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A singularly perturbed linear functional-differential system is considered. The delay is assumed to be
small of the order of a small parameter multiplying a part of derivatives in the system. It is ‘not assumed
that the fast subsystem is asymptotically stable’. Two approaches to the study of the exponential stability
of the singularly perturbed system are suggested. The first one treats systems with constant delays via
the analysis of asymptotic behaviour of the roots of their characteristic equation. The second approach
develops a direct Lyapunov–Krasovskii method for systems with time-varying delays leading to stability
conditions in terms of linear matrix inequalities. Numerical examples illustrate the efficiency of both
approaches.
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1. Introduction

Singularly perturbed differential equations, being an adequate mathematical model of real-life multi-
time-scale systems, were studied extensively in the literature (see, e.g.Halanay,1966;Khalil, 2001;
Kokotovic et al., 1986;O’Malley, 1991;Vasil’eva et al., 1995;Wasov, 1965and references therein).
One of the important classes of such equations is the class of equations with small time delays of order
of a small positive parameterε multiplying a part of the derivatives in the system. Brief surveys of
results in this topic can be found inGlizer (2004a) andGlizer (2009).

One of the important issues, studied in the theory of differential equations, is the stability (see,
e.g.Bellman,1953;Lyapunov, 1966;Halanay,1966;Rasvan, 1983;Halanay & Rasvan, 1997). Two
approaches to the study of stability of the trivial solution to linear constant-coefficients differential
systems (without and with time delays) are most spread in the literature. The first (classical one) is based
on the spectrum analysis of the system. The second (more recent one) is a Lyapunov-method-based one
leading to sufficient conditions in terms of linear matrix inequalities (LMIs).

Spectrum analysis of a linear time-invariant differential system allows to derive many quantitative
and qualitative properties of its solutions (see, e.g.Bellman & Cooke, 1963;Halanay,1966;Hale &
Verduyn Lunel,1993;Hartman,2002). In this paper, we consider a singularly perturbed linear time-
invariant differential system with the general type of small time delay in the state variables. Since the
system depends onε, its characteristic equation also depends on this parameter. The structure of the set
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of roots of this equation, valid for all sufficiently smallε (robust with respect toε), is studied.
The structure of the set of roots of the characteristic equation, associated with an undelayed sin-

gularly perturbed system, was analysed in a number of works (see, e.g.Kokotovic et al., 1986;Luse
& Khalil, 1985;Luse,1986). The dependence on a parameter of roots of the characteristic equation,
associated with a time-delay system, also was studied in the literature. InHale & Verduyn Lunel(1993)
andHalanay(1966), different aspects of behaviour of the spectrum for regularly perturbed time-delay
systems were studied. Asymptotic behaviour with respect to a small delay perturbation of critical (pure
imaginary) roots was analysed inChenet al. (2006),Chenet al. (2008) andFu et al. (2007) for the
case of commensurate delays. Conditions, under which such roots become asymptotically stable due to
a small perturbation of the delays, were established. The limit behaviour (asε → +0) of spectrum of a
singularly perturbed time-delay system was studied inGlizer (1999) andGlizer (2003). The separation
of this spectrum into two sets, not intersecting each other, also was done.

In the present paper, we continue the study of the asymptotic behaviour (forε → +0) of the spec-
trum of a singularly perturbed time-delay differential system, started inGlizer(1999) andGlizer(2003).
The results of this study are applied to analysis of the exponential stability of the original singularly per-
turbed time-delay system.

The exponential stability and the equivalent to itL2-stability of linear singularly perturbed systems
with small time delays were studied in a number of works in the literature. Thus, inFridman(1996) and
Glizer & Fridman(2000), such a study is based on the exact slow–fast decomposition of the system.
In Dragan & Ionita(1999), the exponential stability of a singularly perturbed system with two kinds
of state delay (non-small for the slow and small for the fast state variables) was investigated by using
the transformations of the slow and fast parts of the original differential system to equivalent integral
equations. InGlizer(2004a), the analysis of the exponential stability is based on the block-wise estimate
of the fundamental matrix solution of singularly perturbed systems with small time delays established
in Glizer (2003). InGlizer (2007), theL2-stability was studied for a closed-loop system arising in an
infinite horizon linear-quadratic optimal control problem for singularly perturbed systems with small
state delays. In all these works, the essential condition is the exponential (orL2) stability of both, slow
and fast, subsystems associated with the singularly perturbed system. In the present paper, in contrast
with the above mentioned works, the exponential stability of the singularly perturbed time-delay system
is analysed also in the case where the fast subsystem is not required to be exponentially stable.

During two recent decades, the LMI method (see, e.g.Boyd et al., 1994) became one of basic ap-
proaches to analysis and control of time-delay systems. This approach was extended to singularly per-
turbed systems with delay (see, e.g.Chenet al.,2010;Fridman,2002a,b,2006and references therein).
It is interesting to note that the LMI approach to singularly perturbed systems (Fridman,2002a) gave
an idea of descriptor approach (Fridman,2002c) to time-delay systems, which allowed for the first time
to treat fast-varying delays (i.e. delays without any constraints on the delay derivative) via Krasovskii
method (seeFridman & Shaked, 2002). In all the existing LMI-based papers on singularly perturbed
systems, the case of exponentially stable fast subsystem was considered. In the present paper, an LMI
approach is extended to exponential stability analysis of singularly perturbed time-delay systems with
constant coefficients and variable time delays in the case, where there is no assumption on the exponen-
tial stability of the fast subsystem.

It should be noted that the method, based on the asymptotic analysis of the spectrum of a singularly
perturbed system with delays (the asymptotic method), is infinite dimensional, while the LMI method
is finite dimensional. Therefore, they do not replace each other. These two methods are complimen-
tary. Namely, the asymptotic one gives some accurate enough, but mostly qualitative analysis for linear
systems with constant delays. Based on the asymptotic analysis, an appropriate LMI approach gives
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more restrictive sufficient conditions. However, LMI-based conditions are robust and they give an inter-
val for the small parameterε on which the system has the same decay rate. An LMI method can be also
applied to analysis and design of uncertain systems with uncertainties in the coefficients and delays.

The paper is organized as follows. In the next section, the problem is formulated. The objectives of
the paper are stated. The separation of roots of the characteristic equation, associated with the original
singularly perturbed functional-differential system, is studied in Section3. In Sections4 and5, the sets
of slow and fast roots of this characteristic equation are analysed. In Section6, based on this analysis, the
exponential stability of the original singularly perturbed functional-differential system is investigated. In
Section7, the LMI method is developed for study of the stability of a singularly perturbed linear system
with point-wise and distributed variable delays. In Section8, a numerical evaluation of both methods of
the stability analysis of the singularly perturbed systems with delays is carried out.

The following main notations are applied in the paper:

(1) En denotesthe realn-dimensional Euclidean space;

(2) In denotesthen-dimensional identity matrix;

(3) C denotes the set of all complex numbers;

(4) Reλand Imλdenote the real and imaginary parts, respectively, of a complex numberλ;

(5) col(x, y), wherex ∈ En andy ∈ Em, denotes a column block-vector with the upper blockx and
the lower blocky;

(6) ‖ ∙ ‖ denotes the Euclidean norm of a vector and of a matrix;

(7) the superscript> denotes the transposition of either a matrix or a vector;

(8) the inequalityA > (>)0, whereA is a symmetric matrix, means that this matrix is positive
definite (semi-definite);

(9) C[a, b; En] is the space of continuous functionsf (t): [a, b] → En;

(10) ‖ ∙ ‖C denotesthe uniform norm inC[a, b; En];

(11) W[a, b; En] is the Sobolev space of absolutely continuous functionsf (t): [a, b] → En with the
derivatives, square integrable on the interval [a, b].

2. Problem statement

2.1 Singularly perturbed system with time-independent delay

Consider the system

dx

dt
=
∫ 0

−h
[dA1(η)]x(t + εη)+

∫ 0

−h
[dA2(η)]y(t + εη), t > 0, (2.1)

ε
dy(t)

dt
=
∫ 0

−h
[dA3(η)]x(t + εη)+

∫ 0

−h
[dA4(η)]y(t + εη), t > 0, (2.2)

wherex(t) ∈ En, y(t) ∈ Em; ε > 0 is a small parameter (ε << 1); h > 0 is a given constant
independent ofε andAi (η), (i = 1, . . . ,4) are given matrices of respective dimensions.

In what follows, we assume:
A1. The matrix-valued functionsAi (η), (i = 1, . . . ,4) are defined forη ∈ (−∞,+∞) and satisfy the
conditions:

(a1) Ai (η) = 0, ∀ η > 0;
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(b1) Ai (η) = Ai (−h), ∀η 6 −h;

(c1) Ai (η) is continuous from the left forη ∈ (−h, 0);

(d1) Ai (η) has bounded variation on the intervalη ∈ [−h, 0].

System (2.1)–(2.2) is called ‘singularly perturbed by the small parameterε’ or simply ‘singularly
perturbed’. The state variablesx(∙) andy(∙) are called the ‘slow’ and ‘fast’ ones, respectively. Equation
(2.1) describes the ‘slow mode (motion)’ of system (2.1)–(2.2), while (2.2) describes its ‘fast mode
(motion)’.

Let us write down the characteristic equation for the original singularly perturbed system (2.1)–(2.2).
For this purpose, we rewrite (2.1)–(2.2) as follows:

Eε
dz(t)

dt
=
∫ 0

−h
[dA(η)]z(t + εη), t > 0, (2.3)

wherez(∙) = col(x(∙), y(∙)), and

Eε =
[

In 0
0 ε Im

]
, A(η) =

[
A1(η) A2(η)

A3(η) A4(η)

]

. (2.4)

Using equivalent form (2.3) of system (2.1)–(2.2), we obtain the characteristic equation (with respect to
λ) for this system in the form

det1(λ, ε) = 0, 1(λ, ε)
4
=
∫ 0

−h
exp(ελη)dA(η)− λEε. (2.5)

In what follows, we call (2.5) the ‘original characteristic equation’.
The spectrum analysis of (2.1)–(2.2), i.e. the analysis of roots of the original characteristic equation,

is based on the asymptotic decomposition of this system into two much simplerε-free subsystems, the
fast and slow ones.

