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Finite Horizon State-Feedback Control of
Continuous-Time Systems with State Delays

Emilia Fridman and Uri Shaked

Abstract—The finite horizon control of time-invariant linear sys-
tems with a finite number of point and distributed time delays is consid-
ered. The controller is obtained by solving coupled Riccati-type partial dif-
ferential equations. The solutions to these equations and the resulting con-
trollers are approximated by series expansions in powers of the largest
delay. Unlike the infinite horizon case, these approximations possess both
regular and boundary layer terms. The performance of the closed-loop
system under the memoryless zero-approximation controller is analyzed.

Index Terms—Asymptotic approximations, –state-feedback control,
Riccati type partial differential equations, singular perturbations, time-
delay systems.

I. PROBLEM FORMULATION

Throughout this paper we denote byj � j the Euclidean norm of a
vector or the appropriate norm of a matrix. Giventf > 0, letL2[0; tf ]
be the space of the square integrable functions with the normk � kL
and letC[a; b] be the space of the continuous functions on[a; b] with
the normk�k1. We denotext = x(t+�); yt = y(t��); � 2 [�h; 0].
Prime denotes the transpose of a matrix and colfx; yg denotes a column
vector with componentsx andy.

Consider the system

_x(t) =L(xt(�)) +Bu(t) +Dw(t)

z(t) = colfCx(t); u(t)g; t � 0

x(�) =x0(�); � 2 [�h; 0] (1)

wherex(t) 2 Rn is the state vector,u(t) 2 Rl is the control signal,
w(t) 2 Rq is the exogenous disturbance,z(t) 2 Rp is the observation
vector, andB;C, andD are constant matrices of appropriate dimen-
sions. TheRn-valued functionL(�)which carriesRn-valued functions
on [�h; 0] intoRn is defined as follows:

L(xt(�)) =

r

i=0

Aixt(�hi) +
0

�h

A01(s)xt(s)ds (2)

where�h = �hr < �hr�1 < � � � < �h1 < �h0 = 0; A0; A1

� � � ; Ar are constant matrices andA01(s) is a square integrable matrix
function.

Denote

F (xt)(�) =

r

i=1

Aixt(�hi � �)�i(�) +
�

�h

A01(p)xt(p� �) dp

(3)

and where�i is the indicator function for the set[�hi; 0], i.e.,�i(�) =
1 if � 2 [�hi; 0] and�i(�) = 0 otherwise.

Given  > 0, and assuming thatw 2 L2[0; tf ] and
x0 2 L2[�h; 0], we consider the following performance index:

J = kzk2L � 
2kwk2L �W (x0) (4)

where

W (x0) =x
0(0)M1x(0) +

0

�h

F
0(x0)(s)M2F (x0)(s)ds (5)
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and whereM1 = M 0

1;M2 = M 0

2 are matrices denoting the initial
weightning condition. The problem is to find a state-feedback con-
troller which ensures thatJ � 0 for all w 2 L2[0; tf ] and for all
initial conditionsx0 2 L2[�h; 0].

In theinfinite horizoncase such a controller (for zero initial condition
x0 = 0) has been designed in [1]–[6] (see also references therein). In
[1] and [2] the controller has been obtained by solving Riccati operator
equations. In [3] and [4] delay-independent and in [6] delay-dependent
memoryless controllers have been designed. In [5] the controller (with
memory) has been derived from Riccati-type partial differential equa-
tions (RPDEs) or inequalities, and the solution of the RPDEs has been
approximated by expansions in the powers of the delay. In [7] the gra-
dient ofJ with respect toh ath = 0 has been computed. In [8] and [9]
bounded real criteria have been obtained. Asymptotic series solutions
of systems with small delay have been constructed in [10]–[12].

In many engineering cases (target maneuver, missile guidance, etc.)
a control session of limited time length is needed. In such cases the ef-
fect of the initial conditions is most important and the results of [1]–[6]
cannot provide a satisfactory control strategy. In the present paper, we
generalize the results of [5] to thefinite horizoncase. Unlike [5], the
required controllers are time-varying, they are obtained by solving cou-
pled finite horizon RPDEs. For small delays, similarly to the case of
singularly perturbed systems (see [10]–[13]), the controllers are af-
fected by the boundary-layer phenomenon. The main contribution of
the paper is the construction, for the first time, of an asymptotic solu-
tion to the important class of finite horizon RPDEs that are encountered
with the finite-horizon LQ control (see [14]), and with theH1 control.
Proofs of Theorem 1 and Lemma 2 are given in the Appendix.

