(t.€), andR(1.£. 5): )

sions. TheR™ -valued function’(-) which carriesR™ -valued functions TSR e

on[—h, 0] into R™ is defined as follows: P+ AL P(+) + P(+)A - A O (4. —h
. o (t) + Ao P(t) + ()o+; {Q'(t—h)
L(xe(-)) = Z Ajw(=hi) + / Ao1(s)ae(s)ds )] N
i=0 —h +> 0 Qt,—hi)Ai + P()SP(t)+ C'C
where—h = —h, < —h,_1 < -+ < —h; < —hg = 0, Ao, Ay i=1
---, A, are constant matrices and; (s) is a square integrable matrix 0 (
function. + g Q(t,0)A01(8)d8
Denote 0
: < T / Ay (9)Q'(.6) 46 = 0 (6)
F(a)(€) = Z Az (=hi — §)xi(€) +/ Ao (p)ae(p =€) dp —h
- - 2 oo+ 2o
©)) ar -6 ¢ &
and wherey; is the indicator function for the st h;, 0], i.e.,x; (§) = Y . ~ '
1if € € [=hi,0] andx;(€) = 0 otherwise. = ~[4o + P(1)5]Q(1. &) — Z] AR(t, —hi, )
Given v > 0, and assuming thatv € L:[0,t;] and o =
xg € La[—P, 0], we consider the following performance index: - / Ao (5)R(t,s,6) ds )
. . b . R —h
T =17, = llwll, = W(wo) ) o 9 0
Where o ER(tEsg)—i_ %R(fg* ‘;)+ ER“’S 9)
W (o) =2’ (0)M;2(0) + / F'(20)(s) M2 F(x0)(s)ds (5) =—Q'(t,)5Q(t,s) ®)
" P(t) =Q(t,0), Q(t.€) = R(1,0.¢),
R(t.&,s) =R'(t,s,§), 0,Rh], s €0, 1 9
Manuscript received July 26, 1999; revised December 23, 1999. Recom- (t,€,5) (¢ ,5)’ € [0.1], s €0, h] ©)
mended by Associate Editor, Y. Yamamoto. P(ty) =0, Q(tr, ) =0, R(ts, &) =0 (10)
The authors are with the Department of Electrical Engineering-Sys- _ -2
tems, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel (e—mail:a'heres - ! DD' - BB'. . i .
emilia@eng.tau.ac.il). A solution of (6)—(10) is a triple ofn x n-matrices
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where P(t), Q(t, &), and R(t,&,s) are continuous and piecewise Remark 1: In the case ofL@Q problem from (15) it follows that
continuously differentiable functions of their arguments that satisfytin., ||z[|7, = V(0,20) and similarly

(6)—(10) for almost every, ¢, ands.

Lemma 1: Giveny > 0. Let(6)—(10) have a solution df, ¢ ;] that
for somen x n matricesA; > 0andA, > 0 satisfies the following
conditions:

M, —0.5P(0) — 0.5P' (0) — hA; >0
My — Q'(0,5)AT'Q(0, 5)

—0.5hA; — 0.0/

—h

Vs € [—h,0].

Then, the controller

(07 5, S)A;IR(O 63 5) d£ Z 07

(11

uw*(t) = -B' |:P(t);z¢(f)—I—/;hQ(t,ﬁ)F(:vt)(&) de (12)

solves theH . -control problem with the performance level-pf

. Ly 9
min / |z|” dt

= V,(toﬁl‘,o), Y to < tf, VYzo € LQ[_hO]

Hence,V (t,z) > 0in the LQ case.

Remark 2: Note that a certain amount of overdesign is introduced
by the conditions of (11). This overdesign stems from the bounding in
(18). In the case of the zero initial conditions?) = 0,6 € [—h,0]
the conditions of (11) are not relevant and the controller of (12) solves
the H., control problem under the sole assumption that (6)—(10) have
a solution on0, #].

B. Asymptotic Solutions to the RPDEs

For simplicity we assume thati;; = 0 further on. TheH
controller has been found above by solving a set of coupled PRDEs.