2.1.1 Fast subsystem.The fast subsystem is derived from the equation for the fast mode (2.2) in two
steps. In the first step, the slow state variablex(∙) is removed from (2.2). Thus, we obtain the equation

ε
dy(t)

dt
=
∫ 0

−h
[dA4(η)]y(t + εη), t > 0. (2.6)

On the second step, the following transformations of the independent variable and the state are made in
this equation:

t = εξ, y(εξ) = yf(ξ), (2.7)

whereξ andyf(ξ) are a new independent variable (the stretched time) and a new state, respectively. By
this transformations, (2.6) becomes

dyf(ξ)

dξ
=
∫ 0

−h
[dA4(η)]yf(ξ + η). (2.8)
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The fast subsystem (2.8) isε-free, and it is of a less dimension than the original one (2.1)–(2.2). The
characteristic equation (with respect toμ) for the fast subsystem (2.8) is

det1f(μ) = 0, 1f(μ)
4
=
∫ 0

−h
exp(μη)dA4(η)− μIm. (2.9)

We call the characteristic equation (2.9) for the fast subsystem (2.8) the ‘fast characteristic equation’.
In what follows, we assume:

A2. The fast characteristic equation (2.9) has no zero root, i.e. det1f(0) 6= 0.

2.1.2 Slowsubsystem. The slow subsystem is obtained from (2.1) to (2.2) by setting there formally
ε = 0 and re-denoting the statesx(∙) andy(∙) by xs(∙) andys(∙), respectively. Thus, we obtain the system

dxs(t)

dt
= Ā1xs(t)+ Ā2ys(t), (2.10)

0 = Ā3xs(t)+ Ā4ys(t), (2.11)

where

Āi
4
=
∫ 0

−h
dAi (η), i = 1, . . . ,4. (2.12)

It is seen that the slow subsystem (2.10)–(2.11) is differential-algebraic, it is independent ofε and has
no delays. Under the Assumption A2, the slow subsystem can be converted to a differential equation with
respect toxs(∙). Indeed, due to this assumption, det1f(0) 6= 0. Direct calculation yields1f(0) = Ā4.
Hence,as a consequence of the assumption A2, we have

detĀ4 6= 0. (2.13)

Thus,under the assumption A2, the original singularly perturbed system (2.1)–(2.2) is standard (see
Kokotovicet al., 1986, Chapter 1, Section2).

Resolving (2.11) with respect toys(t) andsubstituting the obtained result into (2.10), one transforms
the slow subsystem as follows:

dxs(t)

dt
= A0xs(t), A0

4
= Ā1 − Ā2(Ā4)

−1 Ā3. (2.14)

Thecharacteristic equation (with respect toλ) for (2.14) is

det1s(λ) = 0, 1s(λ)
4
= A0 − λIn. (2.15)

We call the characteristic equation (2.15) for the slow subsystem (2.14) the ‘slow characteristic equation’.

2.1.3 Asymptotic decomposition of the original characteristic equation.In this subsection, we show
that a proper asymptotic (ε → +0) decomposition of the original characteristic equation (2.5) yields
the slow and fast characteristic equations.
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Letus begin with the fast characteristic equation. First, we rewrite the original characteristic equation
(2.5) in the equivalent form

det1̂1(λ, ε) = 0, 1̂1(λ, ε)
4
= Eε

∫ 0

−h
exp(ελη)dA(η)− ελIn+m, (2.16)

where

Eε
4
= ε(Eε)

−1 =
[
ε In 0
0 Im

]
. (2.17)

By the transformation of variablesλ = μ/ε, (2.16) becomes

det1̂2(μ, ε) = 0, 1̂2(μ, ε)
4
= Eε

∫ 0

−h
exp(μη)dA(η)− μIn+m. (2.18)

It should be noted that the transformation of variablesλ = μ/ε in (2.16) corresponds to the trans-
formation of the independent variablet = εξ in (2.1)–(2.2).

Setting formallyε = 0 in (2.18) yields

det1̃(μ) = 0, 1̃(μ)
4
= 1̂2(μ, 0)= E0

∫ 0

−h
exp(μη)dA(η)− μIn+m, (2.19)

whereE0
4
= Eε|ε=0.

By using the block form of the matrixA(η) (see (2.4)) and the block form of the matrixE0, we can
rewrite the matrix1̃(μ) in the explicit block form

1̃(μ) =

[
−μIn 0

H3(μ) H4(μ)− μIm

]

, Hk(μ)
4
=
∫ 0

−h
exp(μη)dAk(η), k = 3,4. (2.20)

Due to (2.20), (2.19) becomes

(−1)nμn det(H4(μ)− μIn) = 0. (2.21)

Comparing(2.21) to (2.9), and using the assumption A2 yield that the set of all roots of the fast charac-
teristic equation coincides with the set of all non-zero roots of (2.21). Moreover, the fast characteristic
equation (2.9) can be obtained from the original characteristic equation (2.5) in the following way: (i)
equivalent transformation of (2.5) to (2.16); (ii) transformation of variablesλ = μ/ε in (2.16) yielding
(2.18); (iii) setting formallyε = 0 in (2.18) yielding (2.21) and (iv) dividing (2.21) by(−1)nμn.

Now, let us proceed to obtaining the slow characteristic equation from the original one.
Setting formallyε = 0 in (2.5), we obtain

det1̄(λ) = 0, 1̄(λ)
4
= 1(λ, 0)= Ā − λE0, (2.22)

whereE0
4
= Eε|ε=0, and

Ā =

[
Ā1 Ā2

Ā3 Ā4

]

. (2.23)
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By using (2.23) and the block form ofE0, the matrix1̄(λ) can be rewritten in the explicit block
form

1̄(λ) =

[
Ā1 − λIn Ā2

Ā3 Ā4

]

. (2.24)

Applying the formula for the determinant of a block matrix (seeGantmacher,1974) to (2.24), and taking
into account (2.13), we obtain directly that for any complexλ,

det1̄(λ) = det[Ā1 − λIn − Ā2(Ā4)
−1 Ā3] detĀ4. (2.25)

Comparing(2.25) to (2.14) and (2.15), and using (2.13), we can conclude that the slow characteristic
equation and (2.25) have the same roots. Moreover, the slow characteristic equation (2.15) can be ob-
tained from the original characteristic equation (2.5) by setting there formallyε = 0 and dividing the
resulting equation by det̄A4.

2.2 Singularlyperturbed system with time-dependent delay

A Lyapunov-method-based stability analysis will be developed for linear systems with time-varying
delays

Eε
dz(t)

dt
= Bz(t)+ Bhz(t − εh(t))+ Br

∫ 0

−εr (t)
z(t + θ)dθ, t > 0, (2.26)

whereB, Bh andBr areconstant matrices.
The functionsh(t) andr (t) are piecewise continuous fort > 0, satisfying the inequalities

06 h(t) 6 h0, 06 r (t) 6 r0, (2.27)

whereh0 > 0 andr0 > 0 are some constants.
Note that forh(t) ≡ const,r (t) ≡ const, the system (2.26) is a particular version of the system

(2.3). However, it is not the case when eitherh(t) or r (t) does not equal identically to a constant. In this
case, both systems (2.3) and (2.26) are particular versions of the system

Eε
dz(t)

dt
=
∫ 0

−r (t)
[dηA (t, η, ε)]z(t + εη), t > 0, (2.28)

with properly chosen matrix-valued functionA (t, η, ε) and functionr (t).

2.3 Objectives of the paper

The objectives of the paper are:

(I) to study a structure of the setR(ε) of roots of the original characteristic equation (2.5), robust
with respect toε;

(II) to obtain asymptotic expansions (with respect toε) for roots of (2.5);

(III) to apply the results on structure ofR(ε) and asymptotic expansions of the roots of (2.5) to
analysis of stability of the original singularly perturbed system (2.1)–(2.2);

(IV) with the system (2.26), to develop an alternative approach (an LMI approach) to stability anal-
ysis of system (2.26) with time-varying delays and

(V) to illustrate the efficiency of the two approaches in numerical examples.
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3. Separation of roots of (2.5)

Let λ̄p, (p = 1, . . . ,q 6 n) be all distinct eigenvalues of the matrixA0, i.e. all distinct roots of the slow
characteristic equation (2.15).

3.1 Auxiliary lemmas

LEMMA 3.1 Let the Assumptions A1 and A2 be satisfied. Let{εk} and {λk}, (k = 1,2, . . .) be any
sequences such that

(i) εk > 0, (k = 1,2, . . .);

(ii) lim k→+∞ εk = 0;

(iii) limk→+∞ εkλk = 0;

(iv) det1(λk, εk) = 0, (k = 1,2, . . .), where1(λ, ε) is defined in (2.5).

Then, there exists a subsequence of the sequence{λk}, which converges to one of the numbers
λ̄p, (p = 1, . . . ,q).

Proof. The lemma is proved very similar to Lemma 1 ofGlizer (2009). �
Let M be the set of all distinct roots of the fast characteristic equation (2.9). LetM+ = {μ ∈

M: Reμ > 0}, M− = {μ ∈ M: Reμ < 0} andM0 = {μ ∈ M: Reμ = 0}. Due to the assumption A2,
the setM0 doesnot containμ = 0. Note also that, due toBellman & Cooke(1963) andHale & Verduyn
Lunel (1993),M+ andM0 arefinite sets. Moreover, there does not exist a sequence{μk}, μk ∈ M−,
(k = 1,2, . . .), such that Reμk → 0 for k → +∞. Hence, one can find numbersχ > 0, γ > 0 and
κ2 > κ1 > 0 such that

Reμ > χ, ∀μ ∈ M+, (3.1)

Reμ< −γ, ∀μ ∈ M−, (3.2)

κ1 < |Imμ| < κ2, ∀μ ∈ M0. (3.3)

Considerthe domain

Df = Df,χ

⋃
Df,γ

⋃
Df,κ , (3.4)

where

Df,χ = {μ: Reμ > χ}, (3.5)

Df,γ = {μ: Reμ <−γ }, (3.6)

Df,κ = {μ : −γ < Reμ < χ, κ1 < |Imμ| < κ2}. (3.7)
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LEMMA 3.2 Let the Assumptions A1 and A2 be satisfied. Let{εk} and{μk} beany sequences such that

(i) εk > 0, (k = 1,2, . . .);

(ii) lim k→+∞ εk = 0;

(iii) μk doesnot belong toDf for all sufficiently largek ∈ {1,2, . . .};
(iv) 1̂2(μk, εk) = 0, (k = 1,2, . . .), where1̂2(μ, ε) is defined in (2.18).

Then, the sequence{μk} converges to zero.

Proof. The lemma is proved very similar to Lemma 2.1 ofGlizer (2003). �

3.2 Main theorem on the roots separation

Let σ1 < σ2 andρ1 < ρ2 benumbers, such that

σ1 < Reλ̄p < σ2, ρ1 < Imλ̄p < ρ2, p = 1, . . . , q. (3.8)

Consider the domain

Ds = {λ: σ1 < Reλ< σ2, ρ1 < Imλ < ρ2}, (3.9)

and,for anyε > 0, the domain

D̃f(ε) = D̃f,χ (ε)
⋃

D̃f,γ (ε)
⋃

D̃f,κ (ε), (3.10)

where

D̃f,χ (ε)= {λ: Reλ > χ/ε}, (3.11)

D̃f,γ (ε)= {λ: Reλ <−γ /ε}, (3.12)

D̃f,κ (ε)= {λ: − γ /ε < Reλ < χ/ε, κ1/ε < |Imλ| < κ2/ε}, (3.13)

thepositive numbersχ , γ , κ1 andκ2 arethe same as in (3.1)–(3.3).