II. M AIN RESULTS

A. H1-Controller Design

Consider the following RPDEs with respect to then � n-matrices
P (t); Q(t; �), andR(t; �; s):

_P (t) +A
0

0P (t) + P (t)A0 +

r

i=1

A
0

iQ
0(t;�hi)

+

r

i=1

Q(t;�hi)Ai + P (t)SP (t) + C
0

C

+
0

�h

Q(t; �)A01(�)d�

+
0

�h

A
0

01(�)Q
0(t; �) d� = 0 (6)

@

@t
Q(t; �) +

@

@�
Q(t; �)

= �[A00 + P (t)S]Q(t; �)�

r

i=1

A
0

iR(t;�hi; �)

�
0

�h

A
0

01(s)R(t; s; �) ds (7)

@

@t
R(t; �; s) +

@

@�
R(t; �; s) +

@

@s
R(t; �; s)

= �Q0(t; �)SQ(t; s) (8)

P (t) =Q(t; 0); Q(t; �) = R(t; 0; �);

R(t; �; s) =R
0(t; s; �); � 2 [0; h]; s 2 [0; h] (9)

P (tf ) = 0; Q(tf ; �) = 0; R(tf ; �; s) = 0 (10)

whereS = �2DD0 � BB0.
A solution of (6)–(10) is a triple of n � n-matrices

fP (t);Q(t; �); R(t; �; s)g t 2 [0; tf ]; � 2 [�h; 0]; s 2 [�h; 0],
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where P (t); Q(t; �), and R(t; �; s) are continuous and piecewise
continuously differentiable functions of their arguments that satisfy
(6)–(10) for almost everyt; �, ands.

Lemma 1: Given > 0. Let (6)–(10) have a solution on[0; tf ] that
for somen�n matrices�1 > 0 and�2 > 0 satisfies the following
conditions:

M1 � 0:5P (0)� 0:5P 0(0)� h�1 � 0

M2 �Q0(0; s)��1
1 Q(0; s)

� 0:5h�2 � 0:5
0

�h

R(0; s; �)��1
2 R(0; �; s)d� � 0;

8 s 2 [�h; 0]: (11)

Then, the controller

u�(t) = �B0 P (t)x(t) +
0

�h

Q(t; �)F (xt)(�)d� (12)

solves theH1-control problem with the performance level of.
Proof: Letx(t) be a solution of (1). Consider the following Lya-

punov–Krasovskii functional [14]:

V (t; xt) =x(t)0P (t)x(t) + 2x0(t)
0

�h

Q(t; �)F (xt)(�)d�

+
0

�h

0

�h

F 0(xt)(s)R(t; s; �)F (xt)(�)ds d�: (13)

DifferentiatingV (t; xt) with respect tot and integrating by parts, we
obtain, similarly to [5], that

d

dt
V (t; xt) =�x0(t)C 0Cx(t)� 2jw(t)� w�(t)j2

+ 2jw(t)j2 + ju(t)� u�(t)j2 � ju(t)j2 (14)

where

w�(t) = �2D0 P (t)x(t) +
0

�h

Q(t; �)F (xt)(�)d� :

It follows from (14) that

V (tf ; xt )� V (0; x0) +
t

0

[jzj2 � 2jwj2] dt

= �2kw � w�kL + ku� u�kL : (15)

We show next that (11) implies

d =W (x0)� V (0; x0) � 0: (16)

Denotingv = x(0) andy(s) = F (x0)(s) we have

d = v0(M1 � P (0))v+
0

�h

y0(s)M2y(s)ds

� 2v0
0

�h

Q(0; s)y(s)ds

�
0

�h

0

�h

y0(s)R(0; s; �)y(�) d� ds: (17)

Then, (16) follows from (17), the inequalities

2
0

�h

v0Q(0; s)y(s)ds

� hv0�1v +
0

�h

y0(s)Q0(0; s)��1
1 Q(0; s)y(s)ds

2
0

�h

y0(s)R(0; s; �)y(�) d�

� hy0(s)�2y(s) + y0(s)
0

�h

R(0; s; �)��1
2 R(0; �; s)d�y(s)

(18)

and (11). Finally, (16), (15), and (10) imply thatJ � 0 for u = u�.

