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Robust Sampled-Data Control of Linear Singularly
Perturbed Systems

Emilia Fridman

Abstract—State-feedbackH control problem for linear singularly per-
turbed systems with norm-bounded uncertainties is studied. The fast vari-
ables are sampled with fast rates, while for the slow variables both cases
of slow and of fast sampling are considered. The recent “input delay” ap-
proach to sampled-data control is applied, where the closed-loop system is
represented as a continuous one with time-varying input delay. Linear ma-
trix inequalities (LMIs) for solution ofH control problem are derived via
input-output approach to stability and L -gain analysis of time-delay sys-
tems. A numerical example illustrates the efficiency of the method.

Index Terms—H control, linear matrix inequality (LMI), sampled-data
control, singularly perturbed systems, time-delay.

I. INTRODUCTION

Singular perturbations in control systems often occur due to the
presence of small “parasitic” parameters, such as small masses, small
time-delays. The main objective of singular perturbation methods
is to alleviate the difficulties caused by the high dimensionality and
the ill-conditioning that results from the interaction of slow and fast
dynamical modes. Decomposition of the full-order problem to the
"-independent reduced-order slow and fast subproblems was started
with the classical Tikhonov theorem on the asymptotic behavior of
the solution to the initial value problem [19] and developed further
to composite controller design [2], [15] (see a survey [17] for recent
references). A LMI approach to linear singularly perturbed systems
was introduced in [6], [9].

Two main approaches have been used to the sampled-data robust
control. The first one is based on the lifting technique [1], [21] in which
the problem is transformed to equivalent finite-dimensional discrete
problem. This approach was applied to sampled-data nonlinear singu-
larly perturbed systems, where the composite controller with the fast
sampling in the fast variables was suggested [4]. The second approach
is based on the representation of the system in the form of hybrid dis-
crete/continuous model. This approach leads to necessary and suffi-
cient conditions for stability and L2-gain analysis in the form of dif-
ferential equations (or inequalities) with jumps and it was applied to
sampled-data H1 control of linear singularly perturbed systems [18],
where the slow sampled-data controller was designed. The above ap-
proaches do not work in the cases with uncertain sampling times or
uncertain system matrices.

A new “input delay” approach to sampled-data control has been sug-
gested recently in [7]. By this approach, a digital control law is repre-
sented as a delayed control as follows:

u(t) = ud(tk) = ud(t� (t� tk)) = ud(t� � (t))

tk � t < tk+1 � (t) = t� tk (1)

where ud is a discrete-time control signal and the time-varying delay
� (t) = t� tk is piecewise linear with derivative _� (t) = 1 for t 6= tk .
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Moreover, � � tk+1�tk . The solution to the problem is found then by
solving the problem for a continuous-time system with uncertain but
bounded (by the maximum sampling interval) time-varying delay in
the control input via Lyapunov technique. Given h > 0, the conditions
obtained are robust with respect to different samplings with the only
requirement that the maximum sampling interval is not greater than h.
Stability of singularly perturbed systems with a constant delay h has

been studied in two cases: 1) h is proportional to " (small delay), and
2) " and h are independent. The first case, being less general than the
second one, is encountered in many publications (see, e.g., [11], [10],
and the references therein). The second case has been studied in the
frequency domain [16]. A Lyapunov-based approach to the problem
leading to LMIs has been introduced in [6] for the general case of in-
dependent delay and ". In the case of constant delay, it was shown [6],
that the necessary condition for robust stability of singularly perturbed
system for all small enough values of singular perturbation parameter
" > 0 is the delay-independent stability of the fast subsystem, which
is rather restrictive. The same is true for systems with uncertain and
bounded time-varying delays, where constant delay is just a particular
case of delay. Therefore, it is natural to design a delayed state-feedback
controller with a small delay in the fast variable "�(t). This corresponds
to the fast sampling of fast variables considered in [4].
In this note, we solve the state-feedback sampled-data H1-control

problem by applying the input delay approach to sampled-data con-
trol and by developing the input-output approach to singularly per-
turbed time-delay systems. The input-output approach was introduced
for regular systems with constant delays in [13] and further developed
in [12] (see also references therein), where it was generalized to the
time-varying delays with the delay derivative less than q < 1. Recently,
the input–output approach has been developed to L2-gain analysis of
regular systems with time-varying bounded delays without any con-
straints on the delay derivative [8]. It is the objective of the present
note to develop this approach to singularly perturbed systems with
time-varying delay. Two controller designs are considered: 1) With the
fast sampling in the fast variables and the slow one in the slow vari-
ables, and 2) with the fast sampling in both variables.