THEOREM 3.1 Let the assumptions A1 and A2 be satisfied. Then, there exists a numberε∗ > 0 such
that, for allε ∈ (0, ε∗]:

(I) Ds
⋂

D̃f(ε) = ∅;

(II) any root of the characteristic equation (2.5) belongs either to the domainDs or to the domain
D̃f(ε).

Proof. The statement (I) of the theorem is directly follows from the structure of the domainsDs and
D̃f(ε), (see (3.9) and (3.10)–(3.13)).

Proceed to the proof of the statement (II). We prove this statement by contradiction. Namely, assume
that the statement (II) is wrong. Then, there exist sequences{εk} and{λk} suchthat

(a) εk > 0, (k = 1,2, . . .);

(b) limk→+∞ εk = 0;

(c) λk doesnot belong toD̃f(εk) for all k ∈ {1,2, . . .};
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10of 33 V. Y. GLIZER AND E. FRIDMAN

(d) λk doesnot belong toDs for all k ∈ {1,2, . . .};
(e) det1(λk, εk) = 0 for all k ∈ {1,2, . . .}, where1(λ, ε) is defined in (2.5).

Now, let us consider the sequence{μk}, whereμk = εkλk, (k = 1,2, . . .). It is verified directly
that the sequences{εk} and {μk} satisfyall the conditions of Lemma 3.2. Hence, limk→+∞ μk = 0,
implying that the sequences{εk} and{λk} satisfyall the conditions of Lemma 3.1. Due to this lemma,
there exist a subsequence{λkj } of {λk} anda numberp ∈ {1, . . . ,q} such that limj →+∞ λkj = λ̄p. The
latter means thatλkj ∈ Ds for all sufficiently largej , which contradicts the property (d) of the sequence
{λk}. This contradiction proves the theorem. �

Due to Theorem3.1, for all sufficiently smallε > 0, the set of all rootsR(ε) of the original
characteristic equation (2.5) can be separated into two subsets not intersecting each other. The roots of
(2.5), belonging toDs, are called the ‘slow roots’, while the ones, belonging toD̃f(ε), are called the ‘fast
roots’. We denote the sets of slow and fast roots of the original characteristic equation (2.5) byRs(ε)
andRf(ε), respectively.

Since for anyε > 0, (2.5) has roots, at least one of the setsRs(ε) andRf(ε) is not empty. In what
follows, it is shown that both sets are not empty, and the structure of each set is studied.

REMARK 3.1 Note that for a singularly perturbed undelayed linear differential equation with constant
coefficients, the asymptotic decomposition of the characteristic equation, as well as the separation of its
roots, were proposed inVishik & Lyusternik (1957,1960).

4. Analysis of the set of slow roots

First of all note that in this section, we assumen > 1. Otherwise, the system (2.1)–(2.2) has no the slow
mode, and, consequently,Rs(ε) is empty.

Let λ̄p, p ∈ {1, . . . ,q} be a chosen root of the slow characteristic equation (2.15). Letnp, (1 6
np 6 n) bethe algebraic multiplicity of̄λp. Hence, the left-hand side of (2.15) can be represented as

det1s(λ) = (λ− λ̄p)
npFs,p(λ), ∀ λ ∈ C, (4.1)

whereFs,p(λ) is a known polynomial of ordern − np, and

Fs,p(λ̄p) 6= 0. (4.2)

Let δp > 0 be such that

Os(λ̄p, δp)
4
= {λ: |λ− λ̄p| 6 δp} ⊂ Ds, (4.3)

andall the roots of (2.15), exceptinḡλp, lie outside the circleOs(λ̄p, δp). The latter leads to the inequal-
ity

det1s(λ) 6= 0, ∀ λ ∈ Os(λ̄p, δp)/{λ̄p}. (4.4)

This inequality, along with (4.1) and (4.2), implies that

Fs,p(λ) 6= 0, ∀ λ ∈ Os(λ̄p, δp). (4.5)

We begin the analysis of the setRs(ε) with an analysis of the set of all roots of (2.5), belonging
to Os(λ̄p, δp) for sufficiently smallε andδp. For the sake of saving the space and non-overloading the
paper, we restrict our analysis to the casenp = 1.
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4.1 Asymptotic behaviour of a slow root

Let us consider the following function of two variablesλ andε in the domainΩs
4
= {(λ, ε): λ ∈ Ds, ε ∈

[0, ε∗]}

gs(λ, ε)
4
= det1(λ, ε). (4.6)

This function is continuous and it has continuous partial derivatives of any order with respect to both
arguments.

LEMMA 4.1 Let the Assumptions A1 and A2 be satisfied. Letnp = 1. Then, there exist a positive
numberδp = δ̄∗p, satisfying (4.3) and (4.5), and a positive numberε̄∗p, such that for allε ∈ (0, ε̄∗p], the
original characteristic equation (2.5) has the unique rootλp(ε), belonging to the circleOs(λ̄p, δ̄

∗
p). This

root is a continuous function ofε on the interval(0, ε̄∗p], and

lim
ε→+0

λp(ε) = λ̄p. (4.7)

Proof. Let δ̄p > 0 be a number such that (4.3) and (4.5) are satisfied forδp = δ̄p. Consider the equation

(2.5) in the domainΩs,p
4
= {(λ, ε): λ ∈ Os(λ̄p, δ̄p), ε ∈ [0, ε∗]}.

Using(2.14) and (2.15), as well as (2.22), (2.25), (4.1) and (4.6), one can rewrite (2.5) in the equiv-
alent form

(λ− λ̄p)Fs,p(λ) detĀ4 + g(λ, ε)− g(λ, 0)= 0. (4.8)

By virtue of (2.13) and (4.5), (4.8) is transformed to the equivalent equation

H (λ, ε)
4
= λ− λ̄p + εGs(λ, ε) = 0, (4.9)

whereGs(λ, ε) is given by

Gs(λ, ε)=
gs(λ, ε)− gs(λ, 0)

ε
(Fs,p(λ) detĀ4)

−1, λ ∈ Os(λ̄p, δ̄p), ε ∈ (0, ε∗], (4.10)

Gs(λ, 0)=
∂gs(λ, 0)

∂ε
(Fs,p(λ) detĀ4)

−1, λ ∈ Os(λ̄p, δ̄p). (4.11)

Dueto the above mentioned smoothness ofgs(λ, ε), the functionG(λ, ε) is continuous and it has con-
tinuous partial derivatives of any order with respect to both arguments in the domainΩs,p.

By direct calculations, one obtains thatH (λ̄p, 0)= 0 and∂H (λ̄p, 0)/∂λ = 1 6= 0.
Now, the statements of the lemma directly follow from the Implicit Function Theorem (see, e.g.

Schwartz,1967) applied to (4.9). �
Lemma4.1 implies that the unique rootλp(ε) of the original characteristic equation (2.5) in the

circle Os(λ̄p, δ̄
∗
p) canbe approximate bȳλp with an error, tending to zero forε → +0. The following

corollary gives an estimate of this error and proposes a more accurate approximation forλp(ε).

COROLLARY 4.1 Let the assumptions A1 and A2 be satisfied. Letnp = 1. Then, for allε ∈ (0, ε̄∗p], the
rootλp(ε) of (2.5) can be represented as

λp(ε) = λ̄p + ελ̄1
p + ε fλ(ε), (4.12)
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12of 33 V. Y. GLIZER AND E. FRIDMAN

where

λ̄1
p = −Gs(λ̄p, 0), (4.13)

and fλ(ε) is a known function ofε satisfying the condition

lim
ε→+0

fλ(ε) = 0. (4.14)

Proof. Substituting (4.12) into (4.9) and dropping the notation of the dependence offλ on ε yield after
some rearrangement

H1( fλ, ε)
4
= λ̄1

p + fλ + Gs(λ̄p + ελ̄1
p + ε fλ, 0)+ εGs,1(λ̄p + ελ̄1

p + ε fλ, ε) = 0, (4.15)

where

Gs,1(λ, ε)=
Gs(λ, ε)− Gs(λ, 0)

ε
, λ ∈ Os(λ̄p, δ̄

∗
p), ε ∈ (0, ε̄∗p], (4.16)

Gs,1(λ, 0)=
∂Gs(λ, 0)

∂ε
, λ ∈ Os(λ̄p, δ̄

∗
p). (4.17)

Due to the smoothness of the functionGs(λ, ε), mentioned in the proof of Lemma4.1, the function
Gs,1(λ, ε) is continuous and it has continuous partial derivatives of any order with respect to both argu-
ments in the domain̄Ω∗

s,p = {(λ, ε): λ ∈ Os(λ̄p, δ̄
∗
p), ε ∈ [0, ε̄∗p]}.

Using (4.13) and (4.15)–(4.17), we obtain thatH1(0,0) = 0 and∂H1(0,0)/∂ fλ = 1 6= 0. By
virtue of the Implicit Function Theorem and Lemma4.1, one directly has the existence of the unique
root fλ(ε) of (4.15) for allε ∈ (0, ε̄∗p], and this root satisfies (4.14). Thus, the corollary is proved. �

4.2 Structure of the set of slow roots

The following theorem gives the structure of the setRs(ε) for all sufficiently smallε > 0 in the case
where for eachp ∈ {1, . . . ,q} the assumptions of Lemma4.1are valid.

Let, for eachp ∈ {1, . . . ,q} and eachε ∈ (0, ε̄∗p], Rs,p(ε) be the set of all roots of the origi-
nal characteristic equation (2.5) belonging to the circleOs(λ̄p, δ̄

∗
p) accordingto Lemma4.1. Let ε̄s =

minp∈{1,...,q} ε̄
∗
p. Due to Lemma4.1, for allε ∈ (0, ε̄s], we have the following:

Rs,p1(ε)
⋂

Rs,p2(ε) = ∅, ∀ p1, p2 ∈ {1, . . . ,q}, p1 6= p2. (4.18)

THEOREM4.1 Let for eachp ∈ {1, . . . ,q} the assumptions of Lemma4.1be valid. Then, there exists a
positive numberε∗s, (ε∗s 6 ε̄s), such that for allε ∈ (0, ε∗s], the setRs(ε) of the slow roots of the original
characteristic equation (2.5) has the form

Rs(ε) =
q⋃

p=1

Rs,p(ε). (4.19)

Moreover, the slow roots of (2.5) are simple, and each of them has the respective asymptotic form given
by Corollary4.1.

