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A singularly perturbed linear functional-differential system is considered. The delay is assumed to be
small of the order of a small parameter multiplying a part of derivatives in the system. It is ‘not assumed
that the fast subsystem is asymptotically stable’. Two approaches to the study of the exponential stability
of the singularly perturbed system are suggested. The first one treats systems with constant delays via
the analysis of asymptotic behaviour of the roots of their characteristic equation. The second approach
develops a direct Lyapunov—Krasovskii method for systems with time-varying delays leading to stability
conditions in terms of linear matrix inequalities. Numerical examples illustrate the efficiency of both
approaches.
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1. Introduction

Singularly perturbed differential equations, being an adequate mathematical model of real-life multi-
time-scale systems, were studied extensively in the literature (sedjaanay,1966;Khalil, 2001;
Kokotovic et al., 1986; O’'Malley, 1991, Vasil'eva et al., 1995; Wasoy 1965and references therein).

One of the important classes of such equations is the class of equations with small time delays of order
of a small positive parameter multiplying a part of the derivatives in the system. Brief surveys of
results in this topic can be found @&lizer (2004a) andslizer (2009).

One of the important issues, studied in the theory of differential equations, is the stability (see,
e.g.Bellman,1953; Lyapunoy 1966; Halanay,1966; Rasvan 1983;Halanay & Rasvan1997). Two
approaches to the study of stability of the trivial solution to linear constant-coefficients differential
systems (without and with time delays) are most spread in the literature. The first (classical one) is based
on the spectrum analysis of the system. The second (more recent one) is a Lyapunov-method-based one
leading to sufficient conditions in terms of linear matrix inequalities (LMIs).

Spectrum analysis of a linear time-invariant differential system allows to derive many quantitative
and qualitative properties of its solutions (see, &gllman & Cooke 1963; Halanay,1966; Hale &
Verduyn Lunel,1993; Hartman,2002). In this paper, we consider a singularly perturbed linear time-
invariant differential system with the general type of small time delay in the state variables. Since the
system depends an its characteristic equation also depends on this parameter. The structure of the set
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of roots of this equation, valid for all sufficiently smal(robust with respect te), is studied.

The structure of the set of roots of the characteristic equation, associated with an undelayed sin-
gularly perturbed system, was analysed in a number of works (sed&akgtovic et al., 1986; Luse
& Khalil, 1985;Luse,1986). The dependence on a parameter of roots of the characteristic equation,
associated with a time-delay system, also was studied in the literatidaldr& Verduyn Lune(1993)
andHalanay(1966), different aspects of behaviour of the spectrum for regularly perturbed time-delay
systems were studied. Asymptotic behaviour with respect to a small delay perturbation of critical (pure
imaginary) roots was analysed @henet al. (2006),Chenet al. (2008) andrFu et al. (2007) for the
case of commensurate delays. Conditions, under which such roots become asymptotically stable due to
a small perturbation of the delays, were established. The limit behavioarast0) of spectrum of a
singularly perturbed time-delay system was studie@lizer (1999) andGlizer (2003). The separation
of this spectrum into two sets, not intersecting each other, also was done.

In the present paper, we continue the study of the asymptotic behaviour {for-0) of the spec-
trum of a singularly perturbed time-delay differential system, start&lier (1999) andslizer (2003).

The results of this study are applied to analysis of the exponential stability of the original singularly per-
turbed time-delay system.

The exponential stability and the equivalent th f-stability of linear singularly perturbed systems
with small time delays were studied in a number of works in the literature. Th&sidman(1996) and
Glizer & Fridman(2000), such a study is based on the exact slow—fast decomposition of the system.
In Dragan & lonita(1999), the exponential stability of a singularly perturbed system with two kinds
of state delay (non-small for the slow and small for the fast state variables) was investigated by using
the transformations of the slow and fast parts of the original differential system to equivalent integral
equations. IrGlizer (2004a), the analysis of the exponential stability is based on the block-wise estimate
of the fundamental matrix solution of singularly perturbed systems with small time delays established
in Glizer (2003). InGlizer (2007), theL ?-stability was studied for a closed-loop system arising in an
infinite horizon linear-quadratic optimal control problem for singularly perturbed systems with small
state delays. In all these works, the essential condition is the exponentiz)(stability of both, slow
and fast, subsystems associated with the singularly perturbed system. In the present paper, in contrast
with the above mentioned works, the exponential stability of the singularly perturbed time-delay system
is analysed also in the case where the fast subsystem is not required to be exponentially stable.

During two recent decades, the LMI method (see, Bayd et al, 1994) became one of basic ap-
proaches to analysis and control of time-delay systems. This approach was extended to singularly per-
turbed systems with delay (see, éapenet al.,2010;Fridman,2002a,b2006and references therein).

It is interesting to note that the LMI approach to singularly perturbed systEndn{an,2002a) gave

an idea of descriptor approadhridman,2002c) to time-delay systems, which allowed for the first time

to treat fast-varying delays (i.e. delays without any constraints on the delay derivative) via Krasovskii
method (sed-ridman & Shaked2002). In all the existing LMI-based papers on singularly perturbed
systems, the case of exponentially stable fast subsystem was considered. In the present paper, an LMI
approach is extended to exponential stability analysis of singularly perturbed time-delay systems with
constant coefficients and variable time delays in the case, where there is no assumption on the exponen-
tial stability of the fast subsystem.

It should be noted that the method, based on the asymptotic analysis of the spectrum of a singularly
perturbed system with delays (the asymptotic method), is infinite dimensional, while the LMI method
is finite dimensional. Therefore, they do not replace each other. These two methods are complimen-
tary. Namely, the asymptotic one gives some accurate enough, but mostly qualitative analysis for linear
systems with constant delays. Based on the asymptotic analysis, an appropriate LMI approach gives
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more restrictive sufficient conditions. However, LMI-based conditions are robust and they give an inter-
val for the small parameteron which the system has the same decay rate. An LMI method can be also
applied to analysis and design of uncertain systems with uncertainties in the coefficients and delays.
The paper is organized as follows. In the next section, the problem is formulated. The objectives of
the paper are stated. The separation of roots of the characteristic equation, associated with the original
singularly perturbed functional-differential system, is studied in Se@&idn Sectiongl and5, the sets
of slow and fast roots of this characteristic equation are analysed. In Sé¢chared on this analysis, the
exponential stability of the original singularly perturbed functional-differential system is investigated. In
Section7, the LMI method is developed for study of the stability of a singularly perturbed linear system
with point-wise and distributed variable delays. In SecBpa numerical evaluation of both methods of
the stability analysis of the singularly perturbed systems with delays is carried out.
The following main notations are applied in the paper:

(1) E" denoteghe realn-dimensional Euclidean space;

(2) I, denoteghen-dimensional identity matrix;

(3) ¥ denotes the set of all complex numbers;

(4) Reland Im/idenote the real and imaginary parts, respectively, of a complex nuinber

(5) col(x, y), wherex € E" andy € E™, denotes a column block-vector with the upper blacknd
the lower blocky;

(6) | - || denotes the Euclidean norm of a vector and of a matrix;
(7) the superscript denotes the transposition of either a matrix or a vector;
(8) the inequalityA > (>)0, whereA is a symmetric matrix, means that this matrix is positive
definite (semi-definite);
(9) C[a, b; E"] is the space of continuous functiofigt): [a, b] — E";
(10) || - llc denoteghe uniform normirC[a, b; E"];

(11) W[a, b; E"] is the Sobolev space of absolutely continuous functibs: [a, b] — E™ with the
derivatives, square integrable on the interealt.

2. Problem statement
2.1 Singularly perturbed system with time-independent delay

Consider the system

dx 0 0
5=/ emoixen + [ @Ay e, >0, 1)
dyt) _ /° 0
oY = [ Bhamixt+en+ [ Amlya+en. 10 22)
wherex(t) € E", y(t) € E™ ¢ > 0 is a small parametee (<< 1); h > 0 is a given constant
independent of and A (), (i = 1, ..., 4) are given matrices of respective dimensions.

In what follows, we assume:
Al. The matrix-valued functiong; (), (i = 1, ...,4) are defined foy € (—oo, +00) and satisfy the
conditions:

(@) Ai(n) =0, Vn=0;
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(b1) Ai(n) = Ai(=h), Vi< —h;
(c1) Ai(n) is continuous from the left foy € (—h, 0);
(d1) A (n) has bounded variation on the intervak [—h, O].

System 2.1)—(2.2) is called ‘singularly perturbed by the small parameter simply ‘singularly
perturbed’. The state variabla$-) andy(-) are called the ‘slow’ and ‘fast’ ones, respectively. Equation
(2.1) describes the ‘slow mode (motion)’ of systethl(—(2.2), while 2.2) describes its ‘fast mode
(motion)'.

Let us write down the characteristic equation for the original singularly perturbed syatEm(R.2).
For this purpose, we rewrite (2.1)—(2.2) as follows:

E. @ / [dAG)]z(t +en), t =0, (2.3)

wherez(-) = col(x(), y(-)), and
A A
E — [In 0 ]’ AGy) = 1) A2(n) . 2.4)
0 élm Az(n)  Asln)
Using equivalent formZ.3) of systemZ.1)—(2.2), we obtain the characteristic equation (with respect to
1) for this system in the form

A 0
detA(Z,e) =0, A(L,e)= / exp(eAn)dA(y) — AE,. (2.5)
—h

In what follows, we call 2.5) the ‘original characteristic equation’.

