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a b s t r a c t

This work addresses distributed event-triggered control law of 1-D nonlinear Korteweg–de Vries (KdV)
equation posed on a bounded domain. Such a system, in a continuous framework, is exponentially
stabilizable by a linear state feedback as a source term. Here we consider the situation where the
feedback is sampled in time and piecewise averaged in space, and an event-triggering mechanism is
designed to maintain stability of this infinite dimensional system. Both well-posedness of the closed-
loop system and avoiding the Zeno behaviour issues are addressed. Sufficient LMI-based conditions are
constructed to guarantee the regional exponential stability. Numerical examples illustrate the efficiency
of the method.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In fluid mechanics, the Korteweg–de Vries (KdV) equation is
mathematical model of waves on shallow water surfaces in a

ectangular channel, equation in which the effects of dispersion,
issipation and nonlinearity are taken into account. When adding
diffusion term, the KdV equation becomes Korteweg–de Vries
urgers (KdVB) equation. The study of KdV/ KdVB systems has
een an active research topic because of its potential applications,
ee e.g. Baudouin, Crépeau, and Valein (2019), Cerpa (2014),
erpa and Coron (2013), Coron (2007), Kang and Fridman (2019)
nd Marx and Cerpa (2018). In the field of automatic control,
backstepping approach has been applied in Cerpa and Coron

2013), Coron (2007) and Marx and Cerpa (2018) for the feedback
tabilization of KdV equation, and Lyapunov-based arguments
ave been employed to ensure the stability of the original system
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under the proposed control law. On the other hand, the sur-
vey paper (Cerpa, 2014) gives a detailed overview of boundary
controllability and internal stabilization approaches and results
for the KdV equation. One can read in Baudouin et al. (2019)
two different approaches (from a Lyapunov functional or from an
observability inequality) employed to exponentially stabilize the
nonlinear KdV equation via delayed boundary damping terms.

In Kang and Fridman (2019), distributed control of KdVB
system has been suggested under point or averaged localized
measurements in space but the proof rely strongly on the pres-
ence of a diffusion term that is missing in the KdV equation.
Such distributed control was introduced for heat equation under
point (Fridman & Blighovsky, 2012) and under averaged (Fridman
& Bar Am, 2013) measurements. In the latter papers, sampled-
data control via time-delay approach and Lyapunov-Krasovskii
functionals were studied, and the results of Fridman and Bar
Am (2013) and Fridman and Blighovsky (2012) were extended to
event-triggered control in Selivanov and Fridman (2016a). How-
ever, since the Lyapunov-Krasovskii functionals for sampled-data
control depend on the state-derivative (see Chapter 7 of Fridman,
2014), this method cannot be applied to sampled-data control
of KdVB equation. So Kang and Fridman (2019) considered the
constant input delay case.

To the best of our knowledge, no event-triggered control of
KdV equation has been studied yet. The goal of event-triggering
mechanism to a sampled control law is to update the control
input only at meaningful instants. Its drawback, well-known in
hybrid systems problematics, could be the exhibition of a Zeno
behaviour. This can be summed up as the law bringing an infinite
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umber of updates in a finite amount of time. The present paper
ims at contributing to the study of this topic via a Lyapunov ap-
roach, where sufficient LMI-based conditions for the closed-loop
ystem with the avoidance of Zeno behaviour will be investigated.
In recent years, event-triggered control systems have been ex-

ensively studied (see e.g. Espitia, Tanwani, & Tarbouriech, 2017;
elivanov & Fridman, 2016a; Seuret, Prieur, Tarbouriech, & Zac-
arian, 2016; Tabuada, 2007; Tallapragada & Chopra, 2014), bring-
ng an important alternative to periodic sampling of control laws.
here are many important results on event-triggering mech-
nisms (Heemels, Donkers, & Teel, 2013; Tabuada, 2007; Tal-
apragada & Chopra, 2014). In order to reduce out the number
f updates, three main event-triggering mechanisms are pro-
osed as follows: continuous event-triggering mechanism (see
.g. Tabuada, 2007), periodic event-triggering mechanism (see
.g. Heemels et al., 2013), and event-triggering mechanism with a
well time (see e.g. Selivanov & Fridman, 2016b; Tallapragada &
hopra, 2014). It is worth pointing out that most works focus on
vent-triggered control of finite-dimensional systems. However,
o the best of our knowledge, there are few papers studying
his technique in the infinite-dimensional systems framework
see e.g. Espitia, Karafyllis, & Krstic, 2019; Espitia et al., 2017;
elivanov & Fridman, 2016a).
In this work, the main contribution lies in the construction

f the event-triggering mechanism and the design of event-
riggered control law for nonlinear KdV equation. It can also be
tressed that the Lyapunov-Krasovskii approaches for sampled-
ata control design under point/averaged measurements cannot
ork for KdV equation. As a by-product, the distributed control
ia the spatial decomposition (or sampling) for PDEs introduced
n Fridman and Bar Am (2013) and Fridman and Blighovsky
2012) for systems with diffusion terms, is, for the first time,
xtended to KdV equation that has no such a term. This is
chieved thanks to using a Vµ term in Lyapunov functional V

defined by (4.5). Such a term is borrowed from Baudouin et al.
(2019).

This work addresses the event-triggered control design for
KdV system under in domain measurements averaged in space,
and for the record, Cerpa (2014) gathers the results for distributed
continuous-in-time controller to stabilize the KdV equation ex-
ponentially. Our concern here is then mainly to prove that dis-
tributed event-triggered control can still bring, under appropriate
assumptions and choice of triggering mechanism, the expected
exponential stability. Finally, different from our present work but
somehow related to the same area of interest, the exact boundary
controllability for the KdV equation was studied in Rosier (1997),
and Rosier and Bing-Yu (2009) is devoted to the design of dis-
tributed control for KdV equation on a periodic domain and to the
design of boundary control for KdV equation on a finite domain.

