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a b s t r a c t 

Objective: Modeling and analysis of cell population dynamics enhance our understanding of cancer. Here 

we introduce and explore a new model that may apply to many tissues. 

Analyses: An age-structured model describing coexistence between mutated and ordinary stem cells is 

developed and explored. The model is transformed into a nonlinear time-delay system governing the 

dynamics of healthy cells, coupled to a nonlinear differential-difference system describing dynamics of 

unhealthy cells. Its main features are highlighted and an advanced stability analysis of several steady 

states is performed, through specific Lyapunov-like functionals for descriptor-type systems. 

Results: We propose a biologically based model endowed with rich dynamics. It incorporates a new pa- 

rameter representing immunoediting processes, including the case where proliferation of cancer cells is 

locally kept under check by the immune cells. It also considers the overproliferation of cancer stem cells, 

modeled as a subpopulation of mutated cells that is constantly active in cell division. The analysis that 

we perform here reveals the conditions of existence of several steady states, including the case of cancer 

dormancy, in the coupled model of interest. Our study suggests that cancer dormancy may result from a 

plastic sensitivity of mutated cells to their shared environment, different from that – fixed – of healthy 

cells, and this is related to an action (or lack of action) of the immune system. Next, the stability analy- 

sis that we perform is essentially oriented towards the determination of sufficient conditions, depending 

on all the model parameters, that ensure either a regionally (i.e., locally) stable dormancy steady state 

or eradication of unhealthy cells. Finally, we discuss some biological interpretations, with regards to our 

findings, in light of current and emerging therapeutics. These final insights are particularly formulated in 

the paradigmatic case of hematopoiesis and acute leukemia, which is one of the best known malignan- 

cies for which it is always hard, in presence of a clinical and histological remission, to decide between 

cure and dormancy of a tumoral clone. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction and overview of the objectives 

.1. Cancer stem cells (SCS): a unified hypothesis to all types of 

ancer 

Stem cells (SCs) are undifferentiated cells characterized by their

bility to self-renew and their multipotency, which is the ability

o differentiate into more mature and specialized cells ( Morgan,

0 06; Tuch, 20 06 ). A SC that engages in the division process

ndergoes successive transformations until becoming, at the end
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of its cell cycle, two daughter cells. A heavy regulatory process

controls committed cells before and during mitosis, by trigger-

ing a series of physiological events during the cycle. Even in

fast-renewing tissues (e.g. gut, bone marrow and skin), cells are

not always proliferating, but on the contrary, most of them are

in a non-proliferating state, called resting or quiescent phase,

G 0 ( Morgan, 2006 ). Sometimes a pathological population of cells,

that initially does not necessarily belong to the SC subpopula-

tion, acquires self-renewing and proliferating capabilities similar

to those of SCs ( Enderling, 2013; Passegué et al., 2003 ). These

stem-like cells are very often out of control ( Reya et al., 2001 )

and they are capable of initiating, developing and regenerating

cancers ( Enderling, 2013 ), hence their designation as cancer stem

cells (CSCs) ( Jordan et al., 2006 ). Very often, CSCs are character-

ized by unhealthy behaviors such as excessive proliferation and

loss of their differentiation faculties. This is what we observe for

instance in the case of leukemia ( Döhner et al., 2015 ). On the other

hand, it cannot be disregarded that in some cases (as in breast

cancer and leukemia, Al-Asadi et al., 2017; Ebinger et al., 2016 )

CSCs do not overproliferate (cancer without disease, Folkman and

Kalluri, 2004 , or, in situ tumor). However, even during their non-

overproliferating states, CSCs remain in general distinguishable

through specific markers on their surface 1 ( Reya et al., 2001 ). In

medical research, the CSC hypothesis 2 postulates that one subpop-

ulation of cells holds the power of initiating and regenerating can-

cer ( Enderling, 2013 ). This stemness property in non-SCs has been

first observed in leukemia, then in many other types of cancer. Not

surprisingly, the study of leukemic cells became a model for many

other stem-like cells ( Reya et al., 2001 ). 

1.2. Evidences and underlying assumptions about cancer dormancy 

Strong evidence about the existence of a stalled growth state,

commonly referred to as tumor dormancy , has been established

many years ago when microscopic tumors were frequently en-

countered during autopsy examinations ( Folkman and Kalluri,

2004; Nielsen et al., 1987 ). The most likely explanations (see

Aguirre-Ghiso, 2007 ; and also Folkman and Kalluri, 2004 and

Schreiber et al., 2011 ) of CSCs dormancy state are: (H.1) blood and

nutrient supply issues that prevent tumor growth, or at least delay

its clinical manifestation ( Naumov et al., 2009 ), and (H.2) vigilance

of the immune system which, in some cases, suffices to stop tu-

mor development (see Ferrarini et al., 2002; Naumov et al., 2009;

Schreiber et al., 2011; Vesely, 2011; Wilkie and Hahnfeldt, 2013 and

the references therein). In fact, there has been a lengthy debate on

the role of the immune system in the defense against cancer: a

process called cancer immunosurveillance ( Vesely, 2011 ). The ambi-

guity about the immunosurveillance concept stems from the fact

that often the immune system favors the development of the tu-

mor instead of trying to eliminate it. The concept that attempts to

integrate the diverse effects of the immune system on tumor pro-

gression is known as cancer immunoediting (see the review articles

Schreiber et al., 2011 and Vesely, 2011 ). Even if it appears as an

unsystematic process, an interest arises for cancer therapies that

are immuno-oriented, bearing the name of immunotherapy . 3 In a
1 For instance, stems cells in acute myeloid leukemia have some interleukin- 

3receptor α chain surface markers, which are not found in normal hematopoietic 

stems cells (see Feuring-Buske et al., 2002; Jordan et al., 2006 ). 
2 The reference as CSC paradigm has also gained ground recently. Several subpop- 

ulations of cells, with distinct cancer-initiating powers, form actually a tumor. One 

subpopulation has an indefinite potential of self-renewing and shows stem-like sta- 

tus. It appears also that stemness might be a transient cell state that is associated 

to epigenetic changes ( Chaffer et al., 2011 ). 
3 Immunotherapy aims to help the immune system destroy cancer cells. It is 

given after – or at the same time as – another cancer treatment such as chemother- 

apy. 
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c

imilar spirit, monoclonal antibodies, e.g. gemtuzumab-ozogamicin,

ave been approved in the treatment protocols of some cancers

as in acute myeloid leukemia, Godwin et al., 2017 ), even if more

rials are still needed to identify their exact benefits ( Godwin

t al., 2017; Rowe and Löwenberg, 2013 ). Other cancer therapies,

ometimes assimilated to immunotherapy, are using some immune

heckpoint inhibitors (see for instance, Brahmer and Pardoll, 2013;

anger, 2015 ; and Pardoll, 2012 ). In the last part of our work, we

ill be shortly adopting some of these immuno-oriented concepts,

ssociated with classical chemotherapy or targeted therapies, as it

s frequently adopted in practice. More generally, the complex link

etween the immune system and cancer dormancy (as it is sum-

arized in Fig. 4 of Schreiber et al., 2011 ) is implicitly represented

n our model thanks to an extra-parameter that we introduce, as

etailed in the sequel (see Section 2.2 ). 

.3. Is cancer dormancy a promising therapeutic option? 

In a general perspective, apart from the interpretation of tu-

or dormancy as an observed natural phenomenon in human can-

ers, the idea to transform cancer into a chronic disease is in the

oices of many people in the medical world nowadays ( Aguirre-

hiso, 20 06; Gatenby, 20 09 ). Indeed, the interesting issue here is

bout: how can we bring CSCs from an overproliferating activity to

 dormant state? More precisely, since cancer treatments most of-

en consist of delivering the maximum tolerable doses of drugs in

rder to kill clinically apparent tumors, and knowing that an in-

ompletely eradicated cancer frequently grows again, even more

ggressively than the initial one ( Enderling, 2013 ), the option of

aintaining the tumor in dormancy is more appealing than try-

ng to eradicate it ( Jansen et al., 2015 ). Further discussions on

he opportunities offered by cancer dormancy in therapeutics can

e found for instance in Aguirre-Ghiso (2006) , Gatenby (2009) ,

hr et al. (1997) and the references therein. 

The development of a relevant mathematical framework ap-

ears as a necessary tool to apprehend tumor dormancy as a bi-

logical mechanism ( Kareva, 2016 ), with the ultimate goal to ap-

ly it in therapeutic settings. However, the task of mastering CSCs,

.e. bringing them into a dormant state, seems to be difficult to

chieve. Indeed, one of the first dormancy-oriented therapeutic ap-

roaches in the case of solid tumors has not been very fruitful.

t was based on the use of angiogenesis inhibitors 4 as drugs that

hoke off the blood supply of the tumor, in order to maintain

t in dormancy. However, unexpected effects occurred in practice,

nd in some situations, targeting the blood vessels that feed tu-

ors actually accelerated the spread of cancer (see Hayden, 2009;

eynolds, 2009 ). Therefore, it seems that tumor dormancy is more

ikely to be assigned to immuno-vigilance 5 ( H.2 ), than to nutrient

upply limitations ( H.1 ). In light of the previously mentioned obser-

ations, one can say that dormancy has actually generated more is-

ues than answers, in the process of understanding cancer. Among

he open issues, we emphasize the following ones: when a treat-

ent protocol is elaborated for CSCs eradication with a given rate of

uccess, how can we actually administer it (or a part of it) in order

o achieve dormancy? In addition, since eradication techniques may

enerate some surviving tumors which become even more aggres-

ive than the initial ones, a key question is to determine whether it

s effective to consider the same targets and drugs, as for CSCs eradi-

ation, in order to achieve dormancy? One can already figure out the

tility of mathematical studies in such a context. Finally, we em-

hasize that, in the clinic of cancers today, eradication of CSCs re-
4 These are substances that inhibit the growth of new blood vessels ( Folkman and 

alluri, 2004 ). 
5 In particular, cancer dormancy results from the action of adaptive immunologi- 

al mechanisms, through T cells, IL-12 and IFN-gamma ( Schreiber et al., 2011 ). 
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ains the predominant treatment approach (although there is still

 long way to improve the existing eradication treatment strate-

ies, Stone et al., 2017 ). 

.4. Objectives of the study – particular insights into the 

ematopoietic system 

We aim to provide a consistent theoretical framework for the

odeling and the analysis of healthy and unhealthy cell dynam-

cs, following different medical orientations, among which: the

ase where therapy aims to eradicate cancer cells while preserving

ealthy ones, and the scenario that consists in maintaining healthy

nd unhealthy cells in a controlled stable steady-state (i.e. cancer

ormancy). To that purpose, a model of coexistence between or-

inary and mutated cells is introduced and analyzed. Firstly, we

nvestigate the stability properties of the trivial steady state of the

esulting model: this is equivalent to the radical case in which all

he cells are eradicated. Then, we perform a stability analysis that

pplies to cases of cancer dormancy and unhealthy cell eradication

while healthy cells survive). For the biological motivations stated

n the above sections, we will focus on the study of cancer dor-

ancy throughout our paper. 

At this juncture, we express our keen interest in the hematopoi-

tic system. We define hematopoiesis as the process initiated by

he hematopoietic SC population inside the bone marrow, that

eads to the formation and continuous replenishment of all the

lood cells in the body ( Hoffman et al., 2012 ). Hematopoiesis pro-

ides a model for studying and understanding all the mammalian

tem cells and their niches ( Crane et al., 2017 ), as well as all

he mechanisms involved in the cell cycle, particularly cell dif-

erentiation. The hematopoietic paradigm is used in biology and

edicine, as well as in the modeling and analysis of all similar

rocesses. In Pujo-Menjouet (2016) , the author reviewed the math-

matical modeling of blood cell dynamics and its related patholog-

cal disorders within the past five decades. It is within this frame-

ork that we can situate our work, as a continuity of modeling

nd stability analysis of blood cell dynamics. However, as for the

ajority of works discussed in Pujo-Menjouet (2016) , the mod-

ls that we study can be used to cover other tissues and mecha-

isms. At this point, it is worth mentioning that pioneering works

hat formulated early blood cell dynamical models have been in-

roduced for any type of cells ( Smith and Martin, 1973 ), or bor-

owed from models describing other tissues, different from blood

ell dynamics (see Burns and Tannock, 1970 for a dorsal epider-

is cell model that inspired all the cell cycle models contain-

ng a resting phase). The interested reader is referred to Pujo-

enjouet (2016) for more information. Therefore, we emphasize

n this study the paradigmatic case of hematopoietic SCs, which

re at the root of the overall hematopoietic system. Hematopoietic

Cs give rise to both the myeloid and lymphoid lineages of blood

ells. The myeloid cells include many types of white blood cells

monocytes, macrophages, neutrophils, eosinophils), red blood cells

erythrocytes), and platelets (megakaryocytes). The hematopoietic

rocess has to be well controlled ( Hoffman et al., 2012 ) in or-

er to avoid a wide range of blood disorders. 6 Acute myeloid

eukemia (AML) is one of the most deadly blood malignancies.

t affects the myeloid lineage and it is characterized by an over-

roliferation of abnormal immature white blood cells (blasts) of

he myeloid lineage. Currently, AML treatment still relies on heavy

hemotherapy with a high toxicity level and a low rate of success
6 In particular, periodic diseases, such as cyclic neutropenia and some cases of 

hronic acute leukemia (see Bernard et al., 20 03; Colijn and Mackey, 20 05; Mackey 

t al., 2006; Pujo-Menjouet et al., 2005 , and the references therein), but also over- 

roliferating malignant hemopathies, such as acute myeloid leukemia ( Adimy et al., 

008; Djema et al., 2016b; Özbay et al., 2012 ). 

u  

s  

a  

s  

s  

t  
 Döhner et al., 2015 ). In fact, the only certain AML cure being not

he result of chemotherapy, but of total bone marrow transplant

hat induces nearly 10 –20% of mortality during the manipulation

nd due to severe reaction, GVH, of the graft versus the host. A

etter understanding of the behavior of CSCs (called leukemic cells

n AML) should allow us to propose some selective combined tar-

eted therapies that lead, theoretically, to cancer dormancy. In par-

icular, our ambition is to provide a theoretical framework, taking

nto account observations made by hematologists, and allowing for

he suggestion of insights into cancer treatments. It is in this light

hat we proposed in Djema et al. (2016b) a model of cohabitation

etween ordinary and mutated cells in the case of the hematopoi-

tic system. The latter model follows recent observations (made

n Hirsch et al., 2016 and in many other works) that associate

he emergence of leukemic cells with an accumulation of several

utations, most often occurring in a standard chronological order

 Hirsch et al., 2016 ), in the SC compartment. Thus, we have mathe-

atically analyzed in Djema et al. (2016b, 2017b) two categories of

eterogeneous cells as illustrated in Fig. 1 below, where the addi-

ion of mutations (on TET2, NPM1, FLT3) that we have considered

ad been established in Hirsch et al. (2016) . We pursue in this

ork an analysis that provides a theoretical framework following

ifferent medical orientations, among which: (i) the case where

herapy aims to eradicate cancer cells while preserving healthy

ells, (ii) a less demanding, more realistic, scenario that consists

n maintaining healthy and unhealthy cells in a controlled stable

teady-state (cancer dormancy). Thus, our work extends the one

hat we proposed in Djema et al. (2016b, 2017b) and in a series

f works: Adimy et al. (2015) , Avila (2014) , Avila et al. (2012) , (but

ee also Adimy et al., 2008; Djema et al., 2017a; Foley et al., 2009;

ridman et al., 2016; Marciniak-Czochra et al., 2009; Özbay et al.,

012; Pujo-Menjouet et al., 2005; Stiehl and Marciniak-Czochra,

011; Stiehl and Marciniak-Czochra, 2012 ). It is worth mentioning

hat the model in Avila et al. (2012) can neither model dormancy

or the abnormal overproliferation (e.g. invasion of the bone mar-

ow by blasts). The latter point is improved by adopting a differ-

nt form of fast self-renewing process, which has been recently

ntroduced in Adimy et al. (2015) , and where a subpopulation of

ells is considered to be always active in proliferation ( Adimy et al.,

015 ). In fact, cancer dormancy has not been considered in all the

reviously mentioned works. This is indeed a new area in cancer

herapy (see Aguirre-Ghiso, 2006; Enderling, 2013; Jansen et al.,

015; Uhr et al., 1997 ) that we want to highlight here (but see also

areva, 2016 for a different approach of modeling and analysis of

ancer dormancy). 