The spectrum analysis a2 (1)—(2.2), i.e. the analysis of roots of the original characteristic equation,
is based on the asymptotic decomposition of this system into two much simfrkse subsystems, the
fast and slow ones.

2.1.1 Fast subsystem.The fast subsystem is derived from the equation for the fast magif two
steps. In the first step, the slow state varialilg is removed fromZ.2). Thus, we obtain the equation

d
y(t) /[dA4(rz)]y(t+en) t>0. (2.6)

On the second step, the following transformations of the independent variable and the state are made in
this equation:

t=ed, y(ed) =wn), 2.7)

whereé andy; (&) are a new independent variable (the stretched time) and a new state, respectively. By
this transformations, (2.6) becomes

de («f )

/ [dAa(m]ys (& + ). (2.8)

TTOZ ‘T 00100 U0 ALISHIAINN AIAY T3.L e /Biosfeuinolpioxo’ owew//:dny woiy papeojumod


http://imamci.oxfordjournals.org/

STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 50f33

The fast subsysten®(8) ise-free, and it is of a less dimension than the original chd)-(2.2). The
characteristic equation (with respectitdfor the fast subsystem (2.8) is

0
detAr(u) = 0, Ag(w) 2 /_ ep(un)dAsn) ~ sl (2.9)

We call the characteristic equation (2.9) for the fast subsystem (2.8) the ‘fast characteristic equation’.
In what follows, we assume:
A2. The fast characteristic equation (2.9) has no zero root, i.eAd8) # 0.

2.1.2 Slowsubsystem. The slow subsystem is obtained fro&X) to €.2) by setting there formally
¢ = 0 and re-denoting the state6) andy(-) by xs(-) andys(+), respectively. Thus, we obtain the system

Pl — Avelt) + Aoystt), (2.10)
0= Asxs(t) + Agys(t), (2.11)
where
- A 0
A =/ dA (), i=1,....4 (2.12)
—h

Itis seen that the slow subsystemi0)—(2.11) is differential-algebraic, it is independert ahd has
no delays. Under the Assumption A2, the slow subsystem can be converted to a differential equation with
respect taxs(+). Indeed, due to this assumption, @g{0) # 0. Direct calculation yieldsA¢(0) = Ag.
Hence,as a consequence of the assumption A2, we have

detA4 # 0. (2.13)

Thus,under the assumption A2, the original singularly perturbed sysiei)—{(2.2) is standard (see
Kokotovicet al,, 1986, Chapter 1, Secti@®).

Resolving 2.11) with respect tgs(t) andsubstituting the obtained result int®.10), one transforms
the slow subsystem as follows:

dxs(t)

G = Aoxs), o= Ay — Ao(An)THAs. (2.14)

Thecharacteristic equation (with respectipfor (2.14) is
detAs(1) =0, As() = b — Aln. (2.15)

We call the characteristic equatidh15) for the slow subsystem (2.14) the ‘slow characteristic equation’.

2.1.3 Asymptotic decomposition of the original characteristic equatiom. this subsection, we show
that a proper asymptotie (— +0) decomposition of the original characteristic equatidrb) yields
the slow and fast characteristic equations.
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Letus begin with the fast characteristic equation. First, we rewrite the original characteristic equation
(2.5) in the equivalent form

0
detAr(1,e) =0, Ai(Le) 26, / exp(ein)dAG) — 4 lnem, (2.16)
~h
where
& L e(E) = [8'” 0 ] . 2.17)
0 In

By the transformation of variablels= u /¢, (2.16) becomes

0
detho(u.e) =0, Ag(u.e)2 6, / epudAm) = el (2.18)

It should be noted that the transformation of varialiles x /¢ in (2.16) corresponds to the trans-
formation of the independent variatile= ¢£ in (2.1)—(2.2).
Setting formallye = 0 in (2.18) yields

0
detA(u) =0, A(u) = Ax(u,0) = co@o/h exp(umdAG) — ulnym, (2.19)

whered&y 2 Ee|e=0-
By using the block form of the matriA(z) (see (2.4)) and the block form of the mate, we can
rewrite the matrixA (u) in the explicit block form

—ulp 0
Ha(p) Ha(u) — pulm

Due to @.20), (2.19) becomes

~ A 0
A = . He( 2 /_ eqUupdad), k=34 (@220)

(—=1)"u" det(Ha(x) — ptln) = 0. (2.21)

Comparing(2.21) to £.9), and using the assumption A2 yield that the set of all roots of the fast charac-
teristic equation coincides with the set of all non-zero root2dX). Moreover, the fast characteristic
equation (2.9) can be obtained from the original characteristic equation (2.5) in the following way: (i)
equivalent transformation o2(5) to €.16); (ii) transformation of variables = u /¢ in (2.16) yielding
(2.18); (iii) setting formallys = 0 in (2.18) yielding (2.21) and (iv) dividing (2.21) ky-1)"u".

Now, let us proceed to obtaining the slow characteristic equation from the original one.

Setting formallye = 0 in (2.5), we obtain

detA(1) =0, A(1)= A(4,0)= A— AEo, (2.22)

whereEg E E;|.—0, and

A [’fl ’f"’] . (2.23)
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By using (2.23) and the block form d&g, the matrix A (1) can be rewritten in the explicit block
form

A} = [ (2.24)

As  Adf
Applying the formula for the determinant of a block matrix (€&@ntmacher1974) to (2.24), and taking
into account (2.13), we obtain directly that for any complex

detA (1) = det[Ar — Al — Ax(As) " Az] detAq. (2.25)

Comparing(2.25) to @.14) and 2.15), and using2.13), we can conclude that the slow characteristic
equation and4.25) have the same roots. Moreover, the slow characteristic equati®s) can be ob-
tained from the original characteristic equati@®) by setting there formally = 0 and dividing the
resulting equation by de¥.

2.2 Singularlyperturbed system with time-dependent delay

A Lyapunov-method-based stability analysis will be developed for linear systems with time-varying
delays

0
ES% — Bz(t) + Bnz(t — eh(t)) + Br/ 2t+60)do, t=0, (2.26)
—er (t)

whereB, B, andB; areconstant matrices.
The functionsh(t) andr (t) are piecewise continuous fo> 0, satisfying the inequalities

0< h(t) <hg, 0<r(t)<ro, (2.27)

wherehg > 0 andrg > 0 are some constants.

Note that forh(t) = const,r (t) = const, the systen(26) is a particular version of the system
(2.3). However, it is not the case when eithét) orr (t) does not equal identically to a constant. In this
case, both system2.8) and 2.26) are particular versions of the system

0
e S = [ @t oz, 120 (229)
—r(t)

with properly chosen matrix-valued functied(t, #, ¢) and functiorr (t).

2.3 Obijectives of the paper
The objectives of the paper are:
(I) to study a structure of the séf(¢) of roots of the original characteristic equatiéh), robust
with respect ta;
(1) to obtain asymptotic expansions (with respect}dor roots of (2.5);

(1) to apply the results on structure 6(e) and asymptotic expansions of the roots Bf5) to
analysis of stability of the original singularly perturbed syst@m)-(2.2);

(IV) with the system 2.26), to develop an alternative approach (an LMI approach) to stability anal-
ysis of systemZ.26) with time-varying delays and

(V) toillustrate the efficiency of the two approaches in numerical examples.
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3. Separation of roots of (2.5)

Letip, (p=1,...,9 < n)be all distinct eigenvalues of the matri%, i.e. all distinct roots of the slow
characteristic equatior2(15).

3.1 Auxiliary lemmas

LEMMA 3.1 Let the Assumptions Al and A2 be satisfied. et} and {ix}, (k = 1,2,...) be any
sequences such that

() ek >0, (k=1,2,...);
(i) iMgo 400 6k = 0;
(i) limy— 400 ekdk = 0;
(iv) detA(Ak,ex) =0, (k=1,2,...), whereA(4,¢) is defined in (2.5).

_ Then, there exists a subsequence of the sequegewhich converges to one of the numbers
/lpa(pz 175q)

Proof. The lemma is proved very similar to Lemma 1G@lizer (2009). O
Let .# be the set of all distinct roots of the fast characteristic equad®).(Let.Z, = {u €
M Reu > 0}, A ={u e #:Reu <0}and.#y = {u € .#: Reu = 0}. Due to the assumption A2,
the set#p doesnot containu = 0. Note also that, due Bellman & Cookg(1963) andHale & Verduyn
Lunel (1993),.#, and.#, arefinite sets. Moreover, there does not exist a sequéngk ux € Z-—,
(k=1,2,...), such that Rex — 0 for k —» +o0. Hence, one can find numbeys> 0,y > 0 and

K2 > k1 > 0such that

Reu > y, Yue. #;, (3.1)

Reu< -y, VYue.a_, (3.2)

K1 < |Imu| < k2, Yue.#. (3.3)

Considerthe domain
D =%y | %y | Pt (3.4)
where

Y%, = {u:Reu > y}, (3.5)

Dry ={w:Reu <=y}, (3.6)

D ={u:—y <Reu <y, i <|Imu| < x2}. (3.7)
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LEMMA 3.2 Let the Assumptions Al and A2 be satisfied. L&t} and{u} beany sequences such that
() ek >0, (k=1,2,...);
(i) lImyks 406k =0;
(i) uk doesnot belong taZ; for all sufficiently largek € {1,2, .. .};
(iv) As(ux,ex) =0, (k=1,2,...), whereAs(u, ¢) is defined in 2.18).

