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Robust Sampled-Data H., Control of Linear Singularly
Perturbed Systems

Emilia Fridman

Abstract—State-feedback H .. control problem for linear singularly per-
turbed systems with norm-bounded uncertainties is studied. The fast vari-
ables are sampled with fast rates, while for the slow variables both cases
of slow and of fast sampling are considered. The recent “input delay” ap-
proach to sampled-data control is applied, where the closed-loop system is
represented as a continuous one with time-varying input delay. Linear ma-
trix inequalities (LMIs) for solution of H, control problem are derived via
input-output approach to stability and L,-gain analysis of time-delay sys-
tems. A numerical example illustrates the efficiency of the method.

Index Terms— H ., control, linear matrix inequality (LMI), sampled-data
control, singularly perturbed systems, time-delay.

I. INTRODUCTION

Singular perturbations in control systems often occur due to the
presence of small “parasitic” parameters, such as small masses, small
time-delays. The main objective of singular perturbation methods
is to alleviate the difficulties caused by the high dimensionality and
the ill-conditioning that results from the interaction of slow and fast
dynamical modes. Decomposition of the full-order problem to the
e-independent reduced-order slow and fast subproblems was started
with the classical Tikhonov theorem on the asymptotic behavior of
the solution to the initial value problem [19] and developed further
to composite controller design [2], [15] (see a survey [17] for recent
references). A LMI approach to linear singularly perturbed systems
was introduced in [6], [9].

Two main approaches have been used to the sampled-data robust
control. The first one is based on the lifting technique [1], [21] in which
the problem is transformed to equivalent finite-dimensional discrete
problem. This approach was applied to sampled-data nonlinear singu-
larly perturbed systems, where the composite controller with the fast
sampling in the fast variables was suggested [4]. The second approach
is based on the representation of the system in the form of hybrid dis-
crete/continuous model. This approach leads to necessary and suffi-
cient conditions for stability and L»-gain analysis in the form of dif-
ferential equations (or inequalities) with jumps and it was applied to
sampled-data H.. control of linear singularly perturbed systems [18],
where the slow sampled-data controller was designed. The above ap-
proaches do not work in the cases with uncertain sampling times or
uncertain system matrices.

A new “input delay” approach to sampled-data control has been sug-
gested recently in [7]. By this approach, a digital control law is repre-
sented as a delayed control as follows:

u(t) = wa(ty) = wa(t = (t = tr)) = va(t — 7(1))
te <t <tppr T(H)=t—tx (1)

where uq is a discrete-time control signal and the time-varying delay
7(t) = t — i is piecewise linear with derivative 7(t) = 1 for t # .
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Moreover, T < ti4+1 —ti. The solution to the problem is found then by
solving the problem for a continuous-time system with uncertain but
bounded (by the maximum sampling interval) time-varying delay in
the control input via Lyapunov technique. Given &» > (), the conditions
obtained are robust with respect to different samplings with the only
requirement that the maximum sampling interval is not greater than f.

Stability of singularly perturbed systems with a constant delay h has
been studied in two cases: 1) h is proportional to ¢ (small delay), and
2) = and h are independent. The first case, being less general than the
second one, is encountered in many publications (see, e.g., [11], [10],
and the references therein). The second case has been studied in the
frequency domain [16]. A Lyapunov-based approach to the problem
leading to LMIs has been introduced in [6] for the general case of in-
dependent delay and <. In the case of constant delay, it was shown [6],
that the necessary condition for robust stability of singularly perturbed
system for all small enough values of singular perturbation parameter
e > 0 is the delay-independent stability of the fast subsystem, which
is rather restrictive. The same is true for systems with uncertain and
bounded time-varying delays, where constant delay is just a particular
case of delay. Therefore, it is natural to design a delayed state-feedback
controller with a small delay in the fast variable 7(¢). This corresponds
to the fast sampling of fast variables considered in [4].