Proof: Letx(t) be a solution of (1). Consider the following Lya- Finding a solution to the latter is not an easy task and we are, therefore,

punov—Krasovskii functional [14]:

(tre) = () P(E)2(E) + 247 (1) / QU1 &) F(re)(€) de

+f Uh [ PR

DifferentiatingV (¢, z.) with respect ta and integrating by parts, we
obtain, similarly to [5], that

% Vit ) = —a' () Ca(t) — v |w(t) — w* (1))

+ 7w + Ju(t) =" (O = [u(®)  (14)
where
-0
w0 =0 [P+ [ Quore ).
—h
It follows from (14) that
i 2 2
Vityoa) = Vo) + [ (1o =7l dt
Q
=7l = @y + flu = a7l (15)
We show next that (11) implies
d=W(zo)—V(0,20) > 0. (16)
Denotingv = x(0) andy(s) = F(xo)(s) we have
-0
d=v'(M; — P(0))v+ / y'(s)May(s) ds
—h
-0
— 20 / Q(0,5)y(s)ds
o o
[ ] R0 s @7)

Then, (16) follows from (17), the inequalities

-0
2
—h

-0
< ho'Avo 4 / J(5)Q'(0.5)AT Q0. 5)y(s) ds
—h

-0
f
h

< hy'(s)Azy(s) + ' (s) /

o' Q0. 5)y(s) ds

v (s)R(0,5,€)y(€) d¢

R(0.5.6)A5 " R(0.¢, 5) dEy(s)
(18)
and (11). Finally, (16), (15), and (10) imply that< 0 for v = «™. O

looking for a solution to the RPDEs in a form of asymptotic expansion
in the powers of the delay

P(t) =Po(t) + h[P.(t) + 1p(7)]

+ R2[Po(t) + Map (7)) + -+,

=Qo(t, () + A[Q:1(t. () + (7, ()]

+ 0 [Qa(t,¢) + Tag (1, )] + -+
=Ro(t,(,0) + h[Ri(t,(, 0) + (T, (,0)]
+ BP[Ra(t,¢,0) + Mar(r, )] + - - -,
U=l el el a9)

Expansion (19) has tgpical for singular perturbationgorm: it in-
cludes the “outer expansion” (regular) ter§f3, Q;, R;},i = 0,1---
and the boundary-layer correction terfisp,Il;g, andIl;r,i =
1,2--- The “outer expansion” terms constitute the major part of the
solution that satisfies (6)—(9) fare [0,¢;],6 € [-1,0],¢ € [-1,0].
The boundary-layer correctiorterms will be chosen such that (19)
satisfies thaerminal conditionof (10) and that

|H;P(T)|+C : ico (7, O

[MLize(7, ¢ 0)] = 0
]

Q(t, hQ)

R(t,h(, ho)

sup

+ sup as7T — oo, (20)
QUSRS

The boundary-layer correction terms dependroas on theinde-
pendent variableand do not depend oh. Sincer is a stretched-time
variable around = t, (20) asserts that;p, 1o, andll;r are essen-
tial only aroundt = ¢y and they thus provide a correction to the outer
expansion at the terminal point= ¢;.

We substitute (19) in (6)—(9) aredjuate, separatelputer expansion
and boundary-layer correction terms with the same powers dfe
notice that fort = ¢; — h7, € = h(, ands = hf we haved /ot =
—h~t9/0r1,0/0¢ = h=10/0¢, andd/ds = h~'8/04. Thus, for the

zero-order terms we obtain from (7)-(9)

