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a b s t r a c t

This paper studies quantized and delayed state-feedback control of linear systems with given constant
bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be
saturated. We consider two types of quantizations: quantized control input and quantized state. The
controller is designed with the following property: all the states of the closed-loop system starting
from a neighborhood of the origin exponentially converge to some bounded region (both, in Rn and
in some infinite-dimensional state space). Under suitable conditions the attractive region is inside
the initial one. We propose decomposition of the quantization into a sum of a saturation and of a
uniformly bounded (by the quantization error bound) disturbance. A Linear Matrix Inequalities (LMIs)
approach via Lyapunov–Krasovskii method originating in the earlier work [Fridman, E., Dambrine, M.,
& Yeganefar, N. (2008). On input-to-state stability of systems with time-delay: A matrix inequalities
approach. Automatica, 44, 2364–2369] is extended to the case of saturated quantizer and of quantized state
and is based on the simplified and improved Lyapunov–Krasovskii technique.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known (Kalman, 1956), that quantization of a
stabilizing controllermay lead to limit cycles and chaotic behavior.
Quantization in control systems has recently become an active
research topic. The need for quantization arises when digital
networks are part of the feedback loop. In this paper we
study linear control systems with either quantized state or
quantized control input. See e.g. (Brocket and Liberzon, 2000; Bullo
and Liberzon, 2006; Corradini and Orlando, 2008; Fagnani and
Zampieri, 2003; Fu and Xie, 2005; Ishii and Francis, 2003; Liberzon,
2003) and the references therein for control under different types
of quantizations (in both, linear and nonlinear cases).
We think of a quantizer as a device that converts a real-valued

signal into a piecewise constant one. In the present paper we
consider a quantizer with an a priori given constant upper bound
on the quantization error and, thus, asymptotic stability cannot
be ensured. In the linear case the problem can be reduced to the
analysis of the systems with bounded disturbances, where the
ultimate bound can be derived via the quadratic Lyapunov function
(see e.g. Liberzon (2003)). An alternative approach to ultimate
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bound computation is based on the componentwise analysis of
disturbances (Haimovich, Kofman and Seron, 2007; Kofman, Seron
and Haimovich, 2008).
Time-delay often appears in control systems and, in many

cases, delay is a source of instability (Hale and Verduyn-
Lunel, 1993). Delays often appear in networked control systems.
Recently exponential convergence of linear state-delay systems
with bounded non-delayed control and bounded disturbances was
studied in Oucheriah (2006), where delay-independent conditions
were derived via a quadratic Lyapunov function. We note that the
delay-independent conditions are not applicable to systems with
input delay, where the open-loop systems are unstable.
Delayed quantized control was studied in Liberzon (2006)

by applying Input-to-State Stability (ISS) analysis (see Sontag
and Wang (1995)) via Razumikhin approach (Teel, 1998). The
Razumikhin approach leads usually to more conservative results
than the Krasovskii method (see e.g. Example 2 in Fridman,
Dambrine and Yeganefar (2008)). For systems with constant
delays, ISS sufficient conditions were recently derived in terms
of Lyapunov–Krasovskii functionals in Pepe and Jiang (2006). For
systems with time-varying delays ISS sufficient delay-dependent
conditions via Krasovskii method were obtained in Fridman et al.
(2008) in terms of matrix inequalities, where quantized control
input without saturation was considered.
LMI conditions in the case of the logarithmic quantizer of

control feedback (where the asymptotic stability can be achieved)
were derived in Fu and Xie (2005) by using the sector bound
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approach. It is the objective of the present paper to give a general
framework for LMI approach to design of delayed state-feedback
in the cases of quantized control input or quantized state with an a
priori given quantization error bound, in the presence of saturation.
We represent a saturated quantization as a sum of a saturation

and of a uniformly bounded disturbance. Thus the problem is
reduced to ISS analysis and design of systems with saturated
input or state. For the first time, we design via LMIs a controller
under saturated or quantized state with a given quantization error
bound. In the case of saturated control input we employ a linear
system representation with polytopic type uncertainty (Hu and
Lin, 2001; Tarbouriech and Gomes da Silva, 2000). The presented
delay-dependent LMI conditions for ISS are based on simplified
and improved Lyapunov–Krasovskii technique comparatively
to Fridman et al. (2008). A conference version of the present paper
has appeared in Fridman and Dambrine (2008).