The remainder of this work is organized as follows. The prob-
lem setting is described in Section 2 while Section 3 details the
main result of this paper and give some remarks. We suggest
finite-dimensional feedback controllers which are distributed on
the whole domain or on subdomains under averaged measure-
ments. For both cases, we provide the event-triggering mecha-
nism. Section 4 is devoted to the technical proofs, both of well-
posedness of the closed loop system, avoidance of the Zeno
behaviour that an event triggering mechanism could introduce,
and of the main regional exponential stability theorem. Section 5
contains an extension to distributed on subdomains control and
Section 6 presents numerical examples to illustrate the effective-
ness of the proposed control strategy. Finally, Section 7 briefly
concludes the article.

Notation. For any matrix P in Rn×n, P ≻ 0 means that P is

symmetric positive definite. For a partitioned matrix, the symbol

2

∗ stands for symmetric blocks and I is the identity, 0 the zero
matrix. Using L2(0, L) for the Hilbert space of square integrable
scalar functions, one writes ∥u∥2

L2(0,L)
= ⟨u, u⟩ =

∫ L
0 |u(x)|2 dx, and

we also define the Sobolev spaces H1(0, L) = {u ∈ L2(0, L), u′
∈

L2(0, L)} and its norm by ∥u∥2
H1(0,L)

= ∥u∥2
L2(0,L)

+ ∥u′
∥
2
L2(0,L)

,
H1

0 (0, L) = {u ∈ H1(0, L), u(0) = u(L) = 0} where all the deriva-
tives are to be considered in the weak sense. Finally, L∞(0, L)
denotes the space of essentially bounded function. For a function
y of several variables, the partial derivative with respect to a
variable ξ is denoted ∂ξy =

∂y
∂ξ
.

2. Preliminaries and problem formulation

2.1. State feedback control of a nonlinear KdV equation

Before proceeding to our problem’s setting, let us explain the
essential idea of the Lyapunov-based state feedback control for
KdV equation. Consider the initial and boundary value problem⎧⎪⎨⎪⎩

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = f (x, t),
∀x ∈ (0, L), t ≥ 0,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,
z(x, 0) = z0(x), ∀x ∈ (0, L),

(2.1)

with the initial state z0 ∈ L2(0, L) and the source input f ∈

L1(0, T ; L2(0, L)), where ν > 0, λ ≥ 0, and z = z(x, t) is the state
of the nonlinear KdV equation. For λ > 0, the open-loop system
may be unstable (see the example below). Note that destabilizing
λ > 0 was considered in Tang and Krstic (2013). Also, λ > 0
may stand for the desired decay rate achieved after stabilization
of (2.1) with λ = 0 (see Remark 3 below).

By selecting the control law

f (x, t) = −Kz(x, t), K > λ, (2.2)

one obtains a closed-loop system that is globally exponentially
stable, as it will be shown later. In this article, we would like
to address the question of the robustness of this stability with
respect to the presence of both an event triggering in time and a
localized averaging in space of the feedback control law. Noticing
that we cannot really apply infinite dimensional feedback control
law, we will consider here a finite dimensional approximation of
(2.2) that still stabilizes the system (see Section 3).

More precisely, we will consider that the control law will be
implemented in such a way that for all x ∈ (0, L), for all t ∈

[tk, tk+1),

f (x, t) = −K
N∑
j=1

z̄j(tk)1Ωj (x), K > λ, (2.3)

where the sampling times tk are following an appropriate event
trigger law to be given later, while {1Ωj}j are the characteris-
tic functions of the intervals {Ωj}j covering (0, L), and z̄j(t) =
1

|Ωj|

∫
Ωj

z(x, t)dx. We will also consider the case that the event-
triggered controller does not cover the whole domain [0, L],
which is distributed on some parts of subdomains (see (5.1) in
Section 5).

2.2. Well-posedness and exponential stabilization result under (2.2)

The proof of existence and regularity of solutions for the KdV
equation has been investigated in many references, in particular
in the field of controllability studies and even if several results
rely on the smallness of the initial and source data (e.g. Cerpa,
2014; Coron, 2007), one can find in Chapouly (2009) the proof of
the following general result :
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emma 1. For any T > 0, L > 0, if z0 ∈ L2(0, L) and f ∈
1(0, T ; L2(0, L)), then the Cauchy problem (2.1) is well posed in
he space C([0, T ]; L2(0, L)) ∩ L2(0, T ;H1(0, L)), meaning that there
xists a unique solution z to the system (2.1) that satisfies, for a
onstant c = c(T , L) > 0,

∥z∥L∞(0,T ;L2(0,L)) + ∥z∥L2(0,T ;H1(0,L))

≤ c∥z0∥L2(0,L) + c∥f ∥L1(0,T ;L2(0,L)).

The proof of this lemma is detailed in Chapouly (2009) and re-
lies on a fixed point argument for the small time well-posedness
(as also referenced and described in Cerpa, 2014) of the problem,
that allows to handle the non-linearity z∂xz, and on clever a priori
estimates of the local solution to extend arbitrarily the time frame
and get a global existence and regularity result.

The proof of the well-posedness of the closed-loop system
(2.1)–(2.2) stems from the same arguments and is not detailed
here. Besides, it is easy to prove its exponential stability, stated
here:

Lemma 2. Let L > 0, T > 0, K > λ and z0 ∈ L2(0, L). The
closed-loop KdV system (2.1)–(2.2) is exponentially stable in the
sense that

∥z(·, t)∥2
L2(0,L) ≤ e−2(K−λ)t

∥z0∥2
L2(0,L), ∀t ≥ 0.

Indeed : define the energy (that will act as a Lyapunov func-
tional) of the solution of a KdV equation by

E(t) = ∥z(·, t)∥2
L2(0,L), ∀t ≥ 0. (2.4)

Taking the time derivative of E(t) along (2.1)–(2.2), we have, for
any t ≥ 0,

Ė(t) ≤ −2(K − λ)
∫ L

0
|z(x, t)|2dx − ν|∂xz(0, t)|2

≤ −2(K − λ)E(t)

implying E(t) ≤ e−2(K−λ)tE(0), ∀t ≥ 0.
Furthermore, Cerpa (2014) gathers several internal stabiliza-

tion results for nonlinear KdV equations, and specifically, the
stabilization through a localized distributed internal damping
f (x, t) = −a(x)z(x, t) with a ∈ L∞(0, L) such that a(·) ≥ a0 > λ

in some subdomain ω of (0, L), is actually also true, see e.g. Pa-
zoto (2005) and Perla Menzala, Vasconcellos, and Zuazua (2002).
However, in our study, we focus on the case described by (2.3).