9]
2Bo(t ¢, 6)+£Ro(t ¢,0)=0
QO (t*( ) - Po(f)v RO(tz 07 C) - Qo(t? C)
and hence
Qo(t,¢) = Po(t). Ro(t.(.0) = Do(t). (21)
Then, from (6) we have
Py(t) + Z Al Po(t) + Z Py(t)A; + Po(t)SPy(t)
i=0 =0
+0'C=0,  Py(ty)=0. (22)
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The latter is the well-known Riccati differential equation (RDE) thaTherefore
corresponds to (1) fak = 0. Our main assumption is as follows.
Al. For a specified value of > 0, the RDE of (22) has a Mio(r,¢) =0, T+(>0
bounded solution of0, ¢]. Oir(7,¢.8)=Mio(tr+ (60— =0
Assumption A1 means that thé.. state-feedback control problem T46>0,0<C (28)
for (1) without delay has a solution. If this were not the case, &gn -

the zero-order term in (19), would not exist. Note that= 1. The higher order terms of the outer expansions can be similarly
To determine the first-order terms we start with the equation§{or tound. We obtain next the boundary-layer terms and show by induc-

9 tion that
— Qu(t.Q) = =M () Po(t) — Po(t)
% II;p(7) =0, T>i—1
Qi(t,0)=Pi(t), M=) Ai+SP. (23) Mig(1,() =0, 74+(>i-1
i=0 ILr(r, ¢ 0) =0, 748>i—1,0<Cc (29)

Then We assume that (29) is satisfied for all< m — 1. We derive the

. . following equations foll,,p, II.¢, andIl,, x:
Q1(t,Q) = Pa(t) = [M () Po(t) + Po()]C.

Mo p(7) = fin(T)

Substituting this expression into the equation fr we obtain
IL,p(m—1)=0

- g 5}
- - — I, T, ) — _EHm 7,() = @ (T,
P+ MP +P14M+ZQ;AQ(P0./\/1+P0) ar Q7€) 1916 (7 Q) =m(7. ()
, i=1 HmQ(T, 0) = HmP(T)
+ 37 g (M P+ Po) 4 =0 Qm(ts, Q)+ ng(0,.() =0
=1
Pi(ts)+Mip(0)=0, g =hi/h (24)
: g II 0 9 I 0 4 II 4
It follows from (6) thatll;»(7) = 0. Sincell, p vanishes for — 37 me(T.C.0) = ac me(T.C.0) = 5 Umr(T.C. )
oo, we havell,p(7) = 0,7 > 0. Hence,PA (t;) = 0, andP; is a = Ym(1, (. 0)

solution to the linear differential equation (24) with the latter terminal . , , ; _
condition. ForIl ¢, Ry, andIl; r we obtain from (7), (8), and (21) Wonse(7,0,8) = lno(7.6), Bn(ty, ¢, 0) + Mmr(0,¢,6) = 0

9 o wheref,, and¢,, are known functions that vanish fer > m — 1,
g Mg(r,¢) — ac Mo(r,¢) =0 andvy.,, is a known function that vanishes fer+ 6 > m — 2,8 < (.
From these equations we find
Qu(t7,¢) + Mo(0,¢) =0 g
) Mig(r, g) =1Ilip(r)=0 Wy (7) = / F(s)ds
ac Bt 6.0 + 55 Bu(t..6) = —R(®)SPu(t) - o(1) e
Ri(7,0.6) =Q1(r.6) (25) and thus (29) holds fdil,. » sincef..(s) = 0forr > m — 1. Further
Mm@(0, ¢+ 7)
and T .
+/ Om(s,—s+7+ds, if7<=C
a a . a o Mo(r.¢) = 0
a—THm(T,Cv@)—a—CHm(T-/C,B)—a—yﬂm(uéﬁ)—o o(7.0) H"LP(S—H)
R1(tf7<=9)+H1R(07<70):0 —/ (b,n(—,9—|—T+C,.9)dS, if 7 > —(
H1R(T,O,(‘/):H1Q(T,(‘/). 0

(26) andIl,.q satisfies (29) sinc@l,,p((+ 1) =0for(+7 > m —1
and¢,,(7,¢) = 0for7 > m — 1. Finally
Note thatQ (t7,¢) = —Po(t;)¢. Then, forr > 0 andt € [0, /], we

find successively Mr(T, (. 0)
. - H"nLR(TaawC)
_ CH+7)Po(ty), ifT <= T
H1Q(T-,C)—{(()’ s s sk s 04 s
R1 (t Cve) :Rll(tev C) _ + HmR(O, C + T~‘9 + T)7 If T S _C79 S (
— 5 _ - ol
=—UROSHH + RO+ Q10 -0, —/ Ym(—=s+(+7,8,5+60—()ds
(>0 0
) M, 6= 0), ifr> —(.8<(.