Remark 1: In the case ofLQ problem from (15) it follows that
minu kzk

2
L = V (0; x0) and similarly

min
u

t

t

jzj2 dt

= V (t0; x0); 8 t0 � tf ; 8x0 2 L2[�h; 0]:

Hence,V (t; x) � 0 in theLQ case.
Remark 2: Note that a certain amount of overdesign is introduced

by the conditions of (11). This overdesign stems from the bounding in
(18). In the case of the zero initial conditionsx(�) = 0; � 2 [�h; 0]
the conditions of (11) are not relevant and the controller of (12) solves
theH1 control problem under the sole assumption that (6)–(10) have
a solution on[0; tf ].

B. Asymptotic Solutions to the RPDEs

For simplicity we assume thatA01 = 0 further on. TheH1

controller has been found above by solving a set of coupled PRDEs.
Finding a solution to the latter is not an easy task and we are, therefore,
looking for a solution to the RPDEs in a form of asymptotic expansion
in the powers of the delayh

P (t) =P0(t) + h[P1(t) + �1P (�)]

+ h2[P2(t) + �2P (�)] + � � � ;

Q(t; h�) =Q0(t; �) + h[Q1(t; �) + �1Q(�; �)]

+ h2[Q2(t; �) + �2Q(�; �)] + � � � ;

R(t; h�; h�) =R0(t; �; �) + h[R1(t; �; �) + �1R(�; �; �)]

+ h2[R2(t; �; �) + �2R(�; �; �)] + � � � ;

� =
tf � t

h
; � 2 [�1; 0]; � 2 [�1; 0]: (19)

Expansion (19) has atypical for singular perturbationsform: it in-
cludes the “outer expansion” (regular) termsfPi; Qi; Rig; i = 0; 1 � � �
and the boundary-layer correction terms�iP ;�iQ, and �iR; i =
1; 2 � � � The “outer expansion” terms constitute the major part of the
solution that satisfies (6)–(9) fort 2 [0; tf ]; � 2 [�1; 0]; � 2 [�1; 0].
The boundary-layer correctionterms will be chosen such that (19)
satisfies theterminal conditionsof (10) and that

j�iP (�)j+ sup
�2[�1;0]

j�iQ(�; �)j

+ sup
�;�2[�1;0]

j�iR(�; �; �)j ! 0 as � !1: (20)

The boundary-layer correction terms depend on� as on theinde-
pendent variableand do not depend onh. Since� is a stretched-time
variable aroundt = tf , (20) asserts that�iP ;�iQ, and�iR are essen-
tial only aroundt = tf and they thus provide a correction to the outer
expansion at the terminal pointt = tf .

We substitute (19) in (6)–(9) andequate, separately, outer expansion
and boundary-layer correction terms with the same powers ofh. We
notice that fort = tf � h�; � = h�; ands = h� we have@=@t =
�h�1@=@�; @=@� = h�1@=@�; and@=@s = h�1@=@�. Thus, for the
zero-order terms we obtain from (7)-(9)

@

@�
Q0(t; �) = 0

@

@�
R0(t; �; �) +

@

@�
R0(t; �; �) = 0

Q0(t; 0) = P0(t); R0(t; 0; �) = Q0(t; �)

and hence

Q0(t; �) = P0(t); R0(t; �; �) = P0(t): (21)

Then, from (6), we have

_P0(t) +

r

i=0

A0iP0(t) +

r

i=0

P0(t)Ai + P0(t)SP0(t)

+ C 0C = 0; P0(tf) = 0: (22)
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The latter is the well-known Riccati differential equation (RDE) that
corresponds to (1) forh = 0. Our main assumption is as follows.

A1. For a specified value of > 0, the RDE of (22) has a
bounded solution on[0; tf ].

Assumption A1 means that theH1 state-feedback control problem
for (1) without delay has a solution. If this were not the case, evenP0,
the zero-order term in (19), would not exist. Note thatP0 = P 00.