Then, the sequendg} corverges to zero.

Proof. The lemma is proved very similar to Lemma 2.1Gifzer (2003). |
3.2 Main theorem on the roots separation
Letoy < o2 andp1 < p2 benumbers, such that
o1 <Relp <02, p1r<Imip<py, p=1,...,q. (3.8)
Consider the domain
Ds={L:o1 <Rel<oz, p1<IMmi < ps}, (3.9

and,for anye > 0, the domain

(&) = Dy @) | Zry () | Zin (@), (3.10)
where
D, (e) ={1:Rel > y /g, (3.11)
Dt (e) = {2: Red <—y Je}, (3.12)
Dr(e)={A —y/e <Rekd < y/e, /e < [Imi| < Kz/e), (3.13)

thepositive numberg, v, k1 andk; arethe same as ir3(1)—(3.3).

THEOREM 3.1 Let the assumptions Al and A2 be satisfied. Then, there exists a nafnbel such
that, for alle € (0, &*]:

() ZsN Z(e) = 0;
(Il) any root of the characteristic equatio®.$) belongs either to the domai#s or to the domain
Zi(¢).

Proof. The statement (1) of the theorem is directly follows from the structure of the donsajresd
Z5(e), (see (3.9) and3x(10)—(3.13)).

Proceed to the proof of the statement (II). We prove this statement by contradiction. Namely, assume
that the statement (11) is wrong. Then, there exist sequefaggsind{iy} suchthat

@e>0 (k=1,2,..);

(b) liMk— o0 6k = 0; )

(c) Ak doesnot belong taZ; (k) forallk € {1,2, .. .};
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(d) Ak doesnot belong taZs for allk € {1,2, .. .};
(e) detA(Ak, ex) = O0forallk € {1,2, ...}, whereA (4, ¢) is defined in 2.5).

Now, let us consider the sequenge}, whereux = exik, (k = 1,2,...). It is verified directly
that the sequencdsy} and {uk} satisfyall the conditions of Lemma 3.2. Hence, im0 uk = O,
implying that the sequencdsy} and{/x} satisfyall the conditions of Lemma 3.1. Due to this lemma,
there exist a subsequengg,; } of {Ax} anda numberm € {1, ..., q} such that lim_, 100 Ak, = Zp. The
latter means thaty; € Zs for all sufficiently largej, which contradicts the property (d) of the sequence
{4k} This contradiction proves the theorem. O

Due to Theoren8.1, for all sufficiently smalle > 0, the set of all rootsZ(¢) of the original
characteristic equatior2(5) can be separated into two subsets not intersecting each other. The roots of
(2.5), belonging tazs, are called the ‘slow roots’, while the ones, belongingge), are called the ‘fast
roots’. We denote the sets of slow and fast roots of the original characteristic equatiphy Zs(e)
andZ:(e), respectively.

Since for anye > 0, (2.5) has roots, at least one of the sétgc) andZ;(e) is not empty. In what
follows, it is shown that both sets are not empty, and the structure of each set is studied.

REMARK 3.1 Note that for a singularly perturbed undelayed linear differential equation with constant
coefficients, the asymptotic decomposition of the characteristic equation, as well as the separation of its
roots, were proposed Mishik & Lyusternik (1957,1960).

4. Analysis of the set of slow roots

First of all note that in this section, we assumg 1. Otherwise, the system (2.1)—(2.2) has no the slow
mode, and, consequenti¥s(e) is empty.

Let Zp, p € {1,...,q} be a chosen root of the slow characteristic equatibhs). Letnp, (1 <
np < n) bethe algebraic multiplicity oft ,. Hence, the left-hand side d2.(L5) can be represented as

detAs(l) = (1 — Ap)"" Fsp(A), Vie¥E, (4.1)
where.%s p(4) is a known polynomial of ordem — np, and
Fsp(lp) #0. (4.2)
Letdp > 0 be such that

Os(p. 0p) = (42 11— Jipl < Op} C s, (4.3)
andall the roots of 2.15), excepting p, lie outside the circl@s(1p, dp). The latter leads to the inequal-
ity

detAs(A) #0, V1€ Os(ip, dp)/{Ap). (4.4)
Thisinequality, along with4.1) and (4.2), implies that
Fsp(l) #0, Vie Os(lp,op). (4.5)

We begin the analysis of the séts(¢) with an analysis of the set of all roots dt.p), belonging
to Os(4p, dp) for sufficiently smalle anddp. For the sake of saving the space and non-overloading the
paper, we restrict our analysis to the cage= 1.

TTOZ ‘T 00100 U0 ALISHIAINN AIAY T3.L e /Biosfeuinolpioxo’ owew//:dny woiy papeojumod


http://imamci.oxfordjournals.org/

STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 110f 33

4.1 Asymptotic behaviour of a slow root

Let us consider the following function of two variablesnde in the domainQg E {(A,6): A e Ds, ¢ €
[0, "]}

gs(Z, &) = detA (2, ). (4.6)

This function is continuous and it has continuous partial derivatives of any order with respect to both
arguments.

LEMMA 4.1 Let the Assumptions Al and A2 be satisfied. gt = 1. Then, there exist a positive
numberdp = dy, satisfying (4.3) and (4.5), and a positive numbpysuch that for alk € (0, £}, the

original characteristic equatio.6) has the unique rodty(¢), belonging to the circleﬁ’s(lp, 5’5). This
root is a continuous function afon the interval0, é’,g], and

lim 4 = lp. 4.7
s—l>n-?-0 p(&‘) P ( )

Proof. Leté‘p > 0be a number such tha4.3) and 4.5) are satisfied fafy, = Ep. Consider the equation

(2.5) in the domairs p = {(4, £): A € Os(Ap, p), ¢ € [0, &*]}.
Using(2.14) and 2.15), as well as2.22), £.25), @.1) and 4.6), one can rewrite2(5) in the equiv-
alent form

(A — Lp)Fsp(i)detAs + g(4, &) — g(4,0) = 0. (4.8)
By virtue of (2.13) and (4.5), (4.8) is transformed to the equivalent equation
A, e) 20— Tp+e9s(h,e) =0, (4.9)

where¥s(4, ¢) is given by

G, ey = BLE) ; %10 s () dethn L, e 6xipdy), e 0],  (4.10)
29501, 0 _ o
Gs(2, 0) = %(ﬁs,pu) detAy)~, i e Ou(ip. 5p). (4.11)

Dueto the above mentioned smoothnesggf, ¢), the function (4, ¢) is continuous and it has con-
tinuous partial derivatives of any order with respect to both arguments in the d&gain

By direct calculations, one obtains th#'(1p, 0) = 0 andd.s# (1p, 0)/04 = 1 # 0.

Now, the statements of the lemma directly follow from the Implicit Function Theorem (see, e.qg.
Schwartz,1967) applied to4.9). |

Lemmad4.1implies that the unique rootp(e) of the original characteristic equatio@.p) in the
circle Os(4p, Jdp) can be approximate by, with an error, tending to zero far — +0. The following
corollary gives an estimate of this error and proposes a more accurate approximatigejor

COROLLARY 4.1 Let the assumptions Al and A2 be satisfied. hgt= 1. Then, for alls € (0, é;], the
root 1,(e) of (2.5) can be represented as

Ap(e) = /_1p+8/_1]b+8f,1(8), (4.12)
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where
Ay =—%(p,0), (4.13)
and f; (¢) is a known function ot satisfying the condition

lim f;(¢) = 0. (4.14)
e—+40

Proof. Substituting 4.12) into @.9) and dropping the notation of the dependencé,ain ¢ yield after
some rearrangement

H4(f;,6) = Ib+ fi+GsUp+ely+ef,,0)+ e%a(ip + edp +efi, ) =0, (4.15)
where
Go(h, &) — Gs(2, 0 o i
Goa(ey= B =IO G5, e e 0.8 (4.16)
&€
0%(1, 0 o
gs,l(z,O)z%, ) € Os(2p, 7). (4.17)
&

Due to the smoothness of the functiéfa(4, ¢), mentioned in the proof of Lemmé.1, the function
“s1(4, ¢) is continuous and it has continuous partial derivatives of any order with respect to both argu-
ments in the doman@*p ={(1,¢e): 1 e ﬁs(/{p, 5*) ¢ €0, &pl}-.