Notation. Throughout the paper the superscript ‘T ’ stands for
matrix transposition, Rn denotes the n-dimensional Euclidean
space with norm | · |, Rn×m is the set of all n × m real matrices,
and the notation P > 0, for P ∈ Rn×n means that P is symmetric
and positive definite. In symmetric block matrices we use ∗ as an
ellipsis for terms that are induced by symmetry. We also denote
xt(θ) = x(t+θ) (θ ∈ [−h, 0]). The symbol |·|∞ stands for essential
supremum. Given q̄ = [q̄1, . . . , q̄k]T, 0 < q̄i, i = 1, . . . ,m,
for any z = [z1, . . . , zk]T we denote by sat(z, q̄) the vector with
coordinates sign(zi)min(|zi|, q̄i).

2. Problem formulation

Consider the linear system

ẋ(t) = Ax(t)+ Bu(t − τ(t)), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and τ(t)
is an unknown delay that satisfies 0 ≤ τ(t) ≤ h. We will consider
either differentiable delays with τ̇ ≤ d < 1, where d is known, or
piecewise-continuous delays.
Let z = [z1, . . . , zk]T ∈ Rk be the vector being quantized. We

will consider k = m in the case of quantized control input or k = n
in the case of quantized statemeasurements. A saturated quantizer
is a piecewise constant function q = [q1, . . . , qk]T with qi : R →
Qi, i = 1, . . . , k, whereQi is a finite subset inR. Similar to Liberzon
(2003), we assume that there exist real numbers q̄i > ∆ > 0 such
that the following two conditions hold:

|zi| ≤ q̄i ⇒ |qi(zi)− zi| ≤ ∆, i = 1, . . . , k,
|zi| > q̄i ⇒ |qi(zi)− sign(zi)q̄i| < ∆,

(2)

where∆ > 0 is the quantization error bound and q̄ = [q̄1, . . . , q̄k]T
is the quantization range. An example of a quantizer satisfying
(2) is provided by the saturated uniform quantizer with uniform
partitioning of Rk.
Assume that (1) without delay is stabilizable. Then for small

enough h there exists a linear state-feedback u(t) = Kx(t) that
exponentially stabilizes (1) for all piecewise-continuous τ(t) ∈
[0, h] (Hale and Verduyn-Lunel, 1993). Since quantization may oc-
cur either in the control input or in the state measurements (Liber-
zon, 2003), we will design both, a quantized control law

u(t) = q(Kx(t)), (3)

and a control law with quantized state

u(t) = Kq(x(t)). (4)

We represent the closed-loop systems (1)–(3) and (1)–(4) in the
following forms

ẋ(t) = Ax(t)+ Bsat(Kx(t − τ(t)), q̄)+ Bw(t),
w(t) = q(Kx(t − τ(t)))− sat(Kx(t − τ(t)), q̄),

q̄ = [q̄1, . . . , q̄m]T,
(5)
and
ẋ(t) = Ax(t)+ BKsat(x(t − τ(t)), q̄)+ BKw(t),
w(t) = q(x(t − τ(t)))− sat(x(t − τ(t)), q̄),

q̄ = [q̄1, . . . , q̄n]T
(6)

respectively. In both cases |w[t0,t]|∞ ≤
√
k∆ and the upper bounds

∆ and q̄ are a priori given. Suppose for simplicity that u(t−τ(t)) =
0 for t − τ(t) < t0. Then the initial condition for the closed-loop
systems is given by
x(t0) = x0, x(s) = 0, s < t0. (7)
(In Section 6.1 a general initial condition is considered.)
The closed-loop systems (5) and (6) are linear systems with

saturated actuators and bounded disturbances. Similar to Hu,
Lin and Chen (2002) and Oucheriah (2006) (where non-delayed
saturated control input was studied), our problem of interest is to
design a controller of the form (3) or (4) to achieve the following
property: there exists an ellipsoid X0 ⊂ Rn of initial conditions
x(t0) (as large aswe can get) fromwhich the state trajectories of the
system are exponentially convergent towards attractive ellipsoid
X∞ ⊂ Rn (as small as we can get). We note that in the unsaturated
case (5) and (6) are linear systemswith bounded disturbances and,
thus,X∞ is attractive ∀x(t0) ∈ Rn for |w(t)| ≤