.5. Organization of the work 

In light of the above mentioned remarks, the coupled model

between healthy and mutated cells as in Fig. 1 below) of inter-

st is presented in Section 2 . Next, some features of the result-

ng coupled differential-difference model, together with the con-

itions of existence of our favorable steady states (reflecting dor-

ancy and CSCs eradication), are discussed in Section 3 . Then,

n Section 4 , the stability analysis of the case of all-cell extinc-

ion, via a construction of a linear Lyapunov-like functional, is per-

ormed (here we provide conditions for global exponential stabil-

ty of the trivial steady state of the coupled model). Then, after-

ards, we address in Section 5 the stability analysis, in the time-

omain framework, of the cases describing cancer dormancy, and,

nhealthy cells eradication (while healthy cells survive). The latter

tudy goes through quadratic Lyapunov-like constructions (i.e. suit-

ble degenerate functionals for the class of differential-difference

ystems). In fact, we are going to use two slightly different con-

tructions: the first one is more general and relies on Linear Ma-

rix Inequality (LMI) conditions derived via the descriptor method



106 W. Djema et al. / Journal of Theoretical Biology 449 (2018) 103–123 

Fig. 1. Schematic representation of the coupled model of interest, involving a healthy SCs compartment (on the left) and an unhealthy compartment (on the right). For 

the sake of simplicity, we assume that unhealthy cells are those presenting mutations that lead to cancer. Indeed, we consider that abnormal stem cells (Category B) 

have for instance a first mutation in some genes encoding enzymes in epigenetics (e.g. on TET2, DNMT3A Delhommeau et al., 2009; Pronier and Delhommeau, 2011 ), that 

increases the self-renewing activity of the affected cells. A more serious pathological situation arises when a second mutation, affecting this time the pathways regulating 

the differentiation process such as NPM1 or transcription factors, appears on some of the cells. The superposition of these two events yields a blockade in differentiation. 

Finally, a subsequent mutation impairing proliferation control (e.g. FLT3-ITD) appears in a subpopulation of cells that have already accumulated one or more of the previously 

mentioned mutations. The latter event activates an uncontrolled overproliferation of a subpopulation of cells (CSCs) and thereby causes AML ( Hirsch et al., 2016 ). Throughout 

this work, with a kind of abuse of notation, we use equivalently the designations: unhealthy cells, mutated cells, and CSCs. Similarly, healthy cells (Category A), or ordinary 

cells, represented on the left, are those which do not have any abnormal mutation, or those presenting some abnormalities which are not related to cancer. The definitions 

of the biological parameters ( δ, ˜ δ, γ , ˜ γ , ...) are provided in Section 2 . 
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( Fridman, 2014 ), applied to the linear approximation of the model

around its nontrivial steady state of interest. This approach aims

to provide a theoretical (sufficient) stability criterion, in the LMI

form, to establish whether the steady state of a specific biologi-

cal system is locally stable. The latter technique is followed by a

second Lyapunov-type construction that allows us to determine ex-

plicit decay conditions (not in the LMI form) as well as an estimate

of the decay rate of solutions and an approximation of the basin of

attraction of the studied steady state. These sufficient stability con-

ditions may be more restrictive than the LMI ones, however, they

have the advantage of being easier to handle and, therefore, make

it possible to interpret them biologically, from medical and thera-

peutic standpoints. Finally, numerical illustrations are provided and

some concluding discussions, including biological interpretations of

the findings, are outlined in Section 6 . 

2. A new general mathematical model involving coexistence 

between healthy and cancer stem cells 

Our objective is to introduce a model more general than the ex-

isting ones, with regard to the recent biological features of interest,

that are: cancer dormancy ( Ebinger et al., 2016; Enderling, 2013 ),

control and eradication of CSCs ( Jansen et al., 2015 ). In particular,

the compartment of unhealthy cells is hierarchized according to

the severity of the mutations: cells that accumulate mutations up

to that of FLT3 duplication (see Fig. 1 ) are constantly active in pro-

liferation (as in Adimy et al., 2015 ). Our configuration allows us to

reproduce and interpret the case of cancer dormancy, with the ul-

timate goal of providing theoretical stability conditions, along with

therapeutic insights, that lead to stable dormant CSCs. 

2.1. A multi-compartmental general model for healthy and unhealthy 

cells 

We focus on the model illustrated in Fig. 1 , where CSCs are

characterized by an ability to over-proliferate represented by the

parameter ˜ K (in days −1 ), as considered in Adimy et al. (2015) , and

previously envisaged in Avila et al. (2012) in a different configura-

tion. More precisely, we notice that a subpopulation of unhealthy

cells is in a permanent dividing state, namely the portion corre-

sponding to 2 ̃  K , where, 0 < 

˜ K < 1 (as in Adimy et al., 2015 for a

non-coupled model), which is different from the healthy SCs be-

havior ( Fig. 1 , on the left), where daughter cells, that arise from

division of healthy mother cells, leave the proliferating compart-

ment and join necessarily the resting one. Healthy resting stem

cells can stay in G until their death, differentiate, or start a new
0 
roliferating cycle by being transferred through the reintroduction

unction β to there proliferating compartment. Indeed, we mention

hat as many other works (see Adimy et al., 2008; Mackey, 1978;

ujo-Menjouet et al., 2005 , among others), we are considering a

ompartmental model in which each cell can be in a resting phase

r in a proliferating one. Finally, we mention that the coupled

odels studied in Avila et al. (2012) , Djema et al. (2016b) do not

dmit a stable steady state that describes cancer dormancy, and

his is an issue that we overcome here by considering a more gen-

ral manner of coupling healthy and unhealthy SCs as discussed in

he sequel. 

Next, we denote by δ (resp. ˜ δ) the rate, expressed in days −1 , of

esting cells, which is lost either by differentiation or natural cell

eath for healthy SCs (resp. CSCs). A resting cell may start a cell

ycle by entering in the proliferating phase during which each pro-

iferating SC (resp. CSC) may die by apoptosis at a rate, expressed

n days −1 , γ (resp. ˜ γ ), or complete its mitosis and become two

aughter cells at the end of the proliferating phase. We denote τ
resp. ˜ τ ) the average time (in days) taken to complete mitosis in

he healthy (resp. unhealthy) proliferating compartment. For pro-

iferation, the mechanisms regulating the entry into the cell cycle

at the cellular level – rely on some regulatory molecules that

an play the role of growth factors (by stimulating the entry into

roliferation of resting healthy and unhealthy cells), or, they can

lay the role of mitotic inhibitor ligands (meaning that mitosis pro-

eeds normally if inhibitors are not combined with cell receptors,

hile it is stalled when they bind them). Consequently, we con-

ider in our model that the transfer from the resting to the pro-

iferating states is controlled by some reintroduction functions (as

n Mackey, 1978; Pujo-Menjouet et al., 2005 and the majority of

arlier works). More precisely, we let β (resp. ˜ β) be the reintro-

uction function from the healthy (resp. unhealthy) resting phase

o the healthy (resp. unhealthy) proliferating phase. In addition,

ince healthy and unhealthy cells share the same environment

called niches , Crane et al., 2017 in hematopoiesis), we consider

hat each of the two functions β and 

˜ β depends simultaneously on

oth the total density of resting healthy cells, x (t) = 

∫ ∞ 

0 r(t, a ) da,

nd the total density of unhealthy resting cells, ˜ x (t) = 

∫ ∞ 

0 ˜ r (t, a ) da,

here r ( t, a ) and ˜ r (t, a ) are, respectively, the densities of resting

ealthy cells and resting unhealthy cells, of age a ≥ 0, at time t ≥ 0

 Djema et al., 2016b ). This modeling approach reflects cohabitation

etween healthy and unhealthy cells, by considering that the entry

nto proliferation of healthy cells (resp. unhealthy cells) is also de-

endent on the total density of unhealthy cells (resp. healthy cells),

he dynamics of the left and the right subpopulations in Fig. 1 be-

oming thus strongly coupled. Thus, the choice of the arguments
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Fig. 2. Cartoon illustration of healthy and unhealthy cells in their shared environ- 

ment. Ordinary SCs with normal behavior are in green, while mutated ones that go 

through quiescence to re-start a cell cycle (i.e. not the ones having the FLT3 muta- 

tion that makes them constantly active into proliferation) are in blue. The regula- 

tion of cell proliferation may include different mechanisms: release of growth fac- 

tors and mitotic regulatory molecules, T cells, natural killers, globulins, IFN-g (IFN- 

gamma) and IL-12 (interleukin 12). Epigenetic mutations may also play a role on 

the way cells react to the whole regulating system. The case 0 ≤ ˜ α ≤ 1 fits well a 

situation in which unhealthy cells are less sensitive to proliferation regulation than 

healthy ones. In this case, abnormal cells may hide their tumor antigens (an im- 

munosuppressive state), which can be also due to the tumor variant cells that be- 

come no longer recognized and attacked by the adaptive immunity ( Schreiber et al., 

2011 ) and grow into insensitive cells to the entire immune effector mechanism. This 

condition is not enough in itself for the development of cancer, but it certainly 

favors it and may lead to the escape phase. On the other hand, the case ˜ α > 1 

represents a situation in which proliferation of unhealthy cells is more controlled 

than the one of healthy cells. Reasons for this include an effective action carried 

out by the innate and adaptive immunity (sometimes this action suffices for to- 

tal tumor eradication, see e.g. Vesely (2011) and Fig. 4 in Schreiber et al. (2011) , but 

also the use of immunotherapy that acts in two ways: boosting the immune system 

to eliminate CSCs, and/or, enhancing the immune response by providing additional 

combative components such as reenabling exhausted T cells. 
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i.e. coupling forms) given to the functions β and 

˜ β is crucial,

ince these arguments quantify the regulating mechanisms that af-

ect healthy and unhealthy cells (see Mackey, 1978 for the case of

on-coupled models). 

.2. The coupling form between ordinary and mutated cells 

The functions β and 

˜ β represent the physiological inhibitory

ormonal feedback by Granulocyte Colony Stimulating Factors (G-

SF) that is valid in the case of healthy as in the case of can-

er cells. However, in the latter unhealthy situation, the sensitiv-

ty of the unhealthy cell population to this feedback may strongly

ary. Now, the remaining issue regarding the functions β and 

˜ β
s to select the coupling function between the total density of

ealthy resting cells x and the total density of mutated resting

ells ˜ x (i.e., to specify how β and 

˜ β actually depend on x and

˜  ). It appears that the simplest choice is to consider that both

and 

˜ β depend on the sum x + ̃  x , as previously considered in

vila et al. (2012) and Djema et al. (2016b) . The latter scheme ex-

resses a kind of absence of dominance between the populations

 and ˜ x , since they show equal influence on β and 

˜ β . However,

ifferences actually exist between x and ˜ x in their shared host –

n particular immune – environment, mainly due to the mutations

cquired by abnormal cells ( Hollstein et al., 1991 ) and the reac-

ion of the immune system. Changes that occur in mutated cell

ehavior may enhance the growth of cancer and result in cachexia

nd death ( Bellomo and Forni, 1994 ) (see also Eftimie et al., 2011;

reziosi, 1996 for biological observations and modeling of the in-

eraction between cancer and host environment). In our modeling

pproach, considering a coupling in the form x + ̃  x means equal

ensitivity of ordinary and mutated resting populations regarding

he diverse proliferation regulation mechanisms, that act on the

eintroduction of resting cells into proliferation. For example, due

o epigenetic mutations, unhealthy cells may become less sensitive

han healthy ones to the regulatory molecules secreted by the body

nd avoid the immune system (i.e. an immunosuppressive effect);

n the other hand, healthy cells are in turn insensitive to the ac-

ion of the immune system and less sensitive to drugs, since these

rugs are designed to target unhealthy cells. In summary, healthy

nd unhealthy cells may react differently to their shared host en-

ironment (see Fig. 2 below), which may result in the dominance

f one subpopulation (healthy or unhealthy), or possibly in cancer

ormancy ( Schreiber et al., 2011 ). Our first objective is to achieve

 model that reproduces all these situations. Thus, we aim here to

xtend the modeling aspects by considering a more general form of

oupling functions, so that some immunological effects can be rep-

esented. For that purpose, we consider that the argument of β is

 + ̃  x , while ˜ β depends at the same time on a weighted combina-

ion x + ˜ α ˜ x , where ˜ α is some positive constant. We will show later

n Section 3 that actually dormancy may be found mostly when

˜ � = 1 . In an illustrative manner, Fig. 2 provides a representation of

he cases: 
• 0 ≤ ˜ α ≤ 1 : even if ordinary and mutated cells are sharing the

ame environment, the mutated ones are less sensitive to the regu-

atory system present in the host environment, that may be identi-

ed as effects of the immune system on mutated cell proliferation.

onsequently, unhealthy cells may escape a part of the regulatory

ystem, including the immune system. This appears to be in line

ith medical practice, since the unhealthy behavior is mainly due

o genetic/epigenetic mutations that make cells partially unrespon-

ive to the regulating system. Consequently, the case 0 ≤ ˜ α ≤ 1

uits well the untreated unhealthy behavior, in which cells avoid

mmune attacks and tend to get out of control, possibly leading

o outgrowth of CSCs ( Schreiber et al., 2011; Vesely, 2011; Zitvogel

t al., 2006 ). 
• ˜ α > 1 : this case can describe an environment where un-

ealthy cells are more affected by the regulatory molecules than

he healthy ones. This may be partly due to the effector response

f the immune system ( cancer immunosurveillance , Vesely, 2011 ),

hich may explain the dormancy phenomenon as a result of an

fficient immune action that contains cancer growth ( Wilkie and

ahnfeldt, 2013 ). In other words, the case ˜ α > 1 stands for a sit-

ation where proliferation of unhealthy cells may be locally kept

nder check by the immune system. This is the role of the innate

nd adaptive immunity which may lead to extrinsic tumor sup-

ression in some rare cases, or to the adaptive immunity (T cells,

L-12, IFN-gamma) that at least may maintain cancer dormancy for

ong time ( Schreiber et al., 2011 ). 

emark 1. A concept of dominance between healthy and mutated

ells results from ˜ α, that allows for an implicit representation of

he immunologic mechanisms. In fact, what really makes the dif-

erence between cells is their respective sensitivity to the immune

nvironment. The natural feedback represented by the functions β
nd 

˜ β depending on their arguments x and ˜ x , is in the case of

ancer cells tuned by a sensitivity parameter ˜ α that may be seen

s the faculty of unhealthy cells to over-express ( ̃  α > 1 ) or hide

 ̃  α < 1 ) their surface antigens. 