In this note, we solve the state-feedback sampled-data H . -control
problem by applying the input delay approach to sampled-data con-
trol and by developing the input-output approach to singularly per-
turbed time-delay systems. The input-output approach was introduced
for regular systems with constant delays in [13] and further developed
in [12] (see also references therein), where it was generalized to the
time-varying delays with the delay derivative less than ¢ < 1. Recently,
the input—output approach has been developed to Lo-gain analysis of
regular systems with time-varying bounded delays without any con-
straints on the delay derivative [8]. It is the objective of the present
note to develop this approach to singularly perturbed systems with
time-varying delay. Two controller designs are considered: 1) With the
fast sampling in the fast variables and the slow one in the slow vari-
ables, and 2) with the fast sampling in both variables.

Notation: Throughout this note, the superscript “I" stands for ma-
trix transposition, " denotes the n-dimensional Euclidean space with
vector norm || « ||, R™*™ is the set of all n X m real matrices, and
the notation P > 0, for P € R"*" means that P is symmetric
and positive definite. The symmetric elements of the symmetric ma-
trix will be denoted by . L is the space of square integrable functions
v 1[0, 00) — C™ with the norm |||z, = [[5° [|o(t)[|*de]*/2.

II. PROBLEM FORMULATION

Given the following system:

E.x(t) = (A+ HAFy))z(t) + (Bi + HAF )w(t)
+ (B2 + HAF )u(t) 2
z(t) = Cz(t) + Digu(t) 3)
where 2(t) = col{x1(t),x2(t)}, 1(t) € R™,x2(t) € R™? is the
system state vector, u(t) € R is the control input, w(t) € RY is the

exogenous disturbance signal, and z(¢) € RP is the state combination
(objective function signal) to be attenuated. The matrix E. is given by

I, 0
=% ] @

where £ > 0 is a small parameter.
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Denote ném + no. The matrices A, By, Ba, Fo, Fi, F>, H,C and
D> are constant matrices of appropriate dimensions. The matrices in
(2) and (3) have the following structures:

A As H, H, Foi  Foo

|:A3 A4:| |:H3 H4] 0 |:F03 F04:|

B _ o F; s e
B,._{BJ C=[Cr ) F_{F] =12 )

We do not require A4 to be nonsingular. Such a system is a non-
standard singularly perturbed system [14]. In the case of singular A4
open-loop system (2) with £ = 0 has index more than one and pos-
sesses an impulse solution [3].

Av(t) As(t)

As(t) Au(t) | satis-

The uncertain time-varying matrix A(t) = |

fies the inequality

ATMAM) < L., t>0. 6)

We are looking for a piecewise-constant control law of two forms.
1) A multiple (slow/fast) rate state-feedback

w(t) = us(t) +up(t) us(t) =Kz (te), tr <t < tpp

U,f(t) = Koxo(sty) =t <t < st @)

where 0 =t < t; < +++ <t < --and 0 = ety < ety <
- < ety < --- are the slow and the fast sampling instants and
limg_ oo tp = 00.

2) A single (fast) rate state-feedback u(t) = Kz (cty,), ety < t <
etpy1, where 0 = sty < gty < -+ < et < --- are the fast
sampling instants and lim ... t;, = oco.

Given v > 0 our objective is to find a piecewise constant controller
which internally stabilizes the system and leads to L»-gain less than .
The latter means that the following inequality

®

T =120z, = +llwli, <0

holds for #(0) = 0 and for all nonzero w € Ls.

We represent a piecewise-constant control law as a continuous-time
control with a time-varying piecewise-continuous (continuous from the
right) delay 7(¢) = ¢ — ¢ as given in (1), corresponding to the slow
sampling, and with small delay £7(#) = (¢ — t), corresponding to
the fast sampling. We will thus look for state-feedback controllers of
two forms

,;fl'(t - T(t)) ] K =[K, K] ©)
and
(10)