Using (4.13) and (4.15)—(4.17), we obtain thﬁt’l(o 0) = 0 andé.#1(0,0)/0f, = 1 # 0. By
virtue of the Implicit Function Theorem and Lemmadl, one directly has the existence of the unique
root f, (¢) of (4.15) for alle e (0, 3], and this root satisfieg(14). Thus, the corollary is proved. [

4.2 Structure of the set of slow roots

The following theorem gives the structure of the g&(¢) for all sufficiently smalle > 0 in the case
where for eactp € {1, ..., q} the assumptions of Lemn#al are valid.
Let, for eachp e {1,...,q} and eache € (0,&p], Zsp(c) be the set of all roots of the origi-

nal characteristic equatio.6) belonging to the circles(1 ps 5;) accordingto Lemma4.1. Letes =

MiNpe(1,..., *F‘,. Due to Lemmal.1, for alle € (0, ], we have the following:
%S,p]_(g) ﬂ %s,pz(g) = ﬂa v pla p2 € {la ceey q}a pl 7é p2' (418)
THEOREMA4.1 Letforeachp € {1, ..., q} the assumptions of Lemm#albe valid. Then, there exists a

positive numbetg, (5 < &s), such that for alk € (0, %], the set%s(¢) of the slow roots of the original
characteristic equatior2 (5) has the form

q
Ae(e) = | ) %s.pe). (4.19)
p=1

Moreover, the slow roots o2(5) are simple, and each of them has the respective asymptotic form given
by Corollary4.1.

Proof. The statements of the theorem directly follow from Lenm#nd, Corollary4.1, Lemma3.1and
Theorem3.1. O

TT0Z ‘T2 48000 U0 ALISHIAINN AIAY T3L R /B10SeuInopioxo” purew//:dny Wo1j papeojumod


http://imamci.oxfordjournals.org/

STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 130f 33

5. Analysis of the set of fast roots

In order to study the se¥;(¢) of the fast roots of the original characteristic equation (2.5), the transfor-
mation of variables = /¢ is made in 2.5) yielding @.18) with respect ta.. Thus, the analysis of the
setZ;(¢) is reduced to analysis of the s@' (¢) of those roots 0fZ.18), which satisfy the inclusion

ul) e %, Vee(0,&%]. (5.1)

This analysis is based on the following properties of the set of roots of the fast characteristic equation
(2.9). Namely, due t@®ellman & Cooke(1963) andHale & Verduyn Lunel(1993), if (2.9) does not
degenerate to a polynomial one, the set of its roots is an infinite countable set with a single limit point
at infinity. The multiplicity of each root is finite. Moreover, for any real constanthere exists no more

than a finite number of roots 02(9) satisfying the inequality Re> 7. Using these properties of the

set of roots of 2.9), the sel%’f” (¢) is analysed in the way similar to that for the analysis4fe). This
analysis yields, for all sufficiently smadl > 0, the structure of

T, () = {u(e): detAqo(u(e),e) =0, u(e) € ), (5.2)
T (€) = {u(e)  detAo(u(e), ) = 0, u(e) € T, (5.3)
Py (7€) = {u(e): detAy(ule), ) =0, ule) € H, () (5.4)

wherey < —y is a given number, such that for any rgotof the fast characteristic equatioR.9),
Reu# 7, and

Sy )= {uue Gy, Reps 7). (5.5)

Allowing to 7 to be infinity, we can represent the set of fast ra@ise) of the original characteristic
equation 2.5) in the form

() = {i(e) = p(e)/e: u(e) € Bty @) | Zrn(e) | %, (—o0, 0)). (5.6)

Let denote byZ ¢(¢) any of the sets#; , (), %« (¢), %, (7, €). Let 24 be one of the sets
Dy D, 4y (7), corresponding ta¥4 1(e) according to the definitions (5.2), (5.3), (5.4)—(5.5).
It is clear that there exists a finite number of distinct roots of the fast characteristic equadpn (
belonging to2 ¢, and each such root has a finite multiplicity. l&be the number of such roots, and
hq,a €{1,..., B} be one of such roots arbitrary chosen. bgt, (m, > 1) bethe multiplicity of z,,.
Hence the left-hand side ofZ.9) can be represented as

detAr(u) = (1 — fi))™ Fra(n), Vue€, (5.7)

where.Z , (1) is a known infinitely differentiable function, and

Fta(ila) # 0. (5.8)

Letd, > Obe such that

~ < A - ~
Oi(fta, 0q) = {1 |1t — fla| < g} C Q@,fs (5.9
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andall the roots of 2.9), belonging ta24 ; (exceptingi,), lie outside the circled; (i, 3, ). This leads
to the inequality

detAs(u) #0, Vu € Oi(jfia, ) /{fta}. (5.10)
Thelatter, along with $.7) and (5.8), implies that
Fia(@) #0, V€ Oi(jia,ba)- (5.11)

For the same reasons, as in Sectomve restrict our analysis to the casg = 1.

5.1 Asymptotidbehaviour of a fast root

Consider the following function of two variablesande in the domainQs 2 {(u,e):p e 294, € €
[0, "]}

g (u.6) = detAy(u, ¢). (5.12)
This function is continuous and it has continuous partial derivatives of any order with respect to both
arguments.
Along with (5.12), let us consider the functiofi(u, ) given as follows:
f( ,€) — f( ) O —
G, ) = (-1 T ZIUED 0z (),
u € Oi(fiy, 0y), €€ (0,¢7], (5.13)
a f( 90 -1 ~ 3
(0 = DI (05 (0) 7 e 1, ), (5.14)

whered, > 0is any given number satisfying ) and 6.11). Due to the above mentioned smoothness
of gi(u, ¢), the function% (u, ¢) is continuous and it has continuous partial derivatives of any order

with respect to both arguments in the domgify, = {(u, €): 1 € Oi(fig, 0q), € € [0, e*]}.

LEMMA 5.1 Let the Assumptions Al and A2 be satisfied. loet = 1. Then, there exist a positive
numbers, = 5;, satisfying 6.9) and §.11), and a positive numbéf, such that for alk e (0,&],
(2.18)has the unique roqt, (¢) belonging to the circle(ji,, 6%). This root is a continuous function
of ¢ on the interval0, £7], and it can be represented as

Ua(e) = fig +efil +efu(e), (5.15)
where
fig = =% (jia, 0), (5.16)
and f,, (¢) is a known function ot satisfying the condition

lim f,(e) = 0. (5.17)
e—>+0

Proof. The lemma is proved similar to Lemmndal and Corollary4.1, using 2.9), 2.19)—(2.21),5%.7),
(5.11) and 5.12)—(5.14). O
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5.2 Structure of the set of fast roots

Let, for eacha € {1, ..., } and eackr € (0,&;], %, (¢) be the set of all roots 0f2(18), belonging

.....

¢ € (0, &], we have that

P10y @) [ Prag(e) =0, Var,az€(l,.... B, a1# az (5.18)

Thefollowing theorem is obtained similar to Theorehi.

THEOREMDS.1 Let for eachu € {1, ..., B}, the assumptions of Lemnfal be valid. Then, there exists
a positive numbes;, (ef < &f), such that for alk € (0, &], the set?y ¢(¢) of roots of .18) has the
form

B
Pai@) = P1a (o). (5.19)
a=1

Moreover, the roots of (2.18), belonging 4 ¢ (¢), are simple and each of them has the respective
asymptotic form given byH.15).

6. Stability analysis of £.3): spectrum structure approach

In this section, we consider some applications of the above obtained results on the structure of the
spectrum of the systen2 (1)—(2.2) to its stability analysis. This analysis is carried out for its equivalent
form (2.3).

6.1 Case of exponentially stable fast subsystem

In this subsection, the following case is treated:

A" 2 max Relp <0 6.1

A7 pelloa T .1
and

My =0, My=9. (6.2)

Remember thaz_tp, (p=1,...,q) are all distinct roots of the slow characteristic equat®ni$), 7.,
My and._ arethe sets of all distinct roots of the fast characteristic equag2d®) (vith positive, zero
and negative real part, respectively.

Consider the following initial condition for the syste@.8):

2(z) = ¢(r), te€[—eh,0], (6.3)

wherep(-) € C[—egh, 0; EM™] is any givengg is some positive constant.
Represent the vector-valued functigtx) in the block form

p(t) = col(px(7), py(7)),  ox() € C[—eoh, O; E"], ¢y() € C[—eoh, O; E].  (6.4)
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THEOREMG.1 Let the Assumptions Al and A2 be satisfied. Let the conditiérk)@nd 6.2) hold. Let
y > 0 andv be any given constants, satisfying the inequalitg2)and

0<v <|al™, (6.5)

respectiely. Then, there exist positive numbers, y ) < eg andc(v, y), such that the solution(t, &) =
col(x(t, &), y(t, ¢)) of the initial-value problem (IVP) (2.3), (6.3) satisfies the following inequalities for
anye € (0,e(v, y)]:

IX(t, &)l <c(v, y) exp(—v)[lex (Ol + e(llpx()lic + lloy)lic)], =0, (6.6)
Iy, e)ll <c(v, y) exp(—v))[llex (O)l + e(llpx()lic + loy)lic)]
+c(v, y) eXP(—y?t) (lex(llc + lley(llc),  t =0, (6.7)

where|lpx(-)llc and|lgy(-)llc arethe uniform norm ofpy(-) andey(-), respectively, on the interval
[—&oh, O].