In addition, it can also be argued that ˜ α > 1 relies on the use

f drugs (immunotherapy, chemotherapy, etc.) that specifically tar-

et unhealthy cells. Indeed, we recall that immunotherapy mainly

nhances the immune response, and that recent chemotherapy or

argeted therapies are increasingly more accurate due to the over-

xpression of cancer receptors (which allow them to target un-

ealthy cells while the majority of healthy cells are spared). Finally,
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Fig. 3. Illustrative example of variations of a typical ˜ β-surface with respect to ˜ x and x , for different values of ˜ α (i.e. in the three possible situations: ˜ α > 1 , ˜ α = 1 , and ˜ α < 1 ). 
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we mention that the introduction of the above considerations re-

lated to the coupling functions between x and ˜ x will make the dy-

namics of the resulting model richer than earlier models, as dis-

cussed in the next sections ( Section 3 ). To the authors’ knowledge,

no equivalent model exists in the literature. Next, as convention-

ally considered, we assume that ˜ β and β are nonlinear continu-

ous decreasing functions, and, lim � →∞ 

˜ β(� ) = lim � →∞ 

β(� ) = 0 . As

in Mackey (1978) , Pujo-Menjouet et al. (2005) , and all subsequent

works for non-coupled models, we consider the typical Hill forms:

˜ β(� ) = 

˜ β(0) 

1 + ̃

 b � ̃ n 
, β( � ) = 

β( 0) 

1 + b� n 
(1)

where ˜ b , b , ˜ β(0) and β(0) are strictly positive real numbers and,

˜ n ≥ 2 and n ≥ 2. In fact, the Hill functions in (1) , that belong to

the family of functions with negative Schwarzian derivatives (see

Ahsen et al., 2015 , Chapter 3) are commonly encountered in many

real-life problems. Classical arguments on cooperativity of enzyme

inhibition kinetics (see Chapter 1 in Keener and Sneyd, 2009 ; and

Qian, 2012 ), allow to determine the Hill-type expressions (1) . The

cooperative effect results in general from the fact that the bind-

ing of one regulatory molecule on one extracellular (surface) re-

ceptor of one cell will affect the binding of subsequent regulatory

molecules on other receptors of the same cell. Due to the above

considerations on the different sensitivities between healthy and

unhealthy cells in the niches (1 and ˜ α � = 1 , respectively), we can

readily deduce that for given total densities x and ˜ x , the associated

reintroduction functions β and 

˜ β actually operate according to: 

˜ β( x + ˜ α ˜ x ) = 

˜ β(0) 

1 + ̃

 b ( x + ˜ α ˜ x ) 
˜ n 
, β( x + 

˜ x ) = 

β(0) 

1 + b ( x + 

˜ x ) 
n . (2)

2.3. Equations describing the dynamics of coupled cell populations 

After the description of the particular case of the reintroduction

functions β and 

˜ β according to the variation of the cell densities

x and ˜ x (as in Fig. 3 ), we now focus on the dynamical equations

describing the populations of cells. Similarly to x and ˜ x , we denote

by y and ˜ y , respectively, the total densities of proliferating healthy

and unhealthy cells: y (t) = 

∫ τ
0 p(t , a ) da, and, ˜ y (t ) = 

∫ ˜ τ
0 ˜ p (t, a ) da .

The age-structured PDEs describing the coupled model in Fig. 1 ,

are given for all t > 0 by: ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ t ̃  r (t, a ) + ∂ a ̃  r (t, a ) = −
[

˜ δ + 

˜ β( x, ̃  x , ˜ α, t ) 
]

˜ r (t, a ) , a > 0 , 

∂ t ̃  p (t, a ) + ∂ a ̃  p (t, a ) = − ˜ γ ˜ p (t, a ) , 0 < a < ˜ τ , 

∂ t r(t, a ) + ∂ a r(t, a ) = −[ δ + β( x, ̃  x , t ) ] r(t, a ) , a > 0 , 

∂ t p(t, a ) + ∂ a p(t, a ) = −γ p(t, a ) , 0 < a < τ. 

(3)
n McKendrick-type models ( Foley et al., 2009; McKendrick, 1925;

ake, 2003 ), we observe that only the death rates ( δ, ˜ δ, γ and ˜ γ ),

nd the removal terms ( β and 

˜ β, since the reintroduction func-

ions are considered as cell loss from resting cells) appear in the

DE system (3) . On the other hand, the new births, which are the

enewal conditions at the age a = 0 , for resting and proliferating

ells, are introduced through the following boundary conditions: 
 

 

 

 

 

˜ r (t, 0) = 2(1 − ˜ K ) ̃  p (t, ˜ τ ) , 

˜ p (t, 0) = 

˜ β( x, ̃  x , ˜ α, t ) ̃  x (t) + 2 ̃

 K ̃

 p (t , ˜ τ ) 
	= 

˜ u (t ) , 
r(t, 0) = 2 p(t, τ ) , 
p(t, 0) = β( x, ̃  x , t ) x (t) , 

(4)

or all t > 0, and where ˜ u (t) represents the density of new pro-

iferating unhealthy cells at time t > 0 ( Adimy et al., 2015 ). Fi-

ally, the initial age-distributions, respectively, ˜ r (0 , a ) = ̃  r 0 (a ) , for

 > 0, ˜ p (0 , a ) = ˜ p 0 (a ) , for 0 < a < ˜ τ , r(0 , a ) = r 0 (a ) , for a > 0, and

p(0 , a ) = p 0 (a ) , for 0 < a < ˜ τ , are assumed to be L 1 -functions. 

Now, inspired by an illustrative approach in Thieme (2003) , we

ive a biological explanation of the method of characteristics in

ur context. To avoid redundancy, we focus only on the unhealthy

ompartment. Let us define p ∗(a, s ) as the density of unhealthy

roliferating cells, of age a , that entered to the unhealthy prolifer-

ting phase at time s . This coincides with the density of unhealthy

roliferating cells at time t = a + s ( Thieme, 2003 ). In other words,

 

∗(a, s ) = ˜ p (a + s, a ) . Therefore, 

∂p ∗(a, s ) 

∂a 
= 

∂ ̃  p (t, a ) 

∂t 

∣∣∣
t= a + s 

+ 

∂ ̃  p (t, a ) 

∂a 

∣∣∣
t= a + s 

= − ˜ γ p ∗(a, s ) . 

It follows that p ∗(a, s ) = p ∗(0 , s ) e − ˜ γ a , where p ∗(0 , s ) = ˜ p (s, 0) . 

Now, let us recover ˜ p from p ∗ ( Thieme, 2003 ). Noticing that

˜ p (t, a ) = p ∗(a, t − a ) , for t > a , we obtain, ˜ p (t, a ) = e − ˜ γ a ˜ p (t − a, 0) ,

or all t > a . 

Next, we define p v (t, s ) = ˜ p (t, t + s ) , which can be interpreted

s the density of unhealthy proliferating cells that are in the prolif-

rating phase at time t , and have been in the proliferating phase at

ime 0, with an age a = s at t = 0 . Arguing as for p ∗ ( Thieme, 2003 ),

e find that ∂p v (t,s ) 
∂t 

= − ˜ γ p v (t, s ) . 

Then, p v (t, s ) = p v (0 , s ) e − ˜ γ t , where p v (0 , s ) = ˜ p (0 , s ) = ˜ p 0 (s ) .

ecovering ˜ p from p v , for a ≥ t , gives us ˜ p (t, a ) = e − ˜ γ t ˜ p 0 (a − t) , for

ll a ≥ t . 

We deduce that we have recovered the well-known solution

 Thieme, 2003 ): 

˜ p (t, a ) = 

{
e − ˜ γ t ˜ p 0 (a − t) , 0 ≤ t ≤ a 

e − ˜ γ a ˜ p (t − a, 0) , t > a. 
(5)

onsequently, the first equation in (4) is then equivalent to 

˜ 
 (t, 0) = 

{
2(1 − ˜ K ) e − ˜ γ t ˜ p 0 ( ̃  τ − t) , 0 ≤ t ≤ ˜ τ , 

2(1 − ˜ K ) e − ˜ γ ˜ τ ˜ p (t − ˜ τ , 0) , t > ˜ τ . 
(6)
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rom biological considerations we set, lim a →∞ ̃

 r (t, a ) = lim a →∞ 

(t, a ) = 0 , for all fixed value of t ≥ 0. Then, using (8) , and by in-

egrating the first equation in (3) with respect to a between 0 and

 ∞ , we determine that the long time behavior ( Bélair et al., 1995 )

f ˜ x is given by ˙ ˜ x (t) = −( ̃  δ + 

˜ β(x, ̃  x , ˜ α, t )) ̃ x (t ) + 2(1 − ˜ K ) e − ˜ γ ˜ τ ˜ u (t −
˜ ) , where we recall that the density ˜ u (t) is the one defined in (4) ,

nd represents for all t > 0 the density of new unhealthy prolifer-

ting cells. Similarly, by integrating the second equation in (3) over

he variable a , between 0 and ˜ τ , and using ˜ p (t, ̃  τ ) = ˜ u (t − ˜ τ ) , we

et ˙ ˜ y (t) = − ˜ γ ˜ y (t) + 

˜ β(x, ̃  x , ˜ α, t ) ̃ x (t ) − (1 − 2 ̃  K ) e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) . Simi- 

arly, we can check that for the healthy compartment, we obtain

or all t > 0: 

p(t, a ) = 

{
e −γ t p 0 (a − t) , 0 ≤ t ≤ a 
e −γ a p(t − a, 0) , t > a. 

(7) 

t follows that the third equation in (4) is then equivalent to: 

(t, 0) = 

{
2 e −γ t p 0 (τ − t) , 0 ≤ t ≤ τ, 

2 e −γ τ p(t − τ, 0) , t > τ, 
(8) 

here p(t − τ, 0) is deduced from the fourth equation in (4) . Thus,

sing similar arguments as for the unhealthy compartment, we de-

uce the following overall system for all t > 0, 

 

 

 

 

 

 

 

 

 

˙ ˜ x (t) = −
[

˜ δ + 

˜ β( x, ̃  x , ˜ α, t ) 
]

˜ x (t) + 2(1 − ˜ K ) e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) , 
˙ ˜ y (t) = − ˜ γ ˜ y (t) + 

˜ β( x, ̃  x , ˜ α, t ) ̃  x (t) − (1 − 2 ̃

 K ) e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) , 

˜ u (t) = 

˜ β( x, ̃  x , ˜ α, t ) ̃  x (t) + 2 ̃

 K e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) , 
˙ x (t) = −[ δ + β( x, ̃  x , t ) ] x (t) + 2 e −γ τβ( x, ̃  x , t − τ ) x (t − τ ) , 
˙ y (t) = −γ y (t) + β( x, ̃  x , t ) x (t) − e −γ τ β( x, ̃  x , t − τ ) x (t − τ ) . 

(9) 

e notice that the dynamics of x , ˜ x and ˜ u do not depend on y and

˜  . This (triangular) system structure leads us to study first: 

 

 

 

 

 

˙ ˜ x (t) = −
[

˜ δ + 

˜ β( x (t) + ˜ α ˜ x (t) ) 
]

˜ x (t) + 2(1 − ˜ K ) e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) , 

˜ u (t) = 

˜ β( x (t) + ˜ α ˜ x (t) ) ̃  x (t) + 2 ̃

 K e − ˜ γ ˜ τ ˜ u (t − ˜ τ ) , 
˙ x (t) = −[ δ + β( x (t) + 

˜ x (t) ) ] x (t) + 2 e −γ τ β
( x (t − τ ) + 

˜ x (t − τ ) ) x (t − τ ) . 

(10) 

We can prove that a unique piecewise continuous solution,

( ̃  x (t) , ̃  u (t) , x (t)) , exists for all t ≥ 0, when system (10) is associ-

ted with appropriate initial conditions (ϕ ˜ x , ϕ ˜ u , ϕ x ) , where, ϕ ˜ x ∈
([ −τ, 0] , R ) , ϕ x ∈ C([ −τ, 0] , R ) , and, ϕ ˜ u ∈ C([ − ˜ τ , 0] , R ) . Moreover,

e can show that the system (10) is positive, since ˜ K ∈ (0 , 1) .

hroughout this work, only positive solutions of (10) are consid-

red. 

. Notable features of the coupled model 

In this section, we point out some properties of the model

10) that highlight its rich dynamics, according to the following

ossibly existing cases: 7 

Point of interest of ˜ x 0 ˜ x e 0 ˜ x e + ∞ 

Point of interest of ˜ u 0 ˜ u e 0 ˜ u e + ∞ 

Point of interest of x 0 0 x e x e 
∗

• Cell extinction: clearly, (0, 0, 0), is an equilibrium point of

odel (10) . Biologically, convergence to zero is synonymous of the

xtinction of all the cells (both healthy and unhealthy popula-

ions). From a therapeutic standpoint, we said that we aim to ad-

ress theoretical studies for the case of unhealthy cells eradication

while ensuring that healthy cells survive), and also for a dormancy
7 Here we are considering that ˜ x e > 0 , ˜ u e > 0 and x e > 0. We can notice that ˜ x e = 

 implies that ˜ u e = 0 , and vice versa. 

n  

n  

w

teady state (where all the cells are in a stable steady state). In

oth situations we do not want that healthy cells vanish. However,

hemotherapy always affects – to a certain extent – healthy cells.

ut side effects of recent chemotherapy treatments are fewer than

hose of the drugs used in the past, since novel molecules (targeted

herapies) are designed to target overexpressed receptors corre-

ponding to mutated cells (i.e. drugs are more accurate since they

ttack cells with specific extracellular receptors expressed only on

utated cells). In addition, medications are mainly acting on cells

uring their phase of proliferation, while it appears that most of

he healthy cells are in quiescence. Therefore, we consider that

nly a radical therapy will lead to total cell eradication, and this

s a situation that we want to avoid. Nevertheless, the theoreti-

al conditions, depending on the biological functions and parame-

er involved in our model, that cause total cell eradication are dis-

ussed in Section 4 . 
• Escape from dormancy in diseased cells: one of the main

oncerns related to dormancy is to explain how escape from tu-

or dormancy can emerge (see Kareva, 2016 and the non-coupled

odel in Adimy et al., 2015 that admits unbounded solutions).

imilarly to Adimy et al. (2015) , we notice in the coupled model

10) that the CSC-compartment may have unbounded solutions

hat reproduce the unlimited cell proliferation in cancer. Indeed,

rom the second equation in (10) it is obvious that 2 ̃  K e − ˜ γ ˜ τ > 1 ,

mplies that, lim t→ + ∞ 

˜ u (t) = + ∞ . It follows from the first equation

n (10) that lim t→ + ∞ ̃

 x (t) = + ∞ . This situation may reflect the es-

ape from tumor dormancy, or the invasion of the bone marrow

y the blasts as in AML. 
• Existence of the desired steady states D and E : let us start

rom the general case in which the point ( ̃  x e , ̃  u e , x e ) is a nonnega-

ive steady state of (10) . Therefore, it follows that this equilibrium

oint satisfies: 
 

 

 

[
˜ δ + 

˜ β(x e + ˜ α ˜ x e ) 
]

˜ x e = 2(1 − ˜ K ) e − ˜ γ ˜ τ ˜ u e , 

˜ β(x e + ˜ α ˜ x e ) ̃  x e = 

(
1 − 2 ̃

 K e − ˜ γ ˜ τ
)

˜ u e , 

[ δ − ( 2 e −γ τ − 1 ) β(x e + 

˜ x e ) ] x e = 0 , 

(11) 

here we exclude the previously discussed case of unbounded so-

utions by assuming that: 2 ̃  K e − ˜ γ ˜ τ < 1 . Indeed, our main objective

ere is to determine necessary and sufficient conditions for the ex-

stence of D = ( ̃  x e , ̃  u e , x e ) , where x e > 0, ˜ x e > 0 and ˜ u e > 0 , and for

he existence of E = (0 , 0 , x e ) , where x e > 0. 