Notation: Throughout this note, the superscript “T ” stands for ma-
trix transposition,Rn denotes the n-dimensional Euclidean space with
vector norm k � k;Rn�m is the set of all n � m real matrices, and
the notation P > 0, for P 2 Rn�n means that P is symmetric
and positive definite. The symmetric elements of the symmetric ma-
trix will be denoted by �.L2 is the space of square integrable functions
v : [0;1) ! Cn with the norm kvkL = [

1

0
kv(t)k2dt]1=2.

II. PROBLEM FORMULATION

Given the following system:

E" _x(t) = (A+H�F0)x(t) + (B1 +H�F1)w(t)

+ (B2 +H�F2)u(t) (2)

z(t) = Cx(t) +D12u(t) (3)

where x(t) = colfx1(t); x2(t)g; x1(t) 2 Rn ; x2(t) 2 Rn is the
system state vector, u(t) 2 R` is the control input, w(t) 2 Rq is the
exogenous disturbance signal, and z(t) 2 Rp is the state combination
(objective function signal) to be attenuated. The matrixE" is given by

E" =
In 0

0 "In
(4)

where " > 0 is a small parameter.
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Denote n
�
=n1 + n2. The matrices A;B1; B2; F0; F1; F2; H;C and

D12 are constant matrices of appropriate dimensions. The matrices in
(2) and (3) have the following structures:

A =
A1 A2

A3 A4
H =

H1 H2

H3 H4
F0 =

F01 F02

F03 F04

Bi =
Bi1

Bi2
C = [C1 C2] Fi =

Fi1

Fi2
; i = 1; 2: (5)

We do not require A4 to be nonsingular. Such a system is a non-
standard singularly perturbed system [14]. In the case of singular A4

open-loop system (2) with " = 0 has index more than one and pos-
sesses an impulse solution [3].

The uncertain time-varying matrix �(t) = [
�1(t) �2(t)

�3(t) �4(t)
] satis-

fies the inequality

�T (t)�(t) � In; t � 0: (6)

We are looking for a piecewise-constant control law of two forms.

1) A multiple (slow/fast) rate state-feedback

u(t) = us(t) + uf(t) us(t) = K1x1(tk); tk � t < tk+1

uf(t) = K2x2("tk) "tk � t < "tk+1 (7)

where 0 = t0 < t1 < � � � < tk < � � � and 0 = "t0 < "t1 <

� � � < "tk < � � � are the slow and the fast sampling instants and
limk!1 tk = 1.

2) A single (fast) rate state-feedback u(t) = �Kx("tk); "tk � t <

"tk+1, where 0 = "t0 < "t1 < � � � < "tk < � � � are the fast
sampling instants and limk!1 tk = 1.

Given  > 0 our objective is to find a piecewise constant controller
which internally stabilizes the system and leads to L2-gain less than .
The latter means that the following inequality

J = kzk2L � 
2kwk2L < 0 (8)

holds for x(0) = 0 and for all nonzero w 2 L2.
We represent a piecewise-constant control law as a continuous-time

control with a time-varying piecewise-continuous (continuous from the
right) delay � (t) = t � tk as given in (1), corresponding to the slow
sampling, and with small delay "�(t) = "(t � tk), corresponding to
the fast sampling. We will thus look for state-feedback controllers of
two forms

u(t) = K
x1(t� � (t))

x2(t� "�(t))
K = [K1 K2] (9)

and

u(t) = Kx(t� "�(t)): (10)

We assume that

A1) tk+1 � tk � h8k � 0.
From A1 it follows that � (t) � h since � (t) � tk+1� tk .
To guarantee that for all small enough " > 0 the full-order

system is stabilizable-detectable we assume [20].
A2) Both pencils [sE0�A;B2] and [sE0�AT ;CT ] are of full

row rank for all s with nonnegative real parts, where E0 is
given by (4) with " = 0.