√
k∆. Given time

T > t0, we will find also a reachable ellipsoid XT , in which all
solutions starting from X0 will enter in time t = T and will not
leave it. Conditions will be given, under which the initial region is
exponentially attracted to a smaller region.

3. Bounds on the solutions of systemswith time-varying delays

We first consider an auxiliary system without saturation

ẋ(t) = Ax(t)+ A1x(t − τ(t))+ B1w(t), (8)

with initial condition given by (7), where x(t) ∈ Rn,w(t) ∈ Rk and
0 ≤ τ(t) ≤ h. We will apply the following Lyapunov–Krasovskii
functional for delay-dependent analysis of (8):

V (t, xt , ẋt) = xT(t)Px(t)+
∫ t

t−h
ea(s−t)xT(s)Sx(s)ds

+

∫ t

t−τ
ea(s−t)xT(s)Ex(s)ds

+ h
∫ 0

−h

∫ t

t+θ
ea(s−t)ẋT(s)Rẋ(s)dsdθ (9)

where P > 0, R > 0, S > 0, E ≥ 0 and a > 0. Such functionals
with ea(s−t) inside of integral terms have been used for exponential
stability analysis in Mondie and Kharitonov (2005). By writing E ≥
0, we understand two cases: either E > 0, which corresponds to
the case of differentiable delays with τ̇ ≤ d < 1, where d is given,
or E = 0, which corresponds to the case of fast varying delays
(without any constraints on the delay derivative) (see (Fridman
and Shaked, 2002)).
In Fridman et al. (2008), the Lyapunov functional (that

corresponded to the linear case) had the form of (9) with S =
0, E = 0, a = 0 and the LMI conditions were derived by upper
bounding of aV for a > 0. Such bounding of e.g.

∫ t
t−h x

T(s)Sx(s)ds
cannot lead to LMI condition. The integral terms of (9) simplify the
derivation and allow inserting different terms into V for advanced
time-delay analysis. Similar to Fridman et al. (2008) we obtain the
following result:

Proposition 1. If there exist a > 0, b > 0 and n×n-matrices P > 0,
S > 0, E ≥ 0 and R > 0 such that along the trajectories of (8) the
Lyapunov–Krasovskii functional (9) satisfies the condition

W ∆
=
d
dt
V + aV − b|w|2 < 0. (10)
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Then the solution of (8) and (7) satisfies the inequality

xT(t)Px(t) < e−a(t−t0)xT0Px0 + [1− e
−a(t−t0)]

b
a
|w[t0,t]|

2
∞

(11)

for t ≥ t0 and |x0|2 + |w[t0,t]|
2
∞
> 0.

Proof. Applying the comparison principle (Khalil, 2002), we have
xT(t)Px(t) ≤ V (t, xt , ẋt) < e−a(t−t0)V (t0, xt0 , ẋt0)

+

∫ t

t0
e−a(t−s)b|w(s)|2ds,

that implies (11) (and so, the system is ISS). �

Wewill derive now LMI that guaranteesW < 0. Differentiating
V , we find
W ≤ 2xT(t)Pẋ(t)+ axT(t)Px(t)− bwT(t)w(t)

+ h2ẋT(t)Rẋ(t)− he−ah
∫ t

t−h
ẋT(s)Rẋ(s)ds

+ xT(t)[S + E]x(t)− [xT(t − h)Sx(t − h)
+ (1− d)xT(t − τ)Ex(t − τ)]e−ah.