HlR(Ta C: 9) - H’lR(Ta 97 C)
[+ T)Z.—)Q(tf), ifr< —0,0<¢ @7) Conditions (29) fodl,, ;. readily follow from (30) and the properties
= 0‘ if r > _9’9 S C~ of H7nQ and'l/’)n],-
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C. Near-OptimalH.. Control Lemma 2: Under Al the controlleto(t) = —B' Py (t)x(t) for the

Theorem 1: Under Al the following holds for all small enough zero initial conditionz = 0 guarantees
time-delayh i) for all small enough: a performance level of;

i) The system of (6)—(10) has a solution. This solution is approxi- ii) for all ., a performance level of, where

mated, for any integet:, by
5= L (e < 1)1 o + ||B’Po||%2]

2

r
1272
£ 7
=1

m 2
P(t) = Po(t) + 3 M'[P(1) + Tip(r)] + O(h™*) .
S T gty (e =) [T+ ZA +v2 (36)
Q(t, hC) :Po(t) + Z hi[Qi(t’C) + HiQ(T‘ <)] + O(herl)
=1

and where forvx = 0 (6 = 0) one has to take limitx — 0

R(t.h¢,h8) = Po(t) + S W[Ri(t..6) + (7, (. 6)] (6 = 0).
= It follows from Lemma 2 that the controller, guaranteesa perfor-
+ O(R™) mance level for all small time delays and it guarantees a performance
ty—t level¥ for all delays. Note thaf — ~ for h — 0. Giveny > 0 andh,
== ¢€[-10.¢¢€[-10] (31) in order to make certain that, leads to a performance level pfone

can verify conditions in terms of differential linear matrix inequalities
where the boundary-layer terms satisfy (29), &agh™*!)| < or Riccati differential inequalities (RDI) that were formulated for the
ch™*1 wherec is a positive scalar which is independent ofase of one delay in [8] and can be easily generalized to the case of
h,t,¢, andf. delays.
ii) If additionally

E. Example
Py(0) < M, My >0 (32) Consider the following system:
then the controller of (12) is approximated by i(t) =x(t) —x(t = h) +2u—w, z=col{z,u}  (37)
u(z) :um(;m) + O™ and.J of (4) with 3, > tant; andM> > 0. From (22) we obtain
Z h'B {[p (t) + Iip(7)](t) B(t)+ (P-4 +1=0,  P(t;)=0. (38

Note that fory? > 1/4 the latter RDE has a bounded solution on
+ / [Qi—1(t,C) + Ti—1,0(7, O)]x(t + 1) d(} [0,t7] for all t; > 0. Choosingy* = 1/5 < 1/4 we find that
—! Py = tan(ty — t) and thus fot; < 7/2 (38) has a bounded solution
(33) on|0, t¢]. Itis readily seen that conditions (32) hold. Equation (24) has

the form
wherellpp = 0,Q-1 = II1g = log = 0,Qv = K.

The approximate controller,,, guarantees an attenuation level P4 2tan(t; — )P +2 =0, Py(ty) = 0.
of v + O(R™ ).
It foIIows from Theorem 1 that a high-order approximate controllgfrom the latter equation, (27), and (28) we find
improves the performance polynomially in the size of the small time-

delayh. — tan(ty — 1)+ — =D -
y P I](Lll(ff t) =+ o2 (1‘ ), Q1 P+ C
D. The Zero-Order Controller Performance Mg =—(74+Ox(=7 =)

We study the performance of the system under the zero-order con- Ri(t.C.0) =R\ (t.6.¢) = 6 + Pi(t)
troller uq (+) = — B’ Py(¢)x(t) which solves theH ... -control problem Hip(1,¢,0) =11 k(1,(,8) = —(T+8)x (=T — 0), f<(¢
for (1) without delay. For simplicity we consider the casergf= 0
Applying uo to (1), we obtain wherex(s) = 1 fors > 0 andy(s) = 0 fors < 0. SinceQq = Fo
we obtain for0 < t; < x/2 that