As already mentioned before, in this paper we will use a
Lyapunov approach to deal with an event-triggered control of the
KdV equation under averaged measurements. The next section is
devoted to the description of our technical setting.

3. Problem formulation and main result

We consider the following closed-loop KdV system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂tz + z∂xz + ∂xz + ν∂xxxz − λz = −K

N∑
j=1

z̄j(tk)1Ωj (x),

in (0, L) × [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,
z(x, 0) = z0(x), ∀x ∈ (0, L).

(3.1)

where the chosen control law for (2.1) is (2.3),

z̄j(tk) =
1

|Ωj|

∫
Ωj

z(x, tk)dx. (3.2)

his closed-loop system is defined under the following assump-
ions:
3

• Space averaging: As in Azouani and Titi (2014), Fridman and
Bar Am (2013), Fridman and Blighovsky (2012) and Lunasin
and Titi (2017), we assume that the points 0 = x0 < x1 <
· · · < xN = L divide the interval [0, L] into N intervals
Ωj = [xj−1, xj) covering it all. The width of each sub-interval
is supposed to be upper bounded by some constant: 0 <
xj − xj−1 = |Ωj| ≤ ∆ and as expected, the characteristic
functions 1Ωj (x) are such that{

1Ωj (x) = 0, x /∈ Ωj,

1Ωj (x) = 1, otherwise ,
j = 1, . . . ,N. (3.3)

• Time sampling: The update instants satisfy 0 = t0 < t1 <
· · · < tk < tk+1, limk→∞ tk = ∞. We define the event trigger
mechanism by the law

tk+1 = inf
{
t ≥ tk such that

∥z(·, t) − z(·, tk)∥2
L2(0,L) ≥ γ E(t) + γ0E(0)e−2θ t

}
(3.4)

where the energy E is defined by (2.4) as the L2(0, L)−norm
of the state, and γ , γ0 and θ are positive constants to be
determined.
It should be noticed that due to the term ‘‘γ0E(0)e−2θ t ’’, here
no dwell time is needed to be defined.

• Though the feedback is of finite dimension, both tk and ∆
depend on the initial data. The larger initial data is, the
smaller tk and ∆ need to be.

ur main objective is to design a regionally stabilizing event-
rigger controller

j(t) = −K z̄j(tk)1[tk,tk+1)(t)

hat has a control gain K > λ to be determined later. In other
ords, we aim at deriving sufficient conditions for regional ex-
onential stability of the closed-loop system (3.1) and to find a
ound on the domain of attraction.

heorem 1. Let L > 0, T > 0. Given a desired decay rate δ > 0, a
ontrol gain K > λ + δ, a length bound ∆ > 0, and positive tuning
arameters λ0, R, θ > δ, γ0 > 0, assume that there exist positive
calars µ, λ1, λ2, γ , and Γ that solve the following optimization
roblem:

minΓ subject to

− 3µν + λ1 + λ2 +
2
3
µRL

√
L < 0, (3.5)

Φ =

⎡⎢⎢⎣
φ11 K (1 + µL) K (1 + µL)

∗ −λ2
π2

∆2 0

∗ ∗ −λ0

⎤⎥⎥⎦ ≺ 0, (3.6)

1 + µL)
(
1 +

λ0γ0

2(θ − δ)

)
< R2Γ , (3.7)

here

φ11 = −2K + 2λ + µ + λ0γ − λ1
π2

L2
+ 2δ. (3.8)

hen for any initial function z0 ∈ L2(0, L) satisfying ∥z0∥L2(0,L) <
1

√
Γ

, the closed-loop system (3.1) under the event-triggering mech-

nism (3.4) is exponentially stable:

(t) ≤

(
1 +

λ0γ0

2(θ − δ)

)
(1 + µL)E(0)e−2δt (3.9)

or all t ≥ 0. Moreover, if the above LMIs hold with δ = 0, then
the closed-loop system is exponentially stable with a small enough
decay rate.
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emark 1. One could wish here that we do not make the as-
sumption K ≥ λ+δ on the gain we need to apply to stabilize our
system, but we shall recall that the decay rate of the exponential
stability of the system with continuous feedback law −Kz is
exactly δ = K−λ (Lemma 2) so that it is not reasonable to expect
better when applying an approximated feedback law as we do.

Remark 2. If γ and γ0 are small enough, then the event-
riggering mechanism (3.4) gets more sensitive to the output
hange and transmits the signals more often, what makes the
ontrol more similar to the stabilizing continuous-time controller.

emark 3. Consider (3.1) with λ = 0⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂tz + z∂xz + ∂xz + ν∂xxxz = −K

N∑
j=1

z̄j(tk)1Ωj (x),

in (0, L) × [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,
z(x, 0) = z0(x), ∀x ∈ (0, L),

(3.10)

here z̄j(tk) is given by (3.2).
Let z̄ = eλtz. It is easy to see that z̄ is governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t z̄ + e−λt z̄∂xz̄ + ∂xz̄ + ν∂xxxz̄ − λz̄

= −K
N∑
j=1

ẑj(tk)1Ωj (x),

in (0, L) × [tk, tk+1), k ∈ N,

z̄(0, t) = z̄(L, t) = 0, ∂xz̄(L, t) = 0, ∀ t ≥ 0,
z̄(x, 0) = z0(x), ∀x ∈ (0, L),

(3.11)

here ẑj(tk) =
1

|Ωj|

∫
Ωj

z̄(x, tk)dx.

From the proof of Theorem 1, it follows that LMIs of this
Theorem guarantee stability of (3.11) since the nonlinear term
‘‘e−λt z̄z̄x’’ with the multiplier e−λt

≤ 1 will not change the proof
f stability. Hence, if the LMI conditions of Theorem 1 hold with
= 0, then the decay rate λ of original system (3.10) can be

uaranteed since z = e−λt z̄.