Applying the standard arguments (see e.g. Ariba andGouaisbaut
(2007)), we obtain that

W ≤ ηT(t)Φη(t) < 0, ∀η(t) 6= 0, (12)
where η(t) = col{x(t), ẋ(t), x(t − h), x(t − τ(t)), w(t)}, if the
matrix inequality

Φ =


Φ11 Φ12 0 PT2A1 + Re

−ah PT2B1
∗ Φ22 0 PT3A1 PT3B1
∗ ∗ −(S + R)e−ah Re−ah 0
∗ ∗ ∗ −(2R+ (1− d)E)e−ah 0
∗ ∗ ∗ ∗ −bI

 < 0
(13)

is feasible, where

Φ11 = ATP2 + PT2A+ aP + S + E − Re
−ah, (14)

Φ12 = P − PT2 + A
TP3, Φ22 = −P3 − PT3 + h

2R.
Thus, the following result is obtained.

Lemma 2. Given a > 0 and h > 0, let there exist n × n-matrices
P > 0, P2, P3, R > 0, S > 0, E ≥ 0 and a scalar b > 0 such that the
LMI (13) with notations given in (14) holds. Then the solution of (8)
satisfies (11) for all delays 0 ≤ τ(t) ≤ h. Moreover, given∆ > 0 and
k > 0, the ellipsoid

X∞ =

{
x ∈ Rn : xTPx <

b
a
k∆2

}
(15)

is exponentially attractive with the decay rate a/2 for all x0 ∈ Rn and
|w(t)|2 ≤ k∆2.

4. Quantized control input

Consider the saturated closed-loop system (5)

ẋ(t) = Ax(t)+ Bsat(Kx(t − τ(t)), q̄)+ Bw(t), (16)

where |w(t)|2 ≤ m∆2. We solve the problem by using a linear
system representation with polytopic type uncertainty introduced
in Hu and Lin (2001). Denoting the ith row of K by ki, we define
the polyhedron
L(K , q̄) = {x ∈ Rn : |kix| ≤ q̄i, i = 1, . . . ,m}.
If the control and the disturbance are such that x ∈ L(K , q̄) then
the system (16) admits the linear representation. FollowingHu and
Lin (2001), we denote the set of all diagonal matrices in Rm×m with
diagonal elements that are either 1 or 0 by Υ , then there are 2m

elements Di in Υ , and, for every i = 1, . . . , 2m, D−i
∆
= Im − Di is

also in Υ .
Lemma 3 (Hu and Lin, 2001). Given K and H in Rm×n. Then, for all
x ∈ L(H, q̄),

sat(Kx(t), q̄) ∈ Co{DiKx+ D−i Hx, i = 1, . . . , 2
m
}.

Let Xβ be the ellipsoid xTPx ≤ β−1 for a given β > 0 and a
n× n-matrix P > 0. Assume that there exists H in Rm×n such that
Xβ ⊂ L(H, q̄). Then, from Lemma 3, for x(t) ∈ Xβ , the system
(16) admits the representation

ẋ(t) = Ax(t)+
2m∑
j=1

λj(t)Ajx(t − τ(t))+ Bw(t) (17)

where
Aj = B(DjK + D−j H) j = 1, . . . , 2

m,
2m∑
j=1

λj(t) = 1, 0 ≤ λj(t), ∀t > 0.
(18)

The problem becomes one of finding Xβ and a corresponding H
such that |hix| ≤ q̄i, i = 1, . . . 2m for all x ∈ Xβ and that the state
of (17) remains inXβ .

Theorem 4. Consider the linear system (1) with the quantized
constrained delayed control law (3). Given a > 0 and ε ∈ R, let there
exist n× n-matrices P̄ > 0, Q , R̄ > 0, S̄ > 0, Ē ≥ 0, m× n-matrices
Y ,G and scalars b̄ > 0, β > 0 such that the following LMIs hold:

ab̄− βm∆2 > 0, (19)[
β gi
∗ q̄2i P̄

]
≥ 0, i = 1, . . . ,m, (20)


Ψ11 Ψ12 0 BZj + R̄e−ah Bb̄
∗ Ψ22 0 εBZj εBb̄
∗ ∗ −(S̄ + R̄)e−ah R̄e−ah 0
∗ ∗ ∗ −[2R̄+ (1− d)Ē]e−ah 0
∗ ∗ ∗ ∗ −b̄I

 < 0, (21)
for j = 1, . . . , 2m, where Zj = DjY + D−j G, and

Ψ11 = Q TAT + AQ + aP̄ + S̄ + Ē − R̄e−ah, (22)
Ψ12 = P̄ − Q + εQ TAT, Ψ22 = −εQ − εQ T + h2R̄.