First, since β is continuous and decreasing from β(0) to zero,

e deduce from the third equation in (11) that, 

< 

[
2 e −γ τ − 1 

]
β(0) , (12) 

s a necessary and sufficient condition for the existence of x e and ˜ x e 
uch that, x e + ̃  x e > 0 , and, δ − (2 e −γ τ − 1) β(x e + ̃  x e ) = 0 . In fact,

he inequality (12) is a necessary and sufficient condition for the

xistence of E (but not D ). 

Next, from the second equation in (11) , we obtain that ˜ u e =
˜ β(x e + ̃ α ˜ x e ) ̃ x e 
1 −2 ̃ K e − ˜ γ ˜ τ . 

By substituting ˜ u e in the first equation of (11) , we get: 

˜ δ − 2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ
˜ β(x e + ˜ α ˜ x e ) 

]
˜ x e = 0 . (13) 

he fact that ˜ β is continuous and decreasing implies that the con-

ition, 

˜ < 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , (14) 

s necessary and sufficient for the existence of x e and ˜ x e , such

hat, x e + ˜ α ˜ x e > 0 , and, ˜ δ − 2 e − ˜ γ ˜ τ −1 
1 −2 ̃ K e − ˜ γ ˜ τ

˜ β(x e + ˜ α ˜ x e ) = 0 . Obviously, we

otice that, 2 ̃  K e − ˜ γ ˜ τ < 1 < 2 e − ˜ γ ˜ τ . In fact, the condition (14) is a

ecessary and sufficient condition for the existence of ( ̃  x e , ̃  u e , 0) ,

here ˜ x e > 0 and ˜ u e > 0 . 
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It is worth mentioning that, if the condition (12) is satisfied (i.e.

the necessary and sufficient condition for the existence of E ), to-

gether with the condition 

˜ δ > 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , (15)

then (0, 0, 0) and E are the unique existing steady states of the

studied model. Let us now focus on the case where both x e and

˜ x e are simultaneously strictly positive (and then ˜ u e is strictly posi-

tive). In the latter situation, we get, {
x e + ˜ α ˜ x e = 

˜ β−1 ( ̃  μ) , 
x e + 

˜ x e = β−1 ( μ) , 
(16)

where, μ = 

δ
2 e −γ τ −1 

, and, ˜ μ = 

˜ δ(1 −2 ̃ K e − ˜ γ ˜ τ ) 

2 e − ˜ γ ˜ τ −1 
. Consequently, we get,⎧ ⎪ ⎨ 

⎪ ⎩ 

x e = 

1 
˜ α−1 

[
˜ αβ−1 ( μ) − ˜ β−1 ( ̃  μ) 

]
, 

˜ x e = 

1 
˜ α−1 

[
˜ β−1 ( ̃  μ) − β−1 ( μ) 

]
, 

˜ u e = 

˜ δ
2 e − ˜ γ ˜ τ −1 ̃

 x e . 

(17)

Now, we distinguish between the following two situations: 

The case ˜ α = 1 : Here we notice that, {
x e + 

˜ x e = 

˜ β−1 ( ̃  μ) = β−1 ( μ) , 

˜ u e = 

˜ δ
2 e − ˜ γ ˜ τ −1 ̃

 x e , 
(18)

which is either an impossible case if the biological parameters are

such that ˜ β−1 ( ̃  μ) � = β−1 (μ) , or, when 

˜ β−1 ( ̃  μ) = β−1 (μ) , it corre-

sponds to a continuum equilibrium point (the infinite possible val-

ues of x e and ˜ x e that satisfy the first equation in (18) ). We want to

avoid the latter continuum equilibrium points since that case has

no concrete biological signification. 

The case ˜ α > 1 or ˜ α < 1 : first, we focus on the case 0 < ˜ α < 1 .

We recall from earlier discussion that, biologically, 0 < ˜ α < 1

means that CSCs are less sensitive than ordinary cells to their

shared environment composed by regulatory mitotic molecules

(due to epigenetic mutations for instance, unhealthy cells no

longer respond to inhibitory signals and continue to proliferate).

More generally, ˜ α < 1 plays the role of a mitigating factor of the ef-

fect of regulatory molecules that attenuate the entrance frequency

into proliferation. Now, from (17) , we deduce that a sufficient con-

dition for the existence of D when ˜ α < 1 , is given by: ˜ αβ−1 (μ) <
˜ β−1 ( ̃  μ) < β−1 (μ) . 

On the other hand, we observe that when ˜ α > 1 , then, from

(17) , we deduce that a sufficient condition for the existence of D is

given by: β−1 (μ) < 

˜ β−1 ( ̃  μ) < ˜ αβ−1 (μ) . We summarize the over-

all discussion in the following result: 

Proposition 1. (i) For all ˜ α > 0 , if the conditions 

˜ δ > 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , and, δ > 

[
2 e −γ τ − 1 

]
β(0) , (19)

are satisfied, then (0, 0, 0) is the unique equilibrium point of the sys-

tem (10) . Note that in fact (0, 0, 0) is always a steady state of the

system (10) . 

(ii) For all ˜ α > 0 , the condition 

δ < 

[
2 e −γ τ − 1 

]
β(0) , (20)

is a necessary and sufficient conditions for the existence of the steady

state, E = (0 , 0 , x e ) , where x e > 0, for the system (10) . 

(iii) For all ˜ α > 0 , if the conditions 

˜ δ > 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , and, δ < 

[
2 e −γ τ − 1 

]
β(0) , (21)

are satisfied, then (0, 0, 0) and E = (0 , 0 , x e ) are the unique steady

states of system (10) . 

s

(iv) For all ˜ α > 0 , the condition 

˜ < 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , (22)

s a necessary and sufficient condition for the existence of the steady

tate ( ̃  x e , ̃  u e , 0) where, ˜ x e > 0 and ˜ u > 0 , for the system (10) . 

(v) For all ˜ α > 0 , if the conditions 

˜ < 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , and, δ > 

[
2 e −γ τ − 1 

]
β(0) , (23)

re satisfied, then (0, 0, 0) and ( ̃  x e , ̃  u e , 0) are the unique steady states

f system (10) . 

(vi) For all ˜ α > 0 , the conditions 

˜ � = 1 , ˜ δ < 

[
2 e − ˜ γ ˜ τ − 1 

1 − 2 ̃

 K e − ˜ γ ˜ τ

]
˜ β(0) , and, δ < 

[
2 e −γ τ − 1 

]
β(0) , 

(24)

re necessary, but not sufficient, for the existence of D = ( ̃  x e , ̃  u e , x e ) . 

(vii) We denote μ = 

δ
2 e −γ τ −1 

, and, ˜ μ = 

˜ δ(1 −2 ̃ K e − ˜ γ ˜ τ ) 

2 e − ˜ γ ˜ τ −1 
. If the condi-

ions, 
 

 

 

0 < ˜ α < 1 , μ < β(0) , ˜ μ < 

˜ β(0) , 

˜ αβ−1 ( μ) < 

˜ β−1 ( ̃  μ) < β−1 ( μ) , 

2 ̃

 K e − ˜ γ ˜ τ < 1 < 2 e − ˜ γ ˜ τ , 

(25)

r, 
 

 

 

˜ α > 1 , μ < β(0) , ˜ μ < 

˜ β(0) , 

β−1 (μ) < 

˜ β−1 ( ̃  μ) < ˜ αβ−1 (μ) , 

2 ̃

 K e − ˜ γ ˜ τ < 1 < 2 e − ˜ γ ˜ τ , 

(26)

re satisfied, then a unique strictly positive dormancy steady state

 = ( ̃  x e , ̃  u e , x e ) , exists and is given by (17) . 

emark 2. (1) Obviously, uniqueness in Proposition 1 (vii) means

he existence of a unique isolated strictly positive equilibrium

oint D , but the trivial steady state and the points E = (0 , 0 , x e ) ,

( ̃  x e , ̃  u e , 0) are also steady states of system (10) . (2) We can check

hat when the positive steady states exists, then 

 e = 

1 

γ
(1 − e −γ τ ) β(x e + 

˜ x e ) x e , and, ˜ y e = 

1 

˜ γ
(1 − e − ˜ γ ˜ τ ) ̃  u e , 

(27)

here y e (resp. ˜ y e ) is the positive steady state of the total density

f proliferating healthy (resp. unhealthy) cells. (3) The third condi-

ion in (25) and (26) expresses an interesting relationship between

he fast-self renewing ability ˜ K , the apoptosis rate of malignant

ancer cells ˜ γ , and their average cell-cycle duration ˜ τ . We notice

hat even if ˜ K is relatively important (and knowing that it is not

asy to act on 

˜ K by drug infusions since its high value is due to

LT3 mutations) it is still possible to guarantee the existence of a

ormancy state by increasing ˜ τ ˜ γ . However, the increase must be

oderate to not exceed the upper-bound ˜ γ ˜ τ < ln (2) . (4) Finally,

e notice that other cases can be discussed if biologically needed.

or instance, adding the restriction, 2 ̃  β−1 ( ̃  μ) < (1 + ˜ α) β−1 (μ) , to

he conditions (25) and (26) , ensures that x e > ˜ x e , which can rea-

onably be the expected situation of dormant tumors without

orming clinically apparent cancers. 

Now, we motivate our stability analysis through some prelim-

nary numerical observations that highlight the rich dynamics of

he model that we introduced in this work. In particular, we point

ut the different possible behaviors of the nonlinear differential-

ifference system (10) according to its associated initial conditions.

he latter fact emphasizes the importance of determining math-

matically an estimate of the region of attraction of each steady

tate of interest. 
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Fig. 4. (a) Trajectories of the model whose parameters are given in Example 1 , when they started on the Dormancy steady state D , where ˜ x e = 0 . 6573 , ˜ u e = 0 . 4737 and 

x e = 1 . 5255 . We mention that in this case, numerical simulations show that D is unstable, i.e. for arbitrary small perturbation on the initial conditions, trajectories do not 

converge towards D . (b) Trajectories of the model whose parameters are given in Example 1 , when they started from the initial conditions given by: ϕ x (t) = ϕ ˜ x (t) = 2 , 

for all t ∈ [ −τ, 0] , and ϕ ˜ u (t) = 1 , for all t ∈ [ − ˜ τ , 0] . The steady states D and E both exist in this case, however, we notice that the trajectories rather converge to another 

equilibrium point, that seems stable, and which is given by (3.1998, 2.3060, 0). (c) All the model parameters and the initial conditions are similar to (b), except the initial 

condition for ˜ u which is no given by: ϕ ˜ u (t) = 0 . 1 , for all t ∈ [ − ˜ τ , 0] . In this case, the trajectories converge to E = (0 , 0 , 2 . 1826) . (d) Now, we modify the value of ˜ K , that we 

increase to 0.6680, and we observe that for any initial conditions the trajectories ˜ x → + ∞ and ˜ u → + ∞ , when t goes to + ∞ . 
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xample 1. Let us consider the following biological functions and

arameters for cells in Category A (Cat. A) and Category B (Cat. B):

Cat. A: τ = 1 . 11 δ = 0 . 1 γ = 0 . 1 β(m ) = 

3 
1+ m 4 

Cat. B: ˜ τ = 0 . 9 ˜ δ = 0 . 36 ˜ γ = 0 . 32 ˜ β(m ) = 

2 
1+ m 4 ˜ α = 0 . 6 ˜ K = 0 . 54 

For the considered set of parameters and functions, a unique

ormancy steady state D exists and is given by D = ( ̃  x e , ̃  u e , x e ) ,

here ˜ x e = 0 . 6573 , ˜ u e = 0 . 4737 and x e = 1 . 5255 . This steady state

s shown in Fig. 4 (a). However, the latter point is not the unique

quilibrium point of the system. Indeed, the 0-equilibrium (0, 0, 0),

nd the points: E = (0 , 0 , 2 . 1826) and (3.1998, 2.3060, 0), also ex-

st. 8 When we select the constant initial conditions ϕ x (t) = ϕ ˜ x (t) =
 , for all t ∈ [ −τ, 0] , and ϕ ˜ u (t) = 1 , for all t ∈ [ − ˜ τ , 0] , we observe

hat the trajectories converge to (3.1998, 2.3060, 0), as illustrated

n Fig. 4 (b), where unhealthy cells survive (the attractive point

eems to be stable), while the healthy cells vanish (converge to

ero). By changing the initial condition of ˜ u , from the previous

alue to ϕ ˜ u (t) = 0 . 1 , for all t ∈ [ − ˜ τ , 0] , we observe that the tra-

ectories converge to E , as illustrated in Fig. 4 (c). Moreover, the

teady states in Fig. 4 (b) and (c) seem to be stable (each one has its

egion of attraction). Lyapunov theory offers strong tools to estab-

ish the regional stability properties of the steady states, provided

hat a suitable Lyapunov functional is found for the studied model.

ow, let us modify the value of ˜ K by increasing it to ˜ K = 0 . 6680 .

t follows that 2 ̃  K e − ˜ γ ˜ τ − 1 = 0 . 017 , which implies that the trajec-

ories of the unhealthy compartment are unbounded (similarly to
8 One may notice the relationship that exists between the three different non- 

rivial steady states. In fact, the x e -value in E corresponds to the sum x e + ̃  x e of 

he dormancy steady state D , while the ˜ x e -value in the steady state ( ̃ x e , ̃  u e , 0) cor- 

esponds to the value x e + ̃ α ˜ x e 
˜ α , where x e and ˜ x e in the latter fraction are the corre- 

ponding values in the dormancy steady state D . 