A3) The triple fA4; B22; C2g is stabilizable-detectable.

III. MULTIPLE RATE H1 CONTROL

A. Input–Output Model

Substituting (9) into (2), we obtain the following closed-loop system:

E" _x(t) = (A+H�F0)x(t) + (B2 +H�F2)K

� x1(t� � (t))

x2(t� "�(t))
+ (B1 +H�F1)w(t)

z(t) = Cx(t) +D12K
x1(t� � (t))

x2(t� "�(t))
: (11)

Wewill further consider (11) as the system with uncertain and bounded
delay � (t) 2 [0; h].
We represent (11) in the form

E" _x(t)

= (A+B2K +H�(F0 + F2K))x(t)� (B2 +H�F2)K

�
0

��(t)
_x1(t+ s)ds

0

�"�(t)
_x2(t+ s)ds

+ (B1 +H�F1)w(t)

z(t)

= (C +D12K)x(t)�D12K

0

��(t)
_x1(t+ s)ds

0

�"�(t)
_x2(t+ s)ds

: (12)

We follow the idea of [13] and [12] to embed the perturbed system (12)
into a class of systems with additional inputs and outputs, the stability
of which guarantees the stability of (12). Consider the following for-
ward system:

E" _x(t) = (A+B2K)x(t) + hB2Kv(t) +B1w(t) +Hv3(t)

z(t) = (C +D12K)x(t) + hD12Kv(t)

y(t) = E" _x(t) = (A+B2K)x(t) + hB2Kv(t)

+B1w(t) +Hv3(t)

y3(t) = (F0 + F2K)x(t) + hF2Kv(t) + F1w(t) (13a-d)

where

v(t) =
v1(t)

v2(t)
y(t) =

y1(t)

y2(t)

with feedback

v1(t) = � 1

h

0

��(t)

y1(t+ s)ds

v2(t) = � 1

"h

0

�"�(t)

y2(t+ s)ds v3(t) = �y3(t): (14)

Note that for h ! 0 the above model (13), (14) corresponds
to the closed-loop system (2) with the continuous state-feedback
u(t) = Kx(t).
Assume that yi(t) = 0;8t � 0; i = 1; 2; 3. The following holds for

ni � ni-matrices Ri > 0; i = 1; 2 and a scalar r > 0 [12]

k
p
RivikL � k

p
RiyikL ; i = 1; 2 kprv3kL � kpry3kL :

(15)
For " ! 0 inequality (15) is valid and y2 given by (13c) vanishes.

Thus, for " ! 0 (13), (14) is the input–output model, which corre-
sponds to the descriptor system without delay in x2

E0 _x(t) = (A+H�F0)x(t) + (B1 +H�F1)w(t)

+ (B2 +H�F2)u(t)

u(t) = K1x1(tk) +K2x2(t) t 2 [tk; tk+1)

0 � tk+1 � tk � h: (16)
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Remark 3.1: Descriptor system can be destabilized by arbitrary fast
sampling in the fast variable of the state-feedback even if the system
is stable under continuous-time state-feedback. Consider the following
simple example:

E0 _x(t) =
�1 0

1 1
x(t) +

0

1
u(t); x(t) 2 R

2
: (17)

It is clear that the closed-loop system is stable with the continuous
state-feedback u(t) = �2x2(t), while it is unstable with u(t) =
�2x(tk); t 2 [tk; tk+1), for any sampling tk . Really, the resulting
closed-loop triangular system is stable if equation x2(t) + u(t) = 0
is stable. However, this equation in the sampled-data case x2(t) =
2x2(tk); t 2 [tk; tk+1) is unstable.

B. L2-Gain Analysis

Consider the Lyapunov function V (t) = xT (t)E"P"x(t), where P"
has the structure of

P" =
P1 "PT

2

P2 P3
; P1 > 0; P3 > 0: (18)

Note that P" is chosen to be of the form of (18) (as, e.g., in [20]),
such that for " = 0, the function V with E" = E0 and P" = P0,
corresponds to the descriptor case).