‘We assume that

Al) tpp —t < AVE > 0.
From Al it follows that 7(¢t) < h since 7(t) < tj41 — tk.
To guarantee that for all small enough = > 0 the full-order
system is stabilizable-detectable we assume [20].
A2) Both pencils [sEq — A; Bz] and [sEo — AT ; O] are of full
row rank for all s with nonnegative real parts, where Ey is
given by (4) with ¢ = 0.
A3) The triple { A4, Ba2, C>} is stabilizable-detectable.
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III. MULTIPLE RATE H ., CONTROL
A. Input—Output Model

Substituting (9) into (2), we obtain the following closed-loop system:

E.i(t) = (A+ HAF)2(t) + (Bo + HAR)K
% |: T](t— T(f)) :| 4 (B1 4 HAF])UJ(IL)

x2(t — 27(t))
z1(t = 7(1)) ] _

x2(t — 27(1)) (1)

/‘.’(t) = Cr(t) + Do K |:

We will further consider (11) as the system with uncertain and bounded
delay 7(t) € [0, A].
We represent (11) in the form

E.&(t)
= (A4 B:K + HA(Fy 4+ FoK))a(t) — (Bs + HAF)K
fET(t) i (t+s)ds

X
fEET(L) To(t+ s)ds

:| + (Bl + HAFl)lU(f)
z(t) .

) a1 (t 1.

= (C 4+ DisK)a(t) — DinK [ jgr(t) T.]( +s)ds

f—éf(f) Z2(t+ 5)ds

We follow the idea of [13] and [12] to embed the perturbed system (12)
into a class of systems with additional inputs and outputs, the stability
of which guarantees the stability of (12). Consider the following for-
ward system:

(12)

Boi(t) = (A+ BaKO)a(t) + hBa Ko(t) + Brao() + Hos(1
2(t) = (C + Do K)a(t) + hDio K o(t)
y(t) = E.i(t) = (A4 BoK)x(t) + hBy Ku(t)
+ Biw(t) + Hus(t)

y3(t) = (Fo + Fo K)a(t) + hF2 Ko(t) 4+ Frw(t) (13a-d)

where

v2 (1) ya ()

with feedback

1 /° ,
’Ul(f):—z/ ()y1(t+s)d5
J—r(t

1 /0
va(t) = ——

y2(t + 5)ds
eh —e7(t)

U3 (t) = Ayg (t) (14)
Note that for h — 0 the above model (13), (14) corresponds
to the closed-loop system (2) with the continuous state-feedback
u(t) = Kax(t).

Assume that y; (t) = 0,Vt < 0,7 = 1,2, 3. The following holds for
n; X ni-matrices R; > 0,7 = 1,2 and a scalar » > 0 [12]

IVRwill. < IVRiyillL,. IVrvslle, <IVryslle,.

(15)

For ¢ — 0 inequality (15) is valid and y» given by (13c) vanishes.

Thus, for ¢ — 0 (13), (14) is the input—output model, which corre-
sponds to the descriptor system without delay in x»

i=1,2

E[)il-f(t) = (r/l + HAFo)‘L(t) + (Bl + HAFl)lU(f)
'u(t) = Kz (tk) + Koxo (t) t e [tkvthrl)

0<tpr1 —tx <ho (16)
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Remark 3.1: Descriptor system can be destabilized by arbitrary fast
sampling in the fast variable of the state-feedback even if the system
is stable under continuous-time state-feedback. Consider the following
simple example:

_11 (1)} x(t) + |:(1)} u(t), x(t) € R?. a7

Eoii)(?‘,’) = |:
It is clear that the closed-loop system is stable with the continuous
state-feedback w(t) = —2x»(t), while it is unstable with u(t) =
—2x(t),t € [tk,tgt+1), for any sampling ¢;. Really, the resulting
closed-loop triangular system is stable if equation z2(t) + u(t) = 0
is stable. However, this equation in the sampled-data case x2(f) =
2x9(tr), t € [tk,tr41) is unstable.

B. Ls-Gain Analysis

Consider the Lyapunov function V' (¢) = 27 (t) E. P.x(t), where P.
has the structure of

P>0, P>0.