 

i  

F  
dimy et al., 2015 ). Numerical simulations in that case, for arbi-

rary initial conditions, are given in Fig. 4 (d). 

xample 2. Now, let us consider the following functions and pa-

ameters: 

Cat. A: τ = 1 . 25 δ = 0 . 2 γ = 0 . 2 β(m ) = 

1 
1+ m 2 

Cat. B: ˜ τ = 1 . 66 ˜ δ = 0 . 1 ˜ γ = 0 . 2 ˜ β(m ) = 

1 . 2 
1+5 m 4 

˜ α = 0 . 4 ˜ K = 0 . 3 

The steady states (0, 0, 0), E = (0 , 0 , x e ) , ( ̃  x e , ̃  u e , 0) , and D =
( ̃  x e , ̃  u e , x e ) , of the corresponding system, exist. If we select the

onstant initial conditions ϕ x (t) = 1 . 55 , and ϕ ˜ x (t) = 1 , for all t ∈
 −τ, 0] , and ϕ ˜ u (t) = 0 . 3 , for all t ∈ [ − ˜ τ , 0] , we observe that the

rajectories are unstable as illustrated in Fig. 5 (a), knowing that the

ormancy steady state here is D = (0 . 3445 , 0 . 0792 , 0 . 9926) . For in-

tance, we recall that in hematopoietic systems, oscillations are

ssociated to many periodic diseases (e.g. cyclic neutropenia and

ome types of chronic leukemia). Now, let us consider random con-

tant initial conditions and let us keep constant all the biological

arameters, except the value of ˜ α, that we consider as 0.2, and

hen 0.6 in a second case. As shown in Fig. 5 (b), we note that by

ncreasing the value of ˜ α from 0.2 to 0.6, the trajectories become

table. Thus, it appears that ˜ α may have, at least in this example, a

tabilizing (or destabilizing) effect on the trajectories of the studied

odel. 

xample 3. Finally, let us consider the following functions and pa-

ameters: 

Cat. A: τ = 1 . 25 δ = 0 . 1 γ = 0 . 2 β(m ) = 

1 
1+ m 2 

Cat. B: ˜ τ = 0 . 7 ˜ δ = 0 . 2 ˜ γ = 0 . 1 ˜ β(m ) = 

2 
1+2 m 4 

˜ α = 2 ˜ K = 0 . 5 

The conditions of existence of D = ( ̃  x e , ̃  u e , x e ) are satisfied, and

n this case we have: ˜ x e = 0 . 6833 , ˜ u e = 0 . 1580 and x e = 1 . 45599 .

or the constant initial conditions ϕ x (t) = 0 . 1 and ϕ (t) = 1 . 5 , for
˜ x 
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Fig. 5. Trajectories of the model in Example 2 . (a) Unstable (oscillatory) solutions corresponding to the constant initial conditions ϕ x (t) = 1 . 55 , ϕ ˜ x (t) = 1 , for all t ∈ [ −τ, 0] , 

ϕ ˜ u (t) = 0 . 3 , for all t ∈ [ − ˜ τ , 0] . (b) Stabilizing effect of ˜ α. In this illustration, all the parameters, as well as initial conditions, are identical, except the value of ˜ α. In the first 

case, ˜ α = 0 . 2 : the trajectories are unstable. By increasing ˜ α to 0.7 the trajectories become stable. 

Fig. 6. Trajectories of the model given in Example 3 . Here the dormancy steady 

state D exists and is given by: ˜ x e = 0 . 6833 , ˜ u e = 0 . 1580 and x e = 1 . 45599 . Conver- 

gence to the dormancy steady state D (which seems stable) is obtained starting 

from the constant initial conditions: ϕ x (t) = 0 . 1 and ϕ ˜ x (t) = 1 . 5 , for all t ∈ [ −τ, 0] , 

and ϕ ˜ u (t) = 1 . 5 for all t ∈ [ − ˜ τ , 0] . 
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all t ∈ [ −τ, 0] , and ϕ ˜ u (t) = 1 . 5 for all t ∈ [ − ˜ τ , 0] , it appears that D

is stable as illustrated in Fig. 6 . 

At this juncture, we deduce that the coupled system (10) un-

der study has some interesting dynamical features. Firstly, we saw

that the solutions of the coupled system can be bounded or un-

bounded (as in the non-coupled model, Adimy et al., 2015 ). In

the former case, several steady states may exist and their values

depend on the different biological parameters of the model. The

existence of the steady states of interest ( D and E ) are governed

by some non-intuitive conditions on the biological parameters in-

volved in the system (see Proposition 1 ). In addition, we saw that

according to the initial conditions associated with the model tra-

jectories, the bounded solutions may converge to one among sev-

eral possible steady states, i.e. the stability of each steady state is

regional (local). In the general case, the steady states of the system

(10) are not always stable, but on the contrary, we noticed that os-

cillations may emerge, as in Example 2 . Our objective now is to

determine exponential stability conditions for the steady states of

interest (which are: all-cell extinction, E and D ). 

4. Stability analysis of the extinction of all the cells 

In this section, we perform a stability analysis of the 0-

equilibrium of the system (10) . From a biological standpoint, this is

a case that we want to avoid, as discussed in the previous section

(see the first point, Cell extinction ), since it is synonymous of an
xcessive therapy that not only alters unhealthy populations, but

lso leads to the extinction of healthy cells in the coupled model. 

Here we introduce the following functional: 

 ( ̃  x t , ˜ u t , x t ) = ̃

 x (t) + x (t) + ψ 1 

∫ t 

t− ˜ τ
e ρ

∗
1 (� −t) ˜ u (� ) d� 

+ ψ 2 

∫ t 

t−τ
e ρ

∗
2 (� −t) β( x (� ) + 

˜ x (� ) ) x (� ) d�, 

(28)

here, ψ 1 = ψ 11 + ψ 12 , ψ 11 = 1 + 

˜ δ
˜ β(0) 

, ψ 12 = − ψ 

∗
3( K − ˜ K ) ̃ β(0) 

, K =
1 
2 e ̃

 γ ˜ τ , ψ 

∗ = ( ̃  β(0) + 

˜ δ) K − ˜ β(0) − ˜ K ̃

 δ, and, ψ 2 = 2 ψ 3 e 
−γ τ , where,

 3 , together with ρ∗
1 

and ρ∗
2 
, are strictly positive constants that

e will choose later. 

We can readily check that if 2 ̃  K e − ˜ γ ˜ τ < 1 (that we can rewrite as
˜ 
 < K ), and ψ 

∗ > 0, (i.e. ψ 12 < 0), we obtain ψ 1 > 0. It follows that

he functional W is nonnegative. We notice also that W is an un-

sual Lyapunov–Krasovskii functional (LKF) candidate, since it can

e used only because the system (10) is positive. In addition, it

s a degenerate LKF candidate (since W = 0 does not imply ˜ u = 0 )

hich is usually the case for differential-difference systems. This

ill also be the case when we investigate the stability properties

f the dormancy steady state, where we will construct a quadratic

egenerate LKF. 

Thanks to the functional W, we prove in Appendix A the fol-

owing result: 

heorem 1. If the conditions 

2 e −γ τ − 1 

)
β(0) < δ, 0 < ψ 

∗, and, 2 ̃

 K e − ˜ γ ˜ τ < 1 , (29)

re satisfied, then the trivial steady state of system (10) is globally

xponentially stable with a decay rate larger than, or equal to, ψ 4 

defined in Appendix A ). 

emark 3. (1) The conditions (29) exclude the existence of any

teady state different from the trivial one. (2) We can interpret

he cell extinction as a result of an excessive therapy that affects

lso healthy cells so that their apoptosis rate, γ , increases until

ecoming greater than the ratio ln (2) 
τ , or, until the death rate and

ifferentiation rate, i.e. δ, becomes greater than (2 e −γ τ − 1) β(0)

which is a less demanding condition in comparison to γ > 

ln (2) 
τ ).

3) Arguing as in Adimy et al. (2015) , Djema et al. (2016a) , we

an prove that the conditions (29) are also necessary for the expo-

ential stability of the 0-equilibrium. (4) Finally, we deduce from

heorem 1 that all-cell extension results from uncorrelated con-

itions between the healthy and unhealthy compartments. Indeed,

e note that the last two conditions in (29) relate to the unhealthy

ompartment, since only unhealthy parameters are involved. More-

ver, these conditions are similar to those giving global asymptotic

tability in Adimy et al. (2015) for a non-coupled model. The bi-

logical interpretation is that cell extension occurs if and only if
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r  
oth the healthy and unhealthy compartments are enable to regen-

rate themselves autonomously. In other words, it appears that the

oupling has no effect on the stability of the 0-equilibrium since

he conditions for total-cell eradication imply extinction of both

he unhealthy and healthy compartments, as if they were sepa-

ated (not coupled). This observation will not hold when we study

ormancy (and non-zero steady states). 

. Stability analysis of favorable steady states: D (dormancy) 

nd E (CSCs eradication) 

Here we will emphasize on the dormancy steady state D =
( ̃  x e , ̃  u e , x e ) , where all the components of the steady state are dif-

erent from zero (i.e. ˜ x e > 0 , ˜ u e > 0 , x e > 0). In fact, we will high-

ight the case of dormancy D , since it is clearly the most general

ne. Indeed, from the analysis of D , it becomes possible to evalu-

te the regional stability properties of E = (0 , 0 , x e ) (which are par-

ially investigated in Djema et al., 2016b , when ˜ α = 1 ), and also of

he steady state ( ̃  x e , ̃  u e , 0) . 

.1. A new representation of the system 

Now, we want to investigate the stability properties of D when

t exists. Thus, we assume that the conditions given in Proposition

 (vii) are satisfied and we perform the classical changes of coordi-

ates: ˜ X = ˜ x − ˜ x e , ˜ U = ˜ u − ˜ u e , and X = x − x e . Therefore, from (10) ,

t follows that for all t ≥ 0, 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ ˜ X (t) = −
[

˜ δ + 

˜ β(X (t) + ˜ α ˜ X (t) + x e + ˜ α ˜ x e ) 
]
( ̃  X (t) + 

˜ x e ) 

+2(1 − ˜ K ) e − ˜ γ ˜ τ ( ̃  U (t − ˜ τ ) + 

˜ u e ) , 
˜ U (t) + 

˜ u e = 

˜ β(X (t) + ˜ α ˜ X (t) + x e + ˜ α ˜ x e )( ̃  X (t) + 

˜ x e ) 

+2 ̃

 K e − ˜ γ ˜ τ ( ̃  U (t − ˜ τ ) + 

˜ u e ) , 
˙ X (t) = −

[
δ + β(X (t) + 

˜ X (t) + x e + 

˜ x e ) 
]
(X (t) + x e ) 

+2 e −γ τ β(X (t − τ ) + 

˜ X (t − τ ) + x e + 

˜ x e )(X (t − τ ) + x e ) 

(30) 

o ease the analysis of the above system, we rewrite it in a more

onvenient form. Observe that for all z > −e , e > 0 , where, z = X +
˜ 
 and e = x e + ̃  x e , we have, with an abuse of notation, 

(z + e ) = β(e ) + θ z + R (z ) , (31) 

here β is the Hill-function defined in (1) , θ = β ′ (e ) , and, R (z ) =
 e + z 
e 

(z + e − � ) β(2) (� ) d�. Next, for all ˜ z > −˜ e , ˜ e > 0 , where, ˜ z = X +
˜ ̃  X , and, ˜ e = x e + ˜ α ˜ x e , we get similarly to (31) , 

˜ ( ̃ z + ̃  e ) = 

˜ β( ̃ e ) + 

˜ θ ˜ z + 

˜ R ( ̃ z ) , (32) 

here, ˜ θ = 

˜ β ′ ( ̃ e ) , and, ˜ R ( ̃ z ) = 

∫ ˜ e + ̃ z 
˜ e 

( ̃ z + ̃  e − � ) ̃  β(2) (� ) d�. Therefore,

sing (31) and (32) , and by simplifying some terms using (11) , we

et the system, 

 

 

 

˙ ˜ X (t) = −a 1 ̃  X (t) − a 2 X (t) + a 3 ̃  U (t − ˜ τ ) + F (X (t ) , ˜ X (t )) , 
˜ U (t) = a 4 ̃  X (t) + a 2 X (t) + a 5 ̃  U (t − ˜ τ ) − F (X (t ) , ˜ X (t )) , 
˙ X (t) = −a 6 X (t) − a 7 ̃  X (t) + a 8 X (t − τ ) + a 9 ̃  X (t − τ ) + G (X t , ˜ X t )

(33) 

here, F (X (t) , ˜ X (t)) = − ˜ θ
[

˜ α ˜ X 

2 (t)) + X (t ) ̃  X (t ) 
]

− ˜ R (X (t) + ˜ α ˜ X (t))( ̃  X (t) + 

˜ x e ) , 
(34) 

 (X t , ˜ X t ) = − θ
[
X 

2 (t) + X (t ) ̃  X (t ) 
]

− R (X (t) + 

˜ X (t))(X (t) + x e ) 

+ 2 e −γ τ θ
[
X 

2 (t − τ ) + X (t − τ ) ̃  X (t − τ ) 
]

+ 2 e −γ τ R (X (t − τ ) + 

˜ X (t − τ ))(X (t − τ ) + x e ) , 

(35) 
d  
nd where the constant parameters a i are given by: 

 

 

 

a 1 = 

˜ δ + 

˜ β(x e + ˜ α ˜ x e ) + ˜ α ˜ θ ˜ x e , a 2 = 

˜ θ ˜ x e , a 3 = 2(1 − ˜ K ) e − ˜ γ ˜ τ , 

a 4 = 

˜ β(x e + ̃  α ˜ x e ) + ̃  α ˜ θ ˜ x e , a 5 = 2 ̃

 K e − ˜ γ ˜ τ , a 6 = δ+ β( x e + ̃

 x e ) + θx e , 
a 7 = θx e , a 8 = 2 e −γ τ [ β( x e + 

˜ x e ) + θx e ] , a 9 = 2 e −γ τ θx e . 

(36) 

We notice that if the trajectories of (33) converge exponen-

ially to the 0-equilibrium, then the positive trajectories of the sys-

em (10) converge exponentially to D . Now, we are going to state

nd prove some sector conditions on the nonlinear terms R and 

˜ R .

hen, we deduce some upper-bounds on the nonlinear terms F and

 . For that purpose, we prove in Appendix B through lengthy cal-

ulations that there exist strictly positive constants s , ˜ s , m and ˜ m ,

atisfying: 

 R (z ) | ≤ s | z | , and | ̃  R ( ̃ z ) | ≤ ˜ s | ̃ z | , (37)

 R (z ) | ≤ mz 2 , and | ̃  R ( ̃ z ) | ≤ ˜ m ̃ z 2 , (38)

or all z > −e ( z and e are defined before (31) ), and for all ˜ z > −ẽ

 ̃ z and ˜ e are defined before (32) ). Moreover, using (37) and (38) ,

e can determine strictly positive constants c i , i = { 1 , . . . , 6 } , such

hat the following quadratic upper bounds hold true: 

F (X, ˜ X ) 
∣∣ ≤ c 1 Q(X ) + c 2 Q( ̃  X ) , (39)

G (X t , ˜ X t ) 
∣∣ ≤ c 3 Q(X (t)) + c 4 Q( ̃  X (t)) + c 5 Q(X (t − τ )) 

+ c 6 Q( ̃  X (t − τ )) . (40) 

emark 4. (1) The upper-bounds given in (37) –(40) , will not in-

ervene when we determine the decay conditions and the decay

ate of the solutions. However, their effect appears in the size of

he basin of attraction that we will provide. Actually, if the con-

tants s , ˜ s , m , ˜ m , in (37) and (38) , as well as the constants c i 
n (39) and (40) , are large, then the size of the basin of attrac-

ion shrinks accordingly. (2) By comparing the present study with

jema et al. (2016b) , we notice that Djema et al. (2016b) was

evoted to the study of a model which was simpler than the

ystem (33) under study in this paper. Indeed, the model in

jema et al. (2016b) can be obtained by putting ˜ α = 1 and by elim-

nating all the terms where ˜ x e is present in Eqs. (33) –(36) . (3) It is

orth mentioning that the stability results that we will determine

ater apply for a wide range of functions β and 

˜ β, as long as the

ector conditions (37) and (38) are satisfied. 