Proof. Let us prove the inequality (6.7). The inequalié) is proved similarly.

Let, for anye > 0, ¥(t,¢),t > 0 be the fundamental matrix of the systeth3). By using the
variation of constant formula (see, ettple & Verduyn Lunel 1993), we obtain the solution of the IVP
(2.3), (6.3) in the form

2(t, &) = A1(t, &) + Aa(t,e), t>0, (6.8)

where

—-S

h
A1t 6) = P4, )0 (0),  Aa(t, ) = /0 vf(t—es,e)éz[ /_ h [dA<n>]¢(s<s+n)>]ds 6.9)

&, isgiven by @.17).
For the sake of the further consideration, let us partition the mét(bs¢) and the vectorst; (t, &),
(i =1, 2)into blocks as follows:

(‘lll(t,e) ‘[’2('[,8)) (Ail(t,g)) .
Pt e) = , Adit,e) = , 1=12, (6.10)
P3t,e) Yalt,e) Aj2(t, &)

where the block#1(t, ¢) and ¥4(t, ¢) are of the dimensions x n andm x m, respectively; the blocks
Aj1(t, €) and 4jz(t, &), (i = 1,2) are of the dimensions andm, respectively.
Thus,

y(t, &) = A12(t, &) + A22(t, &), (6.11)

and in order to prove the inequalitg.f), one has to estimates the vector-valued functiopst, ¢),
(i =1,2). Let us start with412(t, ¢). Due to (6.4), (6.9) and (6.10),

A12(t, &) = ¥3(t, £)px (0) + Pa(t, £)py(0). (6.12)

By virtue of the condition§.1)—(6.2), the inequalitie8(2) and 6.5), and the results @lizer (2003,
Theorem 2.3), there exist positive number&, y) andcy (v, y) such that for any € (0, &1(v, y)] the

TTOZ ‘T 00100 U0 ALISHIAINN AIAY T3.L e /Biosfeuinolpioxo’ owew//:dny woiy papeojumod


http://imamci.oxfordjournals.org/

STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 170f 33
following inequalities are satisfied:

[P3(t, &)ll < ca(v, y) exp(—vt), [Pt &)l < v, y) [8 exp(—vt) + exp(—%t)} , t=0.

(6.13)
By using (6.12) and (6.13), we obtain the following estimatetl@$(t, ¢) for anye € (0,&1(v, y)]:

t
[ 412(t, )| < c1(v, 7) exp(=vD)([lox (0| + £ll@y (0)]) + C1(v, V)exp(—y?) loyOII, t=0.

(6.14)
Now, proceed to the vector-valued functiai»(t, ¢). Due to @.17), (6.4), (6.9) ands(10),

h -s -S
Azz(t,e)ze/O P3(t —es, ¢) [/h [dA1(m)]px(e(s+ r7))+/_h [dA2(m]ey(e(s + n))}ds

h —s _s
+ / Mt—es,e){ / A lox(e(s + ) + / [dA4(7i)]<0y(8(S+77))]d3
0 —h _h
(6.15)

By using 6.13), 6.15) and results dfolmogorov & Fomin(1975, Chapter VI, Section 6), we obtain
the existence of positive numbefs(v, y) < min{eg, £1(v, y)} andca(v, y) such that the following
estimate of425(t, ¢) holds for anye € (0, &2(v, y)]:

| A22(t, &) || < c2(v, 7) [e exp(—vt) + exp(—%t)} (lexlic + ley(lic), t=>0. (6.16)

Now, the inequality 6.7) is a direct consequence 6£11) and the inequalitie§(14) and §.16). O

The fulfilment of the inequalitiest(6)—(6.7) means the exponential stability of the systarB)(
uniformly with respect te for all sufficiently small: > 0. In Theoren®.1, such a stability was obtained
under the condition that all roots of the slow and fast characteristic equations have negative real parts.
It is clear that the negativeness of real parts of the roots of the slow characteristic equation is necessary
for the uniform exponential stability of the system (2.3). However, such a statement is not correct with
respect to the roots of the fast characteristic equation. Below, the uniform exponential stability of the
system (2.3) is established under a weaker assumption on the set of these roots than the as§uPiption (
of Theoremg.1.

6.2 Case of no exponential stability for the fast subsystem
In what follows, we assume
My =0, MyF#9. (6.17)

Let iy, (@ = 1,..., B), be all distinct pure imaginary roots of the fast characteristic equa2i®). (
Denote

amin 2 _min | Re(jia, 0)). (6.18)

LEMMA 6.1 Let the Assumptions Al and A2 be satisfied. Let the condit@d?®) hold, and all pure
imaginary rootsi,, (« = 1, ..., 8) of the fast characteristic equatioh @) be simple. Let

Re@ (iie,0)>0, a=1,...,5, (6.19)
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where¥%(iiq, 0) is given in Lemmab. 1.
Let the condition§.1) hold. Lety > 0 andv be any given constants, satisfying the inequalitie2)
and

0 <v < min{|a"®, &}, (6.20)
respectiely. Then, there exists a positive numbér, y), such that the following inequality is valid:
sup  Rel(e) < —v, (6.21)

e€(0,e(v,y)]

whereA(e) is any root of 2.5).

Proof. First, note that, due to the definitions&j}’i” andthe inequality 6.19), the valuéz“” is positive,
meaning the correctness of the inequalBy20Q).

Consider the se®s(¢) of slow roots of the characteristic equation (2.5). By setiag= —v in
(3.8)—(3.9) and using Theore®il, we obtain the existence &f(v) > 0 such that, for alt € (0,z1(v)],
the following inequality is valid:

sup Rei(e) < —v, A(e) € Hs(e). (6.22)
£€(0,61(v)]

Proceed to the set® , (¢), % (¢) and %, (7, ¢) defined by $.2), £.3) and 6.4), respectively.
Since.Z = @, then for a givery > 0, there exists a numbeés > 0, such that for alk € (0, £2],

T, (e) = 0. (6.23)
By virtue of TheorenB.1, the elements of the séf , (7, ¢) satisfy the following inequality for any
7 < —y and alle € (0, &3(y)] with some 0< &3(y) < £1(v):
Reu(e) <—y, ule) e %, (7,e¢). (6.24)

By using Lemmab.1, Theorend.1, 6.18) and the inequalitie$ (19), 6.20), one obtains the existence
of a numberz4(v), (0 < &4(v) < &), such that all elements of the s& , (¢) satisfy the following
inequality:

sup Re(E,u(e)) < —v, ule) € Zrxle). (6.25)
e€(0,64(v)] &
By using 6.6) and 6.23), and the inequalitie$22), 6.24) and 6.25), one directly obtains the
statement of the lemma with(v, y ) = min(g1(v), &2, £3(y ), €4(v)). O

Thus, under the conditions of Lemma 6.1, forale (0, (v, y)], any root of the original charac-
teristic equation4.5) belongs either to the domaizs with o2 = —v or to the domainZ . (¢) with
x = —ev or to the domairé,, (¢).

LEMMA 6.2 Let the conditions of Lemmé@.1be satisfied. Then, the fundamental matFig, ¢) of the
system (2.3) can be represented in the form

1 —y /ety
‘P(t,g)zﬁ /(79 O, t,e)dA+ Iim/ 0,1, e)dA

Y400 —y fe—iy

+/~ @(A,t,s)d/1+/~ O, t,e)dAy, t>0, € (0,8(v,y)],
GIZ6) 0%, (©)

(6.26)
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where

O, t,e) =exp(A) A4, )E,, t >0, (6.27)
it (e)={A —y/e <Rek <—v, x1/e <ML < Ka/e}, (6.28)
i (e)={A —y/e <Rek <—v, —xa/e <IMi < —K1/e}, (6.29)

02 is the boundary of a se¥ in a complex plane, the direction of motion along each of the curves

0Ys, a@;; (e) ando 7, () is opposite to the clockwise one, the curve of the integration in the second
integral in the right-hand side 06(26) is the straight-line segment connecting the initial and terminal

points.

