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Abstract

Discontinuous Lyapunov functionals appeared to be very efficient for sampled-data systems (Naghshtabrizi et al., 2008; Fridman,
2010). In the present paper new discontinuous Lyapunov functionals are introduced for sampled-data control in the presence
of a constant input delay. The construction of these functionals is based on the vector extension of Wirtinger’s inequality.
These functionals lead to simplified and efficient stability conditions in terms of Linear Matrix Inequalities (LMIs). The new
stability analysis is applied to sampled-data state-feedback stabilization and to a novel sampled-data static output-feedback
problem, where the delayed measurements are used for stabilization.
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1 Introduction

Sampled-data systems have been studied extensively
over the past decades (see e.g. Chen and Francis, 1995;
Mirkin, 2007; Naghshtabrizi et al., 2008; Fujioka, 2009;
Fridman, 2010 and the references therein). Three main
approaches have been used to uncertain sampled-data
systems leading to conditions in terms of LMIs: a
discrete-time, a time-delay and an impulsive system
approaches. Recently the impulsive approach was ex-
tended to uncertain and bounded sampling intervals,
where a discontinuous Lyapunov function method was
introduced (Naghshtabrizi et al., 2008). This method
inspired a piecewise-continuous (in time) Lyapunov
functional approach to sampled-data systems in the
framework of time-delay approach (Fridman, 2010),
which essentially improved the existing results based on
time-independent Lyapunov functionals.

The input delay approach to sampled-data control has
been revised by using the scaled small gain theorem and
a tighter upper bound on the L2-induced norm of the
uncertain term (Mirkin, 2007). Recently the latter result
was recovered via input-output approach by application
of the vector extension of Wirtinger’s inequality (Liu et
al., 2010).

⋆ This work was partially supported by Israel Science Foun-
dation (grant No 754/10), and by China Scholarship Coun-
cil.

Networked Control Systems (NCS), where the plant is
controlled via communication network, became an active
research area (Zhang et al., 2001; Zampieri, 2008). NCSs
are usually modeled as sampled-data systems under vari-
able sampling with an additional network-induced de-
lay (Gao et al., 2008; Naghshtabrizi et al., 2007). Ex-
tensions of the above discontinuous Lyapunov construc-
tions to sampled-data systems in the presence of input
delay η lead to complicated conditions (Naghshtabrizi
et al., 2007; Liu and Fridman, 2011). Moreover, these
conditions become conservative if η is not small.

In the present paper we develop a direct Lyapunov ap-
proach via Wirtinger’s inequality to sampled-data sta-
bilization in the presence of a constant input delay η. In
this approach, novel discontinuous terms are added to
”nominal” Lyapunov functionals for the stability anal-
ysis of systems with the delay η (either to simple or to
complete ones). Being applied to sampled-data systems
with η = 0, the newmethod recovers the result of Mirkin
(2007), but it is more conservative than the one of Frid-
man (2010). However, the new analysis leads to simplified
reduced-order LMIs and improves the existing results for
η > 0. Comparatively to the standard time-independent
Lyapunov functional terms for interval time-varying de-
lays, the Wirtinger-based terms take advantage of the
sawtooth evolution of the delays induced by sampled-
and-hold and, thus, improve the results (both via simple
and via discretized Lyapunov functionals).

The new method is applied to the state-feedback
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sampled-data stabilization. Also, a novel sampled-data
static output-feedback problem is studied via discontin-
uous discretized Lyapunov functionals, where the de-
layed measurements are used for stabilization. This is a
sampled-data counterpart of using an artificial delay for
continuous-time stabilization studied in (Kharitonov et
al., 2005). Note that the observer-based sampled-data
control of systems with uncertain coefficients may be-
come complicated and may lead to conservative results.
From the other side, a simple static output feedback
using the previous measurements can be easily designed
and implemented.

Notation: Throughout the paper Rn denotes the n di-
mensional Euclidean space with vector norm | · |, Rn×m

is the set of all n × m real matrices, and the notation
P > 0, for P ∈ Rn×n means that P is symmetric and
positive definite. The symmetric elements of the sym-
metric matrix will be denoted by ∗. The space of func-
tions ϕ : [a, b] → Rn, which are absolutely continuous on
[a, b), have a finite limθ→b− ϕ(θ) and have square inte-
grable first order derivatives is denoted by W [a, b) with

the norm ∥ϕ∥W = maxθ∈[a,b] |ϕ(θ)|+
[∫ b

a
|ϕ̇(s)|2ds

] 1
2

.