P, 5P2T:| (18)

P P
Note that . is chosen to be of the form of (18) (as, e.g., in [20]),
such that for ¢ = 0, the function V' with £. = Ey and P. = P,
corresponds to the descriptor case).

Given ¢ > 0, from (15) it follows that the following condition along
(13a):

r=|

2
WSV () + 1>yl () Riya(t) + rllys ()]

=1
=1y el (O Rwi(t) = rllus I + =01 = 72w ()]
=1

< =a(lleOI” + @ + lw®l*).  a>0 (19)

guarantees the internal stability of (11) and that L»-gain of (11) less
than . Moreover, since y(t) depends on & (), we consider the deriva-
tive condition V (t) < —3(||lx(t)||> + [|&(#)]|*). 8 > 0. Such deriva-
tive condition corresponds to the descriptor model transformation in-
troduced in [5].

Given n X n-matrices

P ;0 0 .
(I)/' — J . — 2 (I’ nqXng
J |:(I)],2 (I)]3:| ’ J 737 JlL € R

®j5 € R™2" (20)
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denote

P. 0
PE:[% @3]. Q1)

We have, similarly to [5], the first equation shown at the bottom of the

page.
Thus, along the trajectories of (13) we obtain

W< CTOTCO+RYyi (ORiyi(0)+rllys (I +]|=0)° (22)
i=1

where ((t) = col{z(t), E-&(t),v(t),vs(t),w(t)} and

+7 0 +To +70
r. h»p! { il Pl P E

_ hR, 0
I'= — [ 0 th] 0 0
% * —rl, 0
* * * _72](7
o 0 I, 0 AT+ KTBIT.
FE - PE [44 + B',ZI{ _In + In _In Pf‘f'

(23a,b)

By applying Schur complements to the term / Zf: 1 yl () Rey(t)+
7[|ys (D)]1*+ | 2(£)]|* we conclude that (19) is satisfied if (24), as shown
at the bottom of the page, holds.

Denote by Z.,c > 0 the matrix in the left-hand side of (24). If
Zo < 0,1.e., (24) is feasible for £ = 0, then for the same values of
P, P>, Ps, R, &> and 3 the full-order LMI (24) is feasible for small
enough values of ¢, since =. = =y + €M, where M is some constant
matrix. Hence, =y < 0 implies (19) for small enough <.

We thus proved the following.

Lemma 3.1:

i) Given v > 0,h > 0 and m X n-matrix I, (11) is internally
stable and has L2-gain less than v for all small enough = > 0
and 0 < 7(¢) < h,if there exist ny X n; matrices P, > 0, Ry >
(), <I~’21, ®$31, n2 X 1o matrices P > (). Ry > (), @23, <I’33, ny X
ng-matrices P, 22, $32 and a scalar r > 0 such that LMI (24)
is feasible for ¢ = 0, where Py and I'y are given by (18), (20),
(21), and (23b).

ii) Givene > 0,7 > 0,h > 0 and m x n-matrix K, (11) is inter-
nally stable and has L,-gain less than v for all 0 < 7(¢) <
h, if there exist n1 X nq matrices P > 0, Ry > 0,Poq,

E.&(t)

REE]
| E#() N (A+ BaK)a(t) + hBs Ko(t) + Biw(t) + Hus(t) — E-2(t)

- T 0 [0 | 0
o] (3] 0 [8
* —hR 0 0
* * —rl, 0
* * * -2,
* * *
* * *
L * * *
Ry O
R= |: 0 Rz]

rFo+ KT 0 T4+ KTDEL -

0 IR 0
hmKTEF 0 nKT DL,
0 0 0
P FE 0 0 <0
—rl, 0 0
* —hR 0
* * —I, _

(24)
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@;ug n9 X 1o matrices Py > 05 Ry > (). @23, @33, 71 X np-ma-
trices Pa, @22, 30 and a scalar » > 0 such that LMI (24) is fea-
sible and E. P. > 0, where P. and ', are given by (18), (20),
(21), and (23b).