Proof. By using Lemmab5.1and the result ofale & Verduyn Lunel1993) on the representation of the
fundamental matrix of a linear autonomous time-delay system, one obtains fot &0, £(v, y )]

1 —v+iy
Yt e) = — lim / O, t,e)di, t>0, (6.30)
27l y—+o0 —vtiy

where the curve of the integration is the straight-line segment connecting the initial and terminal points.
Lete € (0,&(v, y)] be any but fixed. For any > k»/¢, consider the domains

D1(e)={A: —y/e <Reil <—v, K2/e <Iml < y}, (6.31)
D(e)={l:—y/e <Redl <a, —k1/e <IMA < k1/e}, (6.32)
D3(e)={A:01 <Rel< —v, p2 <IMl < k1/e}, (6.33)
Da(e) ={l:01 < ReA< —v, —k1/e <Imi < p1}, (6.34)
Ds5(e)={1: —y/e <Rel <—v, —y <Iml < —k2/¢c}. (6.35)

By virtue of the Cauchy theorem
/ O,t,e)dl=0, 1=1,...,5, (6.36)
0% (e)

where the direction along the bounda@y; (¢) of the domainZj (¢) is clockwise.
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Using(6.36) yields the following chain of equalities:

—vtiy —v4iy 5
/ O(,t,&)di :/ @(/l,t,s)d/1+2/ O(,t,&)di
- =179

vty —v+iy D (e)

=/ @(,l,t,g)+/_ @(/l,t,g)dxl-q—/~ O, t,e)dA
095 o (o) 0T (e)

—y Je+iy —v+iy
+/ @(ﬂ,t,&‘)d/l-k/ O(A,t,e)dA
—y Je—iy —y Je+iy

—y /e—iy
+/ O(4,t,e)dA.

v—iy
(6.37)
By usingGlizer (2003, Lemma 2.5), one has
—v+iy —y [e—iy
lim / O(,t,6)dl =0, lim / O(,t,6)dA=0. (6.38)
w—=+00 J_y Jetiy Y400 ) _y—iy
Now, the statement of the lemma is a direct consequencdg 89Y, (6.37) andg.38). O

LEMMA 6.3 Let the conditions of Lemmé.1be satisfied. Then, there exist a positive numbesuch
that for alle € (0, ¢,], the following inequality is satisfied:

/ @(i,t,g)diH <cexp(—vt), t> 0, (6.39)
0%s

wherec > 0 is some positive constant independent .of
Proof. The lemma is proved very similar ®lizer (2003, Lemma 2.3). a

LEMMA 6.4 Let the conditions of Lemm@.1be satisfied. Then, there exist a positive numieisuch
that for alle € (0, ¢, ], the following inequality is satisfied:

=y /ety
lim / O, t,e)dAd

Y400~y fe—iy

t
< cexp(—y—), t>0, (6.40)
&

wherec > 0is some positive constant independent of
Proof. The lemma is proved very similar ®lizer (2003, Lemma 2.4). |

LEMMA 6.5 Let the conditions of Lemm@.1 be satisfied. Then, there exist a positive nuniiger y ),
such that for alk € (0, (v, y)], the following inequalities are satisfied:

/~ O, t,¢)dA| <cexp(—vt), t>0, (6.41)
oD ()
f,x

/~ O, t,6)di| < cexp(—vt), t>0, (6.42)
09{,{({,‘)

TT0Z ‘T2 48000 U0 ALISHIAINN AIAY T3L R /B10SeuInopioxo” purew//:dny Wo1j papeojumod


http://imamci.oxfordjournals.org/

STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 210f 33

wherec > 0 is some positive constant independent of

Proof. Let us start with the proof of the inequalit§.¢1). First of all note that, due to Lemr6al, there
exists a positive number (v, y), (1(v,y) < (v, y)), such that the matrixA ~1(t, ¢) exists for all
e € (0,g21(v,y)]and all1 a@;; (¢). Rewrite the matrixA ~1(1, ¢) E, in the form

1 .
A7Y(1,e)E; = N(L, ¢) — Z'”*”" ¢ €(0,810v,7)], 4 €07 (o), (6.43)
where
1 0
N(Z, &) = IA—l(z,g) / exp(eAn)dA(n). (6.44)
—h
Hence,
it
/~ @(A,t,;;)di:/~ exp(/lt)N(/l,g)d/l—/N &PUY | da (6.45)
6@{; (¢) 69{; (e) 69{; (e) A

Let us estimate the integrals in the right-hand side6od%). We start with the second integral. Due to

(6.28), one has for all € (0,21(v, y)],

lexp(it)| < exp(—vt), 4edZt(e), t>0, (6.46)
1 ot
m <cCe, L€ 6%’,{ (e), (6.47)

wherec; > 0is some constant independentoHence,

exp(it
/~ PUD, )
(7@{;(8) A

wherec, > 0is some constant independentsof

Proceed to the first integral in the right-hand side @#6). By using 6.28), one can show very
similar to Glizer (2003, Proof of Lemma 2.4) that the mati(4, ¢) is bounded, i.e. the following
inequality is satisfied:

<cexp(—vt), &€ (0,&1(v,7)], t>0, (6.48)

ING, o)l <c3 0<e<&,y)<&b,y), iedZ (o), (6.49)

with some positive constanfs(v, y ) andcs independenbf . By virtue of the inequalities§46) and
(6.49), we obtain

<caexp(—vt), ¢e(0,52(v,7)], t>0, (6.50)

/  exp(i)N(4, £)dA
a@;fx(s)

wherecs > 0is some constant.
Now, (6.45) and the inequalitie$(48) and §.50) prove the inequality (6.41). The inequali6/42)
is proved similarly. Thus, the proof of the lemma is completed. |
Based on LemmaB.2—-6.5, one directly obtain the following lemma.
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LEMMA 6.6 Let the conditions of Lemmé.1be satisfied. Then, there exists a positive nunalgery ),
such that for all: € (0, £(v, y)], the fundamental matri¥’ (t, ¢) of the systemZ.3) satisfies the in-
equality|| ' (t, &)|| < cexp(—vt), t > 0, wherec > 0is some constant independentof

THEOREM 6.2 Let the conditions of Lemma 6.1 be satisfied. Then, there exist positive nhumbers
g(v,7) < g0 and€(v, y), such that the solutior(t, ¢) of the IVP 2.3), 6.3) satisfies the following
inequality for anys € (0, (v, y)]:

lz(t, )|l < (v, y)exp(—vDlle()llc VYt =0, (6.51)

where||¢(-)||c is the uniform norm ofyp () on the interval [-gh, O].

Proof. The statement of the theorem directly follows from LemBn@and the equation$(8)—(6.9).0

7. An LMI approach to exponential stability

In this section, we analyse the exponential stability of the sysBg6) with time-varying delays. Our
objective is to derive LMI conditions that guarantee such a kind of stability of this system for all suf-
ficiently small values of. Note that the results of this section can be easily extended to the case of a
finite number of discrete and distributed delays.

Let us partition the matriceB, By andB; into blocks as follows:

|:Bl Bz] |:Bh,1 Bn.2 } |:Br,1 Br,2:|

B = , Bn= , B = , (7.1)
Bs Ba Bh,3 Bn,a, Bz Brs

wherethe blocksBy, Bn 1 and By ; areof the dimensiom x n, while the blocksBs, Bnh 4 and By 4 are
of the dimensiomrm x m.

It was shown inFridman(2002a) that-independent LMI conditions for the asymptotic stability of
(2.26) imply the exponential stability of the fast subsystem, associated with this system. However, in this
paper, we do not assume that the fast subsystem is exponentially stable. In this situation, we cannot apply
the Lyapunov theorem for the asymptotic stability. Instead, we will look for the exponential stability
conditions of (2.26) with a given decay rate.

We represent.26) in the form

t t
z(s)ds+ By / z(s)ds (7.2)

t—er(t)

E,2(t) = (B + Bn)z(t) — B /

t—eh(t)

andconsider the following Lyapunov—Krasovskii functional (§&&man & Shaked2002for regular
systems with time-varying delays)

0 t

V(z, zt,¢) =2z' (t)E,P,z(t) + eho / exp(2v(s — t))z' (s)Rnz(s)dsdd
—chg Jt+0
0 t °
+ / exp(2v(s — t))z' (S)R, z(s)dsdo, (7.3)
—erg Jt+60

wherez; = {z(s), s € [t — e maxfho, ro}, t]}; zz = {2(S), s € [t — e max{ho, ro}, t]}; Ry and R, are
somepositive definite matrices of corresponding dimensions; 0 is some scalar value.
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The matrixP, hasthe block form

Py 8P2T
P. = , Pp>0, P3>0, (7.4)
P, P3

wherethe blocksP;, P> and P have the same dimensions as the respective blocks of the niatrix
and

EeP, >0, &¢>0. (7.5)
For the system (2.26), we consider the initial condition
Z(to+60) =¢0), to=>0, 6 e[-emaxfo-ro}, 0], (7.6)

whereg(-) € W[—eggmaxfg - ro}, 0; E"M]; ¢ > 0is some constant.
If forall ¢ € [0, &q],

%V +2vV <0, (7.7)
thenby comparison principle
2T (DE P.2(t) < V(zt, &1, 8) < eXp(—2v(t —t0))V (¢, b, ), & € [0, z0]. (7.8)

Thereforejf (7.7) holds, then for all initial functiong(-) € W[—eo maxfg - ro}, 0; E"™M], there exists
a constan€C(e) > 0 such that the solution of the proble&126), (7.6) satisfies the inequality

0 05
121 < exp(—v(t — 0))C(e) [efo max l©@1° + / ||¢(9)||2de} (7.9)

Oe[—e —¢eho

forall ¢ € [0, ], i.e. (2.26) is exponentially stable with theindependent decay rate> 0.
We obtain fore € (0, &,

d t t
—V +20V 22" (1)P] [(B + Bh)z(t) — By / 7(s)ds + By / z(t + e)de}
dt t—ch(t) t—er (t)

t
+20Z" () E: Pe2(t) + £2h3z2" (1) Ra2(t) — eho exp(—2&vho) / 7" (s)Rnz(s)ds
t—h(t)

t
— exp(—2evro) z ()R z(s)ds+ eroz' ()R z(t). (7.10)
t—er(t)