Now, we want to perform a stability analysis of the trivial

teady state of the (shifted) model using its representation in (33) :

e recall that the 0-equilibrium of (33) can be D or E of (10) .

or meeting such a purpose, strong tools are provided by Lyapunov

heory, in the analysis of nonlinear differential-difference systems

ith possibly piecewise continuous solutions (see e.g. Gu and Liu,

009; Karafyllis et al., 2009; Michel et al., 2015; Pepe, 2003 , and

he references therein). However, finding a suitable LKF is not an

asy task. In addition, the provided stability conditions can be con-

ervative. So, we adopt the following strategy that highlights our

iological aims: 

1 © Firstly, we use the descriptor method ( Fridman, 2014 ) that al-

ows us to provide a local (Lyapunov-based) stability result for our

iological model. The advantage of this approach is that it pro-

ides an effective tool (formulated as an LMI condition) to check

f a steady state of a specific biological model (defined by its set of

arameters) is locally stable. 

2 © In order to address the following issue: How can we provide

ealistic stability conditions that can be interpreted and satisfied un-

er the effect of drugs? The first approach will be slightly modified
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in a second time. Thus, we establish a different result (that can be

seen as a particular formulation of the first approach) which relies

on the analytic construction of a suitable Lyapunov-like functional,

specific for the studied biological system. The latter approach al-

lows us to provide more explicit decay conditions than the com-

mon LMI-type approaches. We point out that even if the second

construction provides more conservative conditions than the LMI

ones, they have the advantage of being more easily (biologically)

understandable. It is to this end that, in the last section, we show

how the decay conditions can be interpreted, in practice, according

to the biological context of hematopoiesis and leukemia. 

In summary, we determine throughout this section some expo-

nential decay conditions (along with an estimate of the decay rate

of the solutions and a region of attraction of the favorable steady

states), via two complementary approaches: the descriptor method

that provides local stability results for the general structure of the

studied system, and, a suitable explicit Lyapunov-like construction

that allows us to address the regional stability properties of the

dormancy steady state. The latter decay conditions lend themselves

more easily than the LMI ones to medical interpretations. 

5.2. Stability analysis using the descriptor method 

In this section, we consider as a first step only continuous solu-

tions of the system in (33) and we study the linear approximation

of the state col{ X, ˜ X } , that we denote Z = col{ Z 1 , Z 2 } . Then, by ne-

glecting the nonlinear terms F and G in (33) , we rewrite the stud-

ied system in the following compact form: {
˙ Z (t) = B 0 Z(t) + B 1 Z(t − τ ) + B 2 ̃

 U ( t − ˜ τ ) , 
˜ U (t) = B 3 Z(t) + B 4 ̃

 U ( t − ˜ τ ) , 
(41)

for all t ≥ 0, where B i are given by (we recall that a i are defined in

(36) ), 

B 0 = −
(
a 6 a 7 

a 2 a 1 

)
, B 1 = 

(
a 8 a 9 

0 0 

)
, B 2 = 

(
0 

a 3 

)
, 

B 3 = 

(
a 2 a 4 

)
, and, B 4 = a 5 = 2 ̃

 K e − ˜ γ ˜ τ . 

(42)

Next, we consider some symmetric positive definite matrices P > 0,

S > 0, J > 0, of appropriate dimension, together with a strictly pos-

itive constant ˜ a , and we verify that the derivative of the func-

tional, 

 

(
Z t , ˜ U t 

)
= Z (t) T P Z (t) + 

∫ t 

t−τ
Z T (� ) SZ(� ) d� + 

+ ̃  a 

∫ t 

t− ˜ τ

˜ U 

2 (� ) d� + τ

∫ t 

t−τ
( � + τ − t ) ̇ Z T (� ) J ̇ Z (� ) d�, 

(43)

along the trajectories of (41) , is given by, 

˙ 
 (t) = Z T (t ) 

[
P + P T 

]
˙ Z (t ) + Z T (t ) SZ(t ) − Z T (t − τ ) SZ(t − τ ) 

−τ
∫ t 

t−τ
˙ Z T (� ) J ̇ Z (� ) d� + τ 2 ˙ Z T (t) J ̇ Z (t) + ̃  a 

(
˜ U 

2 (t) − ˜ U 

2 (t − ˜ τ )

First, we notice that an upper-bound of ˙ V is given by, 

˙ 
 (t) ≤ Z T (t ) 

[
P + P T 

]
˙ Z (t ) + Z T (t ) SZ(t ) − Z T (t − τ ) SZ(t − τ ) 

+ τ 2 ˙ Z T (t) J ̇ Z (t) − Z T (t) JZ(t) + Z T (t) JZ(t − τ ) 

+ Z T (t − τ ) JZ(t) − Z T (t − τ ) JZ(t − τ ) + ̃ a ̃  U 

2 (t) − ˜ a ̃  U 

2 (t − ˜ τ ) 

+2 

[ 
Z T (t) P 

T + 

˙ Z T (t) P 
T ] [

B 0 Z(t) + B 1 Z(t − τ ) + B 2 ̃
 U ( t − ˜ τ ) − ˙ Z (t) 

]︸ ︷︷ ︸ 
=0 

, 

(44)
hich, in fact, directly follows from Jensen’s Inequality given by, 

τ

∫ t 

t−τ

˙ Z T (� ) J ̇ Z (� ) d� ≤ −
∫ t 

t−τ

˙ Z T (� ) d�J 

∫ t 

t−τ

˙ Z (� ) d� 

= − [ Z(t) − Z(t − τ ) ] 
T 

J [ Z(t) − Z(t − τ ) ] , 

nd where P and P that appear in (44) are some free-weighting

atrices of appropriate dimension. Then, it follows that, 

˙ 
 (t) ≤ ηT (t )�η(t ) + ̃  a ̃  U 

2 (t) , 

here η is an augmented state defined by, 

T (t) = 

[
Z(t) ˙ Z (t) Z(t − τ ) ˜ U (t − ˜ τ ) 

]
, (45)

nd the matrix � is given by, 

= 

⎛ 

⎜ ⎜ ⎝ 

S − J + p 
T 

B 0 + B 

T 
0 P P − P 

T + B 

T 
0 P J + P 

T 
B 1 P 

T 
B 2 

∗ τ 2 J − P 
T 

− P P 
T 

B 1 P 
T 

B 2 

∗ ∗ −S − J 0 

∗ ∗ ∗ −˜ a 

⎞ 

⎟ ⎟ ⎠ 

. 

(46)

oticing that, ˜ U (t) = [ B 3 0 0 B 4 ] η(t) , it follows that, 

˜ a ̃  U 

2 (t) = ηT (t ) Eη(t ) , where, E = 

[
B 3 0 0 B 4 

]T 

˜ a 
[
B 3 0 0 B 4 

]
. 

herefore, by applying Schur complement, we conclude that ˙ V (t) <

 is satisfied provided that the following LMI: 

� = ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

S − J + P 
T 

B 0 + B 

T 
0 P P − P 

T + B 

T 
0 P J + P 

T 
B 1 P 

T 
B 2 B 

T 
3 ̃  a 

∗ τ 2 J − P 
T 

− P P 
T 

B 1 P 
T 

B 2 0 

∗ ∗ −S − J 0 0 

∗ ∗ ∗ −˜ a B 

T 
4 ̃  a 

∗ ∗ ∗ ∗ −˜ a 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

< 0 , (47)

olds. Next, by following arguments of Fridman (2002) we deduce

rom � < 0 that the last block in (47) satisfies ( 
−˜ a B T 

4 ̃
 a 

∗ −˜ a 
) < 0 . The

atter implies by Schur complement that −I + B T 4 B 4 < 0 . Hence, the

igenvalues of B 4 are inside the unit circle, i.e. the difference equa-

ion 

˜ U (t) = B 4 ̃  U (t − ˜ τ ) is stable for all ˜ τ > 0 . The latter, together

ith 

˙ V < 0 , guarantees the asymptotic stability of the system (41) .

e mention that it is possible to extend the stability result to the

onlinear system (33) , using the functional V (i.e. providing some

onditions on the nonlinear terms F and G as in Fridman (2014 ,

ection 3.11). However, since it seems actually difficult to interpret

he LMI (47) as a combined targeted therapy for the studied bio-

ogical system, we slightly modify our Lyapunov approach by de-

igning, in the next section, a suitable specific LKF for the stud-

ed system that provides explicit (sufficient) stability conditions for

he dormancy steady state of the nonlinear system (33) . The func-

ional that we are going to propose has some similarities with the

unctional V . Actually, in the next section, we are going to select

ome matrices P, S and J , together with the constant ˜ a , involved in

he above construction. Thus, we will determine analytically some

pper-bounds on 

˙ V , through classical inequalities. Not surprisingly,

he latter approach increases the conservatism of the sufficient sta-

ility condition in the LMI form (the LMI condition is given by

47) ). That is the price of determining more biologically exploitable

esults (i.e. explicit exponential decay conditions with an estimate

n the decay rate of the solution and a subset of the basin of at-

raction of the trivial steady state of the nonlinear system (33) ). 
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[  
.3. Obtaining explicit exponential decay conditions 

We focus on the coupled system using its representation in

33) , with possibly piecewise continuous solutions. Firstly, let us

ntroduce the quadratic function: 

 (X, ˜ X ) = Q(X ) + λ1 Q ( ̃  X ) , where, Q (� ) = 

1 
2 
� 2 , (48) 

nd λ1 = 2 . This is equivalent to put P = diag{ 1 / 2 , 1 } in V of the

revious section. Next, we consider the following operators, 

( ̃  ϕ ) = 

∫ 0 

− ˜ τ
e ρ1 � Q( ̃  ϕ (� )) d�, and, (49)

(ϕ) = 

∫ 0 

−τ
e ρ2 � Q(ϕ(� )) d�, (50)

here, ϕ ∈ C([ −τ, 0] , R ) , ˜ ϕ ∈ C([ − ˜ τ , 0] , R ) , and ρ1 , ρ2 , are strictly

ositive constants that we determine later. In fact, observe that,

ompared to the integral terms in V of the previous section, S and

have exponential functions -in the integral terms- that make it

ossible to get a lower-bound on the exponential decay of the so-

utions. Next, in the quest for explicit decay conditions, we are

oing to substitute ˙ X and 

˙ ˜ X when computing the derivative of

 (which is not the approach adopted in the descriptor method,

here ˙ X and 

˙ ˜ X were not replaced). Thus, the derivative of Q along

he trajectories of (33) , satisfies 

˙ 
 (t) = − 2 a 1 λ1 Q( ̃  X (t)) − 2 a 6 Q(X (t)) − ( a 2 λ1 + a 7 ) X (t) ̃  X (t) 

+ a 3 λ1 ̃
 X (t) ̃  U (t − ˜ τ ) + a 8 X (t) X (t − τ ) + a 9 X (t) ̃  X (t − τ ) 

+ λ1 ̃
 X (t) F (X (t) , ˜ X (t)) + X (t) G (X t , ˜ X t ) . 

(51) 

otice that the derivative of Y( ̃  U t ) , for almost all t ≥ 0, is 

˙ 
 (t) = Q( ̃  U (t)) − e −ρ1 ̃ τ Q( ̃  U (t − ˜ τ )) − ρ1 Y( ̃  U t ) . (52)

ow, using the second equation in (33) , we obtain 

˙ 
 (t) = − ρ1 Y( ̃  U t ) + a 2 4 Q( ̃  X (t)) + a 2 2 Q(X (t)) 

− (e −ρ1 ̃ τ − a 2 5 ) Q( ̃  U (t − ˜ τ )) 

+ a 2 a 4 X (t) ̃  X (t) + a 2 a 5 X (t) ̃  U (t − ˜ τ ) + a 4 a 5 ̃  X (t) ̃  U (t − ˜ τ ) 

+ Q(F ( ̃  X (t) , X (t))) − F (X (t) , ˜ X (t)) [
a 4 ̃  X (t) + a 2 X (t) + a 5 ̃  U (t − ˜ τ ) 

]
, 

here the a i ’s and F are defined after (33) . Similarly, we compute

he derivatives of the functionals S (X t ) and S ( ̃  X t ) . By combining

he previous intermediate results (i.e. ˙ Q , ˙ Y and 

˙ S ), we deduce that

he time derivative of the functional, 

 

† (X t , ˜ X t , ˜ U t ) = Q (X (t) , ˜ X (t)) + λ2 S ( X t ) + λ3 S( ̃  X t ) + λ4 Y( ̃  U t ) , 

(53) 

here λ2 , λ3 and λ4 are positive constants to be chosen later,

long the trajectories of (33) is given, for almost all t ≥ 0, by: 

˙ 
 

† (t) = −
[
2 λ1 a 1 −λ3 −λ4 a 

2 
4 

]
Q( ̃  X ( t)) −

[
2 a 6 − λ2 − λ4 a 

2 
2 

]
Q( X ( t))

− ρ2 λ3 S( ̃  X t ) −ρ2 λ2 S ( X t ) −ρ1 λ4 Y( ̃  U t ) −λ4 

[
e −ρ1 ̃ τ −a 2 5 

]
Q( ̃  U (t − ˜ τ )) 

− λ2 e 
−ρ2 τ Q ( X (t −τ ) ) −λ3 e 

−ρ2 τ Q( ̃  X (t −τ )) + a 2 a 5 λ4 X (t ) ̃  U (t − ˜ τ ) 

− [ a 2 λ1 + a 7 −λ4 a 2 a 4 ] X (t) ̃  X (t) + a 8 X (t) X (t −τ ) + a 9 X (t) ̃  X (t −τ ) 

+ [ a 3 λ1 + a 4 a 5 λ4 ] ̃  X (t) ̃  U (t − ˜ τ ) − a 5 λ4 F (X (t) , ˜ X (t)) ̃  U (t − ˜ τ ) 

+ X (t) G (X t , ˜ X t ) + λ4 Q(F ( ̃  X (t) , X (t))) − λ4 F (X (t) , ˜ X (t)) [
a 4 ̃  X (t) + a 2 X (t) 

]
. 