2 Problem Formulation and Useful Lemmas

Consider the following system:

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the
control input, A and B are system matrices with appro-
priate dimensions. Denote by tk the updating instant
time of the Zero-Order Hold (ZOH), and suppose that
the updating signal (successfully transmitted signal from
the sampler to the controller and to the ZOH) at the
instant tk has experienced a constant signal transmis-
sion delay η. We assume that the sampling intervals are
bounded

tk+1 − tk ≤ hs, k = 0, 1, 2, ... (2)

i.e. that

tk+1 − tk + η ≤ hs + η
∆
= τM , k = 0, 1, 2, ... (3)

Here τM denotes the maximum time span between the
time tk − η at which the state is sampled and the time
tk+1 at which the next update arrives at the destination.

The state-feedback controller has a form u(tk) =
Kx(tk − η), where K is the controller gain. Thus, con-
sidering the behavior of the ZOH, we have

u(t) = Kx(tk − η), tk ≤ t < tk+1, k = 0, 1, 2, ... (4)

with tk+1 being the next updating instant time of the
ZOH after tk. Defining τ(t) = t− tk + η, tk ≤ t < tk+1,
we obtain the following closed-loop system (1), (4):

ẋ(t) = Ax(t) +A1x(t− τ(t)), tk ≤ t < tk+1, (5)

where k = 0, 1, 2, ... and A1 = BK. Under (3), we have
η ≤ τ(t) < tk+1 − tk + η ≤ τM and τ̇(t) = 1 for t ̸= tk.
For the sake of brevity, further in the paper the notation
τ stands for the time-varying delay τ(t).

The objective of the present paper is to derive efficient
LMI (asymptotic and exponential) stability conditions
for system (5). Moreover, we will consider the static
output-feedback stabilization of (1) under the sampled-
data measured output y(tk) = Cx(tk), k = 0, 1, 2, ...,
where y(tk) ∈ Rnl , C is a constant matrix. It is well-
known, that using artificial delay in the (continuous-
time) static output-feedback can stabilize some systems,
which are not stabilizable without delay (Kharitonov et
al., 2005). For such systems we will consider a sampled-
data static output-feedback that uses the previous mea-
surements and we will derive LMI conditions for stabi-
lization.

We formulate next some useful lemmas. By using the
standard arguments, the following can be proved:

Lemma 1 Let there exist positive numbers α, β and a
functional V : R × W [−τM , 0] × L2[−τM , 0] → R such
that

α|ϕ(0)|2 ≤ V (t, ϕ, ϕ̇) ≤ β∥ϕ∥2W . (6)

Let the function V̄ (t) = V (t, xt, ẋt), where xt(θ) = x(t+
θ) and ẋt(θ) = ẋ(t+ θ) with θ ∈ [−τM , 0], is continuous
from the right for x(t) satisfying (5), absolutely continu-
ous for t ̸= tk and satisfies limt→t−

k
V̄ (t) ≥ V̄ (tk).

If along (5) ˙̄V (t) ≤ −γ|x(t)|2 for t ̸= tk and for some
scalar γ > 0, then (5) is asymptotically stable.

A novel Lyapunov functional construction will be based
on the extension of the Wirtinger inequality (Hardy et
al., 1934) to the vector case:

Lemma 2 (Liu et al., 2010) Let z(t) ∈ W [a, b) and
z(a) = 0. Then for any n×n-matrix R > 0 the following
inequality holds:∫ b

a

zT (ξ)Rz(ξ)dξ ≤ 4(b− a)2

π2

∫ b

a

żT (ξ)Rż(ξ)dξ. (7)

3 Stabilization via Novel Lyapunov Functionals

The stability of system (5) can be analyzed via time-
independent functionals of the form (Fridman, 2006a):

V (xt,ẋt) = Vn(xt, ẋt) +VZ(xt,ẋt), (8)
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where Vn is a ”nominal” functional for the ”nominal”
system with constant delay

ẋ(t) = Ax(t) +A1x(t− η) (9)

and where (He et al., 2007)

VZ(xt,ẋt) =
∫ t−η

t−τM
xT (s)Z1x(s)ds+ VZ2(ẋt),

VZ2
(ẋt) = (τM−η)

∫ −η

−τM

∫ t

t+θ
ẋT (s)Z2ẋ(s)dsdθ,

Z1 > 0, Z2 > 0.