We apply further the Jensen’s inequality (see, &get al., 2003)

t t

t
eho /t 7T (S)Rhz(s)ds > / 7" (s)dsRy z(s)ds, (7.11)

—eh(t) t—eh(t) t—eh(t)

t 1 t t
/ z' ()R z(s)ds > — z' (s)dsR z(s)ds. (7.12)
t—er (t) ero Jt—er(t) t—er (t)
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Using(7.11)—(7.12) and setting
nt) = col(z(t), ftt_gh(t) z(s)ds, % ftt_gr(t) z(s)ds), one can rewriteq.10) in the form

d
GtV 2V <O +2°hGz (O Raz(), (7.13)
where
I, —P. By eroP’ By
b = * — Rh eXp(—ZSUho) 0 , (7_14)
* * —ergRy exp(—2¢vrg)
I, =P (B+Bn) + (B+ Bn)' P, +&roR + 2vE,P,. (7.15)

Substitutingthe right-hand side of7(2) intOethiT (t)Rhz(t) andapplying further the Schur com-

plements, we find that the inequality.() is satisfied if

[T, —P By eroP, Br  ho(B+Bn)' J;Ry
*  —Ryexp(—2evhp) 0 —hoB,] J: R
o=, * —ergRe exp(—2evrg)  erohoB,” J. Ry <0. (7.16)
* * * —Ryq
where
elp O
J = [ . Im] (7.17)

If (7.16) is feasible for = 0, then the following slow LMI
Py (B + Bn) + (B + Bn) " Py + 2vEqPy < 0 (7.18)
and the following fast LMI

P3(Bs+ Bha) + (Ba+ Bna)"Ps —P3Bna ho(Ba+ Bna) Rns

v = * —Rn3 hoBy] ;Rn.3 <0, (7.9
% * —Rh,3
whereRy3 =[0 In]Ra[0 Iy] T, are feasible.
The slow LMI guarantees that the slow subsystem
dz -
Eo— = (B + Bp)z(t), t >0, (7.20)

dt
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is exponentially stable with the decay ratd he slow subsystem is an autonomous descriptor (differential-
algebraic) system without delays. The fast LMI guarantees that the fast subsystem

dy(¢ .y ~ ~
D = Big©) + Bay ~F), ¢ >0, (721)
with a piecewise-continuous deléye [0, ho] is stable by Lyapunov (see, eldale & Verduyn Lunel,
1993). This follows from the fact that the fast LMI guarantees the fulfilment of the inequadipdd <
0 for the Lyapunov functional of the form

. 0 < .
Vi) = 97 () Psy(&) + ho / 57 () Rn.3§(0)do dc. (7.22)

ho J¢+¢

REMARK 7.1 Note that by using Remark 2.2 Gflizer (2004b), a different fast subsystem 8{Z6) can
be obtained. Namely,

.
B < By + Buagc —ht). £ >0, (7.23)

wheref is an independent variable (the stretched time), whiteO is a parameter. Thus, for any given

t > 0, the fast subsystem (7.23) is an autonomous differential system with a constant point-wise delay.

We consider furtherq.26) withB, = 0, i.e. with the discrete delay only. Our next objective is to find
LMI conditions that guarantee the exponential decaywateO for all ¢ € [e1, &g], where 0< &1 < &o.
For this purpose, we first find sufficient LMI conditions that are affine:in

[ 1| —P. B 0ho(B + Bn) T J: Ry ]

ro=0
x*  —Rexp(—2evhg) 0 —hoB/l J, Ry
Velrymo < ¥ = . . 0 0 <0. (7.24)

* * * —Rn

SinceE, P, and %, areaffine in the constant parametgrthen LMIs (7.5), (7.24) are feasible for any
¢ € [e1, €o] if these LMIs hold fore = €1 andfor ¢ = ¢g with the same matriceB, and P; (because
thesematrices multiplye in E. P, andin ¥,; Boyd et al,, 1994). Therefore, we arrive to the four LMIs

O . pT
. . P &P
E.PO >0, PO=| ' "2 =01, (7.25)
P, Ps
i —POTBy  ho(B+ BT I, RY
7, =| * —RYep(—2avh)  —hoBl I, RY | <o, (7.26)

* * —R®
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where
D =pPOT(B+ By + (B+By) PV +20E, P, (7.27)

Note that multiplication of LMIs ¢.25)—(7.26) with = 0 by % andwith i = 1 by £=% and

N go—e1’
then summation of the resulting LMIs, imply the feasibilityBfP, > O and¥, < Ofor ¢ € [¢1, 0]
with

& —¢€ EQ— ¢ & —€ EQ— ¢
= ETHp0 L Bt g figo fooign (o
g0 — &1 g0 — €1 g0 —¢é1 €0 —¢1

Therefore the feasibility of 7.25)—(7.26) guarantees the exponential stability2a2§) with the decay
ratev for ¢ € [e1, gg]. Finally, if PL > 0,P3 > Oand¥, < 0, thenE.P, > Oand¥; < O for all
small enouglz > 0. We note that the strict LMPp < 0 can be feasible only if the fast system41) is
asymptotically stable.

Summarizing, we have proved the following theorem.

THEOREM7.1 For a giverv > 0, consider (2.26).

(i) Let there exist am x n-matrix P > 0, anm x n-matrix P,, anm x m-matrix P3 > 0 and(n +
m) x (n 4+ m)-matricesR, > 0andR, > 0 such that the LMI¥y < 0 is feasible, wheré?; is given
by (7.16). Then the fast syster.21) is asymptotically stable, whereas the full order system (2.26) is
exponentially stable with the decay ratéor all small enouglz > 0.

(i) For agivene > 0, if there exist amxn-matrix P1 > 0,anm x n-matrix P, anm x m-matrix P3 > 0
and(n+m) x (n+ m)-matricesR, > 0andR, > 0 such that LMIs 7.5) and (7.16) are feasible. Then
(2.26) is exponentially stable with the decay rate

(iii) For a givengg > 0, let there exish x n-matrices Pl(o) > 0, Pl(l) > 0,anm x n-matrix P, an

m x m-matrix P3 > 0O and(n + m) x (n + m)—matricestﬂO) > 0, Rf(]l) > 0 such that the LMIs
Eeo Pg((?) > 0, %, < 0and¥%,|,—o < O are feasible with the notations given if.25)—(7.26). Then
(2.26) with B; = 0 is exponentially stable with the decay ratéor all ¢ € [0, ).

REMARK 7.2 If the fast system is not asymptotically stable, but we are looking for conditions in the
form of the strict LMIs (in order to use LMI Toolbox of Matlab), we suggest the following: if for small
enoughe; € (0, ¢p), the strict version of LMIs 7.25)—(7.26) is feasible, then the systei26) with

Br = 0is exponentially stable with the decay ratéor all ¢ € [e1, 0]

8. Examples
8.1 Example 1

Consider the system

10 -2 1 1

da(t
0 ¢ 0 %: 2 0 —1|zt-c¢h), t=>0, (8.1)
0 0 ¢ 1 1 0

wherez(t) € E3, ¢ > 0 is a small parameter.
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We note that in this example the fast systéh28)

day&) |0 —-1]_
A |:1 0 :| y& —ht)), <=0, (8.2)

is not asymptotically stable even fbft) = 0.
(a) Consider first (8.1) without delay, i.e. ftw(t) = 0. In this case, the characteristic equation of
(8.1)is

e?23 42622+ (1—3e)A +1=0. (8.3)

The rootsi; (¢), (i = 1,2, 3) of (8.3) have the following asymptotic expansions with respeet to
for all its sufficiently small values:

J1(e) = =1+ O(e), (8.4)
Rejk(s) = —1/2+ O(), Imia(e) = (i/e)(1 — 3e/2 + O(c?)), (8.5)
Rejs(s) = —1/2+ O(e), Imis(e) = —(i/e)(1 — 3¢/2 + O(s2), (8.6)

wherei is the imaginary unit.
It is seen that the root; (¢) is slow, whilei2(¢) andA3(¢) are fast roots.
Let us write down the slow and fast subsystems, associated with the original singularly perturbed
system 8.1). The slow subsystem is
dx(t)
at

The characteristic equation @.{7) (the slow characteristic equation) has the form

—X(t). (8.7)

J+1=0, (8.8)

yielding the rootl = —1.
The fast system is given b$.2), whereh(t) = 0. The characteristic equation of the fast system (the
fast characteristic equation) has the form

p2+1=0. (8.9)
Theroots of 8.9) areii; =1, jip = —i.
It is directly obtained that
lim A1(e) =74, lim elda(e) = i1,  lim elz(e) = jio. (8.10)
&—+0 &—+0 e—+0

Comparinglz(e), 43(¢) with i1, 12, one can conclude that although the roots of the fast characteristic

equation are pure imaginary, the fast roots of the original characteristic equation have negative real parts.
We further use LMI Toolbox of MATLAB to verify the feasibility of the strict LMIs of Theorem

7.1for exponential stability of§.1) with h(t) = 0. Givene = 0.01, by solving the strict LMIs{.5)

and I, < O with I, definedby (7.15), whereR, = 0,ro = hg = 0, we find that the systenB(1)

is exponentially stable with the decay rate= 0.484. We note that the matriEg_élB in this example

has eigenvalues with real partg).4845. Fore = 0, the strict LMI Iy < 0 is not feasible since the
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fast system is not asymptotically stable. Next, verifying the feasibility of the strict Lllgffﬁ < 0and
F&}H < 0 with the same decision variabl€s and P3, we find that the system is exponentially stable
with the decay rate = 0.43 fore € [0.01,0.011].