Proof. The statements of the theorem directly follow from Lemma4.1, Corollary4.1, Lemma3.1and
Theorem3.1. �
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STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 13of 33

5. Analysis of the set of fast roots

In order to study the setRf(ε) of the fast roots of the original characteristic equation (2.5), the transfor-
mation of variablesλ = μ/ε is made in (2.5) yielding (2.18) with respect toμ. Thus, the analysis of the
setRf(ε) is reduced to analysis of the setRμ

f (ε) of those roots of (2.18), which satisfy the inclusion

μ(ε) ∈ Df, ∀ ε ∈ (0,ε∗]. (5.1)

This analysis is based on the following properties of the set of roots of the fast characteristic equation
(2.9). Namely, due toBellman & Cooke(1963) andHale & Verduyn Lunel(1993), if (2.9) does not
degenerate to a polynomial one, the set of its roots is an infinite countable set with a single limit point
at infinity. The multiplicity of each root is finite. Moreover, for any real constantγ̃ , there exists no more
than a finite number of roots of (2.9) satisfying the inequality Reμ > γ̃ . Using these properties of the
set of roots of (2.9), the setRμ

f (ε) is analysed in the way similar to that for the analysis ofRs(ε). This
analysis yields, for all sufficiently smallε > 0, the structure of

Rf,χ (ε)
4
= {μ(ε): det1̂2(μ(ε), ε) = 0, μ(ε) ∈ Df,χ }, (5.2)

Rf,κ (ε)
4
= {μ(ε) : det1̂2(μ(ε), ε) = 0, μ(ε) ∈ Df,κ }, (5.3)

Rf,γ (γ̃ , ε)
4
= {μ(ε): det1̂2(μ(ε), ε) = 0, μ(ε) ∈ Sf,γ (γ̃ )}, (5.4)

whereγ̃ < −γ is a given number, such that for any rootμ of the fast characteristic equation (2.9),
Reμ 6= γ̃ , and

Sf,γ (γ̃ )
4
= {μ : μ ∈ Df,γ , Reμ> γ̃ }. (5.5)

Allowing to γ̃ to be infinity, we can represent the set of fast rootsRf(ε) of the original characteristic
equation (2.5) in the form

Rf(ε) = {λ(ε) = μ(ε)/ε: μ(ε) ∈ Rf,χ (ε)
⋃

Rf,κ (ε)
⋃

Rf,γ (−∞, ε)}. (5.6)

Let denote byPR,f(ε) any of the setsRf,χ (ε), Rf,κ (ε), Rf,γ (γ̃ , ε). Let QD,f be one of the sets
Df,χ , Df,κ , Sf,γ (γ̃ ), corresponding toPR,f(ε) according to the definitions (5.2), (5.3), (5.4)–(5.5).
It is clear that there exists a finite number of distinct roots of the fast characteristic equation (2.9),
belonging toQD,f , and each such root has a finite multiplicity. Letβ be the number of such roots, and
μ̃α, α ∈ {1, . . . , β} be one of such roots arbitrary chosen. Letmα, (mα > 1) bethe multiplicity of μ̃α.
Hence,the left-hand side of (2.9) can be represented as

det1f(μ) = (μ− μ̃α)
mαFf,α (μ), ∀μ ∈ C, (5.7)

whereFf,α (μ) is a known infinitely differentiable function, and

Ff,α (μ̃α) 6= 0. (5.8)

Let δ̃α > 0 be such that

Of(μ̃α, δ̃α)
4
= {μ: |μ− μ̃α| 6 δ̃α} ⊂ QD,f, (5.9)
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14of 33 V. Y. GLIZER AND E. FRIDMAN

andall the roots of (2.9), belonging toQD,f (exceptingμ̃α), lie outside the circleOf(μ̃α, δ̃α). This leads
to the inequality

det1f(μ) 6= 0, ∀μ ∈ Of(μ̃α, δ̃α)/{μ̃α}. (5.10)

Thelatter, along with (5.7) and (5.8), implies that

Ff,α (μ) 6= 0, ∀μ ∈ Of(μ̃α, δ̃α). (5.11)

For the same reasons, as in Section4, we restrict our analysis to the casemα = 1.

5.1 Asymptoticbehaviour of a fast root

Consider the following function of two variablesμ andε in the domainΩf
4
= {(μ, ε): μ ∈ QD,f, ε ∈

[0, ε∗]}

gf(μ.ε)
4
= det1̂2(μ, ε). (5.12)

This function is continuous and it has continuous partial derivatives of any order with respect to both
arguments.

Along with (5.12), let us consider the functionGf(μ, ε) given as follows:

Gf(μ, ε) = (−1)n
gf(μ, ε)− gf(μ, 0)

ε
(μnFf,α (μ))

−1,

μ ∈ Of(μ̃α, δ̃α), ε ∈ (0, ε∗], (5.13)

Gf(μ, 0)= (−1)n
∂gf(μ, 0)

∂ε

(
μnFf,α (μ)

)−1
, μ ∈ Of(μ̃α, δ̃α), (5.14)

whereδ̃α > 0 is any given number satisfying (5.9) and (5.11). Due to the above mentioned smoothness
of gf(μ, ε), the functionGf(μ, ε) is continuous and it has continuous partial derivatives of any order

with respect to both arguments in the domainΩf,α
4
= {(μ, ε): μ ∈ Of(μ̃α, δ̃α), ε ∈ [0, ε∗]}.

LEMMA 5.1 Let the Assumptions A1 and A2 be satisfied. Letmα = 1. Then, there exist a positive
numberδα = δ̃∗α, satisfying (5.9) and (5.11), and a positive numberε̃∗α, such that for allε ∈ (0, ε̃∗α],
(2.18)has the unique rootμα(ε) belonging to the circleOf(μ̃α, δ̃

∗
α). This root is a continuous function

of ε on the interval(0, ε̃∗α], and it can be represented as

μα(ε) = μ̃α + εμ̃1
α + ε fμ(ε), (5.15)

where

μ̃1
α = −Gf(μ̃α, 0), (5.16)

and fμ(ε) is a known function ofε satisfying the condition

lim
ε→+0

fμ(ε) = 0. (5.17)

Proof. The lemma is proved similar to Lemma4.1and Corollary4.1, using (2.9), (2.19)–(2.21), (5.7),
(5.11) and (5.12)–(5.14). �
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5.2 Structure of the set of fast roots

Let, for eachα ∈ {1, . . . , β} and eachε ∈ (0, ε̃∗α], Pf,α (ε) be the set of all roots of (2.18), belonging
to the circleOf(μ̃α, δ̃

∗
α) accordingto Lemma5.1. Letε̃f = minα∈{1,...,β} ε̃

∗
α. Due to Lemma5.1, for all

ε ∈ (0, ε̃f ], we have that

Pf,α1(ε)
⋂

Pf,α2(ε) = ∅, ∀α1, α2 ∈ {1, . . . , β}, α1 6= α2. (5.18)

Thefollowing theorem is obtained similar to Theorem4.1.

THEOREM 5.1 Let for eachα ∈ {1, . . . , β}, the assumptions of Lemma5.1be valid. Then, there exists
a positive numberε∗f , (ε∗f 6 ε̃f ), such that for allε ∈ (0, ε∗f ], the setPR,f(ε) of roots of (2.18) has the
form

PR,f(ε) =
β⋃

α=1

Pf,α (ε). (5.19)

Moreover, the roots of (2.18), belonging toPR,f(ε), are simple and each of them has the respective
asymptotic form given by (5.15).

6. Stability analysis of (2.3): spectrum structure approach

In this section, we consider some applications of the above obtained results on the structure of the
spectrum of the system (2.1)–(2.2) to its stability analysis. This analysis is carried out for its equivalent
form (2.3).

6.1 Case of exponentially stable fast subsystem

In this subsection, the following case is treated:

āmax
λ

4
= max

p∈{1,...,q}
Reλ̄p < 0 (6.1)

and

M+ = ∅, M0 = ∅. (6.2)

Remember that̄λp, (p = 1, ..., q) are all distinct roots of the slow characteristic equation (2.15),M+,
M0 andM− arethe sets of all distinct roots of the fast characteristic equation (2.9) with positive, zero
and negative real part, respectively.

Consider the following initial condition for the system (2.3):

z(τ ) = ϕ(τ), τ ∈ [−εh, 0], (6.3)

whereϕ(∙) ∈ C[−ε0h, 0; En+m] is any given;ε0 is some positive constant.
Represent the vector-valued functionϕ(τ) in the block form

ϕ(τ) = col(ϕx(τ ), ϕy(τ )), ϕx(∙) ∈ C[−ε0h, 0; En], ϕy(∙) ∈ C[−ε0h, 0; Em]. (6.4)
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THEOREM6.1 Let the Assumptions A1 and A2 be satisfied. Let the conditions (6.1) and (6.2) hold. Let
γ > 0 andν be any given constants, satisfying the inequalities (3.2) and

0< ν < |āmax
λ |, (6.5)

respectively. Then, there exist positive numbersε̄(ν, γ ) 6 ε0 andc(ν, γ ), such that the solutionz(t, ε) =
col(x(t, ε), y(t, ε)) of the initial-value problem (IVP) (2.3), (6.3) satisfies the following inequalities for
anyε ∈ (0, ε̄(ν, γ )]:

‖x(t, ε)‖6 c(ν, γ ) exp(−νt)[‖ϕx(0)‖ + ε(‖ϕx(∙)‖C + ‖ϕy(∙)‖C)], t > 0, (6.6)

‖y(t, ε)‖6 c(ν, γ ) exp(−νt)[‖ϕx(0)‖ + ε(‖ϕx(∙)‖C + ‖ϕy(∙)‖C)]

+c(ν, γ ) exp

(
−
γ t

ε

)
(‖ϕx(∙)‖C + ‖ϕy(∙)‖C), t > 0, (6.7)

where‖ϕx(∙)‖C and‖ϕy(∙)‖C are the uniform norm ofϕx(∙) andϕy(∙), respectively, on the interval
[−ε0h, 0].

Proof. Let us prove the inequality (6.7). The inequality (6.6) is proved similarly.
Let, for anyε > 0, Ψ (t, ε), t > 0 be the fundamental matrix of the system (2.3). By using the

variation of constant formula (see, e.g.Hale & Verduyn Lunel, 1993), we obtain the solution of the IVP
(2.3), (6.3) in the form

z(t, ε) = Λ1(t, ε)+Λ2(t, ε), t > 0, (6.8)

where

Λ1(t, ε) = Ψ (t, ε)ϕ(0), Λ2(t, ε) =
∫ h

0
Ψ (t − εs, ε)Eε

{∫ −s

−h
[dA(η)]ϕ(ε(s + η))

}
ds, (6.9)

Eε is given by (2.17).
For the sake of the further consideration, let us partition the matrixΨ (t, ε) and the vectorsΛi (t, ε),

(i = 1,2) into blocks as follows:

Ψ (t, ε) =

(
Ψ1(t, ε) Ψ2(t, ε)

Ψ3(t, ε) Ψ4(t, ε)

)

, Λi (t, ε) =

(
Λi 1(t, ε)

Λi 2(t, ε)

)

, i = 1,2, (6.10)

where the blocksΨ1(t, ε) andΨ4(t, ε) are of the dimensionsn × n andm× m, respectively; the blocks
Λi 1(t, ε) andΛi 2(t, ε), (i = 1,2) are of the dimensionsn andm, respectively.