If (24) is feasible for ¢ = 0, then the slow (descriptor) system (16) is
internally stable and has L--gain less than ~. Moreover, the fast LMI,
shown in (25) at the bottom of the page, is feasible. The latter LMI
guarantees that the fast

Ba(t) = (Ay + HiAyFog)aa(t) + (Bra + HiAyFiz)w(t)
+ (Baa + HyAyFoo)u(t)

u(t) = I{Q.'Eg(tk), t e [fk, trt1 ), 0 < tpgr1 —t < h

(26)

system is internally stable and has L»-gain less than 7. Thus the fea-
sibility of =-independent LMI (24), where £ = 0, implies that the fast
subproblem is solvable by a sampled-data controller, while the slow
subproblem is solvable by a mixed controller (continuous in the fast
variable and sampled-data in the slow one).

C. State-Feedback Design

Our objective now is to find K. In order to obtain an LMI in
(24) we have to restrict ourselves to the case of block-diagonal
®, = diag{P2(, P23} and to 5 = pP,, where p # 0 is a scalar
parameter. Note that ®» is nonsingular due to the fact that the only
matrix which can be negative definite in the second block on the
diagonal of (24) is —p(®2 + ®2). Defining

U = ~:I>2_1 = diag {<I>2_1] ‘I>2_31}
P=v%"P¥ R=U'RYU

—1

r=r
and Y = KV, multiplying LMI (24) by
diag{¥,v,9,71,,1,,I,,¥,I,} and its transpose, from

the right and the left, respectively, we obtain the LMI with a tuning
parameter p, as shown in (27) at the bottom of the page. Note that P
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and R have the same, block-triangular and block-diagonal structures,
as ) and R correspondingly.

Theorem 3.1: Given v > 0, consider the system of (2) and the

multirate state-feedback law of (9). Assume A1-A3.

i)  The state-feedback (9) internally stabilizes (2) and guarantees
L>-gain less than ~ for all small enough = > 0, if for some
prescribed scalar p # 0 there exist n; X nj-matrices P >
0, R > 0,¥,n2 X no-matrices P > (),f?z > 0,¥3, an
n1 X ne-matrix Ps, a p X n-matrix Y and a scalar 7 > 0 such
that LMI (27) with

(w0 - [P0 - [k 0
‘Ij_{o \IIJ P_[Pz PJ R‘{o R,

is feasible. The state-feedback s-independent gain is given by
K=Y0¢",
ii) The gain K = [K; K] obtained in i) solves the slow (16) and
the fast (26) subproblems.
Given £ > () the gain obtained in i) internally stabilizes (2) and
guarantees L-gain less than ~ if there exist n; X n; matrices
P > O, R > 0,(1321, @31,712 X no matrices P3 > 0, B2 > 0,
Pogz, P33z, n1 X ne-matrices Ps, Paz, P32 and a scalar r > 0
such that LMI (24) is feasible and E. P- > 0, where F- is given
by (18).
Example 3.1: [18] Consider (11) with

e[ 4] m=[3] [l

} (28)

iii)

(29)

where H = 0. Given v = 3 and the uniform sampling
try1 — tr = 0.1, it was shown in [18] that the slow state-feed-
back u(t) = —1.1618xz,(tx), t € [tx,tr+1) solves the Ho-control
problem for the full-order system for all small enough £ > (). More-
over, the slow controller can not achieve v < 2.85.