. Technical proofs

.1. Well-posedness of the controlled system and avoidance of Zeno
ehaviour

From Lemma 1, the following well-posedness result can be
btained by an induction approach.

roposition 1. Let L > 0, T > 0 and assume that z0 ∈ L2(0, L).
Then system (3.1) under the event triggering law (3.4) has a unique
solution z satisfying z ∈ C(0, T ; L2(0, L)) ∩ L2(0, T ;H1(0, L)). Fur-
hermore, the Zeno phenomenon is avoided.

roof. • Existence, uniqueness and regularity of the solution:
We proceed by induction.

i) Initialization. On the first time interval, (3.1) reads

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = −K
N∑
j=1

z̄0j 1Ωj (x),

∀x ∈ (0, L), t ∈ [0, t1),
z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

0
z(x, 0) = z (x), ∀x ∈ (0, L),
4

here z̄0j = z̄j(0) =
1

|Ωj|

∫
Ωj

z0(x)dx, and K > λ. This is a nonlinear
KdV equation with initial data z0 ∈ L2(0, L) and source term f =

−K
∑N

j=1 z̄
0
j 1Ωj ∈ L1(0, t1; L2(0, L)). Lemma 1 allows to conclude

hat there exists a unique solution z ∈ C([0, t1]; L2(0, L)) ∩
2(0, t1;H1

0 (0, L)) to the latter system.
ii) Heredity. Let us only highlight that the previously obtained
olution satisfies z(t1) ∈ L2(0, L) so that system (3.1) considered
n the next time interval [t1, t2) has an initial condition z(t1) ∈
2(0, L) and a source term −K

∑N
j=1 z̄

1
j 1Ωj ∈ L1(t1, t2; L2(0, L)

here z̄1j = z̄j(t1). Therefore, the same argument using Lemma 1
olds again and the heredity is proved similarly at any step k ∈ N.
iii) Conclusion. By induction, for any k ∈ N, z ∈ C([tk, tk+1];
2(0, L)) ∩ L2(tk, tk+1;H1(0, L)). Therefore, from the extension by
ontinuity at the instants tk, one can conclude that (3.1) has a
nique solution z ∈ C([0, T ]; L2(0, L)) ∩ L2(0, T ;H1(0, L)).
iv) Convergence. The solution will never blow up before T as a
ontrary of the Zeno behaviour (i.e. ∃tk > T ).
Avoidance of Zeno behaviour:
We aim at showing that the event-triggering mechanism (3.4)

ules out the Zeno behaviour, where an infinite number of up-
ates may occur in a finite amount of time. It is actually sufficient
o show that for a given T > 0, there exists τ ∗ > 0 such
hat all the sampling instants tk ≤ T complying to (3.4) satisfy
k+1 − tk ≥ τ ∗.

Let us denote by ek the deviation from the continuous time
osition: for any x ∈ [0, L] and t ∈ (0, T ), there exists k ∈ N such
hat t ∈ [tk, tk+1), and we set

k(x, t) ≜ z(x, t) − z(x, tk). (4.1)

ince the solution of closed-loop system (3.1) satisfies z ∈

([0, T ]; L2(0, L)) and [0, T ] is a compact set, this error function
k is uniformly continuous in time with values in L2(0, L). This
eans that for any ϵ > 0 there exists τ ∗ > 0 such that for all

, s ∈ [0, T ], if |t − s| < τ ∗ then we have ∥ek(·, t) − ek(·, s)∥L2(0,L)
ϵ.
Thus, the following reasoning by contraposition holds:
∀ϵ > 0, ∃τ ∗ > 0, ∀t, s ∈ [0, T ],

ek(·, t) − ek(·, s)∥L2(0,L) ≥ ϵ H⇒ |t − s| ≥ τ ∗. (4.2)

ince ek(tk) = 0, we have

ek(·, tk+1) − ek(·, tk)∥L2(0,L) = ∥ek(·, tk+1)∥L2(0,L).

ext the substitution t → tk+1 and s → tk into (4.2), together
ith the definition of tk+1 in (3.4), leads to

∥ek(·, tk+1)∥2
L2(0,L)

≥ γ E(tk+1) + γ0E(0)e−2θ tk+1

≥ γ0∥z0∥2
L2(0,L)

e−2θT

mplying that |tk+1 − tk| ≥ τ ∗. Indeed, given z0 ̸= 0, we choose
=

√
γ0∥z0∥2

L2(0,L)
e−2θT so that there exists τ ∗ > 0, depending on

z0, θ , γ0, γ and T for which for any k such that tk, tk+1 ∈ [0, T ],
one has tk+1 − tk ≥ τ ∗, so that the Zeno behaviour is avoided. □

4.2. Regional stability analysis

Now we focus on the regional stability analysis of the closed-
loop system and prove Theorem 1. Let us mention two things.

On the one hand, the event-triggering mechanism (3.4) yields
that the event-triggering error function is bounded on each time
sub-interval as follows: ∀t ∈ [tk, tk+1)

∥ek(·, t)∥2
≤ γ E(t) + γ0E(0)e−2θ t . (4.3)
L2(0,L)
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n the other hand, f defined by (2.3) can be rewritten as

(x, t) = −K
N∑
j=1

1Ωj (x)
[
z(x, t) − fj(x, t) − ρj(t)

]
,

∀x ∈ [0, L], ∀t ∈ [tk, tk+1), ∀k ∈ N (4.4)

where

fj(x, t) = z(x, t) − z̄j(t) = z(x, t) −
1

|Ωj|

∫
Ωj

z(x, t)dx,

j(t) = z̄j(t) − z̄j(tk) =
1

|Ωj|

∫
Ωj

ek(x, t)dx.

Proof of Theorem 1. Writing Vµ(t) = µ
∫ L
0 x|z(x, t)|2dx with

µ > 0, we define the following functional (using simplified
notations Baudouin et al., 2019):

V (t) ≜ E(t) + Vµ(t) =

∫ L

0
|z(x, t)|2dx + µ

∫ L

0
x|z(x, t)|2dx. (4.5)

First, this Lyapunov functional candidate V (t) is equivalent to the
energy of the system E(t) in the sense that

E(t) ≤ V (t) ≤ (1 + µL)E(t). (4.6)

Then, let us estimate its time derivative. For t ∈ [tk, tk+1),
substituting (4.4) into (3.1) and differentiating V (t) along (3.1),
one gets

V̇ (t) = Ė(t) + V̇µ(t)

= 2
∫ L

0
z(x, t)∂tz(x, t)dx + 2µ

∫ L

0
xz(x, t)∂tz(x, t)dx

= 2
∫ L

0
(1 + µx)z(x, t)

[
−ν∂xxxz(x, t) − z(x, t)∂xz(x, t)

−∂xz(x, t) + λz(x, t) − Kz(x, t)
]
dx

+ 2K
N∑
j=1

∫
Ωj

(1 + µx)z(x, t)
[
fj(x, t) + ρj(t)

]
dx.