Thus,

y(t, ε) = Λ12(t, ε)+Λ22(t, ε), (6.11)

and in order to prove the inequality (6.7), one has to estimates the vector-valued functionsΛi 2(t, ε),
(i = 1,2). Let us start withΛ12(t, ε). Due to (6.4), (6.9) and (6.10),

Λ12(t, ε) = Ψ3(t, ε)ϕx(0)+ Ψ4(t, ε)ϕy(0). (6.12)

By virtue of the condition (6.1)–(6.2), the inequalities (3.2) and (6.5), and the results ofGlizer(2003,
Theorem 2.3), there exist positive numbersε̄1(ν, γ ) andc1(ν, γ ) such that for anyε ∈ (0, ε̄1(ν, γ )] the
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STABILITY OF SINGULARLY PERTURBED FUNCTIONAL-DIFFERENTIAL SYSTEMS 17of 33

following inequalities are satisfied:

‖Ψ3(t, ε)‖ 6 c1(ν, γ ) exp(−νt), ‖Ψ4(t, ε)‖ 6 c1(ν, γ )

[
ε exp(−νt)+ exp

(
−
γ t

ε

)]
, t > 0.

(6.13)
By using (6.12) and (6.13), we obtain the following estimate ofΛ12(t, ε) for anyε ∈ (0, ε̄1(ν, γ )]:

‖Λ12(t, ε)‖ 6 c1(ν, γ ) exp(−νt)(‖ϕx(0)‖ + ε‖ϕy(0)‖)+ c1(ν, γ ) exp

(
−
γ t

ε

)
‖ϕy(0)‖, t > 0.

(6.14)
Now, proceed to the vector-valued functionΛ22(t, ε). Due to (2.17), (6.4), (6.9) and (6.10),

Λ22(t, ε)= ε

∫ h

0
Ψ3(t − εs, ε)

{∫ −s

−h
[dA1(η)]ϕx(ε(s + η))+

∫ −s

−h
[dA2(η)]ϕy(ε(s + η))

}
ds

+
∫ h

0
Ψ4(t − εs, ε)

{∫ −s

−h
[dA3(η)]ϕx(ε(s + η))+

∫ −s

−h
[dA4(η)]ϕy(ε(s + η))

}
ds.

(6.15)

By using (6.13), (6.15) and results ofKolmogorov & Fomin(1975, Chapter VI, Section 6), we obtain
the existence of positive numbersε̄2(ν, γ ) 6 min{ε0, ε̄1(ν, γ )} andc2(ν, γ ) such that the following
estimate ofΛ22(t, ε) holds for anyε ∈ (0, ε̄2(ν, γ )]:

‖Λ22(t, ε)‖ 6 c2(ν, γ )

[
ε exp(−νt)+ exp

(
−
γ t

ε

)]
(
‖ϕx(∙)‖C + ‖ϕy(∙)‖C

)
, t > 0. (6.16)

Now, the inequality (6.7) is a direct consequence of (6.11) and the inequalities (6.14) and (6.16).�
The fulfilment of the inequalities (6.6)–(6.7) means the exponential stability of the system (2.3)

uniformly with respect toε for all sufficiently smallε > 0. In Theorem6.1, such a stability was obtained
under the condition that all roots of the slow and fast characteristic equations have negative real parts.
It is clear that the negativeness of real parts of the roots of the slow characteristic equation is necessary
for the uniform exponential stability of the system (2.3). However, such a statement is not correct with
respect to the roots of the fast characteristic equation. Below, the uniform exponential stability of the
system (2.3) is established under a weaker assumption on the set of these roots than the assumption (6.2)
of Theorem6.1.

6.2 Case of no exponential stability for the fast subsystem

In what follows, we assume

M+ = ∅, M0 6= ∅. (6.17)

Let μ̃α, (α = 1, . . . , β), be all distinct pure imaginary roots of the fast characteristic equation (2.9).
Denote

ãmin
μ

4
= min
α∈{1,...,β}

Re(Gf(μ̃α, 0)). (6.18)

LEMMA 6.1 Let the Assumptions A1 and A2 be satisfied. Let the condition (6.17) hold, and all pure
imaginary rootsμ̃α, (α = 1, ..., β) of the fast characteristic equation (2.9) be simple. Let

Re(Gf(μ̃α, 0)) > 0, α = 1, . . . , β, (6.19)
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18of 33 V. Y. GLIZER AND E. FRIDMAN

whereGf(μ̃α, 0) is given in Lemma5.1.
Let the condition (6.1) hold. Letγ > 0 andν be any given constants, satisfying the inequalities (3.2)

and

0< ν < min
{
|āmax
λ |, ãmin

μ

}
, (6.20)

respectively. Then, there exists a positive numberε̄(ν, γ ), such that the following inequality is valid:

sup
ε∈(0,ε̄(ν,γ )]

Reλ(ε) < −ν, (6.21)

whereλ(ε) is any root of (2.5).

Proof. First, note that, due to the definitions ofãmin
μ andthe inequality (6.19), the valuẽamin

μ is positive,
meaning the correctness of the inequality (6.20).

Consider the setRs(ε) of slow roots of the characteristic equation (2.5). By settingσ2 = −ν in
(3.8)–(3.9) and using Theorem3.1, we obtain the existence ofε̄1(ν) > 0 such that, for allε ∈ (0, ε̄1(ν)],
the following inequality is valid:

sup
ε∈(0,ε̄1(ν)]

Reλ(ε) < −ν, λ(ε) ∈ Rs(ε). (6.22)

Proceed to the setsRf,χ (ε), Rf,κ (ε) andRf,γ (γ̃ , ε) defined by (5.2), (5.3) and (5.4), respectively.
SinceM+ = ∅, then for a givenχ > 0, there exists a numberε̄2 > 0, such that for allε ∈ (0, ε̄2],

Rf,χ (ε) = ∅. (6.23)

By virtue of Theorem3.1, the elements of the setRf,γ (γ̃ , ε) satisfy the following inequality for any
γ̃ < −γ and allε ∈ (0, ε̄3(γ )] with some 0< ε̄3(γ ) 6 ε̄1(ν):

Reμ(ε) <−γ, μ(ε) ∈ Rf,γ (γ̃ , ε). (6.24)

By using Lemma5.1, Theorem5.1, (6.18) and the inequalities (6.19), (6.20), one obtains the existence
of a numberε̄4(ν), (0 < ε̄4(ν) 6 ε∗f ), such that all elements of the setRf,κ (ε) satisfy the following
inequality:

sup
ε∈(0,ε̄4(ν)]

Re

(
1

ε
μ(ε)

)
< −ν, μ(ε) ∈ Rf,κ (ε). (6.25)

By using (5.6) and (6.23), and the inequalities (6.22), (6.24) and (6.25), one directly obtains the
statement of the lemma with̄ε(ν, γ ) = min(ε̄1(ν), ε̄2, ε̄3(γ ), ε̄4(ν)). �

Thus, under the conditions of Lemma 6.1, for allε ∈ (0, ε̄(ν, γ )], any root of the original charac-
teristic equation (2.5) belongs either to the domainDs with σ2 = −ν or to the domainD̃f,κ (ε) with
χ = −εν or to the domainD̃f,γ (ε).

LEMMA 6.2 Let the conditions of Lemma6.1be satisfied. Then, the fundamental matrixΨ (t, ε) of the
system (2.3) can be represented in the form

Ψ (t, ε)=
1

2πi

{∫

∂Ds

Θ(λ, t, ε)dλ+ lim
ψ→+∞

∫ −γ /ε+iψ

−γ /ε−iψ
Θ(λ, t, ε)dλ

+
∫

∂D̃+
f,κ (ε)

Θ(λ, t, ε)dλ+
∫

∂D̃−
f,κ (ε)

Θ(λ, t, ε)dλ

}

, t > 0, ε ∈ (0, ε̄(ν, γ )],

(6.26)
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where

Θ(λ, t, ε)= exp(λt)1−1(λ, ε)Eε, t > 0, (6.27)

D̃+
f,κ (ε)= {λ: − γ /ε < Reλ <−ν, κ1/ε < Imλ < κ2/ε}, (6.28)

D̃−
f,κ (ε)= {λ: − γ /ε < Reλ <−ν, −κ2/ε < Imλ < −κ1/ε}, (6.29)

∂D is the boundary of a setD in a complex plane, the direction of motion along each of the curves
∂Ds, ∂D

+
f,κ (ε) and∂D−

f,κ (ε) is opposite to the clockwise one, the curve of the integration in the second
integral in the right-hand side of (6.26) is the straight-line segment connecting the initial and terminal
points.

Proof. By using Lemma6.1and the result ofHale & Verduyn Lunel(1993) on the representation of the
fundamental matrix of a linear autonomous time-delay system, one obtains for allε ∈ (0, ε̄(ν, γ )]

Ψ (t, ε) =
1

2πi
lim

ψ→+∞

∫ −ν+iψ

−ν+iψ
Θ(λ, t, ε)dλ, t > 0, (6.30)

where the curve of the integration is the straight-line segment connecting the initial and terminal points.
Let ε ∈ (0, ε̄(ν, γ )] be any but fixed. For anyψ > κ2/ε, consider the domains

D1(ε)= {λ: − γ /ε < Reλ <−ν, κ2/ε < Imλ < ψ}, (6.31)

D2(ε)= {λ: − γ /ε < Reλ < σ1, −κ1/ε < Imλ < κ1/ε}, (6.32)

D3(ε)= {λ: σ1 < Reλ< −ν, ρ2 < Imλ < κ1/ε}, (6.33)

D4(ε)= {λ: σ1 < Reλ< −ν, −κ1/ε < Imλ < ρ1}, (6.34)

D5(ε)= {λ: − γ /ε < Reλ <−ν, −ψ < Imλ < −κ2/ε}. (6.35)

By virtue of the Cauchy theorem

∫

∂Dl (ε)
Θ(λ, t, ε)dλ= 0, l = 1, . . . ,5, (6.36)

where the direction along the boundary∂Dj (ε) of the domainDj (ε) is clockwise.
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20of 33 V. Y. GLIZER AND E. FRIDMAN

Using(6.36) yields the following chain of equalities:

∫ −ν+iψ

−ν+iψ
Θ(λ, t, ε)dλ =

∫ −ν+iψ

−ν+iψ
Θ(λ, t, ε)dλ+

5∑

l=1

∫

∂Dl (ε)
Θ(λ, t, ε)dλ

=
∫

∂Ds

Θ(λ, t, ε)+
∫

∂D̃+
f,κ (ε)

Θ(λ, t, ε)dλ+
∫

∂D̃−
f,κ (ε)

Θ(λ, t, ε)dλ

+
∫ −γ /ε+iψ

−γ /ε−iψ
Θ(λ, t, ε)dλ+

∫ −ν+iψ

−γ /ε+iψ
Θ(λ, t, ε)dλ

+
∫ −γ /ε−iψ

−ν−iψ
Θ(λ, t, ε)dλ.