(10)

Remark 1 The time-dependent term of Fridman (2010)
can be modified to the case of η > 0 as follows:

VU (t, ẋt) = (tk+1 − t)
∫ t−η

tk−η
ẋT (s)Uẋ(s)ds,

U > 0, t ∈ [tk, tk+1).
(11)

It is clear that VU does not grow in the jumps since
VU |t=tk = 0. Differentiation of VU leads to

d
dtVU (t, ẋt) = −

∫ t−η

tk−η
ẋT (s)Uẋ(s)ds

+(tk+1 − t)ẋT (t− η)Uẋ(t− η).
(12)

Hence, the additional term

V0U (ẋt) = (τM − η)

∫ t

t−η

ẋT (s)Uẋ(s)ds

is needed with

d

dt
V0U = (τM−η)ẋT (t)Uẋ(t)−(τM−η)ẋT (t−η)Uẋ(t−η).

This leads to the same positive term and the same nega-
tive integral term (for U = (τM − η)Z2) as in

d
dtVZ2(ẋt) = (τM − η)2ẋT (t)Z2ẋ(t)

−(τM − η)
∫ t−η

tk−η
ẋT (s)Z2ẋ(s)ds

−(τM − η)
∫ tk−η

t−τM
ẋT (s)Z2ẋ(s)ds.

(13)

Therefore, VU + V0U has no clear advantages over the
standard double integral term VZ2 .

In the present paper we suggest a discontinuous Lya-
punov functional

Vd(t, xt,ẋt) = V̄1(t) = Vn(xt, ẋt) + VW (t, xt,ẋt) (14)

with a novel discontinuous term

VW (t, xt,ẋt) = (τM − η)2
∫ t

tk−η
ẋT (s)Wẋ(s)ds

−π2

4

∫ t−η

tk−η
[x(s)− x(tk − η)]TW [x(s)− x(tk − η)]ds,

W > 0, tk ≤ t < tk+1, k = 0, 1, 2, ...

(15)
We note that VW can be represented as a sum of the

continuous in time term (τM−η)2
∫ t

t−η
ẋT (s)Wẋ(s)ds ≥

0 with the discontinuous one

VW1
∆
= (τM − η)2

∫ t−η

tk−η
ẋT (s)Wẋ(s)ds

−π2

4

∫ t−η

tk−η
[x(s)− x(tk − η)]TW [x(s)− x(tk − η)]ds.

Since [x(s) − x(tk − η)]|s=tk−η = 0, by the extended
Wirtinger’s inequality (7) VW1 ≥ 0. Moreover, VW1 van-
ishes at t = tk. Hence, the condition limt→t−

k
V̄1(t) ≥

V̄1(tk) holds.

Differentiating VW , we have

d
dtVW = (τM − η)2ẋT (t)Wẋ(t)− π2

4 vT (t)Wv(t),

v(t) = x(tk − η)− x(t− η).

(16)

Remark 2 For η = 0, it is easily seen from (16) that
application of the functional V0 = xT (t)P1x(t)+VW with
P1 > 0 to (5) recovers conditions of Mirkin (2007), which
are based on the small-gain theorem. An advantage of the
direct Lyapunov method considered in the present paper
over the small-gain theorem-based results is in its wider
applications: to exponential bounds on the solutions of the
initial value problems, to finding domains of attraction
of some nonlinear systems.

3.1 Stabilization via the Simple Lyapunov Functional

We start with the stability conditions via Vd = Vn1+VW ,
where Vn1 is a simple functional of the form

Vn1(t, xt,ẋt) = xT (t)P1x(t) +
∫ t

t−η
xT (s)R1x(s)ds

+η
∫ 0

−η

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ, P1 > 0, R1 > 0, R2 > 0.

(17)

Theorem 1 (i)Given η ≥ 0, hs > 0 andK, if there exist
n × n matrices P1 > 0, W > 0, Ri > 0, i = 1, 2 such
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that the following LMI is feasible:
Ψ1 P1A1+R2 P1A1 AT (h2

sW + η2R2)

∗ −R1−R2 0 AT
1 (h

2
sW + η2R2)

∗ ∗ −π2

4 W AT
1 (h

2
sW + η2R2)

∗ ∗ ∗ −(h2
sW + η2R2)

 < 0,

Ψ1 = P1A+ATP1+R1−R2.

(18)

Then the system (5) is asymptotically stable.