Hence,

V̇ (t) = −ν|∂xz(0, t)|2− 3µν

∫ L

0
|∂xz(x, t)|2dx

+ µ

∫ L

0
|z(x, t)|2dx +

2
3
µ

∫ L

0
z3(x, t)dx

− 2(K − λ)
∫ L

0
(1 + µx)|z(x, t)|2dx

+ 2K
N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx.

Using (4.3), for any λ0 > 0 we can deduce that

V̇ (t) ≤ V̇ (t) + λ0

[
γ E(t) + γ0E(0)e−2θ t

− ∥ek(·, t)∥2
L2(0,L)

]
≤−3µν

∫ L

0
|∂xz(x, t)|2dx−(2K−µ −λ0γ − 2λ)

∫ L

0
|z(x, t)|2dx

+
2
3
µ

∫ L

0
z3(x, t)dx − (2K − 2λ)µ

∫ L

0
x|z(x, t)|2dx

+ 2K
N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx

+ λ0γ0E(0)e−2θ t
− λ0∥ek(·, t)∥2

L2(0,L)
.

(4.7)
5

Several estimates can now be obtained to deal with each of these
terms and bring this into a quadratic form. First, Cauchy–Schwarz
inequality and Sobolev’s inequality (see Lemma A.3) lead to∫ L

0
z3(x, t)dx ≤ ∥z(·, t)∥2

L∞(0,L)

∫ L

0
|z(x, t)|dx

≤ L
√
L∥∂xz(·, t)∥2

L2(0,L)∥z(·, t)∥L2(0,L) (4.8)

Then from Lemma A.4, Wirtinger’s inequality yields

λ1

[
∥∂xz(·, t)∥2

L2(0,L) −
π2

L2
∥z(·, t)∥2

L2(0,L)

]
≥ 0. (4.9)

or any λ1 > 0.
Moreover, since

∫
Ωj

fj(x, t)dx = 0, from Lemma A.5, Poincaré’s
nequality rewrites

fj(·, t)∥2
L2(Ωj)

≤
∆2

π2 ∥∂xz(·, t)∥2
L2(Ωj)

,

bringing for any λ2 > 0

λ2

N∑
j=1

[
∥∂xz(·, t)∥2

L2(Ωj)
−

π2

∆2 ∥fj(·, t)∥2
L2(Ωj)

]
≥ 0. (4.10)

Applying the Cauchy–Schwarz inequality, we obtain
N∑
j=1

∫
Ωj

ρ2
j (t) =

N∑
j=1

ρ2
j (t)|Ωj| ≤

N∑
j=1

1
|Ωj|

(∫
Ωj

ek(x, t)dx

)2

≤

N∑
j=1

∫
Ωj

e2k(x, t)dx =

∫ L

0
e2k(x, t)dx.

(4.11)

Hence,

λ0

[
∥ek(·, t)∥2

L2(0,L)
−
∑N

j=1

∫
Ωj

ρ2
j (t)

]
≥ 0. (4.12)

et η(x, t) = col{z(x, t), fj(x, t), ρj(t)}. Substituting (4.8) and (4.11)
into (4.7), and adding (4.9), (4.10) and (4.12) to V̇ (t), we obtain

V̇ (t) + 2δV (t) ≤

N∑
j=1

∫
Ωj

η(x, t)⊤Φ(x)η(x, t)

−

(
3µν −λ1 −λ2 −

2µ
3

L
√
L∥z(·, t)∥L2(0,L)

)
∥∂xz(·, t)∥2

L2(0,L)

−2(K − λ − δ)µ
∫ L

0
x|z(x, t)|2dx + λ0γ0E(0)e−2θ t ,

(4.13)

here

(x) =

⎡⎢⎢⎣
φ11 K (1 + µx) K (1 + µx)

∗ −λ2
π2

∆2 0

∗ ∗ −λ0

⎤⎥⎥⎦
and φ11 = −2K + 2λ + µ + λ0γ − λ1

π2

L2
+ 2δ as in (3.8).

Applying Schur complement theorem (Fridman, 2014), one
gets that Φ(x) ≺ 0 is equivalent to

φ11 + K 2(1 + µx)2
(

∆2

λ2π2 + λ−1
0

)
< 0,

that also writes

−2K +2λ+µ+λ0γ −λ1
π2

L2
+2δ+K 2(1+µx)2

(
∆2

λ2π2 +λ−1
0

)
< 0

(4.14)

Since we need that property for all x ∈ [0, L], and since we have
1 ≤ (1 + µx)2 ≤ (1 + µL)2, then it proves

Φ(L) ≺ 0 H⇒ Φ(x) ≺ 0, ∀x ∈ [0, L].
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ence, denoting Φ = Φ(L) so that (3.6) holds, we have proved
hat
N∑
j=1

∫
Ωj

η(x, t)⊤Φ(x)η(x, t) ≤ 0. (4.15)

A final step as to be performed to handle the non-quadratic
estimate (4.8). Let us first assume that

∥z(·, t)∥L2(0,L) < R, ∀t ≥ 0. (4.16)

Under assumptions (3.5)–(3.6) and (4.16), from (4.13) and (4.15)
and choosing K > λ + δ, we obtain

V̇ (t) + 2δV (t) ≤ λ0γ0E(0)e−2θ t
≤ λ0γ0V (0)e−2θ t , ∀t ≥ 0.