Then, for all delays τ(t) ∈ [0, h], and for all x0 from the ellipsoid

X0 =

{
x0 ∈ Rn : xT0Px0 ≤ β

−1
−
m∆2

ab̄
∆
= δ

}
(23)

the solutions of the closed-loop system (5) satisfy (11), where K =
YQ−1 and P = Q−T P̄Q−1. Moreover, for T > t0, the solutions of (5)
starting fromX0 enter the reachable ellipsoid x(t) ∈ XT , t ≥ T given
by

XT =

{
x ∈ Rn : xTPx < δe−a(T−t0)

+ (1− e−a(T−t0))
k∆2b
a

}
, (24)

where b = b̄−1, k = m and the ellipsoid (15) is attractive fromX0. If
additionally

bk∆2/a < β−1/2, (25)

then the ellipsoidsX∞ andXT (for big enough T) are strictly smaller
thanX0. In the unsaturated case, if the LMI (21) holds with Zj = Y ,
then for all x0 ∈ Rn the solutions of (5) satisfy (11) and the ellipsoid
(15) is attractive.
Proof. We apply conditions of Lemma 2 to (17), where we
substitute A1 =

∑2m
j=1 λj(t)Aj and B1 = B. Since the resulting LMI
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(13) is affine in
∑2m
j=1 λj(t)Aj, one has to solve (13) simultaneously

for all the 2m vertices Aj, applying the same matrices P, P2, P3, S, E
and R for all vertices. To find the unknown gain K we choose
P3 = εP2, where ε is a tuning scalar parameter (which may be
restrictive). Then P2 is non-singular due to the fact that the only
matrix which can be negative definite inΦ22 of (13) is−ε(P2+PT2 ).
Moreover, ε > 0. Defining:

Q = P−12 , P̄ = Q TPQ , R̄ = Q TRQ ,
S̄ = Q TSQ , Ē = Q TEQ , Y = KQ ,

(26)

wemultiply (13),whereA1 = B(DjK+D−j H)bydiag{P
−1
2 , P

−1
2 , P

−1
2 ,

P−12 , I} and its transpose, from the right and the left, respectively.
We obtain (21).
The ellipsoidXβ is contained inL(H, q̄), if

q̄2i ≥ q̄
2
i βx

TPx ≥ |hix|2, i = 1, . . . ,m

i.e. if
[
β hi
∗ q̄2i P

]
≥ 0 or if (20) is feasible, where gi = hiQ =

hiP−12 and P̄ = P−T2 PP
−1
2 . Thus, under (20) the polytopic system

representation of (17) is valid for x(t) ∈ Xβ . From LMIs (21) it
follows that solutions of (17) satisfy (11). Hence,

xT(t)Px(t) < xT0Px0 +
m∆2

ab̄
≤ β−1, (27)

if x0 ∈ X0, whereX0 is given by (23). Then LMI (19) is equivalent
to δ > 0 and for all x0 from the ellipsoid (23), the trajectories
x(t) of (5) remain within Xβ and satisfy the bound (11). Eq. (25)
guarantees that δ > m∆2

ab̄
. �

5. Control under quantized State

Consider the saturated closed-loop system (5)

ẋ(t) = Ax(t)+ BK(sat(x(t − τ(t)), q̄)+ w(t)), (28)

where |w(t)|2 ≤ n∆2. We apply conditions of Lemma 2, where
A1 = BK and B1 = BK . Our main result (Theorem 5 below) studies
the case of saturation avoidance: |xi(t)| ≤ q̄i. Next in Remark 1
we consider the case when the saturation is allowed. To find the
unknown gain K we choose now P2 = ε2I and P3 = ε3I , where ε2
and ε3 are tuning scalar parameters (whichmay bemore restrictive
than in the previous section). We obtain:
Ξ11 Ξ12 0 ε2BK + Re−ah ε2BK
∗ Ξ22 0 ε3BK ε3BK
∗ ∗ −(S + R)e−ah Re−ah 0
∗ ∗ ∗ −[2R+ (1− d)E]e−ah 0
∗ ∗ ∗ ∗ −bI

 < 0 (29)
where

Ξ11 = ε2(AT + A)+ aP + S + E − Re−ah,
Ξ12 = P − ε2I + ε3AT, Ξ22 = −2ε3I + h2R.