(ii) Given η ≥ 0, hs > 0, if there exist n × n matrices
P̄1 > 0, Q, W̄ > 0, R̄i > 0, i = 1, 2, an nu × n-matrix
L and a tuning parameter ϵ > 0 such that the following
LMI is feasible:QTAT+AQ+R̄1−R̄2 P̄1−Q+ϵQTAT R̄2+BL BL

∗ −ϵ(Q+QT )+η2R̄2+h2
sW̄ ϵBL ϵBL

∗ ∗ −R̄1−R̄2 0

∗ ∗ ∗ −π2

4
W̄

 < 0.

(19)
Then the closed-loop system (1), (4) is asymptotically
stable and the stabilizing gain is given by K = LQ−1.

Proof: (i)Differentiating V̄1(t) along (5) and taking into
account (16), we find

˙̄V1(t) = 2xT (t)P1ẋ(t) + xT (t)R1x(t)

−xT (t− η)R1x(t− η) + ẋT (t)(η2R2 + h2
sW )ẋ(t)

−π2

4 vT (t)Wv(t)− η
∫ t

t−η
ẋT (s)R2ẋ(s)ds.

(20)
By Jensen’s inequality (Gu et al., 2003)

η
∫ t

t−η
ẋT (s)R2ẋ(s)ds ≥

∫ t

t−η
ẋT (s)dsR2

∫ t

t−η
ẋ(s)ds

= [x(t)− x(t− η)]TR2[x(t)− x(t− η)].

(21)
Then substitution of Ax(t)+A1x(t−η)+A1v(t) for ẋ(t)
leads to

˙̄V1(t)≤ζT1 (t)

[
Ψ1 P1A1+R2 P1A1

∗ −R1−R2 0

∗ ∗ −π2

4
W

]
ζ1(t)+[Ax(t)+A1x(t−η)

+A1v(t)]
T (η2R2 + h2

sW )[Ax(t)+A1x(t−η)+A1v(t)],

where ζ1(t) = col{x(t), x(t − η), v(t)}. Hence, by Schur

complements, (18) guarantees that ˙̄V1(t) ≤ −γ|x(t)|2 for
some γ > 0 which completes the proof of (i).

(ii) For the state feedback design, the descriptor method
is used, where the right-hand side of the expression

2[xT (t)PT
2 +ẋT (t)PT

3 ][Ax(t)+A1x(t−η)+A1v(t)−ẋ(t)]

= 0,

with some n×n-matrices P2, P3 is added to ˙̄V1(t). Then

(20), (21) lead to ˙̄V1(t) ≤ ζT2 (t)Ξsζ2(t) ≤ −γ|x(t)|2 for
some γ > 0, where ζ2(t) = col{x(t), ẋ(t), x(t− η), v(t)},
if

Ξs
∆
=PT

2 A+ATP2+R1−R2 P1−PT
2 +ATP3 R2+PT

2 A1 PT
2 A1

∗ −P3−PT
3 +η2R2+h2

sW PT
3 A1 PT

3 A1

∗ ∗ −R1−R2 0

∗ ∗ ∗ −π2

4
W

 < 0.

(22)

Following Fridman (2006b) and Suplin et al. (2007), we
denote P3 = εP2, where ε is a scalar, Q = P−1

2 , P̄1 =
QTP1Q, W̄ = QTWQ, R̄i = QTRiQ (i = 1, 2) and L =
KQ. Multiplication of (22) by diag{QT , QT , QT , QT }
and diag{Q,Q,Q,Q}, from the left and the right, com-
pletes the proof of (ii).

Remark 3 The recent method of Park et al.(2011) for
the stability of (5) (via functional (8) with Vn = Vn1,
Jensen’s inequality and convexity arguments) leads to the
following (affine in A and A1) LMIs:[

Z2 S12

∗ Z2

]
≥ 0, (23)


Ψ1 R2 P1A1 0 AT (h2

sZ2 + η2R2)

∗ Ψ2 Z2 − S12 S12 0

∗ ∗ −2Z2+S12+ST
12 Z2−S12 AT

1 (h2
sZ2 + η2R2)

∗ ∗ ∗ −Z1−Z2 0

∗ ∗ ∗ ∗ −(h2
sZ2 + η2R2)

 < 0,

(24)

where S12 is n× n matrix and Ψ2 = −R1−R2+Z1−Z2.

Comparing LMI (18) with LMIs (23), (24), it is seen
that (18) is a lower order single LMI with a fewer deci-
sion variables (W in (18) instead of Z1, Z2, S12 in (23),
(24)). Note that conditions in Liu and Fridman (2011)
are essentially more complicated than those of Park et
al.(2011). See Table 1 for numerical complexity of the
above methods.