To determine the first-order terms we start with the equations forQ1

@

@�
Q1(t; �) =�M

0(t)P0(t)� _P0(t)

Q1(t; 0) =P1(t); M =

r

i=0

Ai + SP0: (23)

Then

Q1(t; �) = P1(t)� [M0(t)P0(t) + _P0(t)]�:

Substituting this expression into the equation forP1, we obtain

_P1 +M
0P1 + P1M+

r

i=1

giA
0

i(P0M+ _P0)

+

r

i=1

gi(M
0P0 + _P0)Ai = 0

P1(tf) + �1P (0) = 0; gi = hi=h (24)

It follows from (6) that _�1P (�) = 0. Since�1P vanishes for� !
1, we have�1P (�) � 0; � � 0. Hence,P1(tf) = 0, andP1 is a
solution to the linear differential equation (24) with the latter terminal
condition. For�1Q; R1, and�1R we obtain from (7), (8), and (21)

@

@�
�1Q(�; �)�

@

@�
�1Q(�; �) = 0

Q1(tf ; �) + �1Q(0; �) = 0

�1Q(�; 0) = �1P (�) = 0

@

@�
R1(t; �; �) +

@

@�
R1(t; �; �) =�P0(t)SP0(t)� _P0(t)

R1(�; 0; �) =Q1(�; �) (25)

and

@

@�
�1R(�; �; �)�

@

@�
�1R(�; �; �)�

@

@�
�1R(�; �; �) = 0

R1(tf ; �; �) + �1R(0; �; �) = 0

�1R(�; 0; �) =�1Q(�; �):

(26)

Note thatQ1(tf ; �) = � _P0(tf)�. Then, for� � 0 andt 2 [0; tf ], we
find successively

�1Q(�; �) =
(� + �) _P0(tf); if � � ��
0; if � > ��

R1(t; �; �) =R01(t; �; �)

=��[P0(t)SP0(t) + _P0(t)] +Q1(t; � � �);

� � �

�1R(0; �; �) = � _P0(tf)

�1R(�; �; �) =�01R(�; �; �)

=
(� + �) _P0(tf); if � � � �; � � �

0; if � > ��; � � �:
(27)

Therefore

�1Q(�; �) = 0; � + � > 0

�1R(�; �; �) =�1Q(� + �; � � �) = 0

� + � > 0; � � �: (28)

The higher order terms of the outer expansions can be similarly
found. We obtain next the boundary-layer terms and show by induc-
tion that

�iP (�) = 0; � > i� 1

�iQ(�; �) = 0; � + � > i� 1

�iR(�; �; �) = 0; � + � > i� 1; � � �: (29)

We assume that (29) is satisfied for alli � m � 1. We derive the
following equations for�mP ;�mQ, and�mR:

_�mP (�) = fm(�)

�mP (m� 1) =0

@

@�
�mQ(�; �)�

@

@�
�mQ(�; �) =�m(�; �)

�mQ(�; 0) =�mP (�)

Qm(tf ; �) + �mQ(0; �) = 0

@

@�
�mR(�; �; �)�

@

@�
�mR(�; �; �)�

@

@�
�mR(�; �; �)

=  m(�; �; �)

�mR(�; 0; �) = �mQ(�; �); Rm(tf ; �; �) + �mR(0; �; �) = 0

wherefm and�m are known functions that vanish for� > m � 1,
and m is a known function that vanishes for� + � > m� 2; � � �.

From these equations we find

�mP (�) =
�

m�1

fm(s)ds

and thus (29) holds for�mP sincefm(s) = 0 for � > m�1. Further

�mQ(�; �) =

�mQ(0; � + �)

+
�

0

�m(s;�s+ � + �) ds; if � � ��

�mP (� + �)

�
�

0

�m(�s+ � + �; s)ds; if � > ��

and�mQ satisfies (29) since�mP (� + �) = 0 for � + � > m � 1
and�m(�; �) = 0 for � > m� 1. Finally

�mR(�; �; �)

= �0mR(�; �; �)

=

�

0

 m(s;�s+ � + �;�s+ � + �)ds

+�mR(0; � + �; � + �); if � � ��; � � �

�
�

0

 m(�s+ � + �; s; s+ � � �) ds

+�mQ(� + �; � � �); if � > ��; � � �:

(30)

Conditions (29) for�mR readily follow from (30) and the properties
of �mQ and m.
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C. Near-OptimalH1 Control

Theorem 1: Under A1 the following holds for all small enough
time-delayh

i) The system of (6)–(10) has a solution. This solution is approxi-
mated, for any integerm, by

P (t) =P0(t) +

m

i=1

hi[Pi(t) + �iP (�)] +O(hm+1)

Q(t; h�) =P0(t) +

m

i=1

hi[Qi(t; �) + �iQ(�; �)] +O(hm+1)

R(t; h�; h�) =P0(t) +

m

i=1

hi[Ri(t; �; �) + �iR(�; �; �)]