Now let θ > δ. Then, for all t ≥ 0 we can write

V (t) ≤ e−2δtV (0) + λ0γ0e−2δtV (0)
∫ t

0
e−2(θ−δ)sds

≤ e−2δtV (0) +
λ0γ0V (0)
2(θ − δ)

[
e−2δt

− e−2θ t]
≤

(
1 +

λ0γ0

2(θ − δ)

)
e−2δtV (0) −

λ0γ0

2(θ − δ)
V (0)e−2θ t

rom (4.6) it follows that

(t) ≤

(
1 +

λ0γ0

2(θ − δ)

)
(1 + µL)e−2δtE(0)

−
λ0γ0

2(θ − δ)
E(0)e−2θ t , (4.17)

which implies (3.9).
In order to end the proof of Theorem 1, we need to prove that

(4.16) holds. On the one hand, for t = 0, inequality (4.16) holds

by hypothesis in Theorem 1, so that E(0) <
1
Γ

. On the other
and, let (4.16) be false for some t > 0 and let t∗ be the smallest

instant such that E(t∗) ≥ R2. Since E is continuous in time, we
have E(t∗) = R2 and E(t) < R2 for t ∈ [0, t∗). Therefore, the
feasibility of inequality (3.5) and LMI (3.6) guarantee that (4.17)
is true for all t ∈ [0, t∗). Hence, by continuity,

E(t) ≤

(
1 +

λ0γ0

2θ − 2δ

)
(1 + µL)e−2δtE(0)

≤

(
1 +

λ0γ0

2θ − 2δ

)
(1 + µL)

1
Γ

, ∀t ∈ [0, t∗].

he above inequality, together with the assumption (3.7), implies

(t) ≤

(
1 +

λ0γ0

2θ − 2δ

)
(1 + µL)

1
Γ

< R2

for all t ∈ [0, t∗], which contradicts the definition of t∗. Therefore,
(4.16) holds.

Note that the feasibility of the strict LMI (3.6) with δ = 0
implies its feasibility with a slightly larger δ0 > 0. Therefore, if
the strict LMI (3.6) holds for δ = 0, then the closed-loop system
is exponentially stable with a small decay rate.

Remark 4. It must be stressed that the present Lyapunov func-
tion cannot work for the case of a simple sampled-data control
under averaged measurement and that the event-triggered law
is critical in the proof of stability.

Remark 5. Given K > λ + δ, the LMI conditions of Theorem 1
are always feasible for small enough γ , γ0, ∆ and large enough λ0
such that λ0γ is small. By Schur complement, Φ ≺ 0 is equivalent
to (4.14) with x = L. The latter holds for µ = λ = γ = ∆ = 0,
1

6

and large enough λ0. Thus, LMIs hold for small enough µ, λ1, γ ,
, γ0, R with appropriate (large enough) λ0.

emark 6. Let us explain here what prevents us from obtaining
uch results under point measurements. For the case of aver-
ged measurements, in the proof of Theorem 1, we need the
yapunov functional to be continuous in L2-norm. For the case
f point measurements, for a matter of continuity in the space
ariable, we need to guarantee that the Lyapunov functional is
ontinuous in H1-norm. But this requires that the solution is in
([0, T ];H1(0, L)), therefore requiring more regular initial and
oundary data than it is the case here.

. Extension to the controller distributed on subdomains

In this subsection, we are concerned with the case that the
ctuation does not cover the whole domain Ω and the averaged
easurements are measured over the parts of the subdomains.
s in Wang and Wu (2014), let

≤ x̃1 < x̃2 ≤ x̃3 < x̃4 ≤ · · · ≤ x̃2N−1 < x̃2N ≤ L,

x̃2j−1, x̃2j] ⊂ [xj−1, xj], j = 1, 2, . . . ,N.

Denote Ω̃j ≜ [x̃2j−1, x̃2j]. Now we study the system (2.1) under
he event-triggered controller

(x, t) = −K
N∑
j=1

z̃j(tk)1Ω̃j
(x), K > λ, (5.1)

where

z̃j(tk) =
1

|Ω̃j|

∫
Ω̃j

z(x, tk)dx, |Ω̃j| = x̃2j − x̃2j−1. (5.2)

By applying the first mean value theorem, since z ∈ C([0, T ],

L2(0, L)) we obtain that there exists a point x̄jt ∈ Ω̃j such that

1
|Ω̃j|

∫
Ω̃j

z(x, t)dx = z(x̄jt , t). (5.3)

Then the controller (5.1) can be rewritten as

f (x, t) = −K
∑N

j=1[z(x̄
j
t , t) − ρ̃j(t)]1Ω̃j

(x), (5.4)

where ρ̃j(t) =
1

|Ω̃j|

∫
Ω̃j

ek(x, t)dx.

This leads to the closed-loop system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tz + z∂xz + ∂xz + ν∂xxxz − λz

= −K
N∑
j=1

[z(x̄jt , t) − ρ̃j(t)]1Ω̃j
(x),

in (0, L) × [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,
z(x, 0) = z0(x), ∀x ∈ (0, L).

(5.5)

Denote

lj ≜ max{x̃2j − xj−1, xj − x̃2j−1}. (5.6)

(see Fig. 1)
Then we have the following result:

Proposition 2. Consider the closed-loop system (5.5). Let L >

0, T > 0. Denote

l ≜ max lj, ∆̄ ≜ min
|Ω̃j|

. (5.7)

j j |Ωj|
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iven a desired decay rate δ > 0, a control gain K > λ + δ, length
bounds l > 0, ∆̄ > 0, and positive tuning parameters λ0, R, θ > δ,
γ0 > 0, assume that there exist positive scalars µ, λ1, βi (i = 1, 2),
γ , and Γ that solve the following optimization problem:

minΓ subject to

− 3µν + λ1 + β2 +
2
3
µRL

√
L < 0, (5.8)

=

⎡⎢⎢⎢⎢⎢⎢⎣
φ11 β2

π2

4l2
0 K (1 + µL)

∗ −2K∆̄ − β2
π2

4l2
−KµL 0

∗ ∗ −β1 0
∗ ∗ ∗ −λ0

⎤⎥⎥⎥⎥⎥⎥⎦ ≺ 0,

(5.9)

1 + µL)
(
1 +

λ0γ0

2(θ − δ)