(b) Consider the case of time-varying delat) < hg. By verifying the feasibility of the strict LMIs
(7.16) fore = 0.01, we find that the systen8.(l) is exponentially stable with the decay rate- 0.28
for h(t) < 0.002. Solving the strict LMIs (7.25)—(7.26) witlhy = 0.011,¢7 = 0.01 and with the same
decision variable$, and P3, we find that fore € [0.01,0.011], the system is exponentially stable with
the decay rate = 0.23 forh(t) < 0.002.

8.2 Example 2
Consider the system

0]

G = &0+ 2 —eh®) +y®), t>0, (8.11)

8% =X(t) —wy(t — eh(t)), t>0, (8.12)

wherex(t) andy(t) arescalarw is a given positive constant.
(a) Consider the case of constant dehagiven by

_ T

T 20

Firstof all, note that the systen8(11)—(8.12) is a particular case of the syst@i)—(2.2) with the
following scalar functions (), (i = 1,...,4):

h (8.13)

2, —oo<n<-h, -1, —oco<y<—h,

At = {4, —h<n <0, P =1_1, —h<y<o, (8.14)
0, 0< 5 < o0, 0, 0<y<+oo,
-1, —oco<p<-—h, w, —oo<n<-—h

As(n)=1-1, —h <y <0, As(n) =10, —-h<n<D0O, (8.15)
0, 0< 5y < +o0, 0, 0<y<+oo.

Now, let us write down the characteristic equation with respegtfty the system (8.11)—(8.12)

Gs(1, &) = [4 — 2exp(=e2h) + A[w exp(—eAh) + 4] — 1= 0. (8.16)

Transforming the variablel = x in (8.16) and multiplying the resulting equation &yone can rewrite
this characteristic equation in the form

Or(u, 2) = [4¢ — 26 @p(—ph) + pll exp(—uh) + ] — & = 0. (8.17)
The slow subsystem, associated with the original system (8.11)—(8.12), has the form
dxs(t)

1
= (2 - 5) %), t>=0, (8.18)
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and its characteristic equation (the slow characteristic equation) is

A+ (2 - l) =0, (8.19)
(]
yielding the root
I1=— (2 - l) . (8.20)
w

It is clear that this root is negative if and onlyuif> 1/2.
The fast subsystem has the form

dyi (&)
d¢

and its characteristic equation (the fast characteristic equation) is

—oyi (¢ —h), ¢=>0, (8.21)

detA(x) = —wexp(—uh) — u = 0. (8.22)
It can be verified directly that (8.22) has two simple pure imaginary roots
i=io, j2=-io, (8.23)

where i is the imaginary unit.

Consider any roofi # —iw of (8.22). It can be observed immediately that/Re: 0. Let us
show that R@ < 0. One can represent this root AS= jire + iitim, Where ire and i, arereal
values. Substituting this representation iBa2@) instead ofi, substitutingz /(2w) instead ofh, and
equating separately the real and imaginary values on both sides of the resulting equation yields (after
some rearrangement) the following system of equations with resp@ettand i jm:

exp _Z’U_Re cos Em =_’u_Re’ (824)
2 o 2 o W

exp <_% . @) sin (E . “ﬂ) _ Aim. (8.25)
w 2 o w

Assumethat ire > 0. Then, 0 < exp(— % - 756) < 1,and , due to §.25), \/"7"‘\ < 1. The latter

means that co§j - ) > 0.Hence, the expression in the left-hand side8o24) is positive. However,
according to the above made assumption fhat > 0, the expression in the right-hand side of (8.24)
is negative. This contradiction implies thage < 0, i.e. any rootaz # =+iw of (8.22) has negative real
part.

Using the above presented analysis of roots of the slow and fast characteristic equations and results
of Sections4 and5, one can conclude that, for all sufficiently smat- 0, all roots/(¢) of the original
characteristic equation (8.16) (excepting three ones) satisfy the inequality Re€g) /& with some
positive constan independent of. It is clear that all these roots are the fast roots801§). The three
other roots of 8.16) are: (a) the slow rodis;(¢), corresponding to the rody of the slow characteristic
equation (8.19); (b) the fast roots (¢) = u1(e)/e andip(e) = u2(e)/e, whereus(e) anduz(e) are
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theroots of 8.17), corresponding to the rogig andi», respectively, of the fast characteristic equation
(8.22). Below, based on results of Sectidnasnd5, we construct the first-order asymptotic expansions
for 2s1(¢) andu, (¢), (o = 1, 2). We start withisi(e). Using Corollary.1, 2.12), (4.11), (8.15), (8.16),
(8.20) and the fact thait; is a simple root of the slow characteristic equati8riLQ) directly yields that,
for all sufficiently smalle > 0, the rootl1(¢) can be represented in the forch12) withp = 1, where

Zizé(é— )(Zhw—h+$). (8.26)

Now, proceed tau,(¢), (¢ = 1,2). By using Lemméb.1, 6.7), (5.14), (8.17), (8.22), (8.23) and the
fact thatu, (¢), (o = 1,2) are simple roots 0f8.17), one immediately obtains that, for all sufficiently
smalle > 0, the rootsu, (¢), (o = 1, 2) can be represented in the fors15), where

hew? 1
~1 _ P ~1 _ ; _ _
p=cp =il e =m0 = ey (T atezrny 82D
Thelatter means that
lim Re(k4(e))=—p <0, a=12. (8.28)
e—>+40

Therefore, by virtue of Lemme@.1, we obtain that for any constantsatisfying the inequality

0<v<min[(2—l),p], (8.29)
1)

there exists a numberv) > 0 such that, for alk € (0, (v)], any rooti(¢) of the original characteristic
equation (8.16) satisfies the inequality/Re®) < —v. Hence, due to Theore® 2, the system811)—
(8.12) is exponentially stable uniformly with respectttor all sufficiently smalle > O with the decay
ratev <v.

(b) Consider the case of time-varying delbyt) < hg andw = 1. Applying the item (iii) of
Theorem?7.1 and verifying the feasibility of the corresponding LMIs with the same decision variables
P> and P, we find that fore e [0, 0.5], the system is exponentially stable with the decay vate 0.2
forh(t) < 04.

We note that in this example our LMI approach, which is based on the simple Lyapunov—Krasovskii
functional, can treat only comparatively small delays, where the fast subsystem is exponentially stable.

9. Conclusions

In this paper, the singularly perturbed linear differential system with a small delay of order of the
singular perturbation parameter> O was treated. In the case of time-invariant system, the asymp-

totic behaviour of the set of roots of its characteristic equation has been investigated. For this purpose,
the original singularly perturbed system was decomposed asymptotically into two much sirfgler
subsystems, the slow and fast ones. The characteristic equations of these subsystems (the slow and fast
characteristic equations) also ardree, and they are much simpler than the one (the original char-
acteristic equation) for the original singularly perturbed system. It was also shown that the original
characteristic equation can be decomposed asymptotically into two much sivipéer equations of

the polynomial and quasipolynomial type. The connection between the asymptotic decomposition of the
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original singularly perturbed system and the asymptotic decomposition of its characteristic equation was
established.

Based on the assumed structure of the sets of roots of the slow and fast characteristic equations,
the structure of the set of roots of the original characteristic equation (including qualitative properties
and asymptotic expansion of the roots with respeet)tbas been derived. It is important to note that
the assumptions, on which the final result is basedgdree. The intermediate results also aréree.
However, the final result, the structure of the set of roots of the original characteristic equation, is valid
for all sufficiently smalle > 0, i.e. robustly with respect to this parameter. The results on the structure
of roots of the characteristic equation have been applied to the analysis of the exponential stability of the
original singularly perturbed system. The exponential stability of this system was established not only
in the case where the fast subsystem is exponentially stable but also in the case where the characteristic
equation of the fast subsystem has pure imaginary roots.

Along with the method of studying the exponential stability of a singularly perturbed time delay
system, based on the asymptotic analysis of its spectrum, an LMI method also was developed for singu-
larly perturbed systems with time-varying (point-wise and distributed) delays. Like the former, the latter
also includes the case of no exponential stability of the fast subsystem. In this case, the LMI method can
guarantee the exponential stability of the full order system uniformlydn[¢1, eg], wheree; > 0 can
be chosen arbitrary close to zero.

In the case of a constant delay, the LMI method is more conservative than the method of spectrum
analysis. However, in the case of a variable delay, the latter is not applicable to the study of the expo-
nential stability, while the former is. It was shown how these two methods can complement each other
in the analysis of the exponential stability of singularly perturbed time delay systems.
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