#(t) = A(t)x(t) + Z Ajx(t = hi) + Duw(t) wo(t) =—2tan(ty — t)x(t)

i=1
A(t) = Ag — BB'Py(t)
z=Cx(t), C(t)=col{C,—B Py(t)}. (34)

and
ui(t) =wuo(t) — 2h

-0

Py (t)x(t) + tan(ty — 1) /

—1

2(t + he) d(} ;
Let X(t,to) be the transition matrix of the system of (34), i.e.,
X(t,to) = 0fort < to, X(to,t0) = I, and X (¢,ty) satisfies (34)
fort > to. Let Xo(¢,t0) be the transition matrix of (34) without delay,
i.e., whereh; = 0. Then there exist scalafts > 0,3 > 0, «a, andé
such that for small enoughthe following inequalities are valid:

Consider now the performance of (37) undet= uq andzq = 0
for t; = 1.1. Applying the delay-dependent criterion of [8] on the
closed-loop system we find thag achievesy = (1/+/5) for all delays
h € (0,0.027], since the corresponding RDIs have bounded solutions
o o a(i—to) on [0, 1.1]. Forh = 0.028 the solutions to the RDIs encounter escape
| Xo(t,10)| < foe (352) points and the criterion of [8], which provide a sufficient condition only,
|X (t.10)] < B’ tt5 € [0, 4] (35b) cannot therefore be used to verify the levek (1/v/5).
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I1l. CONCLUSIONS Note thatPp,+1, Qm+1, and Ry,+1 depend on.. The known
matrix functionskE,,., G.., andi,,, are continuous on h, ¢, s
and contain linear and quadratic termshift,,,. 1 andhQ,,+1.
The known matrix functiong,,, andk,,, are continuous oh &, s.

Let ®(¢, s) be the transition matrix of the systei(t) =
—M'(t)z(t). Denote

A solution to the state-feedbadk.., control of linear time-invariant
systems with state time delays in the finite horizon case is presented.
The controller is obtained by solving RPDEs. An approximate solu-
tion to the RPDEs has been constructed by expansion in powers of the
largest delay. The theory that has been developed in this paper shows
that similarly to the case of singularly perturbed systems [13], for small
delays our controllers are affected by the boundary-layer phenomenon. En(t) =En(t,h,h Py (1))
The high order approximate controller improves the performance of the Gon(£,6) = h g (£,€)
closed-loop system polinomially in the size of the delay. The memory-

less zero-approximation may, in many cases, be sufficient for robustly + Gt ey R Py (8), RQut1 (¢, €))
achieving the required performance. It is shown that the performance K (t,&,5) =h™ 'k (t, €, 5)
of the system under such a controller is robust for small time delays. t Ko (1,6, 5, hQgt (£,€) s AQuny1 (L, 5)).

Explicit formula for the guaranteed performance level is obtained for

this case in terms of the coefficients of the system.
Then, the system of (39)—(42) implies the following integral

APPENDIX system for the determination @%,,+1, Ryt1, andQ@m+1:

Proof of Theorem 1:

i) To prove the validity of (31) we consider the equations for the Prnia(t)
. =3 r
remainders = _/ O(t,p) {Z AQr 1 (P —hi) — Qry1(p, 0)]
h m+11—)’”+l tr i=1
=P- Z h'P + ) [Qumi1 (e —hi) = Qoagr (1 M)A
i—0 =1
m+1 —
h Q7n+l(t: 5) + Em(Pah,hPerl(P))} él(fﬁp) dp
=Q(t,¢) - Z RQi(t, R ) + Wig R (ty — 1), 2 ¢]] Ot (1.6)
13
D R (0,6 > / B(t.p) G (p.p — t +€) dp,
ty
= R(t,£, s Zh J(thTE R s) ift—&>tf