Given " > 0, from (15) it follows that the following condition along
(13a):

W
�
= _V (t) + h

2

i=1

y
T
i (t)Riyi(t) + rky3(t)k

2

� h

2

i=1

v
T
i (t)Rivi(t)� rkv3(t)k

2 + kz(t)k2 � 
2kw(t)k2

< ��(kx(t)k2 + ku(t)k2 + kw(t)k2); � > 0 (19)

guarantees the internal stability of (11) and that L2-gain of (11) less
than . Moreover, since y(t) depends on _x(t), we consider the deriva-
tive condition _V (t) � ��(kx(t)k2 + k _x(t)k2); � > 0. Such deriva-
tive condition corresponds to the descriptor model transformation in-
troduced in [5].

Given n � n-matrices

�j =
�j1 0

�j2 �j3

; j = 2; 3; �j1 2 R
n �n

�j3 2 Rn �n (20)

denote

P" =
P" 0

�2 �3
: (21)

We have, similarly to [5], the first equation shown at the bottom of the
page.
Thus, along the trajectories of (13) we obtain

W � �
T (t)���(t)+h

2

i=1

y
T
i (t)Riyi(t)+rky3(t)k

2+kz(t)k2 (22)

where �(t) = colfx(t); E" _x(t); v(t); v3(t); w(t)g and

�� =

�" hPT
"

0

B2K
PT
"

0

H
PT
"

0

B1

� �
hR1 0

0 hR2
0 0

� � �rIn 0

� � � �2Iq

�" = PT
"

0 In

A +B2K �In
+

0 AT +KTBT
2

In �In
P":

(23a,b)

By applying Schur complements to the term h
2

i=1
yTi (t)Riy(t)+

rky3(t)k
2+kz(t)k2 we conclude that (19) is satisfied if (24), as shown

at the bottom of the page, holds.
Denote by �"; " � 0 the matrix in the left-hand side of (24). If

�0 < 0, i.e., (24) is feasible for " = 0, then for the same values of
P1; P2; P3; R;�2 and �3 the full-order LMI (24) is feasible for small
enough values of ", since �" = �0 + "M , whereM is some constant
matrix. Hence, �0 < 0 implies (19) for small enough ".
We thus proved the following.
Lemma 3.1:

i) Given  > 0; h > 0 and m � n-matrix K , (11) is internally
stable and has L2-gain less than  for all small enough " > 0
and 0 � � (t) � h, if there exist n1�n1 matricesP1 > 0; R1 >
0;�21;�31; n2�n2 matrices P3 > 0; R2 > 0;�23;�33; n1�
n2-matrices P2;�22;�32 and a scalar r > 0 such that LMI (24)
is feasible for " = 0, where P0 and �0 are given by (18), (20),
(21), and (23b).

ii) Given " > 0;  > 0; h > 0 andm� n-matrixK , (11) is inter-
nally stable and has L2-gain less than  for all 0 � � (t) �
h, if there exist n1 � n1 matrices P1 > 0; R1 > 0;�21;

_V (t) = 2xT (t)PT
" E" _x(t)

= 2
x(t)

E" _x(t)

T

PT
"

E" _x(t)

(A+B2K)x(t) + hB2Kv(t) +B1w(t) +Hv3(t)� E" _x(t)

�" hPT
"

0

B2K
PT
"

0

H
PT
"

0

B1

r(F0 + F2K)T

0

0

hR

CT +KTDT
12

0

� �hR 0 0 hrKTF T
2 0 hKTDT

12

� � �rIn 0 0 0 0

� � � �2Iq rFT
1 0 0

� � � � �rIn 0 0

� � � � � �hR 0

� � � � � � �Ip

< 0

R =
R1 0

0 R2
(24)
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�31; n2�n2 matrices P3 > 0; R2 > 0;�23;�33; n1�n2-ma-
trices P2;�22;�32 and a scalar r > 0 such that LMI (24) is fea-
sible and E"P" > 0, where P" and �" are given by (18), (20),
(21), and (23b).

