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Abstract

The stability of linear systems with uncertain bounded time-varying delays (without any constraints on the delay derivatives) is9
analyzed. It is assumed that the system is stable for some known constant values of the delays (but may be unstable for zero delay
values). The existing (Lyapunov-based) stability methods are restricted to the case of a single non-zero constant delay value, and11
lead to complicated and restrictive results. In the present note for the first time a stability criterion is derived in the general multiple
delay case without any constraints on the delay derivative. The simple sufficient stability condition is given in terms of the system13
matrices and the lengths of the delay segments. Different from the existing frequency domain methods which usually apply the small
gain theorem, the suggested approach is based on the direct application of the Laplace transform to the transformed system and on15
the bounding technique in L2. A numerical example illustrates the efficiency of the method.
© 2006 Published by Elsevier B.V.17
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1. Introduction19

Throughout the paper by stability we understand the asymptotic stability of the system. Robust stability of linear
systems with uncertain constant or time-varying delays, where the nominal values of delays are zero, have been studied21
both, in the time domain and in the frequency domain (see e.g. [14,10,15–17,5,8,11] and the references therein). In the
time domain, the main methods are based on the Lyapunov technique, while in the frequency domain on the application23
of the small gain theorem (see e.g. [8] and the references therein).

Systems with uncertain ‘non-small’ delays, where the nominal delay values are non-zero and constant appears in25
different applications such as internet networks, biological systems [13]. Such systems may be not stable for the zero
values of the delays. Only few works have been devoted to stability analysis of such systems and all of these works27
were restricted to the case of a single non-zero nominal delay value: see [12,4,3] for time domain results and [11] for
frequency domain conditions.29

In the present note we consider the systems with a finite number of time-varying delays, where the nominal values
of the delays may be uncommensurate. For the first time a stability criterion is derived in the multiple delay case31
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without any constraints on the delay derivatives. For the sake of generality we consider the complex state vector and1
the complex system matrices. It should be noted that stability analysis of distributed retarded systems leads to ordinary
differential-delay equations with complex, in general, coefficients, cf. [7]. Assuming that the system is stable for some3
known constant values of the delays, we derive sufficient stability conditions in terms of the system matrices and the
sizes of the delay perturbations. We apply a new frequency domain approach which is based on the direct application5
of the Laplace transform to the transformed system, on the Parseval equality and on the bounding technique in L2.
Similar approach has been introduced by [6, Chapter 10] for analysis of absolute stability of retarded systems with7
constant delays. In the present note we develop the method of [6] to the case of time-varying delays.

Notation. Below Cn denotes a space of complex column vectors with the Euclidean norm ‖.‖ and the unit matrix9
I. ‖A‖ denotes the Euclidean norm of a n × n complex matrix A, which is equal to the maximum singular value of
A. C[−�, 0] is the space of continuous functions � : [−�, 0] → Cn with the norm ‖�‖C[−�,0] = maxt∈[−�,0]‖�(t)‖.11
L2[0, ∞) is the space of square integrable functions v : [0, ∞) → Cn with the norm

‖v‖L2[0,∞) :=
[∫ ∞

0
‖v(t)‖2 dt

]1/2

,13

L2(−∞, ∞), L2[0, l](l > 0) are defined similarly. For a matrix-function U(s), s ∈ R

‖U(s)‖∞ := sup
−∞<s<∞

‖U(s)‖.
15

2. Stability

2.1. Problem formulation and main results17

Consider the system

ẋ(t) =
m∑

k=1

Akx(t − �k(t)) (t > 0), (1)
19

x(t) = �(t) (−�� t �0, � ∈ C[−�, 0]), (2)

where x(t) ∈ Cn, � > 0, Ak are constant complex-valued n × n-matrices; �k(t) are non-negative piecewise-continuous21
scalar functions defined on [0, ∞) and satisfying the conditions

0�hk ��k(t)�hk + �k, k = 1, . . . , m; t �0, (3)23

where hk are known constant (nominal) values of the delays, hk + �k are known constant upper bounds of the delays
and hk + �k ��, k = 1, . . . , m. For the existence results and the definitions of asymptotic stability of (1) see e.g. [9].25
Consider also the nominal equation with the nominal values of the delays hk:

v̇(t) =
m∑

k=1

Akv(t − hk), v(t) ∈ Cn,
27

v(t) = �(t), −�� t �0. (4)

We assume that29
A1. The nominal system (4) is asymptotically stable.
Assumption A1 may be verified by applying the existing frequency domain criteria (see e.g. [16,12]).31
Let G(t) be a fundamental solution of (4), i.e. a matrix-valued function that satisfies (4) and the initial conditions

G(0+) = I, G(t) = 0 (t < 0). Since (4) is stable, v ∈ L2[0, ∞) and33

‖v(t)‖�Me−�t‖�‖C[−�,0],

‖G(t)‖�Me−�t , ‖Ġ(t)‖�Me−�t , M �1, � > 0. (5)35
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Denote1

K(z) = zI −
m∑

k=1

Ake−zhk . (6)