(6.37)

By usingGlizer (2003, Lemma 2.5), one has

lim
ψ→+∞

∫ −ν+iψ

−γ /ε+iψ
Θ(λ, t, ε)dλ= 0, lim

ψ→+∞

∫ −γ /ε−iψ

−ν−iψ
Θ(λ, t, ε)dλ= 0. (6.38)

Now, the statement of the lemma is a direct consequence of (6.30), (6.37) and (6.38). �

LEMMA 6.3 Let the conditions of Lemma6.1be satisfied. Then, there exist a positive numberεν , such
that for allε ∈ (0, εν ], the following inequality is satisfied:

∥
∥
∥
∥

∫

∂Ds

Θ(λ, t, ε)dλ

∥
∥
∥
∥ 6 cexp(−νt), t > 0, (6.39)

wherec > 0 is some positive constant independent ofε.

Proof. The lemma is proved very similar toGlizer (2003, Lemma 2.3). �

LEMMA 6.4 Let the conditions of Lemma6.1be satisfied. Then, there exist a positive numberεγ , such
that for allε ∈ (0, εγ ], the following inequality is satisfied:

∥
∥
∥
∥
∥

lim
ψ→+∞

∫ −γ /ε+iψ

−γ /ε−iψ
Θ(λ, t, ε)dλ

∥
∥
∥
∥
∥
6 cexp

(
−
γ t

ε

)
, t > 0, (6.40)

wherec > 0 is some positive constant independent ofε.

Proof. The lemma is proved very similar toGlizer (2003, Lemma 2.4). �

LEMMA 6.5 Let the conditions of Lemma6.1be satisfied. Then, there exist a positive numberε̃(ν, γ ),
such that for allε ∈ (0, ε̃(ν, γ )], the following inequalities are satisfied:

∥
∥
∥
∥
∥

∫

∂D̃+
f,κ (ε)

Θ(λ, t, ε)dλ

∥
∥
∥
∥
∥
6 cexp(−νt), t > 0, (6.41)

∥
∥
∥
∥
∥

∫

∂D̃−
f,κ (ε)

Θ(λ, t, ε)dλ

∥
∥
∥
∥
∥
6 cexp(−νt), t > 0, (6.42)
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wherec > 0 is some positive constant independent ofε.

Proof. Let us start with the proof of the inequality (6.41). First of all note that, due to Lemma6.1, there
exists a positive number̃ε1(ν, γ ), (ε̃1(ν, γ ) 6 ε̄(ν, γ )), such that the matrix1−1(t, ε) exists for all
ε ∈ (0, ε̃1(ν, γ )] and allλ ∈ ∂D̃+

f,κ (ε). Rewrite the matrix1−1(λ, ε)Eε in the form

1−1(λ, ε)Eε = N(λ, ε)−
1

λ
In+m, ε ∈ (0, ε̃1(ν, γ )], λ ∈ ∂D̃+

f,κ (ε), (6.43)

where

N(λ, ε) =
1

λ
1−1(λ, ε)

∫ 0

−h
exp(ελη)dA(η). (6.44)

Hence,
∫

∂D̃+
f,κ (ε)

Θ(λ, t, ε)dλ=
∫

∂D̃+
f,κ (ε)

exp(λt)N(λ, ε)dλ−
∫

∂D̃+
f,κ (ε)

exp(λt)

λ
In+m dλ. (6.45)

Let us estimate the integrals in the right-hand side of (6.45). We start with the second integral. Due to
(6.28), one has for allε ∈ (0, ε̃1(ν, γ )],

| exp(λt)| 6 exp(−νt), λ ∈ ∂D̃+
f,κ (ε), t > 0, (6.46)

1

|λ|
6 c1ε, λ ∈ ∂D̃+

f,κ (ε), (6.47)

wherec1 > 0 is some constant independent ofε. Hence,
∥
∥
∥
∥
∥

∫

∂D̃+
f,κ (ε)

exp(λt)

λ
In+m dλ

∥
∥
∥
∥
∥
6 c2 exp(−νt), ε ∈ (0, ε̃1(ν, γ )], t > 0, (6.48)

wherec2 > 0 is some constant independent ofε.
Proceed to the first integral in the right-hand side of (6.45). By using (6.28), one can show very

similar to Glizer (2003, Proof of Lemma 2.4) that the matrixN(λ, ε) is bounded, i.e. the following
inequality is satisfied:

‖N(λ, ε)‖ 6 c3, 0< ε 6 ε̃2(ν, γ ) 6 ε̃1(ν, γ ), λ ∈ ∂D+
f,κ (ε), (6.49)

with some positive constantsε̃2(ν, γ ) andc3 independentof ε. By virtue of the inequalities (6.46) and
(6.49), we obtain

∥
∥
∥
∥
∥

∫

∂D̃+
f,κ (ε)

exp(λt)N(λ, ε)dλ

∥
∥
∥
∥
∥
6 c4 exp(−νt), ε ∈ (0, ε̃2(ν, γ )], t > 0, (6.50)

wherec4 > 0 is some constant.
Now, (6.45) and the inequalities (6.48) and (6.50) prove the inequality (6.41). The inequality (6.42)

is proved similarly. Thus, the proof of the lemma is completed. �
Based on Lemmas6.2–6.5, one directly obtain the following lemma.
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LEMMA 6.6 Let the conditions of Lemma6.1be satisfied. Then, there exists a positive numberε̂(ν, γ ),
such that for allε ∈ (0, ε̂(ν, γ )], the fundamental matrixΨ (t, ε) of the system (2.3) satisfies the in-
equality‖Ψ (t, ε)‖ 6 cexp(−νt), t > 0,wherec > 0 is some constant independent ofε.

THEOREM 6.2 Let the conditions of Lemma 6.1 be satisfied. Then, there exist positive numbers
ε̂(ν, γ ) 6 ε0 and ĉ(ν, γ ), such that the solutionz(t, ε) of the IVP (2.3), (6.3) satisfies the following
inequality for anyε ∈ (0, ε̂(ν, γ )]:

‖z(t, ε)‖ 6 ĉ(ν, γ ) exp(−νt)‖ϕ(∙)‖C ∀ t > 0, (6.51)

where‖ϕ(∙)‖C is the uniform norm ofϕ(∙) on the interval [−ε0h, 0].

Proof. The statement of the theorem directly follows from Lemma6.6and the equations (6.8)–(6.9).�

7. An LMI approach to exponential stability

In this section, we analyse the exponential stability of the system (2.26) with time-varying delays. Our
objective is to derive LMI conditions that guarantee such a kind of stability of this system for all suf-
ficiently small values ofε. Note that the results of this section can be easily extended to the case of a
finite number of discrete and distributed delays.

Let us partition the matricesB, Bh andBr into blocks as follows:

B =

[
B1 B2

B3 B4

]

, Bh =

[
Bh,1 Bh,2

Bh,3 Bh,4,

]

, Br =

[
Br,1 Br,2

Br,3 Br,4

]

, (7.1)

wherethe blocksB1, Bh,1 andBr,1 areof the dimensionn × n, while the blocksB4, Bh,4 andBr,4 are
of the dimensionm × m.

It was shown inFridman(2002a) thatε-independent LMI conditions for the asymptotic stability of
(2.26) imply the exponential stability of the fast subsystem, associated with this system. However, in this
paper, we do not assume that the fast subsystem is exponentially stable. In this situation, we cannot apply
the Lyapunov theorem for the asymptotic stability. Instead, we will look for the exponential stability
conditions of (2.26) with a given decay rate.

We represent (2.26) in the form

Eε ż(t) = (B + Bh)z(t)− Bh

∫ t

t−εh(t)
ż(s)ds+ Br

∫ t

t−εr (t)
z(s)ds (7.2)

andconsider the following Lyapunov–Krasovskii functional (seeFridman & Shaked,2002for regular
systems with time-varying delays)

V(zt , żt , ε) = z>(t)EεPεz(t)+ εh0

∫ 0

−εh0

∫ t

t+θ
exp(2ν(s − t))ż>(s)Rhż(s)dsdθ

+
∫ 0

−εr0

∫ t

t+θ
exp(2ν(s − t))z>(s)Rr z(s)dsdθ, (7.3)

wherezt = {z(s), s ∈ [t − εmax{h0, r0}, t ]}; żt = {ż(s), s ∈ [t − εmax{h0, r0}, t ]}; Rh and Rr are
somepositive definite matrices of corresponding dimensions;ν > 0 is some scalar value.
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The matrixPε hasthe block form

Pε =

[
P1 εP>

2

P2 P3

]

, P1 > 0, P3 > 0, (7.4)

wherethe blocksP1, P2 and P3 have the same dimensions as the respective blocks of the matrixEε,
and

EePε > 0, ε > 0. (7.5)

For the system (2.26), we consider the initial condition

z(t0 + θ) = φ(θ), t0 > 0, θ ∈ [−εmax{h0 ∙ r0}, 0], (7.6)

whereφ(∙) ∈ W[−ε0 max{h0 ∙ r0}, 0; En+m]; ε0 > 0 is some constant.
If for all ε ∈ [0, ε0],

d

dt
V + 2νV 6 0, (7.7)

thenby comparison principle

z>(t)EεPεz(t) 6 V(zt , żt , ε) 6 exp(−2ν(t − t0))V(φ, φ̇, ε), ε ∈ [0, ε0]. (7.8)

Therefore,if (7.7) holds, then for all initial functionsφ(∙) ∈ W[−ε0 max{h0 ∙ r0}, 0; En+m], there exists
a constantC(ε) > 0 such that the solution of the problem (2.26), (7.6) satisfies the inequality

‖z(t)‖ 6 exp(−ν(t − t0))C(ε)

[

εr0 max
θ∈[−εr0,0]

‖φ(θ)‖2 +
∫ 0

−εh0

‖φ̇(θ)‖2 dθ

]0.5

(7.9)

for all ε ∈ [0, ε0], i.e. (2.26) is exponentially stable with theε-independent decay rateν > 0.
We obtain forε ∈ (0, ε0],

d

dt
V + 2νV 6 2z>(t)P>

ε

[
(B + Bh)z(t)− Bh

∫ t

t−εh(t)
ż(s)ds+ Br

∫ t

t−εr (t)
z(t + θ)dθ

]