Table 1
The numerical complexity of different methods

Method Decision No. of The maximum

variables LMIs order of LMI

Liu & Fr (2011) 12.5n2 + 2.5n 2 7n

Park et al.(2011) 3.5n2 + 2.5n 2 5n

Theorem 1 (i) 2n2 + 2n 1 4n

Remark 4 Consider now the LMI conditions via
Vn1 + VZ2 and Jensen’s inequality, which contain the
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same number of decision variables and LMIs as The-
orem 1. From (13) and Jensen’s inequality, we have
d
dtVZ2(ẋt) ≤ (τM − η)2ẋT (t)Z2ẋ(t) − vT (t)Z2v(t) (v(t)
is given in (16)), which leads to more restrictive LMI

(18), where W = Z2 and where the (3,3)-term −π2

4 W is
changed by the (more than twice) bigger term −Z2.

More complicated LMI conditions via time-independent
Lyapunov functionals and Jensen’s inequality sometimes
can be less restrictive than the Wirtinger-based condi-
tions. Thus, in Fridman (2010) for η = 0 in one exam-
ple out of three the results by Mirkin (2007) (which are
equivalent to Theorem 1) are more conservative than the
results by Park & Ko (2007). In order to get the less con-
servative LMI conditions, the functional Vn1 + VZ + VW

can be applied by combining arguments of Park et al.
(2011) and of Theorem 1.

Remark 5 For the exponential stability analysis we fol-
low Seuret et al. (2005). By changing the variable x̄(t) =
x(t)eλt, (5) can be rewritten as

˙̄x(t) = (A+ λI)x̄(t) + eλτA1x̄(t− τ). (25)

Asymptotic stability of (25) for some λ > 0 implies the
exponential stability with the decay rate λ of (5). Since
eλτ ∈ [ρ1, ρ2] with ρ1 = eλη and ρ2 = eλτM , (25)can be
represented in the following polytopic form:

˙̄x(t)=
∑2

i=1 µi(t){(A+λI)x̄(t)+ρiA1x̄(t−τ)}, (26)

where µ1(t) = (ρ2 − eλτ )/(ρ2 − ρ1) and µ2(t) = (eλτ −
ρ1)/(ρ2 − ρ1). We note that the LMIs of Theorem 1 are
affine in the system matrices. Therefore, one have to
solve these LMIs simultaneously for the two vertices of

system (26) given by A1
(i) = ρiA1(i = 1, 2), where the

same decision matrices are applied.

Example 1 (Zhang et al, 2001) Consider the system

ẋ(t) =

[
0 1

0 −0.1

]
x(t) +

[
0

0.1

]
u(t). (27)

We start with the analysis of the closed-loop system un-
der the controller u(t) = −[3.75 11.5]x(tk − η), tk ≤
t < tk+1. It was found in Naghshtabrizi et al. (2008)
that the system remains stable for all constant samplings
less than 1.72 and becomes unstable for samplings greater
than 1.73. Moreover, the above system with the continu-
ous control u(t) = −[3.75 11.5]x(t− η) is asymptotically
stable for η ≤ 1.16 and becomes unstable for η > 1.17.
The latter means that all the existing methods, that are
based on time-independent Lyapunov functionals, corre-
sponding to stability analysis of systems with fast varying
delays, cannot guarantee the stability for the samplings
with the upper bound greater than 1.17.

For the values of η given in Table II, by applying (i)
of Theorem 1, we obtain the maximum values of τM =
hs+η, that preserve the stability (see Table II). For η = 0,
the results of Mirkin (2007) and of Fujioka (2009) lead
to τM = 1.36, which coincides with our results.

Table 2
Example 1: Max. value of τM for different η

τM \ η 0.1 0.2 0.4 0.6

Park et al.(2011) 1.05 1.06 1.07 1.07

Liu & Fridman (2011) 1.33 1.26 1.18 1.14

Theorem 1 (i) 1.32 1.28 1.22 1.17

Choosing next τM = 1, by applying Remark 5 and either
(i) of Theorem 1 or Park et al.(2011) in the affine form
(23), (24), we obtain the maximum value of the decay
rate λ given in Table III for different values of η.