)
< R2Γ , (5.10)

where

φ11 = µ + λ0γ + (2λ + 2δ)(1+ µL)+ β1 − β2
π2

4l2
− λ1

π2

L2
. (5.11)

hen for any initial function z0 ∈ L2(0, L) satisfying ∥z0∥L2(0,L) <
1

√
Γ

, the closed-loop system (5.5) under the event-triggering mech-

nism (3.4) is exponentially stable in the sense that (3.9) holds.
Moreover, if the above LMIs hold with δ = 0, then the closed-loop
ystem is exponentially stable with a small enough decay rate.

roof. Consider V (t) given by (4.5). Differentiating V (t) along
5.5), for any λ0 > 0 one gets

V̇ (t) ≤ V̇ (t) + λ0

[
γ E(t) + γ0E(0)e−2θ t

−∥ek(·, t)∥2
L2(0,L)

]
≤ −ν|∂xz(0, t)|2− 3µν

∫ L

0
|∂xz(x, t)|2dx

+ (µ + λ0γ )
∫ L

0
|z(x, t)|2dx +

2
3
µ

∫ L

0
z3(x, t)dx

+ 2λ
∫ L

0
(1 + µL)|z(x, t)|2dx − 2K

N∑
j=1

z2(x̄jt , t)|Ω̃j|

− 2Kµ

N∑
j=1

∫
Ωj

x1Ω̃j
(x)z(x, t)z(x̄jt , t)dx

+ 2K
N∑
j=1

∫
Ωj

1Ω̃j
(x)(1 + µx)z(x, t)ρ̃j(t)dx

+ λ0γ0E(0)e−2θ t
− λ0∥ek(·, t)∥2

L2(0,L)
.

(5.12)

Cauchy–Schwarz’s inequality yields∫
Ωj

[1Ω̃j
(x)ρ̃j(t)]2dx = |Ω̃j|ρ̃

2
j (t) =

1
|Ω̃j|

[∫
Ω̃j

ek(x, t)dx

]2

≤

∫
Ω̃j

|ek(x, t)|2dx ≤

∫
Ωj

|ek(x, t)|2dx

so that

λ0

N∑∫
Ωj

[
|ek(x, t)|2 − [1Ω̃j

(x)ρ̃j(t)]2
]
dx ≥ 0.
j=1

7

From Ω̃j ⊂ Ωj, one has β1 > 0 such that

β1

N∑
j=1

∫
Ωj

[
|z(x, t)|2 − [1Ω̃j

(x)z(x, t)]2
]
dx ≥ 0

Wirtinger’s inequality leads to (4.9) and∫
Ωj

[z(x, t) − z(x̄jt , t)]
2dx

=

∫ x̄jt

xj−1

[z(x, t) − z(x̄jt , t)]
2dx +

∫ xj

x̄jt

[z(x, t) − z(x̄jt , t)]
2dx

≤
4(x̄jt −xj−1)2

π2

∫ x̄jt

xj−1

|∂xz(x,t)|2dx+
4(xj−x̄jt )2

π2

∫ xj

x̄jt

|∂xz(x,t)|2dx.

(5.13)

rom (5.7) and (5.13), it follows that

Ωj

[z(x, t) − z(x̄jt , t)]
2dx ≤

4l2

π2

∫
Ωj

|∂xz(x, t)|2dx,

which implies

β2

N∑
j=1

∫
Ωj

[
|∂xz(x, t)|2 −

π2

4l2
[z(x, t) − z(x̄jt , t)]

2
]
dx ≥ 0

for some constant β2 > 0.
Set η̃(x, t) = {z(x, t), z(x̄jt , t), 1Ω̃j

(x)z(x, t), 1Ω̃j
(x)ρj(t)}. Using

(4.8), (4.9), (5.7), (5.12) and applying S-procedure, we have

V̇ (t) + 2δV (t)
≤ V̇ (t)+2δV (t)+λ0

[
γ E(t)+γ0E(0)e−2θ t

−∥ek(·, t)∥2
L2(0,L)

]
+λ1

[
∥∂xz(·, t)∥2

L2(0,L)
−

π2

L2
∥z(·, t)∥2

L2(0,L)

]
+λ0

N∑
j=1

∫
Ωj

[
|ek(x, t)|2 − [1Ω̃j

(x)ρj(t)]2
]
dx

+β1

N∑
j=1

∫
Ωj

[
|z(x, t)|2 − [1Ω̃j

(x)z(x, t)]2
]
dx

+β2

N∑
j=1

∫
Ωj

[
|∂xz(x, t)|2 −

π2

4l2
[z(x, t) − z(x̄jt , t)]

2
]
dx

≤

N∑
j=1

∫
Ωj

η̃(x, t)⊤Φ̃(x)η̃(x, t) + λ0γ0E(0)e−2θ t

−

(
3µν−λ1−β2−

2µ
3

L
√
L∥z(·, t)∥L2(0,L)

)
∥∂xz(·, t)∥2

L2(0,L)
,

where

Φ̃(x) =

⎡⎢⎢⎢⎢⎢⎣
φ11 β2

π2

4l2
0 K (1 + µx)

∗ −2K∆̄ − β2
π2

4l2
−Kµx 0

∗ ∗ −β1 0
∗ ∗ ∗ −λ0

⎤⎥⎥⎥⎥⎥⎦ ,

ith φ11 as in (5.11). Thus, by Schur complement, the LMIs (5.8),
5.9) yield (3.9). □

emark 7. Given ∆̄ < 1 and K >
λ + δ

∆̄
, the LMI conditions

of Proposition 2 are always feasible for small enough γ , γ0, R <
9ν

2L
√
L
, and large enough λ0. By Schur complement, Φ̃ ≺ 0 ⇐⇒

11 +λ−1K 2(1+µL)2 − (β2
π2

)2[−2K∆̄−β2
π2

+β−1K 2µ2L2]−1

0 4l2 4l2 1



W. Kang, L. Baudouin and E. Fridman Automatica 123 (2021) 109315

<

γ

f

Fig. 1. Subdomain Ω̃j = [x̃2j−1, x̃2j], point x̄jt and lj .