- " 0 To 0 7(Fos + Foa Koo)' 0 ci + KDY, -
Ff hpf |:B22.[X) :| P; |:H4 :| P[ |:B17 :| ( 0 ) }LRQ 0
* —hR; 0 0 hr K7 F 0 KT DT,
* * =11, 0 0 0 0
* * * —721—4 rF 0 0 <0
* * * —rln, 0 0
* * * * —hR> 0
L * * * * * % -1, ]
. 0 I,.. 0 Al + KT BI,
Ly =7y Lu 4 Bos K —I;] + {I,,Q —I., Pr
Py 0
Pr= [qm @33} 25)
[y, T, hBY  FH B, 'R +v'FRE o ¢tct +Y' DL
x  —p(U+0TY hpBY FpH pBy 0 hR 0
* * —hR 0 0 TR 0 rYT DT
* * * rI, 0 0 0 0
* * * * —72[(1 FlT 0 0 <0
* * * * * —rl, 0 0
* * % % * —hR 0
| * * * * * * * -1, ]
T =AU+ 0 AT 4+ ByY +Y By, Sy =P" — U4 p0 A" 4 ;YT B] @7
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Consider the uncertain system (11), (29) with H = I, Fy = 0.1 -
L,Fy = F [0.1 0.1]". Applying Theorem 3.1 with the smaller
~ = 2.8, the same h = 0.1 and choosing p = —0.1, we find that the
multirate controller (9) with e-independent gain k' = [—2.4407 —
0.5788] leads to Lo-gain less than 2.8 for all small enough = > 0
and all the samplings with t;4; — ¢ < 0.1. By applying Lemma
3.1 to the resulting closed-loop system for - = 0.1 and for different
values of = > 0 we verify that this gain leads the full-order system to
L3-gain less than 2.8 for all 0 < ¢ < 0.49 and for all the samplings
0 < tr41 — 1 < 0.1. The possibility to treat the uncertain system, as
well as to check the solvability of the H. control problem for given
values of . and ¢, are the advantages of the LMI approach.

IV. FAST SAMPLE-RATE H ., CONTROL

Substituting (10) into (2), we obtain the following closed-loop
system:
E.x(t)= (A+ HAFy)x(t) + (Bo + HAF)Kz(t — =7(¢))
+ (B + HAF )w(t)
z(t) = Ca(t) + Do Ka(t — e7(t)). 30)
Similarly to the previous section we introduce the forward system:
E.i(t) = (A4 B2 K)a(t) + hB: Ko(t) + Biw(t) + Hus(t)
z(t) = (C'+ D12 K)a(t) + hD12 Ko(t)
y(t) = E.(t) = (A+ Bo K)x(t) + hB: Ko(t)
+ Biw(t) + Hus(t)
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where
o e [yl
o(t) = |:'v2(f) ] y(t) = L}z(t)}
with feedback
I
Ll(f):_:h/ ,)yl(f—i—s)ds
5 —er(t
0
() = - Bt s () = (). (2

Inequalities (15) are valid here. The only difference with the previous
case that v; in (31) is multiplied by =, which leads to the full-order
LMI for stability and L2-gain shown in (33) at the bottom of the page.
Setting = = 0 into (33) and applying the Schur complements to the row
and the column with the only nonzero (diagonal) element 2 R, (and
thus deleting also the row and the column containing 7 R1) we obtain
the =-independent LMI shown in (34) at the bottom of the page.

Feasibility of (34) implies feasibility of (33) for small enoughe > 0
and Ry > 0. LMI (34) implies the same fast LMI (25) and the fast
problem (26), while the slow LMI has a form shown in (35) at the
bottom of the page, and corresponds to the slow problem with a con-
tinuous-time state-feedback

Eyi(t) = (A+ HAF)z(t) + (B1 + HAF )w(t)

Y3 (t) = (Fo + FQIX’)I(t) + hFQIX’ﬂ(t) + Flw(t) (313—6) +(B2 + HAF))U(IL) 'u(t) = IX’LI'(t). (36)
T, hpT ] 0 ] pr 0 pr 0 r(Fo+ R 0 CY+K"Di,
SBQIXI Bz[&z H Bl 0 hR 0
eRT T eKT T
* —hR 0 0 hr KQT F; 0 h KzT Dis
% * —rl, 0 0 0 0 <0
* * * -2, rFEL 0 0
* * * * —rl, 0 0
* % % * % —hR 0
| * % * % * -I, ]
R = diag{R1, R>} (33)
- , , , r(Fy + B EK)T T + KTDE, -
I,U hPOT 0 i pOT 0 pOT 0 7 ( o+ Fo X) 0 C + K 12
BQ[\2 H B] 0 hR2 0
* —hRs 0 0 hr K7 Fy 0 nk3 DT,
% * —rl, 0 0 0 0
« « . 21, rFT 0 0 <0 (34)
* * * —rl, 0 0
* % x % —hR> 0
L * * * * -I, J
0 0 r(Fo+ FK)T ¢+ K™D,
T T
FO 7-’0 |:H:| 7-’0 |:B1 :| 0 0
* —rl, 0 0
w " _72 Iq ’T‘FlT 0 < 0 (35)
% % * —rl, 0
* * * * -1,
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S, pOS nB,Y, FH B,
¥ —p(U4+UT) hpByYs FpH  pB
* % —hRs 0 0
* * * —-rl, 0
* * * * —H,/QLI
* * * *
* * * *