Table 3
Example 1: Max. value of λ for τM = 1 and different η

λ \ η 0.1 0.2 0.4 0.6

Park et al.(2011) ) 0.04 0.05 0.05 0.05

Liu & Fridman (2011) 0.20 0.15 0.10 0.07

Theorem 1 (i) 0.26 0.23 0.17 0.12

We proceed next with the state-feedback design. Note
that the poles of the open-loop system (27) have
non-positive real parts. Therefore, by (ii) of Theo-
rem 1 with ε = 0.9, we obtain a low gain controller
u(t) = −10−15 × [0.1482 0.5412]x(tk − η) which stabi-
lizes (27) preserving the stability for τM ≤ 108. Choosing
next η = 0.2, τM = 0.8 and applying (ii) of Theorem
1 (as in Remark 5) with ε = 0.9, we find that the con-
troller u(t) = −[4.8260 11.2343]x(tk − η) exponentially
stabilizes the system with the decay rate λ = 0.50. Next,
applying to the resulting closed-loop system the condi-
tions of Theorem 1 (i), of Liu and Fridman (2011) and
of Park et al.(2011) (as in Remark 5), the maximum
decay rate is found to be 0.52, 0.30 and 0.23 respectively.
Hence, the method of Theorem 1 essentially simplifies
the existing conditions and improves the results.

3.2 Stability via Discretized Lyapunov Functionals

If (9) with some constant delay η̄ ∈ [0, η) is not stable
(and, thus, the simple Lyapunov functional Vn1 is not
applicable), the nominal functional Vn can be chosen to
be a complete one

Vn2(t, xt,ẋt)=xT (t)P1x(t)+2xT (t)
∫ 0

−η
Q(s)x(t+ s)ds

+
∫ 0

−η

∫ 0

−η
xT (t+ s)R(s, θ)dsx(t+ θ)dθ

+
∫ 0

−η
xT (t+ s)S(s)x(t+ s)ds, P1 > 0,

(28)
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with continuous and piecewise-linear functionsQ(s), S(s)
and R(s, θ) (Gu, 1997). Following Gu (1997), we divide
the delay interval [−η, 0] into N segments [θp, θp−1],
p = 1, ..., N of equal length r = η/N , where θp = −pr.
This divides the square [−η, 0] × [−η, 0] into N × N
small squares [θp, θp−1] × [θq, θq−1]. Each small square
is further divided into two triangles. The continuous
matrix functions Q(s) and S(s) are chosen to be linear
within each segment and the continuous matrix function
R(s, θ) is chosen to be linear within each triangular:

Q(θp + αr) = (1− α)Qp + αQp−1,

S(θp + αr) = (1− α)Sp + αSp−1, α ∈ [0, 1],

R(θp + αr, θq + βr) ={
(1− α)Rpq + βRp−1,q−1 + (α− β)Rp−1,q, α ≥ β,

(1− β)Rpq + αRp−1,q−1 + (β − α)Rp,q−1, α < β.

We use Vd = Vn2 + VW . Then, following the descrip-
tor method (see Fridman, 2006b) and the arguments of
Theorem 1, we arrive to

Corollary 1 Given η ≥ 0, hs > 0 andK, the system (5)
is asymptotically stable, if there exist n×nmatrices P1 >
0, P2, P3, Sp = ST

p , Qp, Rpq = RT
qp, p = 0, 1, ..., N, q =

0, 1, ..., N, W > 0, such that the following LMIs hold:

[
P1 Q̃

∗ R̃+ S̃

]
> 0, (29)

Ξd
∆
=


Ωd

[
Ds

0

] [
Da

0

]
∗ −Rd − Sd 0

∗ ∗ −3Sd

 < 0, (30)

where r = η
N and

Ωd =

Ψd11 P1 − PT
2 + ATP3 −QN + PT

2 A1 PT
2 A1

∗ −P3 − PT
3 + h2

sW PT
3 A1 PT

3 A1

∗ ∗ −SN 0

∗ ∗ ∗ −π2

4
W

, (31)

Ψd11 = PT
2 A+ATP2 +Q0 +QT

0 + S0,

Q̃=[Q0 Q1 ...QN ], S̃=diag{1/rS0, 1/rS1, ..., 1/rSN},

R̃ =

 R00 R01 ... R0N

R10 R11 ... R1N

... ... ... ...

RN0 RN1 ... RNN

 , Rd =

 Rd11 Rd12 ... Rd1N

Rd21 Rd22 ... Rd2N

... ... ... ...