- ‘I’(ff—f Py (t=§)
<1>(£ P)Gm(p+t—E&p)dp,

+ [Lr[h™ (ff—f),h e h )]

in the following expansions: 0
ift—¢& < ty
Pm+1 + P;n+u\4 + M P Rpi1(t, €, 5)
=Rl (t s,
+ Z AQhs (=) = Qg (£.0)] ot (b8:8)
= / K.(p,p+&—tp+s—t)dp,
) ty
+ Z [Qut1 (£ =hi) = Quua (£, 0)]A; ity —t<—£5<¢
4 Ep(t,h, hPrii (1)) =0 (39) Ryyi (8, 5)

= R:fn+l(t757£)
€
:_/ I(m(p_E‘FtPP‘i“”_E)dP
0
+Q,,7,+1(f—£78—f), iftf_t > =&, 5 <E.

% Qm-H (t~ 5) + aa_& Qm-H (t, C)

= —./M,inﬁ*l(’tw E) - Z AZ[RW+1 (fv _hlsf)
i=1

= Riny1(t.0,8)]

+ h—lgm(t E) + G (t, hy h P (), hQ g1 (£,€))  (40) Applying the contraction principle argument on the latter system,
K] one can show that for all small enough> 0 this system has a
ot Rt €. 9) unique solutionP,, +1, Q.m+1, and R,,,+1, uniformly bounded

3] and continuously depending én > 0,¢, s, and{. Hence, the
+—Rm+1(t,£,s) y p g ,t,s &

o€ approximation of (31) is uniform oh, ¢, ¢, andd.
) . ii) Equation (33) follows from (31) and the rest of ii) is similar to
+ —— Reg1 (£, €, 8) + h™ k(L. €, 5) 5 U
Js (5]
+ Ko (t, 1,8, 8, hQmi1 (8,6), hQm1(t, ) =0 (41) Proof of Lemma 2:i) Applying u, to (1), we obtain the system of
Prir (1) = Qi (8,0 (34). Note thatin (34) only the matricel{¢) andC'(¢) are time-varying

o and thus the correspondidg x+) is given by (3) and is time-invariant.
Q1 (€)= R'”Tl (.06 Similarly to Remark 2 it can be shown that for this closed-loop system
Ry (1.6, 5) = Ry (t, 5, €) 217, < ¥*|lw|l7, forall w € L»[0.ts] andzo = 0 if the cor-
Poyi(ty) =0, Qm+1(t5,€) =0, R(tf,&s)=0. (42) respondlng RPDEs of (6)-(10), where, = A(t),C = C(t), and
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S = DD'/+*, have a solution. Similarly to i) of Theorem 1 it can be

proved that the resulting RPDEs have a solution, approximated by

P(t) = Po(t) + O(h)
QUL h¢) = Po(t) + O(h)
R(t,h¢, h8) = Po(t) + O(h)

where P, (¢) satisfies (22).

ii) Let «(¢) be a solution of (1) witw = u¢ and withh > 0
and lety(¢) be a solution of (1) witht = uo and withh = 0. Then,
v(t) = x(t) — y(t) satisfies the following equation:

o(t) = A(t)o(t) + Z A;v(t — hy)

A Aify(t—h) —y®)], v =0 (43)
i=1
where

y(t) —y(t —h;) = /‘t |:(Z(9) + Z A)y(s) + Dui(s):| ds.

t—h; i=1

(44)
From (44) and (35b) it follows that

ly(t) — y(t — hi)]

ot
<
t—h;

K(?) + 72 A;

=1

|:|D| lw(s)|+

|'y(s)|:| ds. (45)

2411

<8 AP | DP?
=1

T 2 22
S T N T Pt

; 2«
i=1 o

L sei—on 2
. e dr dtlw(p)|” dp
0 P 0

r

22
< Dotp( —1) 3 a2 D
=1

1+

| SR

2
/52 . o r )

1+ Q_ztf (62atf -1) |4+ Z A; :| ||’LU||iz.

=1 o
Hence,
1217, <IColI7, + 1B Pooll7, + [ICylIZ,
+ 1B Poyllz, <7 llwllL,- O
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