(30)

For x ∈ Xβ , we want to guarantee now that q̄2i ≥ q̄
2
i βx

TPx ≥
x2i , i = 1, . . . , n. The latter inequality can be written as x

T(q̄2i βP −
Fi)x ≥ 0, where Fi ∈ Rn×n is a matrix with the only non-zero term
(i, i), which is equal to 1. Hence, the following LMIs

q̄2i βP − Fi ≥ 0, i = 1, . . . , n (31)

guarantee that x2i ≤ q̄
2
i if x ∈ Xβ . Denoting β̄ = β−1, and

δ
∆
= β−1 −

b
a
n∆2 > 0 (32)

we derive from (31) and (32) the following inequalities:

q̄2i P − Fiβ̄ ≥ 0, i = 1, . . . , n, β̄ −
b
a
n∆2 > 0. (33)
We obtain

Theorem 5. Consider the linear system (1) with the quantized
constrained delayed control law (3). Given a > 0, ∆ > 0 and ε2,
ε3 ∈ R, let there exist n × n-matrices P > 0, R > 0, S > 0, E ≥ 0,
an m× n-matrix K , and scalars b > 0, β̄ > 0 such that the LMIs (33)
and (29) with notations given in (30) are feasible.
Then for all delays τ(t) ∈ [0, h] and for all initial conditions x0

from the ellipsoid

X0 =

{
x0 ∈ Rn : xT0Px0 ≤ β̄ −

b
a
n∆2

}
,

the solutions of the closed-loop system (6) satisfy the inequality (11).
Moreover, for T > t0 the solutions of (5) starting fromX0 enter the
reachable ellipsoid x(t) ∈ XT , t ≥ T given by (24) with k = n and
the ellipsoid (15) is attractive fromX0. If additionally (25) holds, then
the ellipsoidsX∞ andXT (for big enough T) are strictly smaller than
X0. In the unsaturated case, if the LMI (29) holds, then for all x0 ∈ Rn
the solutions of (5) satisfy (11) and the ellipsoid (15) is attractive.

Remark 1. To reduce the conservatism of Theorem 5 one could
apply the following polytopic representation by using Lemma 3:

ẋ(t) = Ax(t)+
2n∑
j=1

λj(t)Ajx(t − τ(t))+ BKw(t),

Aj = BK(Dj + D−j H), j = 1, . . . , n,

(34)

where Dj, D−j and H are n × n-matrices. However, this would
complicate the design procedure leading to nonlinear in K and
H term Aj = BK(Dj + D−j H). Therefore, we propose a two stage
design. First, we find K , a and b from Theorem 5. Next, similar to
Theorem 5, we obtain
Ξ11 Ξ12 0 ε2BK(Dj + D−j H)+ Re

−ah ε2BK
∗ Ξ22 0 ε3BK(Dj + D−j H) ε3BK
∗ ∗ −(S + R)e−ah Re−ah 0
∗ ∗ ∗ −[2R+ (1− d)E]e−ah 0
∗ ∗ ∗ ∗ −bI

 < 0,

1− β
b
a
n∆2 > 0,

[
β q̄i hi
∗ q̄iP

]
≥ 0,

(35)

for i = 1, . . . , n, j = 1, . . . , 2n and notations given in (30). Given
∆ > 0 and ε2, ε3 ∈ R, we solve the latter LMIs with the following
decision variables: n × n-matrices P > 0, R > 0, S > 0, E ≥ 0, H ,
and scalarβ > 0, trying to enlarge the ellipsoid of initial conditions
(see Section 6.2 below).