RdN1 RdN2 ... RdNN

 ,

Rdpq = r(Rp−1,q−1 −Rpq),

Sd = diag{S0 − S1, S1 − S2, ..., SN−1 − SN},

Ds = [Ds
1 Ds

2 ... Ds
N ], Da = [Da

1 Da
2 ... Da

N ],

Ds
p =


r/2(R0,p−1 +R0p)− (Qp−1 −Qp)

r/2(Qp−1 +Qp)

−r/2(RN,p−1 +RNp)

 ,

Da
p =


−r/2(R0,p−1 −R0p)

−r/2(Qp−1 −Qp)

r/2(RN,p−1 −RNp)

 .

(32)

Remark 6 Differently from Corollary 1, the results of
Theorem 1 are convex in η: if LMIs of Theorem 1 are
feasible for some η̄ > 0, then they are feasible for all η ∈
[0, η̄]. Therefore, Theorem 1 gives sufficient conditions
for the stability of (5) with the unknown but bounded
constant delay η ∈ [0, η̄].

Conditions of Corollary 1 are derived via the descriptor
method and, thus, can be easily applied to the state-
feedback design by choosing e.g. P3 = εP2 (Fridman,
2006b).

Remark 7 Following the method of Park et al. (2011),
the stability of system (5) via the time-independent func-
tional Vn2+VZ leads to LMIs (23), (29), (30), where Ωd

is changed by

Ω̃d =
Ψd11 P1−PT

2 +ATP3 −QN PT
2 A1 0

∗ −P3−PT
3 +h2

sZ2 0 PT
3 A1 0

∗ ∗ −SN+Z1−Z2 Z2 − S12 S12

∗ ∗ ∗ −2Z2+S12+ST
12 Z2−S12

∗ ∗ ∗ ∗ −Z1−Z2


with Ψd11 given by (32). It is seen that also in the case
of complete Vn2, the discontinuous Lyapunov functional
leads to numerically simpler conditions than the time-
independent one.

Results of Corollary 1 and of Remark 7 can be applied to
the exponential stability analysis by using the method
of Remark 5.

Example 2 Consider the system from Gu et al. (2003):

ẋ(t) =

[
0 1

−2 0.1

]
x(t) +

[
0

1

]
u(t), (33)

where u(t) = [1 0]x(tk − η), tk ≤ t < tk+1. This system
with x(tk − η) changed by x(t− η) is stable for 0.1003 <
η < 1.72 and unstable if η ∈ [0, 0.1]. Thus, the simple
Lyapunov functional-based results of Park et al. (2011),
Liu and Kun (2011) and Theorem 1 are not applicable.

This is an example of the system that can be stabilized by
using an artificial delay. For the values of η > 0 given
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in Table IV, by applying Corollary 1 and Remark 7 we
obtain the maximum values of τM = hs+η that preserve
the stability.

Table 4
Example 2: Max. value of τM for different η

τM \ η 0.5 0.65 0.8

N = 1 Vn2 + VW 1.03 1.27 1.36

Vn2 + VZ 0.84 1.05 1.16

N = 2 Vn2 + VW 1.07 1.39 1.65

Vn2 + VZ 0.86 1.12 1.34

Choosing next τM = 0.81, by applying Corollary 1 and
Remark 7 with N = 2 via Remark 5, we obtain the max-
imum value of the decay rate λ given in Table V for dif-
ferent values of η. Also in this case the discontinuous dis-
critized Lyapunov functional leads to reduced-order LMIs
and improves the results via the time-independent one.

Table 5
Example 2: Max. value of λ for τM = 0.81 and different η

λ \ η 0.5 0.65 0.8

N = 2 Vn2 + VW 0.08 0.22 0.36

Vn2 + VZ 0.02 0.18 0.35

4 Sampled-Data Stabilization by Using the De-
layed Measurements

It is well-known, that using an artificial delay in the
(continuous-time) static output-feedback can stabilize
some systems, which are not stabilizable without delay
(see e.g. Kharitonov et al., 2005 and Example 2 above).
Thus, the double integrator

ẍ(t) = u(t), y(t) = x(t) (34)

can be stabilized by using a control action of the form
u(t) = −k1x(t − h1) − k2x(t − h2), where h1 and h2

are constant delays and 0 ≤ h1 < h2. The main criti-
cism of the above method, that it has no advantages over
the dynamic output-feedback and that its implementa-
tion needs buffer for all the measurements y(t+ θ), θ ∈
[−h2, 0].