Next, we recall that for strictly positive constants, ν i > 0,

 = 1 to 5, (that we will choose later), we have the following in-

qualities: | X ̃  X | ≤ 1 
ν1 

Q(X ) + ν1 Q( ̃  X ) , | X (t) X (t − τ ) | ≤ 1 
ν2 

Q(X (t)) +
2 Q(X(t − τ )) , | X(t) ̃  X (t − τ ) | ≤ 1 
ν3 

Q(X(t)) + ν3 Q( ̃  X (t − τ )) , | ̃  X (t)

˜ 
 (t − ˜ τ ) | ≤ 1 

ν4 
Q( ̃  X (t)) + ν4 Q( ̃  U (t − ˜ τ )) , | X(t) ̃  U (t − ˜ τ ) | ≤ 1 

ν5 
Q(X(t)) +

5 Q( ̃  U (t − ˜ τ )) . Therefore, it follows that the derivative ˙ V † (t)

atisfies, for almost all t ≥ 0, the following inequality: 

˙ 
 

† (t) ≤ −[ 2 λ1 a 1 − b 1 ] Q( ̃  X (t)) − [ 2 a 6 − b 2 ] Q(X (t)) − ρ2 λ3 S( ̃  X t ) 

− ρ2 λ2 S ( X t ) − ρ1 λ4 Y( ̃  U t ) −
[
λ4 e 

−ρ1 ̃ τ − b 3 

]
Q( ̃  U (t − ˜ τ )) 

−
[
λ2 e 

−ρ2 τ − b 4 

]
Q ( X (t − τ ) ) −

[
λ3 e 

−ρ2 τ − b 5 

]
Q( ̃  X (t − τ )) 

+ λ4 Q(F ( ̃  X (t) , X (t))) − a 5 λ4 F (X (t) , ˜ X (t)) ̃  U (t − ˜ τ ) 

+ X (t) G (X t , ˜ X t ) − λ4 F (X (t) , ˜ X (t)) 
[
a 4 ̃  X (t) + a 2 X (t) 

]
, 

(54) 

here, 

 

 

 

 

 

b 1 = λ3 + λ4 a 
2 
4 + ν1 | a 2 λ1 + a 7 − λ4 a 2 a 4 | , 

b 2 = λ2 + λ4 a 
2 
2 + 

| a 2 λ1 + a 7 −λ4 a 2 a 4 | 
ν1 

+ 

| a 8 | 
ν2 

+ 

| a 9 | 
ν3 

+ 

| a 2 a 5 | λ4 

ν5 
, 

b 3 = λ4 a 
2 
5 + ν4 | a 3 λ1 + a 4 a 5 λ4 | + ν5 λ4 | a 2 a 5 | , 

b 4 = ν2 | a 8 | , and, b 5 = ν3 | a 9 | . 
(55) 

Now we are ready to determine decay conditions that ensure

he regional exponential stability of the trivial steady state of the

ystem (33) . The terms where F and G are involved in (54) will be

sed only to determine a subset of the basin of attraction of the

rivial steady state of the system (33) . 

Let us focus on the constant which is multiplied by Q( ̃  U (t − ˜ τ ))

n (54) . Using the inequality | a 3 λ1 + a 4 a 5 λ4 | ≤ λ1 | a 3 | + λ4 | a 4 a 5 | ,
e notice that the inequality λ4 e 

−ρ1 ̃ τ − b 3 > 0 is verified if 

4 

(
e −ρ1 ̃ τ − a 2 5 − ν4 | a 4 a 5 | − ν5 | a 2 a 5 | 

)
− ν4 λ1 | a 3 | > 0 . (56)

or later use, we set d 1 � λ4 (e −ρ1 ̃ τ − a 2 
5 

− ν4 | a 4 a 5 | − ν5 | a 2 a 5 | ) −
4 λ1 | a 3 | . 

We deduce that the first decay condition is given by: 

 

2 
5 + ν4 | a 4 a 5 | + ν5 | a 2 a 5 | < 1 . (57)

ndeed, the previous condition is necessary to guarantee that

56) is satisfied. Now, let us select ν4 = 

1 
2 | a 4 | −1 , and ν5 =

1 
2 | a 2 | −1 , for a 4 � = 0 and a 2 � = 0 . Using the definitions of a i ’s, ν4 and

5 , it follows that the first decay condition (57) is equivalent to 

(2 ̃

 K e − ˜ γ ˜ τ ) 2 + 2 ̃

 K e − ˜ γ ˜ τ < 1 . (58)

emark 5. One notices that we have deliberately chosen ν4 =
1 
2 | a 4 | −1 , and, ν5 = 

1 
2 | a 2 | −1 , and that these choices are not unique.

ndeed, our objective here is to determine a sufficient decay con-

ition that involves only the unhealthy parameters of the per-

anently dividing subpopulation (for instance, the subpopulation

ith FLT3-type mutations in AML) which are, ˜ K , ˜ τ and ˜ γ . For

hat purpose, we derive a decay condition involving only the pa-

ameter a 5 . Therefore, ν4 and ν5 are used in order to compen-

ate a 4 and a 2 . A more general form is given by ν4 = ˜ ν4 | a 4 | −1 ,

5 = ˜ ν5 | a 2 | −1 , where ˜ ν4 > 0 , and, ˜ ν5 > 0 . In this case, the decay

ondition (58) rewrites as, (2 ̃  K e − ˜ γ ˜ τ ) 2 + 2( ̃  ν4 + ˜ ν5 ) ̃  K e − ˜ γ ˜ τ < 1 . 

Now, notice that a direct consequence of the inequality (58) is

hat for all ρ1 ∈ (0 , 1 
˜ τ ln ( 5 

1+4[ a 2 
5 
+ a 5 ] 

)) , we get e −ρ1 ̃ τ − [ a 2 
5 

+ a 5 ] >

1 −[ a 2 
5 
+ a 5 ] 

5 > 0 . Consequently, we deduce that d 1 , which is defined

ight after (56) , and which is now equal to: d 1 = λ4 (e −ρ1 ̃ τ −
 a 2 

5 
+ a 5 ]) − ν4 λ1 | a 3 | , satisfies the inequality, d 1 > 0 , for all λ4 =

˜ λ4 λ1 ν4 | a 3 | 
e −ρ1 ̃ τ −[ a 2 

5 
+ a 5 ] 

> 0 , where ˜ λ4 > 1 . Next, using the inequality, 

∣∣F (X (t) , ˜ X (t)) ̃  U (t − ˜ τ ) 
∣∣ ≤ 2 | a 5 | λ4 

d 1 
Q(F (X (t) , ˜ X (t))) 

+ 

d 1 

2 | a 5 | λ4 

Q( ̃  U (t − ˜ τ ) , 
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Table 1 

Parameters of the unhealthy compartment, and the values of ˜ x e and ˜ u e . 

˜ δ ˜ γ ˜ τ ˜ β(m ) ˜ K ˜ u e ˜ x e 

0.928 0.4 1 2 . 78 
1+3 m 2 

0.2 0.05938567 0.02179864 

Table 2 

Parameters of the healthy hematopoietic stem cell 

compartment, and the value of x e . 

δ γ τ β( m ) x e 

0.168 0.001 0.12 0 . 219 
1+4 m 2 

0.25354595 

T  

s  

D  

p  

t  

(

 

(

 

a  

a  

a

 

+ )∣∣∣
(65) 

(  

0  

(  

o  

i

E  

h  

w

 

s  

x  

t

(

(

(

 

w  

λ  

 

0  

c  
it follows from (54) that, 

˙ 
 

† (t) ≤ − [ 2 λ1 a 1 − b 1 ] Q( ̃  X (t)) − [ 2 a 6 − b 2 ] Q(X (t)) 

− d 1 

2 

Q( ̃  U (t − ˜ τ )) 

− ρ2 λ2 S(X t ) − ρ2 λ3 S( ̃  X t ) −
[
λ2 e 

−ρ2 τ − b 4 

]
Q(X ( t − τ ) ) 

−
[
λ3 e 

−ρ2 τ − b 5 

]
Q( ̃  X (t − τ )) − ρ1 λ4 Y( ̃  U t ) + H(X t , ˜ X t ) , 

(59)

where, 

H 

(
X t , ˜ X t 

)
= 

(
λ4 + 

2 ( a 5 λ4 ) 
2 

d 1 

)
Q(F (X (t) , ˜ X (t))) + X (t) G (X t , ˜ X t ) 

− λ4 F (X (t) , ˜ X (t)) 
[
a 4 ̃  X (t) + a 2 X (t) 

]
. 

(60)

Arguing similarly, we select ν2 and ν3 that compensate the terms

a 8 and a 9 (for | a 8 | � = 0 , and | a 9 | � = 0 ). For instance, we can consider

ν2 = 

1 
6 | a 8 | and ν3 = 

1 
6 | a 9 | . Then, we put, for instance, λ2 = λ3 = 

1 
3 .

We notice that our choices of ν2 and ν3 in this case are equiva-

lent to b 4 = b 5 = 

1 
6 , and it follows that for all ρ2 ∈ (0 , 1 

τ ln ( 
λ2 
b 4 

)) ,

we obtain in this case e −ρ2 τ > 

2 
3 . Thus, we end up with 

9 

d 2 � λ2 e 
−ρ2 τ − b 4 = 

1 
3 

(
e −ρ2 τ − 1 

2 

)
> 

1 
18 

, 

d 3 � λ3 e 
−ρ2 τ − b 5 = 

1 
3 

(
e −ρ2 τ − 1 

2 

)
> 

1 
18 

. 
(61)

Finally, by selecting ν1 = λ1 = 2 , all the setting parameters in-

volved in the functional V † are now chosen. We conclude that if

the decay conditions d 4 � 2 λ1 a 1 − b 1 > 0 , and d 5 � 2 a 6 − b 2 > 0 ,

are satisfied, then (59) satisfies for almost all t ≥ 0, 

˙ 
 

† (t) ≤ − 3 d V 

† (X t , ˜ X t , ˜ U t ) − d 4 

2 

Q( ̃  X (t)) − d 5 

2 

Q(X (t)) 

− d 1 

2 

Q( ̃  U (t − ˜ τ )) 

− d 2 Q(X (t − τ )) − d 3 Q( ̃  X (t − τ )) + H(X t , ˜ X t ) , 

where d = 

1 
3 min { d 4 

2 λ1 
, 
d 5 
2 , ρ1 , ρ2 } . Next, in Appendix C , we focus on

the nonlinear function H , defined right after (59) , in order to de-

fine a subset of the basin of attraction of the trivial steady state of

system (33) . By following the arguments given in Appendix C , we

prove that in a well-defined region (defined in terms of the initial

conditions) we get: 

˙ 
 

† (t) ≤ −2 d V 

† (X t , ˜ X t , ˜ U t ) , for almost all t ≥ 0 . (62)

We integrate this inequality and we obtain for all t ≥ 0, 

 

† (X t , ˜ X t , ˜ U t ) ≤ e −2 d t V 

† 
(
ϕ X t , ϕ ˜ X t 

, ϕ ˜ U t 

)
. (63)

Consequently, we get for all t ≥ 0, X 2 (t) + λ1 ̃
 X 2 (t) ≤ 2 e −2 d t V † 

(ϕ X , ϕ ˜ X , ϕ ˜ U ) . We conclude that the trajectories X ( t ) and 

˜ X (t) con-

verge exponentially to the trivial steady state of the shifted sys-

tem, with a decay rate larger than, or equal to, d . By classical ar-

guments, we observe from the second equation in (33) that, since

2 ̃  K e − ˜ γ ˜ τ < 1 , ˜ U (t) converges exponentially to zero when X ( t ) and
˜ X (t) converge exponentially to the zero. 

To summarize, we considered that D (or E ) exists and we

rewrote the studied system (10) in the form (33) . Next, we proved

that if the decay conditions ( (58) , d 4 > 0 , d 5 > 0 ) are satisfied, then

the trajectories of (33) associated with initial conditions belonging

to the set B, converge exponentially to 0-equilibrium of the shifted

system (33) , with a decay rate larger than, or equal to, d . By explic-

itly rewriting the decay conditions, we summarize our findings in

Section 5 as follows: 
9 Similarly to ν4 and ν5 in Remark 5, the choices of ν2 and ν3 are not unique 

(and, similarly, those of λ2 and λ3 either). In Example 4 , we are going to use differ- 

ent numerical values that also satisfy d 2 > 0 and d 3 > 0 . 

a  

 

t  

i

heorem 2. (A) Assume that D (resp. E ) exists, then consider the

hifted system (33) , such that its trivial steady state corresponds to

 (resp. E ) of (10) . If there exist matrices P, S, J , P and P , of appro-

riate dimension, and a positive constant ˜ a , that satisfy the LMI (47) ,

hen the trivial steady state of the shifted system (33) , which is D

resp. E ) of (10) , is locally asymptotically stable. 

(B) Assume that system (10) admits a positive steady state D (i.e.

25) or (26) in Proposition 1 (vii) hold). If 

(i) 
(
2 ̃

 K e − ˜ γ ˜ τ
)2 + 2 ̃

 K e − ˜ γ ˜ τ < 1 , 

(ii) b 1 
4 

− ˜ α ˜ θ ˜ x e < 

˜ β( x e + ˜ α ˜ x e ) + 

˜ δ, 

(iii) b 2 
2 

− θx e < β(x e + 

˜ x e ) + δ, 

(64)

re satisfied, ensuring also that d 2 > 0 and d 3 > 0 , then D is region-

lly exponentially stable with a decay rate larger than, or equal to, d ,

nd with basin of attraction defined by: 

B 

† = 

{ 
ϕ x ∈ C 

(
[ −τ, 0] , R 

+ ), ϕ ˜ x ∈ C 
(
[ −τ, 0] , R 

+ ), ϕ ˜ u ∈ C 
(
[ − ˜ τ , 0] , R

V 

† ( ϕ x − x e , ϕ ˜ x − ˜ x e , ϕ ˜ u − ˜ u e ) < V 

† 
} 
. 

C) Assume that E exists (Proposition 1 (ii)), and consider that ˜ x e =
 in (64) . If the conditions (64) are satisfied (for ˜ x e = 0 ), then E of

10) is regionally exponentially stable with a decay rate d and basin

f attraction defined by (65) , where we consider now that ˜ x e = ˜ u e = 0

n (65) . 

xample 4. In this example, we assume that ˜ α = 5 . For the un-

ealthy compartment, we consider the parameters given in Table 1 ,

hile for the healthy case we consider the parameters of Table 2 . 

We want to investigate the stability properties of the dormancy

teady state: D = ( ̃  x e , ̃  u e , x e ) , where, ˜ x e = 0 . 0217 , ˜ u e = 0 . 0593 , and

 e = 0 . 2535 . Obviously, if the decay conditions (64) are satisfied,

hen the LMI (47) admits a solution. 

We check that the decay conditions (64) are verified: 

i) 1 − 2 ̃

 K e − ˜ γ ˜ τ −
(
2 ̃

 K e − ˜ γ ˜ τ
)2 = 0 . 659979347 > 0 , 

ii) ˜ β( x e + ˜ α ˜ x e ) + 

˜ δ −
(
b 1 
4 

− ˜ α ˜ θ ˜ x e 
)

= 0 . 987350196 > 0 , 

iii) β( x e + 

˜ x e ) + δ −
(
b 2 
2 

− θx e 
)

= 0 . 0 0 0149333 > 0 , 

(66)

here we consider: λ1 = 2 , λ2 = λ3 = 0 . 261780 , λ4 = 2 . 205796 ,
˜ 

4 = 2 , ν1 = 2 , ν2 = 

1 
4 | a 8 | = 1 . 301858 , ν3 = 

1 
4 | a 9 | = 1 . 736024 , ν4 =

1 
2 | a 4 | = 0 . 302151 , ν5 = 

1 
2 | a 2 | = 7 . 374022 , ρ1 = 

1 
10 ̃ τ ln ( 5 

1+4(a 2 
5 
+ a 5 ) 

) =
 . 075074 and ρ2 = 

1 
10 τ ln ( 

λ2 
b 4 

) = 0 . 038369 . For these numeri-

al values, we check that d 2 = d 3 = 0 . 010577 > 0 . Therefore,

ccording to Theorem 2 , the dormancy steady state, D =
(0 . 0217 , 0 . 0593 , 0 . 2535) , is regionally exponentially stable, as illus-

rated in Fig. 7 . This example will be revisited in the next section,
n the practical situation of therapeutic strategies. 
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Fig. 7. Trajectories of the system of the numerical Example 4 ( Tables 1 and 2 ). In 

this case, the dormancy steady state D exists, such that ˜ x e = 0 . 0217 , ˜ u e = 0 . 0593 . 