6. Discussions and example

6.1. Bounds in the infinite-dimensional state space

Instead of (7) consider now a general piecewise-continuous
initial functions xt0 with square integrable ẋt0 from the space W
with the norm

‖xt0‖
2
W = |x(t0)|

2
+

∫ 0

−h
[|x(t0 + s)|2 + |ẋ(t0 + s)|2]ds.

From the proof of Proposition 1, it follows that

xT(t)Px(t) ≤ V (t, xt , ẋt) < e−a(t−t0)V (t0, xt0 , ẋt0)

+ [1− e−a(t−t0)]
b
a
|w[t0,t]|

2
∞
. (36)

Hence, the region of initial conditions in Theorems 4 and 5will take
the form

X̄0 = {xt0 ∈ W : V (t0, xt0 , ẋt0) ≤ δ}, (37)
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Moreover, Theorems 4 and 5 guarantee the following bounds on
reachable X̄T and attractive X̄∞ regions inW :

X̄T =

{
xt ∈ W : V (t, xt , ẋt) < δe−a(T−t0)

+(1− e−a(T−t0))
k∆2b
a
, t ≥ T

}
,

X̄∞ =

{
xt ∈ W : V (t, xt , ẋt) < δ

k∆2b
a

} (38)

and (25) guarantees that X̄∞ ⊂ X̄T ⊂ X̄0 for big enough T . The
ellipsoidal upper bounds in Rn on reachable and attractive regions
are more conservative than the bounds inW because xT(t)Px(t) <
V (t, xt , ẋt) for ‖xt‖2W > 0.

Remark 2. If the attractive set is strictly inside the initial set
in the same state space W and if the quantizer may have an
adjustable zoom parameter, then a dynamic quantization strategy
similar to Brocket and Liberzon (2000) and Liberzon (2003) can be
extended for asymptotic stabilization of systems with quantized
and delayed signals.

6.2. On numerical and optimization issues

Theorems 4 and 5 contain tuning parameters a, ε or ε2 and ε3.
The parameter a gives a lower bound of the exponential rate of
convergence of the closed-loop system. Increasing a (almost till
the maximum achievable value a∗) leads to better convergence
and smaller attractive ellipsoid. We note that, for a approaching
very close to a∗, the attractive ellipsoidmay grow due to numerical
problems. In all the examples we treated, the choice of ε = 1 gave
satisfactory results. A simple method for finding the parameters is
to constitute a grid of values around 1 for ε, ε2, ε3 and of growing
values for a > 0 and test the LMIs. The attractive and the initial
ellipsoids can be optimized in the following way.
Consider first the case of the state quantization, where X∞ is

contained in the ball of center 0 and of radius rM given by r2M =
bn∆2
aσ(P) ,where σ(P) is theminimum eigenvalue of P . So, the smallest
possible value of the radius rM is then obtained by maximizing
the quantity α under the LMIs of Theorem 5 and the additional
constraint P > αbI . This is a generalized eigenvalue minimization
problem (see (Boyd, Ghaoui, Feron and Balakrishnan, 1994)) which
can be solved efficiently by semidefinite optimization.
Once K , a, b and α are determined, the setX0 can be enlarged

by solving LMIs (35) andmaximizing the square of the semi-minor
axis of X0, which is given by r2m =

β̄−bn∆2/a
σ̄ (P) . Since σ̄ (P) > αb,

we obtain that r2mαb < β̄ − bn∆2/a. Finding the maximum
value of r2m satisfying this last inequality and the LMIs (35)
is also a generalized eigenvalue minimization problem. Further
improvement can be achieved by iterations inK , a, b, P, R, S, E and
β in LMIs (35) with the initialization from Theorem 5.
In the input quantization case,we add the constraint

( P̄ Q T

Q αI

)
> 0, which is equivalent to P > α−1I and implies that r2M <

αm∆2/a. In order to increase the size of the ellipsoid X0, we
consider the minimization of β + α.

6.3. Example (Bullo and Liberzon, 2006)

We consider (1) with A =
[
0 1
0.5 0.5

]
, B =

[
1
1

]
.