L * * * %
S = AV + AT+ BY + Y B =, = P!
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VTR +YTFY 0 vTcT + YT DE
0 hRs 0
hYy 0 nyy DT,
0 0 0
Fr 0 0 <0
-, 0 0
% * -I, |
040 AT 4 YT B] YV = [V Y] (37a,b)

Note that singularly perturbed systems with small delay are usually
decomposed into the nondelayed slow subsystem and the delayed fast
one (see, e.g., [10]).

Multiplying (34) by diag{¥, Y3, ¥,7I,, I, 71, ¥s,I,} and its
transpose, on the left and on the right, respectively, we obtain the fol-
lowing e-independent LMI with a tuning parameter p; see (37a,b), as
shown at the top of the page.

Theorem 4.1: Given v > 0, consider the system of (2) and the
fast-rate state-feedback law of (10). Assume A1-A3.

i)  The state-feedback (10) internally stabilizes (2) and guaran-

tees L2-gain less than + for all small enough £ > 0, if for
some prescribed scalar p # 0 there exist n; X nj matrices
P > 0,U,ny x ny matrices P5 > 0, Ry > 0,3, an
n1 X no-matrix P2, a p x n matrix Y and a scalar # > 0
such that LMI (37) with ¥ and P given by (28) is feasible. The
state-feedback =-independent gain is given by K = Y&,
The gain K = [K; K>] obtained in i) solves the slow (36) and
the fast (26) subproblems.
Given ¢ > 0 the state-feedback (10) with K& from i) internally
stabilizes (2) and guarantees L»-gain less than ~ if there exist
ny X nq matrices P; > 0, Ry > 0, ®,1, 31, no X no matrices
P;>0,Rs > O, @23, <I)337 n1 X no-matrices pz, <I)227 P35 and
a scalar » > 0 such that LMI (33) is feasible and E.P. > 0,
where P- is given by (18).

ii)

iii)

Example 4.1: Consider the uncertain system (11), (29) with H =
I, Fo =0.1- I, Fy = F» = [0.10.1]". We find by Theorem 4.1,
where p = —0.1, that the =-independent fast-rate controller (10), where
K =[-3.0049 —0.5954], leads to L»-gain less than 2.6 (which is less
than 2.8 achieved by the multi-rate controller (9)) for all small enough
£ > 0 and all the samplings with t;+1 — £ < 0.1. Moreover, this gain
leads the full-order system to L»-gain less than 2.6 for all the samplings
0 < tgg41 —tx < 0.1andforall 0 < ¢ < 0.49.

V. CONCLUSION

Sampled-data state-feedback H.. control problem for singularly
perturbed system with norm-bounded uncertainties has been solved
via input delay approach to sampled-data control. The only assump-
tion on the sampling that the distance between the sequel sampling
times is not greater than some i > 0. Two kinds of controllers have
been designed (both with the fast sampling in the fast variables):
the multirate state-feedback (slow rate in the slow variables) and the
fast-rate state-feedback. The =-independent gains of the controllers are
found from =-independent LMIs. -dependent LMIs are derived which
give sufficient conditions for the solvability of the full-order system.
An illustrative example shows that the fast-rate controller leads to
better performance, than the multirate one. The tradeoft is in the fast
sampling of the slow variables.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

B. Bamieh, J. Pearson, B. Francis, and A. Tannenbaum, “A lifting tech-
nique for linear periodic systems,” Syst. Control Lett., vol. 17, pp. 79-88,
1991.