If (24) is feasible for " = 0, then the slow (descriptor) system (16) is
internally stable and has L2-gain less than . Moreover, the fast LMI,
shown in (25) at the bottom of the page, is feasible. The latter LMI
guarantees that the fast

_x2(t) = (A4 +H4�4F04)x2(t) + (B12 +H4�4F12)w(t)

+ (B22 +H4�4F22)u(t)

u(t) = K2x2(tk); t 2 [tk; tk+1); 0 � tk+1 � tk � h

(26)

system is internally stable and has L2-gain less than . Thus the fea-
sibility of "-independent LMI (24), where " = 0, implies that the fast
subproblem is solvable by a sampled-data controller, while the slow
subproblem is solvable by a mixed controller (continuous in the fast
variable and sampled-data in the slow one).

C. State-Feedback Design

Our objective now is to find K . In order to obtain an LMI in
(24) we have to restrict ourselves to the case of block-diagonal
�2 = diagf�21;�23g and to �3 = ��2, where � 6= 0 is a scalar
parameter. Note that �2 is nonsingular due to the fact that the only
matrix which can be negative definite in the second block on the
diagonal of (24) is ��(�2 + �T

2 ). Defining

	 = ��12 = diag ��121 ��123
�P = 	T

P0	 �R = 	T
R	 �r = r

�1

and Y = K	; multiplying LMI (24) by
diagf	;	;	; In; Iq; In;	; Ipg and its transpose, from
the right and the left, respectively, we obtain the LMI with a tuning
parameter �, as shown in (27) at the bottom of the page. Note that �P

and �R have the same, block-triangular and block-diagonal structures,
as P0 and R correspondingly.

Theorem 3.1: Given  > 0, consider the system of (2) and the
multirate state-feedback law of (9). Assume A1–A3.

i) The state-feedback (9) internally stabilizes (2) and guarantees
L2-gain less than  for all small enough " � 0, if for some
prescribed scalar � 6= 0 there exist n1 � n1-matrices �P1 >

0; �R1 > 0;	1; n2 � n2-matrices �P3 > 0; �R2 > 0;	3, an
n1 � n2-matrix �P2, a p� n-matrix Y and a scalar �r > 0 such
that LMI (27) with

	 =
	1 0

0 	3

�P =
�P1 0
�P2 �P3

�R =
�R1 0

0 �R2

(28)

is feasible. The state-feedback "-independent gain is given by
K = Y	�1.

ii) The gainK = [K1 K2] obtained in i) solves the slow (16) and
the fast (26) subproblems.

iii) Given " > 0 the gain obtained in i) internally stabilizes (2) and
guarantees L2-gain less than  if there exist n1 � n1 matrices
P1 > 0; R1 > 0;�21;�31; n2�n2 matricesP3 > 0; R2 > 0;
�23;�33; n1 � n2-matrices P2;�22;�32 and a scalar r > 0
such that LMI (24) is feasible andE"P" > 0, whereP" is given
by (18).

Example 3.1: [18] Consider (11) with

A0 =
2 1

�1 �2
B2 =

2

2
B1 =

1

3

C =
2 1

1 3
0 0

D12 =

0

0

1

(29)

where H = 0. Given  = 3 and the uniform sampling
tk+1 � tk = 0:1, it was shown in [18] that the slow state-feed-
back u(t) = �1:1618x1(tk); t 2 [tk; tk+1) solves the H1-control
problem for the full-order system for all small enough " > 0. More-
over, the slow controller can not achieve  < 2:85.

�f hPT
f

0

B22K2

PT
f

0

H4

PT
f

0

B12

r(F04 + F22K2)
T

0

0

hR2

CT
2 +KT

2 D
T
12

0

� �hR2 0 0 hrKT
2 F

T
22 0 hKT

2 D
T
12

� � �rIn 0 0 0 0

� � � �2Iq rFT
12 0 0

� � � � �rIn 0 0

� � � � � �hR2 0

� � � � � � �Ip

< 0

�f = PT
f

0 In

A4 +B22K2 �In
+

0 AT
4 +KT

2 B
T
22

In �In
Pf

Pf =
P3 0

�23 �33

(25)