+O(hm+1)

� =
tf � t

h
; � 2 [�1; 0]; � 2 [�1; 0] (31)

where the boundary-layer terms satisfy (29), andjO(hm+1)j �
chm+1, wherec is a positive scalar which is independent of
h; t; �, and�.

ii) If additionally

P0(0) < M1; M2 > 0 (32)

then the controller of (12) is approximated by

u(xt) =um(xt) +O(hm+1)

um(xt) = �
m

i=0

hiB0 [Pi(t) + �iP (�)]x(t)

+
0

�1

[Qi�1(t; �) + �i�1;Q(�; �)]x(t+ h�) d�

(33)

where�0P = 0; Q�1 = ��1;Q = �0;Q = 0; Q0 = P0.
The approximate controllerum guarantees an attenuation level
of  + O(hm+1).

It follows from Theorem 1 that a high-order approximate controller
improves the performance polynomially in the size of the small time-
delayh.

D. The Zero-Order Controller Performance

We study the performance of the system under the zero-order con-
troller u0(t) = �B0P0(t)x(t) which solves theH1-control problem
for (1) without delay. For simplicity we consider the case ofx0 = 0.
Applying u0 to (1), we obtain

_x(t) =A(t)x(t) +

r

i=1

Aix(t� hi) +Dw(t)

A(t) =A0 �BB0P0(t)

z = ~Cx(t); ~C(t) = colfC;�B0P0(t)g: (34)

Let X(t; t0) be the transition matrix of the system of (34), i.e.,
X(t; t0) = 0 for t < t0, X(t0; t0) = In andX(t; t0) satisfies (34)
for t � t0. LetX0(t; t0) be the transition matrix of (34) without delay,
i.e., wherehi = 0. Then there exist scalars�0 > 0; � > 0; �; and�
such that for small enoughh the following inequalities are valid:

jX0(t; t0)j ��0e
�(t�t ) (35a)

jX(t; t0)j ��e�(t�t ); t; t0 2 [0; tf ]: (35b)

Lemma 2: Under A1 the controlleru0(t) = �B0P0(t)x(t) for the
zero initial conditionx0 = 0 guarantees

i) for all small enoughh a performance level of;
ii) for all h, a performance level of, where

2 =
�2

2�
tf e2�t � 1 jDj2 jCj2 + kB0P0k2L

r

i=1

jAij2h2i

� 1 +
�20
2�

tf e2�t � 1 A +

r

i=1

Ai

2

1

+ 2 (36)

and where for� = 0 (� = 0) one has to take limit� ! 0
(� ! 0).

It follows from Lemma 2 that the controlleru0 guarantees a perfor-
mance level for all small time delays and it guarantees a performance
level for all delays. Note that !  for h! 0. Given > 0 andh,
in order to make certain thatu0 leads to a performance level of one
can verify conditions in terms of differential linear matrix inequalities
or Riccati differential inequalities (RDI) that were formulated for the
case of one delay in [8] and can be easily generalized to the case ofr
delays.

E. Example

Consider the following system:

_x(t) = x(t)� x(t� h) + 2u� w; z = colfx; ug (37)

andJ of (4) withM1 > tan tf andM2 > 0. From (22) we obtain

_P0(t) + (�2 � 4)P 2
0 + 1 = 0; P0(tf) = 0: (38)

Note that for2 � 1=4 the latter RDE has a bounded solution on
[0; tf ] for all tf > 0. Choosing2 = 1=5 < 1=4 we find that
P0 = tan(tf � t) and thus fortf < �=2 (38) has a bounded solution
on [0; tf ]. It is readily seen that conditions (32) hold. Equation (24) has
the form

_P1 + 2 tan(tf � t)P1 + 2 = 0; P1(tf) = 0:

From the latter equation, (27), and (28) we find

P1 = tan(tf � t) +
(tf � t)

cos2(tf � t)
; Q1 = P1 + �

�1Q =�(� + �)�(�� � �)

R1(t; �; �) =R01(t; �; �) = � + P1(t)

�1R(�; �; �) =�01R(�; �; �) = �(� + �)�(�� � �); � � �

where�(s) = 1 for s � 0 and�(s) = 0 for s < 0. SinceQ0 = P0
we obtain for0 < tf < �=2 that

u0(t) =�2 tan(tf � t)x(t)

and

u1(t) =u0(t)� 2h

� P1(t)x(t) + tan(tf � t)
0

�1

x(t+ h�)d� :