A1 means that the roots of the determinant det K(z) are in the open left half-plane. K(z) is the Laplace transform of3
G, while zK−1(z) − I is the Laplace transform of Ġ. We have

‖K(is)‖ =
∥∥∥∥
∫ ∞

0
e−istG(t) dt

∥∥∥∥ �
∫ ∞

0
‖G(t)‖ dt

�
∫ ∞

0
Me−�t dt �M/�, ∀s ∈ R,5

and thus

‖K−1(is)‖∞ < ∞. (7)7

Similarly

‖sK−1(is)‖∞ < ∞. (8)9

To formulate the main result (Theorem 2.1) put

�(K) :=
∥∥∥∥∥
[ �1sIn

· · ·
�msIn

]
K−1(is)[A1 . . . Am]

∥∥∥∥∥
∞

.
11

Due to (8), �(K)�‖sK−1(is)‖∞
∑m

k=1�k‖Ak‖ < ∞.

Theorem 2.1. Under A1 (1) is asymptotically stable for all time-varying delays satisfying (3) if13

�(K) < 1. (9)

Proof of Theorem 2.1 is based on the following lemma:15

Lemma 2.1. Assume that A1 and (9) hold. Then there exists m0 > 0 such that for all time-varying delays satisfying (3)
a solution x of (1), (2) satisfies the following estimate:17

‖ẋ‖L2[0,∞) �m0‖�‖C[−�,0].

Proofs of Theorem 2.1 and Lemma 2.1 are given in the next section. The following Corollary follows immediately19
from Theorem 2.1:

Corollary 2.1. Under A1 for all small enough �k , k = 1, . . . , m and piecewise-continuous delays satisfying (3) the21
system (1) is asymptotically stable.

2.2. Proofs23

Proof of Lemma 2.1. Representing (1) in the form

ẋ(t) =
m∑

i=1

Akx(t − hk) +
m∑

i=1

Akfk(t), (10)
25

where

fk(t) = x(t − �k(t)) − x(t − hk),27
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and applying to (10) the variation of constants formula, we find that (1), (2) is equivalent to the equation1

x(t) = v(t) +
∫ t

0
G(t − t1)

m∑
k=1

Akfk(t1) dt1 (t �0), (11)

where v is a solution of (4). Differentiating (11) in t we arrive at the equation3

ẋ(t) = v̇(t) +
m∑

k=1

[∫ t

0
Ġ(t − t1)Akfk(t1) dt1 + Akfk(t)

]
. (12)

Take into account that G(0) = I and zK−1(z) − I is the Laplace transform of Ġ. Then due to the property of the5
convolution, we can assert that the Laplace transform of the expression∫ t

0
Ġ(t − t1)Akfk(t1) dt1 + Akfk(t)7

is zK−1(z)AkFk(z), where Fk(z) is the Laplace transform of fk(t). We have∥∥∥∥∥
[

sIn

. . .

sI n

]
K−1(is)[�1A1 . . . �mAm]diag

{
F1(is)

�1
, . . . ,

Fm(is)

�m

}∥∥∥∥∥
L2(−∞,∞)

��(K) max
k=1,...,m

∥∥∥∥Fk(is)

�k

∥∥∥∥
L2(−∞,∞)

.
9

Therefore, due to the Parseval equality, we obtain∥∥∥∥∥∥
∫ t

0

⎡
⎣Ġ(t − t1)

. . .

Ġ(t − t1)

⎤
⎦ [�1A2 . . . �mAm]diag{f1(s), . . . , fm(s)}

+
[

In

. . .

In

]
[�1A1 . . . �mAm]diag

{
f1(t)

�1
, . . . ,

f2(t)

�2

}∥∥∥∥∥
L2[0,∞)

= 1

2�

∥∥∥∥∥
[

sIn

. . .

sI n

]
K−1(is)[�1A1 . . . �mAm]diag

{
F1(is)

�1
, . . . ,

Fm(is)

�m

}∥∥∥∥∥
L2(−∞,∞)

��(K) max
k=1,...,m

∥∥∥∥Fk(is)

�k

∥∥∥∥
L2(−∞,∞)

= �(K) max
k=1,...,m

‖fk‖L2[0,∞)

�k

. (13)
11

The following holds:

‖fk‖2
L2[0,∞) = ‖fk‖2

L2[0,l] + ‖fk‖2
L2[l,∞)13

with a fixed finite l > 2�. Since (1) is a linear equation, there is a constant m1 = m1(l), such that ‖x(t)‖C[0,l] �
m1‖�‖C[−�,0]. Hence,15

‖fk‖L2[0,l] �m2‖�‖C[−�,0] (m2 = m2(l) ≡ const). (14)

Take into account that17

fk(t) = x(t − �k(t)) − x(t − hk) = −
∫ t−hk

t−�k(t)

ẋ(s) ds.
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Then, applying the Schwarz inequality and changing the order of integration, we find1

‖fk‖2
L2[l,∞) =

∫ ∞

l

∥∥∥∥
∫ t−hk

tk−�k(t)