�1 �2 hB2Y �rH B1 	TF T
0 + Y TF T

2 0 	TCT + Y TDT
12

� ��(	 + 	T ) h�B2Y �r�H �B1 0 h �R 0

� � �h �R 0 0 hY TF T
2 0 hY TDT

12

� � � ��rIn 0 0 0 0

� � � � �2Iq F T
1 0 0

� � � � � ��rIn 0 0

� � � � � � �h �R 0

� � � � � � � �Ip

< 0

�1 = A	+	T
A
T +B2Y + Y

T
B
T
2 ; �2 = �P T �	+ �	T

A
T + �Y

T
B
T
2 (27)
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Consider the uncertain system (11), (29) with H = I2; F0 = 0:1 �
I2; F1 = F2 = [0:1 0:1]T . Applying Theorem 3.1 with the smaller
 = 2:8, the same h = 0:1 and choosing � = �0:1, we find that the
multirate controller (9) with "-independent gain K = [�2:4407 �
0:5788] leads to L2-gain less than 2:8 for all small enough " > 0
and all the samplings with tk+1 � tk � 0:1. By applying Lemma
3.1 to the resulting closed-loop system for h = 0:1 and for different
values of " > 0 we verify that this gain leads the full-order system to
L2-gain less than 2:8 for all 0 < " � 0:49 and for all the samplings
0 � tk+1 � tk � 0:1. The possibility to treat the uncertain system, as
well as to check the solvability of the H1 control problem for given
values of h and ", are the advantages of the LMI approach.

IV. FAST SAMPLE-RATE H1 CONTROL

Substituting (10) into (2), we obtain the following closed-loop
system:

E" _x(t) = (A +H�F0)x(t) + (B2 +H�F2)Kx(t� "� (t))

+ (B1 +H�F1)w(t)

z(t) = Cx(t) +D12Kx(t� "�(t)): (30)

Similarly to the previous section we introduce the forward system:

E" _x(t) = (A+B2K)x(t) + hB2K�v(t) +B1w(t) +Hv3(t)

z(t) = (C +D12K)x(t) + hD12K�v(t)

y(t) = E" _x(t) = (A+B2K)x(t) + hB2K�v(t)

+B1w(t) +Hv3(t)

y3(t) = (F0 + F2K)x(t) + hF2K�v(t) + F1w(t) (31a-e)

where

�v(t) =
"v1(t)

v2(t)
y(t) =

y1(t)

y2(t)

with feedback

v1(t) = �
1

"h

0

�"�(t)

y1(t+ s)ds

v2(t) = �
1

"h

0

�"�(t)

y2(t+ s)ds; v3(t) = �y3(t): (32)

Inequalities (15) are valid here. The only differencewith the previous
case that v1 in (31) is multiplied by ", which leads to the full-order
LMI for stability and L2-gain shown in (33) at the bottom of the page.
Setting " = 0 into (33) and applying the Schur complements to the row
and the column with the only nonzero (diagonal) element hR1 (and
thus deleting also the row and the column containing hR1) we obtain
the "-independent LMI shown in (34) at the bottom of the page.
Feasibility of (34) implies feasibility of (33) for small enough " > 0

and R1 > 0. LMI (34) implies the same fast LMI (25) and the fast
problem (26), while the slow LMI has a form shown in (35) at the
bottom of the page, and corresponds to the slow problem with a con-
tinuous-time state-feedback

E0 _x(t) = (A+H�F )x(t) + (B1 +H�F1)w(t)

+(B2 +H�F2)u(t) u(t) = Kx(t): (36)

�" hPT
"

0

"B2K1 B2K2
PT
"

0

H
PT
"

0

B1

r(F0 + F2K)T

0

0

hR

CT +KTDT
12

0

� �hR 0 0 hr
"KT

1

KT
2

F T
2 0 h

"KT
1

KT
2

DT
12

� � �rIn 0 0 0 0

� � � �2Iq rFT
1 0 0

� � � � �rIn 0 0

� � � � � �hR 0

� � � � � � �Ip

< 0

R = diagfR1; R2g (33)

�0 hPT
0

0

B2K2
PT
0

0

H
PT
0

0

B1

r(F0 + F2K)T

0

0

hR2

CT +KTDT
12

0

� �hR2 0 0 hrKT
2 F

T
2 0 hKT

2 DT
12

� � �rIn 0 0 0 0

� � � �2Iq rFT
1 0 0

� � � � �rIn 0 0

� � � � � �hR2 0

� � � � � � �Ip

< 0 (34)