Consider now the performance of (37) underu = u0 andx0 = 0
for tf = 1:1. Applying the delay-dependent criterion of [8] on the
closed-loop system we find thatu0 achieves = (1=

p
5) for all delays

h 2 (0; 0:027], since the corresponding RDIs have bounded solutions
on [0, 1.1]. Forh = 0:028 the solutions to the RDIs encounter escape
points and the criterion of [8], which provide a sufficient condition only,
cannot therefore be used to verify the level = (1=

p
5).
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III. CONCLUSIONS

A solution to the state-feedbackH1 control of linear time-invariant
systems with state time delays in the finite horizon case is presented.
The controller is obtained by solving RPDEs. An approximate solu-
tion to the RPDEs has been constructed by expansion in powers of the
largest delay. The theory that has been developed in this paper shows
that similarly to the case of singularly perturbed systems [13], for small
delays our controllers are affected by the boundary-layer phenomenon.
The high order approximate controller improves the performance of the
closed-loop system polinomially in the size of the delay. The memory-
less zero-approximation may, in many cases, be sufficient for robustly
achieving the required performance. It is shown that the performance
of the system under such a controller is robust for small time delays.
Explicit formula for the guaranteed performance level is obtained for
this case in terms of the coefficients of the system.

APPENDIX

Proof of Theorem 1:

i) To prove the validity of (31) we consider the equations for the
remainders

h
m+1

Pm+1

= P �

m

i=0

h
i
Pi

h
m+1

Qm+1(t; �)

= Q(t; �)�

m

i=0

h
i
Qi t; h

�1
� +�iQ h

�1(tf � t); h�1�

h
m+1

Rm+1(t; �; s)

= R(t; �; s)�

m

i=0

h
i
Ri t; h

�1
�; h

�1
s

+ �iR h
�1(tf � t); h�1�; h�1s)

in the following expansions:

_Pm+1 + Pm+1M+M0

Pm+1

+

r

i=1

A
0

i[Q
0

m+1(t;�hi)�Q
0

m+1(t; 0)]

+

r

i=1

[Qm+1(t;�hi)�Qm+1(t; 0)]Ai

+Em(t; h; hPm+1(t)) = 0 (39)
@

@t
Qm+1(t; �) +

@

@�
Qm+1(t; �)

= �M0

Qm+1(t; �)�

r

i=1

A
0

i[Rm+1(t;�hi; �)

�Rm+1(t; 0; �)]

+ h
�1
gm(t; �) +Gm(t; h; hPm+1(t); hQm+1(t; �)) (40)

@

@t
Rm+1(t; �; s)

+
@

@�
Rm+1(t; �; s)

+
@

@s
Rm+1(t; �; s) + h

�1
km(t; �; s)

+Km(t; h; �; s; hQm+1(t; �); hQm+1(t; s)) = 0 (41)

Pm+1(t) = Qm+1(t; 0

Qm+1(t; �) = Rm+1(t; 0; �)

Rm+1(t; �; s) = R
0

m+1(t; s; �)

Pm+1(tf ) = 0; Qm+1(tf ; �) = 0; R(tf ; �; s) = 0: (42)

Note thatPm+1; Qm+1, andRm+1 depend onh. The known
matrix functionsEm; Gm, andKm are continuous ont; h; �; s
and contain linear and quadratic terms inhPm+1 andhQm+1.
The known matrix functionsgm andkm are continuous ont; �; s.

Let �(t; s) be the transition matrix of the system_x(t) =
�M0(t)x(t). Denote

Em(t) =Em(t; h; hPm+1(t))

Gm(t; �) =h
�1
gm(t; �)

+Gm(t; h; hPm+1(t); hQm+1(t; �))

Km(t; �; s) =h
�1
km(t; �; s)

+Km(t; h; �; s; hQm+1(t; �); hQm+1(t; s)):

Then, the system of (39)–(42) implies the following integral
system for the determination ofPm+1; Rm+1, andQm+1:

Pm+1(t)

= �
t

t

�(t; p)

r

i=1

A
0

i[Q
0

m+1(p;�hi)�Q
0

m+1(p; 0)]

+

r

i=1

[Qm+1(p;�hi)�Qm+1(p; 0)]Ai

+ Em(p; h; hPm+1(p)) �0(t; p)dp

Qm+1(t; �)