+2νz>(t)EεPεz(t)+ ε2h2
0ż>(t)Rhż(t)− εh0 exp(−2ενh0)

∫ t

t−h(t)
ż>(s)Rhż(s)ds

− exp(−2ενr0)

∫ t

t−εr (t)
z>(s)Rr z(s)ds+ εr0z>(t)Rr z(t). (7.10)

We apply further the Jensen’s inequality (see, e.g.Guet al., 2003)

εh0

∫ t

t−εh(t)
ż>(s)Rhż(s)ds >

∫ t

t−εh(t)
ż>(s)dsRh

∫ t

t−εh(t)
ż(s)ds, (7.11)

∫ t

t−εr (t)
z>(s)Rr z(s)ds >

1

εr0

∫ t

t−εr (t)
z>(s)dsRr

∫ t

t−εr (t)
z(s)ds. (7.12)
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Using(7.11)–(7.12) and setting

η(t) = col
(

z(t),
∫ t

t−εh(t) ż(s)ds, 1
εr0

∫ t
t−εr (t) z(s)ds

)
, one can rewrite (7.10) in the form

d

dt
V + 2νV 6 η>(t)Φη(t)+ ε2h2

0ż>(t)Rhż(t), (7.13)

where

Φ =






Γε −P>
ε Bh εr0P>

ε Br

∗ −Rh exp(−2ενh0) 0

∗ ∗ −εr0Rr exp(−2ενr0)




 , (7.14)

Γε = P>
ε (B + Bh)+ (B + Bh)

> Pε + εr0Rr + 2νEεPε. (7.15)

Substitutingthe right-hand side of (7.2) intoε2h2
0ż>(t)Rhż(t) andapplying further the Schur com-

plements, we find that the inequality (7.7) is satisfied if

Ψε =













Γε −P>
ε Bh εr0P>

ε Br h0(B + Bh)
> JεRh

∗ −Rh exp(−2ενh0) 0 −h0B>
h JεRh

∗ ∗ −εr0Rr exp(−2ενr0) εr0h0B>
r JεRh

∗ ∗ ∗ −Rh













6 0. (7.16)

where

Jε =

[
ε In 0

0 Im

]

. (7.17)

If (7.16) is feasible forε = 0, then the following slow LMI

P>
0 (B + Bh)+ (B + Bh)

> P0 + 2νE0P0 6 0 (7.18)

and the following fast LMI

Ψf =









P3(B4 + Bh,4)+ (B4 + Bh,4)
> P3 −P3Bh,4 h0(B4 + Bh,4)

>Rh,3

∗ −Rh,3 h0B>
h,4Rh,3

∗ ∗ −Rh,3








6 0, (7.19)

whereRh,3 = [0 Im]Rh[0 Im]>, are feasible.
The slow LMI guarantees that the slow subsystem

E0
dz̄

dt
= (B + Bh)z̄(t), t > 0, (7.20)
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is exponentially stable with the decay rateν. The slow subsystem is an autonomous descriptor (differential-
algebraic) system without delays. The fast LMI guarantees that the fast subsystem

dỹ(ξ)

dξ
= B4ỹ(ξ)+ Bh,4ỹ(ξ − h̃(ξ)), ξ > 0, (7.21)

with a piecewise-continuous delayh̃ ∈ [0, h0] is stable by Lyapunov (see, e.g.Hale & Verduyn Lunel,
1993). This follows from the fact that the fast LMI guarantees the fulfilment of the inequality dVf/dξ 6
0 for the Lyapunov functional of the form

Vf( ˙̃yξ ) = ỹ>(ξ)P3ỹ(ξ)+ h0

∫ 0

−h0

∫ ξ

ξ+ζ

˙̃y>(%)Rh,3 ˙̃y(%)d%dζ. (7.22)

REMARK 7.1 Note that by using Remark 2.2 ofGlizer (2004b), a different fast subsystem of (2.26) can
be obtained. Namely,

dỹ(ξ)

dξ
= B4ỹ(ξ)+ Bh,4ỹ(ξ − h(t)), ξ > 0, (7.23)

whereξ is an independent variable (the stretched time), whilet > 0 is a parameter. Thus, for any given
t > 0, the fast subsystem (7.23) is an autonomous differential system with a constant point-wise delay.

We consider further (2.26) withBr = 0, i.e. with the discrete delay only. Our next objective is to find
LMI conditions that guarantee the exponential decay rateν > 0 for all ε ∈ [ε1, ε0], where 06 ε1 < ε0.
For this purpose, we first find sufficient LMI conditions that are affine inε:

Ψε
∣
∣
r0=0 6 Ψ̃ε =












Γε
∣
∣
r0=0 −P>

ε Bh 0 h0(B + Bh)
> JεRh

∗ −Rexp(−2ε0νh0) 0 −h0B>
h JεRh

∗ ∗ 0 0

∗ ∗ ∗ −Rh












6 0. (7.24)

SinceEεPε andΨ̃ε areaffine in the constant parameterε, then LMIs (7.5), (7.24) are feasible for any
ε ∈ [ε1, ε0] if these LMIs hold forε = ε1 andfor ε = ε0 with the same matricesP2 and P3 (because
thesematrices multiplyε in EεPε andin Ψ̃ε; Boyd et al., 1994). Therefore, we arrive to the four LMIs

Eεi P(i )εi > 0, P(i )εi =




P(i )1 εi P>

2

P2 P3



 , i = 0,1, (7.25)

Ψ̄εi =









Γ
(i )
εi −P(i )>εi Bh h0(B + Bh)

> Jεi R(i )h

∗ −R(i )h exp(−2ε0νh0) −h0B>
h Jεi R(i )h

∗ ∗ −R(i )








6 0, (7.26)
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where

Γ
(i )
εi = P(i )>εi (B + Bh)+ (B + Bh)

> P(i )εi + 2νEεi P(i )εi . (7.27)

Note that multiplication of LMIs (7.25)–(7.26) withi = 0 by ε−ε1
ε0−ε1

andwith i = 1 by ε0−ε
ε0−ε1

, and

then summation of the resulting LMIs, imply the feasibility ofEεPε > 0 andΨ̃ε 6 0 for ε ∈ [ε1, ε0]
with

P1 =
ε − ε1

ε0 − ε1
P(0)1 +

ε0 − ε

ε0 − ε1
P(1)1 , Rh =

ε − ε1

ε0 − ε1
R(0)h +

ε0 − ε

ε0 − ε1
R(1)h . (7.28)

Therefore,the feasibility of (7.25)–(7.26) guarantees the exponential stability of (2.26) with the decay
rateν for ε ∈ [ε1, ε0]. Finally, if P1 > 0,P3 > 0 andΨ0 < 0, then EεPε > 0 andΨε < 0 for all
small enoughε > 0. We note that the strict LMIΨ0 < 0 can be feasible only if the fast system (7.21) is
asymptotically stable.

Summarizing, we have proved the following theorem.

THEOREM 7.1 For a givenν > 0, consider (2.26).
(i) Let there exist ann×n-matrix P1 > 0, an m × n-matrix P2, an m × m-matrix P3 > 0 and(n +
m) × (n + m)-matricesRh > 0 and Rr > 0 such that the LMIΨ0 < 0 is feasible, whereΨε is given
by (7.16). Then the fast system (7.21) is asymptotically stable, whereas the full order system (2.26) is
exponentially stable with the decay rateν for all small enoughε > 0.
(ii) For a givenε > 0, if there exist ann×n-matrix P1 > 0,anm×n-matrix P2, anm×m-matrix P3 > 0
and(n + m)× (n + m)-matricesRh > 0 andRr > 0 such that LMIs (7.5) and (7.16) are feasible. Then
(2.26) is exponentially stable with the decay rateν.
(iii) For a givenε0 > 0, let there existn×n-matrices P(0)1 > 0, P(1)1 > 0, an m × n-matrix P2, an

m × m-matrix P3 > 0 and (n + m) × (n + m)-matricesR(0)h > 0, R(1)h > 0 such that the LMIs

Eε0 P(0)ε0 > 0, Ψ̄ε0 6 0 andΨ̄ε1|ε1=0 6 0 are feasible with the notations given in (7.25)–(7.26). Then
(2.26) withBr = 0 is exponentially stable with the decay rateν for all ε ∈ [0, ε0].

REMARK 7.2 If the fast system is not asymptotically stable, but we are looking for conditions in the
form of the strict LMIs (in order to use LMI Toolbox of Matlab), we suggest the following: if for small
enoughε1 ∈ (0,ε0), the strict version of LMIs (7.25)–(7.26) is feasible, then the system (2.26) with
Br = 0 is exponentially stable with the decay rateν for all ε ∈ [ε1, ε0].

8. Examples

8.1 Example 1

Consider the system







1 0 0

0 ε 0

0 0 ε







dz(t)

dt
=







−2 1 1

2 0 −1

1 1 0





 z(t − εh(t)), t > 0, (8.1)

wherez(t) ∈ E3, ε > 0 is a small parameter.
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We note that in this example the fast system (7.23)

dỹ(ξ)

dξ
=

[
0 −1

1 0

]

ỹ(ξ − h(t)), ξ > 0, (8.2)

is not asymptotically stable even forh(t) ≡ 0.
(a) Consider first (8.1) without delay, i.e. forh(t) ≡ 0. In this case, the characteristic equation of

(8.1) is

ε2λ3 + 2ε2λ2 + (1 − 3ε)λ+ 1 = 0. (8.3)

The rootsλi (ε), (i = 1,2,3) of (8.3) have the following asymptotic expansions with respect toε
for all its sufficiently small values:

λ1(ε)= −1 + O(ε), (8.4)

Reλ2(ε)= −1/2 + O(ε), Imλ2(ε) = (i/ε)(1 − 3ε/2 + O(ε2)), (8.5)

Reλ3(ε)= −1/2 + O(ε), Imλ3(ε) = −(i/ε)(1 − 3ε/2 + O(ε2)), (8.6)

wherei is the imaginary unit.
It is seen that the rootλ1(ε) is slow, whileλ2(ε) andλ3(ε) are fast roots.
Let us write down the slow and fast subsystems, associated with the original singularly perturbed

system (8.1). The slow subsystem is

dx̄(t)

dt
= −x̄(t). (8.7)

The characteristic equation of (8.7) (the slow characteristic equation) has the form

λ̄+ 1 = 0, (8.8)

yielding the root̄λ = −1.
The fast system is given by (8.2), whereh(t) ≡ 0. The characteristic equation of the fast system (the

fast characteristic equation) has the form

μ̃2 + 1 = 0. (8.9)

Theroots of (8.9) areμ̃1 = i , μ̃2 = −i .
It is directly obtained that

lim
ε→+0

λ1(ε) = λ̄, lim
ε→+0

ελ2(ε) = μ̃1, lim
ε→+0

ελ3(ε) = μ̃2. (8.10)

Comparingλ2(ε), λ3(ε) with μ̃1, μ̃2, one can conclude that although the roots of the fast characteristic
equation are pure imaginary, the fast roots of the original characteristic equation have negative real parts.