By applying (21) with ε = 10 and Zj = Y , we find that the
system is input-to-state stabilizable for the maximum value of
h = 0.95 (which appeared to be d-independent) and the resulting
controller gain is given by K = [−0.3491 − 0.7022]. We will
further assume that the delay is fast varying.
Fig. 1. EllipsoidsX0 (solid),X∞ (dashed) andXT=2 (dotted): quantized state and
h = 0.

(a) We consider first the case of quantized state with ∆ = 1
and |xi| ≤ 5. By Theorem 5 with h = 0 and ε2 = 2.25, ε3 =
0.004, a = 0.98 we find an attractive ball |x| ≤ 2.5, where the
resulting K = [−1.2821 − 1.7791]. By applying Lemma 2 of Bullo
and Liberzon (2006) with the same K , we find a bigger attractive
ball |x| ≤ 4.3202, which is however less than the one |xi| ≤ 4.472
obtained in Bullo and Liberzon (2006) by choosing K = [−0.5−1].
Proceeding as explained in Section 6.2, we find for h = 0,

ε2 = 2.26, ε3 = 0.69, a = 0.74, rM = 3.38 the following controller
gain: K = [−1.0348 −1.5338]. We depicted in Fig. 1 the resulting
ellipses of initial conditions X0 (solid), the attractive ellipse X∞
(dashed), the ellipse reachable from X0 in T = 2 (dotted) and
some solutions for t ∈ [0, 2] (which are simulated in the case of
a saturated uniform quantizer). We see that in fact solutions reach
an essentially smaller region than that predicted by Theorem 5,
that illustrates the conservativeness of the method. We note only
that Theorem 5 predicts the attractive ellipse for a wider class of
all quantizerswith the quantization error not greater than 1.
For h > 0, we find that conditions of Theorem 5, where E = 0,

are feasible for the followingmaximumvalue ofh = 0.3923,where
ε2 = 0.1033, ε3 = 0.1455, a = 0.5865, K = [−0.5540 − 1.0539].
Hence, the saturated delayed state-feedback guarantees ISS for all
0 ≤ τ(t) ≤ 0.3923. For h = 0.2 the resulting initial, attractive
and reachable in T = 2 ellipses are depicted in Fig. 2. The solutions
are simulated in the case of a saturated uniform quantizer and a
time-varying delay τ(t) = h| sin t|.
(b) Consider next the case of quantized saturated feedback with

∆ = 1 and |Kx| ≤ 5. We find that conditions of Theorem 4 are
feasible for the following maximum value of h = 0.4745. For
h = 0, by applying Theorem 4 and taking a = 1 and ε = 1.9,
we obtain a gain K = [−0.8185 − 1.4083]. For h = 0.2, with
a = 1, ε = 1.4, we obtain the gain K = [−0.7577 − 1.5155].
We depicted in Fig. 3 (for h = 0) and Fig. 4 (for h = 0.2) the
resulting ellipses of initial conditionsX0, the attractive ellipseX∞,
the ellipse reachable from X0 in T = 2 and some solutions for
t ∈ [0, 2] (which are simulated in the case of a saturated uniform
quantizer and a time-varying delay τ(t) = h| sin t|).
We note that Theorem 4 predicts the attractive ellipses for all

quantizers with the quantization error not greater than 1 and for
all delays not greater than h.

7. Conclusions

In this paper, a new methodology is proposed for the design
of delayed controllers under saturated quantization of either the
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Fig. 2. EllipsoidsX0 (solid),X∞ (dashed) andXT=2 (dotted): quantized state and
h = 0.2.

Fig. 3. EllipsoidsX0 (solid),X∞ (dashed) andXT=2 (dotted): quantized input and
h = 0.

Fig. 4. EllipsoidsX0 (solid),X∞ (dashed) andXT=2 (dotted): quantized input and
h = 0.2.
control input or the state measurements, where the quantization
error is supposed to be bounded by a given constant. The
quantization is decomposed into a sum of a saturation and of a
uniformly bounded disturbance. LMI solutions are derived via the
comparison principle and the Lyapunov–Krasovskii method. The
new method gives tools for the LMI approach to the dynamic
quantization (originated by Brocket and Liberzon (2000)) of
systems with quantized and delayed signals.
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