�0 PT
0

0

H
PT
0

0

B1

r(F0 + F2K)T

0

CT +KTDT
12

0
� �rIn 0 0 0

� � �2Iq rFT
1 0

� � � �rIn 0

� � � � �Ip

< 0 (35)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 3, MARCH 2006 475

�1 �2 hB2Y2 �rH B1 	TF0 + Y TF T
2 0 	TCT + Y TDT

12

� ��(	 + 	T ) h�B2Y2 �r�H �B1 0 h �R2 0

� � �h �R2 0 0 hY T
2 0 hY T

2 D
T
12

� � � ��rIn 0 0 0 0

� � � � �2Iq F T
1 0 0

� � � � � ��rIn 0 0

� � � � � � �h �R2 0

� � � � � � � �Ip

< 0

�1 = A	 +	T
A
T +B2Y + Y

T
B
T
2 �2 = �P T �	+ �	T

A
T + �Y

T
B
T
2 Y = [Y1 Y2] (37a,b)

Note that singularly perturbed systems with small delay are usually
decomposed into the nondelayed slow subsystem and the delayed fast
one (see, e.g., [10]).

Multiplying (34) by diagf	;	3;	; �rIn; Iq; �rIn;	3; Ipg and its
transpose, on the left and on the right, respectively, we obtain the fol-
lowing "-independent LMI with a tuning parameter �; see (37a,b), as
shown at the top of the page.

Theorem 4.1: Given  > 0, consider the system of (2) and the
fast-rate state-feedback law of (10). Assume A1–A3.

i) The state-feedback (10) internally stabilizes (2) and guaran-
tees L2-gain less than  for all small enough " � 0, if for
some prescribed scalar � 6= 0 there exist n1 � n1 matrices
�P1 > 0;	1; n2 � n2 matrices �P3 > 0; �R2 > 0;	3, an
n1 � n2-matrix �P2, a p � n matrix Y and a scalar r > 0
such that LMI (37) with	 and �P given by (28) is feasible. The
state-feedback "-independent gain is given byK = Y	�1.

ii) The gainK = [K1 K2] obtained in i) solves the slow (36) and
the fast (26) subproblems.

iii) Given " > 0 the state-feedback (10) with K from i) internally
stabilizes (2) and guarantees L2-gain less than  if there exist
n1�n1 matrices P1 > 0; R1 > 0;�21;�31; n2�n2 matrices
P3 > 0; R2 > 0;�23;�33; n1�n2-matrices P2;�22;�32 and
a scalar r > 0 such that LMI (33) is feasible and E"P" > 0,
where P" is given by (18).

Example 4.1: Consider the uncertain system (11), (29) with H =
I2; F0 = 0:1 � I2; F1 = F2 = [0:1 0:1]T . We find by Theorem 4.1,
where � = �0:1, that the "-independent fast-rate controller (10), where
K = [�3:0049�0:5954], leads toL2-gain less than 2:6 (which is less
than 2:8 achieved by the multi-rate controller (9)) for all small enough
" > 0 and all the samplings with tk+1� tk � 0:1. Moreover, this gain
leads the full-order system toL2-gain less than 2.6 for all the samplings
0 � tk+1 � tk � 0:1 and for all 0 < " � 0:49.

V. CONCLUSION

Sampled-data state-feedback H1 control problem for singularly
perturbed system with norm-bounded uncertainties has been solved
via input delay approach to sampled-data control. The only assump-
tion on the sampling that the distance between the sequel sampling
times is not greater than some h > 0. Two kinds of controllers have
been designed (both with the fast sampling in the fast variables):
the multirate state-feedback (slow rate in the slow variables) and the
fast-rate state-feedback. The "-independent gains of the controllers are
found from "-independent LMIs. "-dependent LMIs are derived which
give sufficient conditions for the solvability of the full-order system.
An illustrative example shows that the fast-rate controller leads to
better performance, than the multirate one. The tradeoff is in the fast
sampling of the slow variables.
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