ẋ(s) ds

∥∥∥∥
2

dt �
∫ ∞

l

(∫ t−hk

t−hk−�k

‖ẋ(s)‖ ds

)2

dt

�
∫ ∞

l

�k

∫ t−hk

t−hk−�k

‖ẋ(s)‖2 ds dt =
∫ ∞

l

�k

∫ �k

0
‖ẋ(t − hk − s1)‖2 ds1 dt

= �k

∫ �k

0

∫ ∞

l

‖ẋ(t − s1 − hk)‖2 dt ds1 = �k

∫ �k

0

∫ ∞

l−s1−hk

‖ẋ(t1)‖2 dt1 ds1

��2
k

∫ ∞

0
‖ẋ(t1)‖2 dt1. (15)

Since (4) is stable, there is a constant m2, such that ‖v̇‖L2[0,∞) �m2‖�‖C[−�,0] , cf. Theorem 8.4.3 from Gil (1998).3
Therefore (12)–(15) imply∥∥∥∥∥

[
ẋ(t)

. . .

ẋ(t)

]∥∥∥∥∥
L2[0,∞)

�m3‖�‖C[−�,0] + �(K)

∥∥∥∥∥
[

ẋ

. . .

ẋ

]∥∥∥∥∥
L2[0,∞)

(m3 ≡ const). (16)
5

Hence, condition (9) yields the required result.

Proof of Theorem 2.1. Let v(t) be a solution of (4), x(t) be a solution of (1), (2).7
By Parseval’s equality from (11) similarly to (13) we obtain

‖x‖L2[0,∞) �‖v‖L2[0,∞) +
m∑

k=1

∥∥∥∥
∫ t

0
G(t − t1)Akfk(s) ds

∥∥∥∥
L2[0,∞)

�‖v‖L2[0,∞) +
m∑

k=1

‖Ak‖ · ‖K−1(is)‖∞‖fk‖L2[0,∞).
9

Then from (14), (15), (7) and Lemma 2.1 it follows that x ∈ L2[0, ∞).
From (11), (5) we find11

‖x(t)‖�M‖�‖C[−�,0] +
m∑

k=1

∫ t

0
Me−�(t−t1)‖Ak‖‖fk(t1)‖ dt1

�M‖�‖C[−�,0] + M

m∑
k=1

‖Ak‖
(∫ t

0
e−2�(t−t1)dt1

)1/2(∫ t

0
‖fk(t1)‖2 dt1

)1/2

, t �0. (17)

The latter inequality together with (14), (15) and Lemma 2.1 imply that for all t �0 there exists m5 > 1 such that13
‖x(t)‖�m5‖�‖C[−�,0]. Moreover, ẋ(t), given by the right-hand side of (1), is uniformly bounded. Then, x(t) is
uniformly continuous, x ∈ L2[0, ∞), and thus, by Barbalat’s lemma [1], x(t) → 0 as t → ∞.15

2.3. Example

Consider the system17

ẋ(t) =
[

0 1
−2 0

]
x(t − �1(t)) +

[
0 0

−0.4 0

]
x(t − �2(t)), (18)

which was analyzed in [12] for �1 ≡ 0 and constant �2, where the following stability interval was found in the19
frequency domain 3.3791 < �2 < 4.7963. The non-delayed system (i.e. (18) with �i ≡ 0, i = 1, 2) is not asymptotically
stable. Hence, the existing methods via simple Lyapunov–Frasovskii functionals (LKFs), such as [14,15,2,5,3], are not21
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applicable. Only complete LKF (which corresponds to necessary and sufficient conditions for stability of the nominal1
system (4)) may be used [8,12] and [4]. The conditions of discretized method of Gu [8] (which are sufficient only)
are not feasible in this example for constant values of �2. The Lyapunov-based conditions of [12] leads to interval of3
almost zero length even for constant delays �2: �2 ∈ (3.999999, 4.000001).

For �1 ≡ 0 and fast-varying �2 by recent complete descriptor LKF method of [4] the asymptotic stability interval is5
3.98��2(t)�4.02. By Theorem 2.1 the stability interval is wider: �2(t) ∈ [3.98, 4.11]. For the case of two non-zero
delays choosing �1(t) ∈ [0, 0.002], we obtain by Theorem 2.1 the stability interval �2(t) ∈ [3.998, 4.1], which is wider7
than the one �2(t) ∈ [3.998, 4.002] by [4].

3. Conclusions9

A new simple stability criterion is derived for systems with time-varying delays from the given segments. No
constraints are given on the delay derivatives. The system under consideration may be unstable without delay. This11
case in the time domain can be treated only via complete LKF. The existing Lyapunov-based methods are restricted to
the case of a single non-zero nominal delay value, and lead to complicated conditions and restrictive results.13

A new frequency domain method is suggested, which is based on the application of the Laplace transform to the
transformed system, and on the bounding technique in L2. The sufficient conditions are formulated in terms of the15
system matrices and the lengths of the delay segments. The new criterion treats the case of multiple non-zero nominal
delays, where the existing methods are not applicable. In the cases, where the Lyapunov-based results are applicable,17
the new criterion improves the results.

Further improvement of the results may be achieved by choosing hk in the middle of the delay segment and by19
’scaling’ of the condition (9) of Theorem 2.1.
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