We further use LMI Toolbox of MATLAB to verify the feasibility of the strict LMIs of Theorem
7.1 for exponential stability of (8.1) with h(t) ≡ 0. Givenε = 0.01, by solving the strict LMIs (7.5)
andΓε < 0 with Γε definedby (7.15), whereRr = 0, r0 = h0 = 0, we find that the system (8.1)
is exponentially stable with the decay rateν = 0.484. We note that the matrixE−1

0.01B in this example
has eigenvalues with real parts−0.4845. Forε = 0, the strict LMIΓ0 < 0 is not feasible since the
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fast system is not asymptotically stable. Next, verifying the feasibility of the strict LMIsΓ
(0)
0.01 < 0 and

Γ
(1)
0.011 < 0 with the same decision variablesP2 and P3, we find that the system is exponentially stable

with the decay rateν = 0.43 for ε ∈ [0.01,0.011].
(b) Consider the case of time-varying delayh(t) 6 h0. By verifying the feasibility of the strict LMIs

(7.16) forε = 0.01, we find that the system (8.1) is exponentially stable with the decay rateν = 0.28
for h(t) 6 0.002. Solving the strict LMIs (7.25)–(7.26) withε0 = 0.011,ε1 = 0.01 and with the same
decision variablesP2 andP3, we find that forε ∈ [0.01,0.011], the system is exponentially stable with
the decay rateν = 0.23 for h(t) 6 0.002.

8.2 Example 2

Consider the system

dx(t)

dt
= −4x(t)+ 2x(t − εh(t))+ y(t), t > 0, (8.11)

ε
dy(t)

dt
= x(t)− ωy(t − εh(t)), t > 0, (8.12)

wherex(t) andy(t) arescalar,ω is a given positive constant.
(a) Consider the case of constant delayh given by

h =
π

2ω
. (8.13)

First of all, note that the system (8.11)–(8.12) is a particular case of the system (2.1)–(2.2) with the
following scalar functionsAi (η), (i = 1, . . . ,4):

A1(η) =






2, −∞ < η 6 −h,

4, −h < η < 0,

0, 06 η < +∞,

A2(η) =






−1, −∞ < η 6 −h,

−1, −h < η < 0,
0, 06 η < +∞,

(8.14)

A3(η) =






−1, −∞ < η 6 −h,

−1, −h < η < 0,

0, 06 η < +∞,

A4(η) =






ω, −∞ < η 6 −h,

0, −h < η < 0,

0, 06 η < +∞.

(8.15)

Now, let us write down the characteristic equation with respect toλ for the system (8.11)–(8.12)

gs(λ, ε)
4
= [4 − 2exp(−ελh)+ λ][ω exp(−ελh)+ ελ] − 1 = 0. (8.16)

Transforming the variableελ = μ in (8.16) and multiplying the resulting equation byε, one can rewrite
this characteristic equation in the form

gf(μ, ε)
4
= [4ε − 2εexp(−μh)+ μ][ω exp(−μh)+ μ] − ε = 0. (8.17)

The slow subsystem, associated with the original system (8.11)–(8.12), has the form

dxs(t)

dt
= −

(
2 −

1

ω

)
xs(t), t > 0, (8.18)
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and its characteristic equation (the slow characteristic equation) is

λ+
(

2 −
1

ω

)
= 0, (8.19)

yielding the root

λ̄1 = −
(

2 −
1

ω

)
. (8.20)

It is clear that this root is negative if and only ifω > 1/2.
The fast subsystem has the form

dyf(ξ)

dξ
= −ωyf(ξ − h), ξ > 0, (8.21)

and its characteristic equation (the fast characteristic equation) is

det1f(μ)
4
= −ω exp(−μh)− μ = 0. (8.22)

It can be verified directly that (8.22) has two simple pure imaginary roots

μ̃1 = i ω, μ̃2 = −i ω, (8.23)

where i is the imaginary unit.
Consider any root̃μ 6= ±iω of (8.22). It can be observed immediately that Reμ̃ 6= 0. Let us

show that Rẽμ < 0. One can represent this root asμ̃ = μ̃Re + iμ̃Im, whereμ̃Re and μ̃Im are real
values. Substituting this representation into (8.22) instead ofμ, substitutingπ/(2ω) instead ofh, and
equating separately the real and imaginary values on both sides of the resulting equation yields (after
some rearrangement) the following system of equations with respect toμ̃Re andμ̃Im:

exp

(
−
π

2
∙
μ̃Re

ω

)
cos

(
π

2
∙
μ̃Im

ω

)
= −

μ̃Re

ω
, (8.24)

exp

(
−
π

2
∙
μ̃Re

ω

)
sin

(
π

2
∙
μ̃Im

ω

)
=
μ̃Im

ω
. (8.25)

Assumethat μ̃Re > 0. Then, 0< exp
(

− π
2 ∙ μ̃Re

ω

)
< 1, and , due to (8.25),

∣
∣ μ̃Im
ω

∣
∣ < 1. The latter

means that cos
(
π
2 ∙ μ̃Im

ω

)
> 0. Hence, the expression in the left-hand side of (8.24) is positive. However,

according to the above made assumption thatμ̃Re > 0, the expression in the right-hand side of (8.24)
is negative. This contradiction implies thatμ̃Re < 0, i.e. any rootμ̃ 6= ±iω of (8.22) has negative real
part.

Using the above presented analysis of roots of the slow and fast characteristic equations and results
of Sections4 and5, one can conclude that, for all sufficiently smallε > 0, all rootsλ(ε) of the original
characteristic equation (8.16) (excepting three ones) satisfy the inequality Reλ(ε) <−γ /ε with some
positive constantγ independent ofε. It is clear that all these roots are the fast roots of (8.16). The three
other roots of (8.16) are: (a) the slow rootλs1(ε), corresponding to the rootλ̄1 of the slow characteristic
equation (8.19); (b) the fast rootsλf1(ε) = μ1(ε)/ε andλf2(ε) = μ2(ε)/ε, whereμ1(ε) andμ2(ε) are
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theroots of (8.17), corresponding to the rootsμ̃1 andμ̃2, respectively, of the fast characteristic equation
(8.22). Below, based on results of Sections4 and5, we construct the first-order asymptotic expansions
for λs1(ε) andμα(ε), (α = 1,2). We start withλs1(ε). Using Corollary4.1, (2.12), (4.11), (8.15), (8.16),
(8.20) and the fact that̄λ1 is a simple root of the slow characteristic equation (8.19) directly yields that,
for all sufficiently smallε > 0, the rootλ1(ε) can be represented in the form (4.12) with p = 1, where

λ̄1
1 =

1

ω

(
1

ω
− 2

)(
2hω − h +

1

ω

)
. (8.26)

Now, proceed toμα(ε), (α = 1,2). By using Lemma5.1, (5.7), (5.14), (8.17), (8.22), (8.23) and the
fact thatμα(ε), (α = 1,2) are simple roots of (8.17), one immediately obtains that, for all sufficiently
smallε > 0, the rootsμα(ε), (α = 1,2) can be represented in the form (5.15), where

μ̃1
1 = −ρ − i θ, μ̃1

2 = −ρ + i θ, ρ =
hω2

ω2(h2ω2 + 1)
, θ =

1

ω(h2ω2 + 1)
. (8.27)

Thelatter means that

lim
ε→+0

Re(λf,α (ε)) = −ρ < 0, α = 1,2. (8.28)

Therefore, by virtue of Lemma6.1, we obtain that for any constantν, satisfying the inequality

0< ν < min

{(
2 −

1

ω

)
, ρ

}
, (8.29)

there exists a numberε(ν) > 0 such that, for allε ∈ (0, ε(ν)], any rootλ(ε) of the original characteristic
equation (8.16) satisfies the inequality Reλ(ε) 6 −ν. Hence, due to Theorem6.2, the system (8.11)–
(8.12) is exponentially stable uniformly with respect toε for all sufficiently smallε > 0 with the decay
rateν̄ < ν.

(b) Consider the case of time-varying delayh(t) 6 h0 andω = 1. Applying the item (iii) of
Theorem7.1 and verifying the feasibility of the corresponding LMIs with the same decision variables
P2 andP3, we find that forε ∈ [0, 0.5], the system is exponentially stable with the decay rateν = 0.2
for h(t) 6 0.4.

We note that in this example our LMI approach, which is based on the simple Lyapunov–Krasovskii
functional, can treat only comparatively small delays, where the fast subsystem is exponentially stable.

9. Conclusions

In this paper, the singularly perturbed linear differential system with a small delay of order of the
singular perturbation parameterε > 0 was treated. In the case of time-invariant system, the asymp-
totic behaviour of the set of roots of its characteristic equation has been investigated. For this purpose,
the original singularly perturbed system was decomposed asymptotically into two much simplerε-free
subsystems, the slow and fast ones. The characteristic equations of these subsystems (the slow and fast
characteristic equations) also areε-free, and they are much simpler than the one (the original char-
acteristic equation) for the original singularly perturbed system. It was also shown that the original
characteristic equation can be decomposed asymptotically into two much simplerε-free equations of
the polynomial and quasipolynomial type. The connection between the asymptotic decomposition of the
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original singularly perturbed system and the asymptotic decomposition of its characteristic equation was
established.

Based on the assumed structure of the sets of roots of the slow and fast characteristic equations,
the structure of the set of roots of the original characteristic equation (including qualitative properties
and asymptotic expansion of the roots with respect toε) has been derived. It is important to note that
the assumptions, on which the final result is based, areε-free. The intermediate results also areε-free.
However, the final result, the structure of the set of roots of the original characteristic equation, is valid
for all sufficiently smallε > 0, i.e. robustly with respect to this parameter. The results on the structure
of roots of the characteristic equation have been applied to the analysis of the exponential stability of the
original singularly perturbed system. The exponential stability of this system was established not only
in the case where the fast subsystem is exponentially stable but also in the case where the characteristic
equation of the fast subsystem has pure imaginary roots.

Along with the method of studying the exponential stability of a singularly perturbed time delay
system, based on the asymptotic analysis of its spectrum, an LMI method also was developed for singu-
larly perturbed systems with time-varying (point-wise and distributed) delays. Like the former, the latter
also includes the case of no exponential stability of the fast subsystem. In this case, the LMI method can
guarantee the exponential stability of the full order system uniformly inε ∈ [ε1, ε0], whereε1 > 0 can
be chosen arbitrary close to zero.

In the case of a constant delay, the LMI method is more conservative than the method of spectrum
analysis. However, in the case of a variable delay, the latter is not applicable to the study of the expo-
nential stability, while the former is. It was shown how these two methods can complement each other
in the analysis of the exponential stability of singularly perturbed time delay systems.
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