0. Choose β2 = 2K∆̄
4l2

π2 . The latter holds for µ = λ1 =

= 0, small enough β1 and large enough λ0. Thus, LMIs hold

or small enough µ, λ1, β1, γ , γ0, R <
9ν

2L
√
L

with appropriate

w

8

(large enough) λ0, (small enough) l such that λ0γ and 2K∆̄
4l2

π2 are
small.

6. Numerical examples

Consider the KdV system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = f (x, t),
∀0 < x < L, t ≥ 0

z(0, t) = z(L, t) = ∂xz(L, t) = 0,

z(x, 0) = z0(x) = 0.32
(
1 − cos(

2πx
L

)
)

, x ∈ [0, L],

here ν > 0 will be chosen below.
Fig. 2. State of the open-loop system with λ = 0.5.
Fig. 3. State of the closed-loop system with the event-triggered control law (2.3) distributed over all domain.
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Fig. 4. Release instants and release interval by event-triggering.

We will give simulation for the following cases:

• Open-loop system without input (i.e. f (x, t) = 0)
• Closed-loop system under continuous-time controller f (x, t)

= −Kz(x, t)
• Closed-loop system under event-triggered controller dis-

tributed on the whole domain with averaging f (x, t) =

−K
∑N

j=1 z̄j(x, tk)1Ωj (x)
• Closed-loop system under event-triggered controller dis-

tributed on subdomains with averaging f (x, t) = −K
∑N

j=1 z̃j
(x, tk)1Ω̃j

(x)

where K > λ is a controller gain.

Example 1. For the event-triggered control law (2.3) under
averaged measurements, we verify LMI conditions of Theorem 1
with K = L = 1, λ = 0.5, ν = 0.3, δ = 0.4, ∆ = 0.1, R =

0.5. We find that the closed-loop system under event-triggering
mechanism (3.4) with θ = 2, γ = 0.00029 and γ0 = 0.02 is
exponentially stable for µ = 0.5401 and for any initial values

satisfying ∥z0∥L2(0,1) <
1

√
6.1997

≈ 0.4.

A finite difference method is used to illustrate the effect of
he proposed event-triggered control law. The steps of space and
ime are chosen as 0.05 and 0.0001, respectively. Fig. 2 illustrates
he evolution of the state of the open-loop KdV system. It is
een that the open-loop system is unstable. Fig. 3 illustrates the
volution of the state of the closed-loop KdV system under the
vent-triggering mechanism

k+1 = inf
{
t ≥ tk

⏐⏐⏐⏐∥ek∥2
L2(0,L)≥0.00029E(t) + 0.02E(0)e−4t

}
.

with the control law (2.3) where z̄j(tk) = 10
∫

Ωj
z(ζ , tk)dζ , t ∈

[tk, tk+1) subject to xj − xj−1 = |Ωj| = ∆ = 0.1. It shows that
the state of closed-loop KdV system under the event-triggered
controller converges exponentially to zero. Fig. 4 shows that the
release time and release interval by event-triggering for t ∈

[0, 0.2]. Fig. 5 demonstrates the time evolution of ln(E(t)) for the
open-loop system, the closed-loop system under continuous-time
controller, and the closed-loop system under the event-triggered
controller. The simulations show that the event-triggered con-
troller improves the performance.
9

Fig. 5. ln(E(t)) of the open-loop system, closed-loop system under continuous-
time/event-triggered controller.

Example 2. For the event-triggered control law (5.1) under av-
eraged and localized measurements, we verify LMI conditions of
Proposition 2 with K = L = 1, λ = 0.5, λ0 = 1, ν = 0.3, δ = 0.4,

= 0.5, l = 0.2, ∆̄ = 1/3. We find that the closed-loop system
nder event-triggering mechanism (3.4) with θ = 2, γ = 0.0013

and γ0 = 0.02 is exponentially stable for µ = 0.0235 and for

any initial values satisfying ∥z0∥L2(0,1) <
1

√
4.5603

≈ 0.46. We

proceed further with numerical simulations of the closed-loop
KdV system under the event-triggering mechanism

tk+1 = inf
{
t ≥ tk

⏐⏐⏐⏐∥ek∥2
L2(0,L) ≥ 0.0013E(t) + 0.02E(0)e−4t

}
.

Let x0 = 0, x1 = 0.3, x2 = 0.6, x3 = 0.9 and x4 = 1. Set x̃1 = 0.1,
x̃2 = 0.2, x̃3 = 0.4, x̃4 = 0.5, x̃5 = 0.7, x̃6 = 0.8, x̃7 = 0.9, x̃8 = 1.
The simulations show that the state of closed-loop KdV system
converges to zero (see Fig. 6).

7. Conclusion

The present work discusses event-triggered control of the
nonlinear KdV equation. An event-triggering mechanism has been
proposed to reduce the number of control update. By constructing
an appropriate Lyapunov functional, sufficient LMI-based condi-
tions have been investigated while ensuring that the closed-loop
system is regionally exponentially stable. The avoidance of Zeno
behaviour is guaranteed. The presented method gives efficient
tools for various event-triggered controller and observer design
problems for nonlinear PDEs.

Appendix

Lemma A.3 (Sobolev Embedding and Inequality). The embedding
H1(0, L) ⊂ C([0, L]) is compact and for any g ∈ H1

0 (0, L), it holds
∥g∥L∞(0,L) ≤

√
L∥g ′

∥L2(0,L).

Lemma A.4 (Wirtinger Inequality Hardy, Littlewood, & Pólya, 1988).
Assume that g ∈ H1(0, L) with g(0) = 0 or g(L) = 0. Then
g∥

2
L2(0,L)

≤
4L2

π2 ∥g ′
∥
2
L2(0,L)

. Moreover, if g ∈ H1
0 (0, L), then ∥g∥

2
L2(0,L)

≤
L2

π2 ∥g ′
∥
2
L2(0,L)

.
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Fig. 6. State of the closed-loop system with the event-triggered control law (5.1) distributed over subdomains.
L

M

P

P

R

R

S

S

S
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T

T

W

emma A.5 (Poincaré Inequality Fridman & Bar Am, 2013, Hardy
t al., 1988). Assume that g ∈ H1(0, L) with

∫ L
0 g(x)dx = 0. Then

∥g∥
2
L2(0,L)

≤
L2

π2 ∥g ′
∥
2
L2(0,L)

.
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