J. Chow and P. Kokotovic, “A decomposition of near-optimum regula-
tors for systems with slow and fast modes,” IEEE Trans. Autom. Control,
vol. AC-21, no. 5, pp. 701-705, Oct. 1976.

L. Dai, Singular Control Systems. Berlin, Germany: Springer-Verlag,
1989.

M. Djemai, J.-P. Barbot, and H. Khalil, “Digital multirate control for a
class of nonlinear singualrly perturbed systems,” Int. J. Control, vol. 72,
no. 10, pp. 851-865, 1999.

E. Fridman, “New Lyapunov-Krasovskii functionals for stability of
linear retarded and neutral type systems,” Syst. Control Lett., vol. 43,
pp- 309-319, 2001.

——, “Effects of small delays on stability of singularly perturbed sys-
tems,” Automatica, vol. 38, no. 5, pp. 897-902, 2002.

E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data stabi-
lization of linear systems: An input delay approach,” Automatica, vol.
40, pp. 1441-1446, 2004.

E. Fridman and U. Shaked, “Input-output approach to stability and
L,-gain analysis of systems with time-varying delays,” in Proc. 44th
Conf. on Decision and Control, Seville, Spain, 2005, pp. 7175-7180.
G. Garcia, J. Daafouz, and J. Bernussou, “The infinite time near op-
timal decentralized regulator problem for singularly perturbed systems:
A convex optimization approach,” Automatica, vol. 38, pp. 1397-1406,
2002.

V. Glizer and E. Fridman, “H .. control of linear singularly perturbed
systems with small state delay,” J. Math. Anal. Appl.,vol. 250, pp. 49-85,
2000.

A. Halanay, “An invariant surface for some linear singularly perturbed
systems with time lag,” J. Diff. Equat., vol. 2, pp. 33—46, 1966.

K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston, MA: Birkhiuser, 2003.

Y.-P. Huang and K. Zhou, “Robust stability of uncertain time-delay sys-
tems,” IEEE Trans. Autom. Control, vol. 45,no. 11, pp. 2169-2173, Nov.
2000.

H. K. Khalil, “Feedback control of nonstandard singularly perturbed sys-
tems,” IEEE Trans. Autom. Control, vol. 34, no. 10, pp. 1052-1060, Oct.
1989.

P. Kokotovic, H. Khalil, and J. O’Reilly, Singular Perturbation Methods
in Control: Analysis and Design. New York: Academic, 1986.

D. W. Luse, “Multivariable singularly perturbed feedback systems
with time delay,” IEEE Trans. Autom. Control, vol. AC-32, no. 11, pp.
990-994, Nov. 1987.

D. S. Naidu, “Singular perturbations and time scales in control theory
and applications: An overview,” Dyna. Contin., Discrete Impul. Syst.
(DCDIS) Series B: Appl. Algorithms, vol. 9, no. 2, pp. 233-278, 2002.
Z.Pan and T. Basar, “H-infinity optimal control for singularly perturbed
systems with sampled state measurements,” in Advances in Dynamic
Games and Applications, T. Basar and A. Haurie, Eds. Boston, MA:
Birkhduser, 1994, vol. 1, pp. 23-55.

A. Tikhonov, “Systems of differential equations containing small param-
eters multiplying some of derivatives,” Mathematica Sborniki, vol. 31,
pp. 575-586, 1952.

H. Xu and K. Mizukami, “Infinite-horizon differential games of singu-
larly perturbed systems: A unified approach,” Automatica, vol. 33, pp.
273-276, 1997.

Y. Yamamoto, “New approach to sampled-data control systems—A
function space method,” in Proc. 29th Conf. Decision and Control,
Honolulu, HI, 1990, pp. 1882-1887.