=

t

t

�(t; p)Gm(p; p� t+ �) dp;

if t� � � tf

�(t; t� �)Pm+1(t� �)

+
�

0

�(�; p)Gm(p+ t� �; p)dp;

if t� � < tf

Rm+1(t; �; s)

= R
0

m+1(t; s; �)

=
t

t

Km(p; p+ � � t; p+ s� t)dp;

if tf � t � ��; s � �

Rm+1(t; �; s)

= R
0

m+1(t; s; �)

= �
�

0

Km(p� � + t; p; p+ s� �) dp

+Qm+1(t� �; s� �); if tf � t > ��; s � �:

Applying the contraction principle argument on the latter system,
one can show that for all small enoughh > 0 this system has a
unique solutionPm+1; Qm+1, andRm+1, uniformly bounded
and continuously depending onh > 0; t; s, and�. Hence, the
approximation of (31) is uniform onh; t; �, and�.

ii) Equation (33) follows from (31) and the rest of ii) is similar to
[5].

Proof of Lemma 2: i) Applying u0 to (1), we obtain the system of
(34). Note that in (34) only the matricesA(t) and ~C(t)are time-varying
and thus the correspondingF (xt) is given by (3) and is time-invariant.
Similarly to Remark 2 it can be shown that for this closed-loop system
kzk2L � 2kwk2L for all w 2 L2[0; tf ] andx0 = 0 if the cor-
responding RPDEs of (6)–(10), whereA0 = A(t); C = ~C(t), and
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S = DD0=2, have a solution. Similarly to i) of Theorem 1 it can be
proved that the resulting RPDEs have a solution, approximated by

P (t) =P0(t) +O(h)

Q(t; h�) =P0(t) +O(h)

R(t; h�; h�) =P0(t) +O(h)

whereP0(t) satisfies (22).
ii) Let x(t) be a solution of (1) withu = u0 and withh > 0

and lety(t) be a solution of (1) withu = u0 and withh = 0. Then,
v(t) = x(t)� y(t) satisfies the following equation:

_v(t) =A(t)v(t) +

r

i=1

Aiv(t� hi)

+

r

i=1

Ai[y(t� hi)� y(t)]; v0 = 0 (43)

where

y(t)� y(t� hi) =
t

t�h

(A(s) +

r

i=1

Ai)y(s) +Dw(s) ds:

(44)

From (44) and (35b) it follows that

jy(t)� y(t� hi)j

�
t

t�h

jDj jw(s)j+ A(s) +

r

i=1

Ai jy(s)j ds: (45)

By the variation of constants formula [15], (43) is equivalent to the
integral equation

v(t) =
t

0

X(t; s)

r

i=1

Ai[y(s� hi)� y(s)]ds: (46)

Applying (35a) and changing the order of integration we find

kyk2L =
t

0

t

0

X0(t; s)Dw(s)ds
2

dt

��20

t

0

dt
t

0

ds1
t

0

jDj2e�(t�s )jw(s1)j

� e�(t�s )jw(s2)j ds2

��20 jDj2
t

0

dt
t

0

ds1
t

0

e2�(t�s )jw(s2)j
2ds2

=
�20 jDj2

2�

t

0

t

0

e2�t � 1 jw(s2)j
2 ds2 dt

�
�20 jDj2

2�
e2�t � 1 tfkwk

2
L :

From (45), (46), (35b), and the latter inequality, we obtain

kvk2L ��2
r

i=1

jAij
2

t

0

t

0

e�(t�s)
s

s�h

� jDj jw(�)j+ A(� ) +

r

i=1

Ai jy(� )j d� ds

�
t

0

e�(t�p)
p

p�h

jDj jw(r)j

+ A(r) +

r

i=1

Ai jy(r)j dr dp dt

� �2
r

i=1

jAij
2jhij

2jDj2

� 1 + A+

r

i=1

Ai

2

1

e2�t � 1 tf
�20
2�

�
t

0

t

p

t

0

e�(2t�2�) d� dtjw(p)j2 dp

�
�2

2�
tf e2�t � 1

r

i=1

jAij
2h2i jDj2

� 1 +
�20
2�

tf e2�t � 1 A+

r

i=1

Ai

2

1

kwk2L :

Hence,

kzk2L �kCvk2L + kB0P0vk
2
L + kCyk2L

+ kB0P0yk
2
L � 2kwk2L :
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