For the sampled-data control of systems with uncer-
tain coefficients, the observer-based design is compli-
cated and may lead to conservative results. From the
other side, a simple static output feedback using the pre-
vious measurements can be easily designed and imple-
mented. Thus in the system of Example 2, one can in-
sert an artificial delay η (as in Table IV) and apply the
sampled-data controller with the sampling intervals sat-
isfying tk+1 − tk ≤ τM − η.

In this section we will extend sampled-data stabiliza-
tion to the case, where (as in the double integrator) two
sampled-data measurements are needed. Consider (1)
and assume that the measured output y(tk) = Cx(tk) ∈
Rnl is available at the discrete time instants 0 = t0 <
t1 < ... < tk < ... with the constant sampling inter-
val tk+1 − tk = h. Consider the following static output-
feedback controller, which uses the delayedmeasurement
y(tk−m):

u(t) = K1y(tk) +K2y(tk−m)

= K1Cx(tk) +K2Cx(tk −mh),

m = 1, 2, ..., tk ≤ t < tk+1.

(35)

The closed-loop system (1), (35) has the form

ẋ(t) = Ax(t) +Ac1x(tk) +Ac2x(tk − η), (36)

where η = mh, Ac1 = BK1C, Ac2 = BK2C.

We extend the analysis of section 3.2 to the system of
(36) by adding the term (Fridman, 2010)

VU (t, ẋt) = (h− t+ tk)
∫ t

tk
ẋT (s)Uẋ(s)ds, U > 0.

to Vd = Vn2 + VW :

Vsam(t, xt,ẋt) = V̄2(t) = Vn2(xt,ẋt)

+VW (t, xt,ẋt) + VU (t, ẋt), tk ≤ t < tk+1,
(37)

and where VW (t, xt,ẋt) is given by (15) with τM = (m+
1)h. The term VU vanishes before tk and after tk. By
using arguments of Corollary 1 and of Fridman (2010)
we arrive to the following:

Corollary 2 Given h > 0 and K1,K2, the system (36)
is asymptotically stable, if there exist n×nmatrices P1 >
0, P2, P3, Sp = ST

p , Qp, Rpq = RT
qp, p = 0, 1, ..., N, q =

0, 1, ..., N, and U > 0, W > 0 such that LMIs (29) and

Ξ̄di
∆
=


Ω̄di

[
Ds

0

] [
Da

0

]
∗ −Rd − Sd 0

∗ ∗ −3Sd

 < 0, i = 1, 2, (38)

hold, where Q̃, S̃, R̃, Sd, Rd, D
s and Da are defined in

(32). In (38)

Ω̄d1 = Ωd + diag{0n×n, hU, 0}, Ω̄d2 =

Ωd


−hPT

2 Ac1

−hPT
3 Ac1

0


∗ −hU

,
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with Ωd given by (31), where A, A1 and hs are changed
by A+Ac1, Ac2 and h, respectively.

Remark 8 LMIs of Corollary 2 are affine in A. There-
fore, if A resides in the uncertain polytope

A =
∑M

j=1 µj(t)A
(j), 0 ≤ µj(t) ≤ 1,

∑M
j=1 µj(t) = 1,

one have to solve these LMIs simultaneously for all the
M vertices A(j), applying the same decision matrices.

Example 3 Consider the following system:

ẋ(t) =

[
0 1

g(t) 0

]
x(t) +

[
0

1

]
u(t),

y(tk) = [1 0]x(tk), tk ≤ t < tk+1, x(t) ∈ R2,

(39)

where |g(t)| ≤ 0.1. This system is not stabilizable by the
non-delayed static output-feedback u(t) = Ky(tk), tk ≤
t < tk+1. We take m = 3 and choose

u(t)=−0.35y(tk)+0.1y(tk−3), tk ≤ t < tk+1, tk+1−tk=h.
(40)

We treat the closed-loop system (39), (40) as a system
with polytopic type uncertainty defined by the two vertices
corresponding to g(t) = ±0.1. By applying Remark 8 to
the closed-loop system (39), (40) we find the values of
sampling period h that preserve the stability:

N = 1, h ∈ [10−5 0.380], N = 2, h ∈ [10−5 0.499].

5 Conclusions

Novel discontinuous Lyapunov functionals have been in-
troduced for sampled-data systems in the presence of
constant input delay. The construction of the function-
als is based on the vector extension of the Wirtinger’s
inequality. The new method leads to numerically simpli-
fied LMIs for the stability analysis and it is applied to
a novel problem of sampled-data stabilization by using
the previous measurements. Numerical examples illus-
trate the efficiency of the method.
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