The sufficient local stability conditions given in Theorem 2 (B) are satisfied, as shown 

in (66) , and the trajectories of the system converge exponentially to D . 

Table 3 

The set of initial (i.e. before treatment) param- 

eters of the unhealthy compartment. 

˜ δ ˜ γ ˜ τ ˜ β(m ) ˜ K ˜ α

0.25 0.1 0.2 2 . 78 
1+ m 3 0.55 0.8 
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10 Midostaurin is a multi-targeted protein kinase inhibitor, which can be active 

against oncogenic CD135 (FMS-like tyrosine kinase 3 receptor, FLT3) ( Döhner et al., 

2015; Stone et al., 2017 ). 
. Concluding comments on the findings and possible 

herapeutic strategies oriented towards cancer dormancy 

A first remark is that CSC dormancy probably results from com-

lex relationships between the different biological parameters in-

olved in this process, that are difficult to elicit, let alone to be un-

erstood. This observation concerns the stability properties (decay

onditions in Theorem 2 ), but also the conditions of existence of

ormancy ( Proposition 1 (vii)), along with the role of the sensitiv-

ty parameter ˜ α. This should lead us to develop further the math-

matical framework sketched here, in order to help us understand

he mechanisms behind dormancy. In the current section, we em-

hasize the main case of hematopoiesis and AML. In fact, exper-

ments on fresh blood samples of patients with hyperleukocyto-

is may allow to identify the apoptosis and differentiation rates in

he specific case of AML. However, there is no immediate prospect

or estimating the proliferation functions ˜ β and β , as well as the

ast self-renewing parameter ˜ K . In addition, cancer dormancy is not

asily traceable at the current time, since clinical manifestation of

ancer is detectable only when tumor size exceeds a given thresh-

ld. Thus, model identification is a highly topical open issue, and

ur attention is only focused on the qualitative asymptotic behav-

or of our model, which is otherwise in line with the biological

bservations in this field. Nevertheless, as a first step, the analy-

is that we performed throughout this paper reveals that our the-

retical results may suggest some therapeutic guidelines to erad-

cate aggressive CSCs ( E ), or to bring them to dormancy ( D ), as

iscussed in the sequel. 

(1) Towards the adoption of a common therapeutic strategy to

ield states D and E ? It cannot be claimed that convergence to the

teady state D and the steady state E should share the same ther-

peutic roadmap, since a crucial difference lies in their conditions

f existence. For instance, E exists even if ˜ δ > 

2 e − ˜ γ ˜ τ −1 
1 −2 ̃ K e − ˜ γ ˜ τ

˜ β(0) (see

roposition 1 ), while the reverse situation is required in order to

llow for the existence of dormancy D , in addition to other condi-

ions. We recall that in our system, the conditions of existence of

he steady states of interest are a type of red lines , that must not

e crossed when elaborating a treatment strategy. 
On the other hand, when we focus on the stability conditions,

ondering how therapeutic actions can make the biological system

o into the direction of the decay conditions (64) , we realize that

he respective decay conditions of D and E are substantially sim-

lar. More precisely, our sufficient stability conditions suggest that

he biological parameters that can be targeted in order to satisfy

64) , in either of the two states D or E , are similar (but not identi-

al). In this sense, we can state that a common therapeutic strategy

or D and E can be proposed. So, in light of the existing therapies

nd recent clinical trials that highlight novel effective molecules as

otential drugs in AML, we briefly discuss how a combined therapy

mostly composed of targeted therapies and standard chemother-

py – may satisfy the theoretical conditions (64) . 

First, we observe that the condition (B-i) in Theorem 2 pro-

ides a restriction on the dynamics of over-proliferating cells, since
˜ 
 , ˜ γ and ˜ τ are involved. Satisfying the previous condition relies

n increasing the product ˜ γ ˜ τ , and decreasing ˜ K . Increasing ˜ γ ˜ τ
eans that we extend the average duration of the cell cycle ˜ τ

nd/or increase the apoptosis rate ˜ γ in the population of unhealthy

ells. Leukemic cells may be targeted by drugs such as quizartinib

AC220, Zarrinkar, 2009 ) or erlotinib ( Lainey et al., 2011 ) to in-

rease ˜ τ , while cytosine arabinoside can be used to increase the

poptosis rate ˜ γ . Moreover, quizartinib can be used to decrease

he fast self-renewal rate ˜ K . In fact, ˜ K is expected to be the hard-

st parameters to modify in practice, due to preexisting mutations

n epigenetic control genes (DNMT3A, TET2). However, new FLT3

nhibitors , such as midostaurin, 10 have achieved good performance

see the recent quantitative results provided in Stone et al., 2017 )

nd are now approved for use along with chemotherapy to target

eukemic cells in AML. 

Next, in the conditions (B-ii) and (B-iii) of Theorem 2 , the tar-

ets can be the parameters δ and 

˜ δ (mainly ˜ δ, since it is the un-

ealthy parameter) that appear in the right hand sides of the cor-

esponding inequalities. We recall that ˜ δ includes the death rate

nd the differentiation rate of unhealthy resting cells. In prac-

ice, increasing ˜ δ means that we should increase the differentia-

ion rates, which can be achieved in the case of leukemia by in-

using dasatinib ( Lainey et al., 2011 ), that targets most of the ty-

osine kinases including the c-KIT gene. In fact, it was thought

hat drugs promoting re-differentiation of CSCs in many cancers

re not effective in the specific case of AML. However, this thera-

eutic option has been relaunched recently after successful clinical

rials, where dihydroorotate dehydrogenase (DHODH) inhibitors re-

tored differentiation of leukemic cells in AML ( Sykes et al., 2016 ).

inally, increasing β(0) and 

˜ β(0) can be performed by using G-CSF

olecules ( Foley et al., 2006 ). These are the main common targets

hared by D and E . 

(2) Constraints and spillover risks of CSCs eradication: Increasing

he parameters ˜ δ, ˜ γ and ˜ τ (using some of the previously men-

ioned molecules or their equivalent), promotes the existence of

he state E , together with its stability. However, it may exclude

he steady state D , by violating its conditions of existence. Fur-

hermore, an excessive therapy that affects also healthy cells leads,

heoretically, to the extinction of all the cells ( Theorem 1 ). At the

ther extreme, insufficient drug dose might not successfully stop

SCs from overproliferation (when 2 ̃  K e − ˜ γ ˜ τ > 1 ). The overprolifer-

ting behavior may be worsened by CSC resistance to drugs. Thus,

ormancy D appears as a delicate intermediate equilibrium be-

ween the cancer progression and CSC eradication. 

(3) Specific constraints related to dormancy: In the common strat-

gy that aims to satisfy the condition (64) , we noticed that drugs

ave to increase the product ˜ γ ˜ τ . On the other hand, we recall
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Table 4 

Here we associate the most likely (clinically established) effect of some ad- 

vanced drugs/molecules on the biological features of the hematopoietic sys- 

tem, in the specific case of AML (without focusing neither on the molecular 

mechanisms behind each drug action, or on the possible mutual interactions 

that may exist between drugs within some combinations). The case of the 

sensitivity parameter ˜ α is discussed later, in Remark 7. 

Fast self-renewing Quizartinib, midostaurin 

( ̃ K ) Dihydroorotate dehydrogenase (DHODH) inhibitors 

Apoptosis ( ̃ γ ) Daunorubicin, cytosine arabinoside, volasertib 

Differentiation ( ̃ δ) Dihydroorotate dehydrogenase (DHODH) inhibitors 

Cell cylce dur. ( ̃ τ ) Quizartinib, erlotinib, volasertib 

Fig. 8. Trajectories of the system for the (non-treated) model parameters of Table 3 . 

P  

A  

B  

e  

(  
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T  

A  

a  

o  

s

R  

i  

i  

Z  

s  

h  

e  

h  

c  

i

 

b  

i  

b  

s  

p  

11 The optimal therapy requires the determination of the best infusion planning, 

that takes into account drug toxicity and other practical considerations (e.g. how 

the doses of each drug type are spread over the duration of the therapy). These 

points deserve a separated study. 
from Proposition 1 (vii) that the condition 1 < 2 e − ˜ γ ˜ τ is necessary

for the existence of D . Thus, the therapy action in this case has

to take into account this supplementary condition. We infer from

this remark that the probability to achieve the dormancy steady

state D by using the classical strategies that consist in giving the

maximum tolerated dose of drugs during the treatment period

( Enderling, 2013 ), is therefore very low. Indeed, since a high dose

is expected to yield 1 > 2 e − ˜ γ ˜ τ , the condition of existence of D is

then violated. The multiple restrictions on the biological parame-

ters listed in Proposition 1 show that the existence of D is more

difficult to achieve than the existence of E . However, we suggest

that infusing G-CSF molecules appears to favor the existence of a

dormancy steady state, since increasing (relatively) β(0) seems to

go in the right direction in order to satisfy both the existence and

the stability conditions of D . 

(4) The suggestion of therapeutic strategies that achieve dormancy:

In light of the above discussion, we propose to implement what

can be considered as a simple theoretical therapeutic strategy that

aims to achieve a stable dormancy steady state. More precisely,

we consider an hematopoietic system with the clinical symp-

toms that we expect when facing some overproliferating malignant

hemopathies. This ranges from a blockade in differentiation mech-

anisms to the survival of abnormal cells, along with a high rate

of self-renewal activity. We will in fact check that in the absence

of adequate treatment, the unhealthy population will proliferate

abundantly. Then, in a second time, our objective is to stabilize

the total cell density, through multiple drug infusions of a com-

bined therapy that is in line with our theoretical results (i.e. the

decay conditions in Theorem 2 ). In other words, we aim to bring

the hematopoietic system from an initial abnormal overproliferat-

ing state into a dormant stable steady state. For that purpose, let

us assume that the initial parameters of the unhealthy compart-

ment are those given in Table 3 . In fact, we have deliberately cho-

sen an intuitive set of parameters that matches specific dysfunc-

tions in overproliferating malignant hemopathies (particularly the

condition 2 ̃  K e − ˜ γ ˜ τ > 1 ). 

On the other hand, we assume that the parameters of the

healthy compartment are those given in Example 4 , and we con-

sider that the therapy to be administrated has a negligible effect

on ordinary cells. 

In medical practice, usually the hematopoietic system is tar-

geted through chemotherapy or targeted therapy (a combination of

two or three drugs), sometimes infused along with a complemen-

tary treatment. All these drugs have in fact molecular targets (e.g.

dasatinib targets BCR/Abl, Src, ephrin receptors, c-Kit and many

other tyrosine kinases), that result in a modification of some bio-

logical mechanisms (e.g. generally, dasatinib increases proliferation,

and differentiation in AML ( Fang et al., 2013 ). It should be borne in

mind that the functional effect resulting from the molecular action

of the infused drugs, varies in practice according to several facts

(for instance, the buildup of many types of mutations by some in-

dividuals). However, when we put aside all the intermediate com-

plications that may exist in practice, we can take a shortcut that

associates to each infused drug its most likely action on one or

several biological functions (that are: differentiation, apoptotis, and

so on), with a certain amount of confidence. Thus, we can roughly

state from medical practice some major families of molecules that

can be used in the case of AML or other cancers, according to their

expected effect on the biological functionalities. 

Remark 6. (i) One notices that some molecules in Table 4 are ex-

pected to modify more than one model parameter. For instance,

the DHODH inhibitor, which is a differentiation re-activator, may

decrease ˜ K and increase ˜ δ, since both actions seem to promote a

return into normal differentiation. (ii) The volasertib (recognized

as orphan drug for AML since 2014), belongs to the family of
olo-like kinase (Plk) inhibitors . It can be used in the treatment of

ML to promote apoptosis and cell cycle arrest (see for instance

randwein, 2015 ). In fact, the list of drugs given in Table 4 is not

xhaustive and can be enlarged, for instance, to: histone deacetylase

HDAC) inhibitors (vorinostat and panobinostat), and the family of

urora kinase inhibitors (AZD115). 

Now, we observe that the biological parameters considered in

able 3 imply that 2 ̃  K e − ˜ γ ˜ τ = 1 . 078 . It follows that, theoretically, if

ML is not treated, unhealthy cells will invade the bone marrow

nd possibly the bloodstream. In Fig. 8 , we illustrate the evolution

f cell densities for the selected model parameters, where we ob-

erve the unbounded proliferation of unhealthy cells. 

emark 7. We expect that ˜ α is less than 1 before therapy, then

t starts to increase when therapy is applied (an immunostimulat-

ng effect of cytotoxic drugs, elicited e.g. in Zitvogel et al., 2008;

itvogel et al., 2006 ), and then greater than 1 when the immune

ystem has learnt to counter the dodges of cancer cells (such as

iding their tumor antigens or achieving inactivation of antibodies,

.g. by glycosylation), or when the reduction of the tumor burden

as made immune cells proportionally more efficient in their en-

ounters with cancer cells, or also when successful immunotherapy

s used to directly target cancer cells. 

Actually, the elaboration of an optimal therapeutic strategy 11 is

eyond the scope of this work. Here, we are suggesting a theoret-

cal therapeutic strategy, that can be based on some suitable com-

ination of drugs (listed in Table 4 , or others similar ones). We as-

ume that the resulting evolution patterns of the biological model

arameters are those illustrated in Fig. 9 . In fact, we can distin-
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Fig. 9. An illustrative therapeutic strategy that gradually modifies five model parameters, using adequates drugs: this can be achieved using a mixture of standard chemother- 

apy or targeted therapies, along with complementary molecules and/or immunotherapeutic actions. 

Fig. 10. The evolution of the total densities of healthy and unhealthy cells (resp. 

x ( t ) and ˜ x (t) ) and ˜ u (t) , when we apply the theoretical therapeutic strategy illus- 

trated in Fig. 9 . If we do not change the parameter values, the model behaves as in 

Fig. 8 (i.e. CSCs overproliferate). However, in the case of treated cancer, the trajec- 

tories converge to a dormancy stable steady state, under the effect of the suggested 

therapy. 
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uish between two evolution trends, nested within one another as

ollows: 

(1) The first series of infusions aims to decrease ˜ K (fast self-

enewing rate), to increase ˜ τ (cell-cycle duration), and to increase

˜ (apoptosis rate). It is worth mentioning that the direction of the

hange in the model parameters (i.e. by increasing/decreasing the

odel parameters values) is in line with the observed effect of the

rugs listed in Table 3 . This treatment phase is expected to limit

he expansion of CSCs. We also assume that the first treatment

hase is accompanied by a slight increase of the value of ˜ α (see

emark 7). 

(2) The second phase of the treatment aims, on the one hand,

o maintain the trend given for the parameters ( ̃  K , ˜ τ , ˜ γ ), and on

he other hand, to reactivate the differentiation of unhealthy cells

using DHODH inhibitors, for instance) and to increase the sensitiv-

ty parameter ˜ α with more virulence than in the first series of in-

usions (e.g. using a suitable immunotherapeutic action, Remark 7).

emark 8. It seems legitimate to wonder whether the reactivation

f differentiation of CSCs is a good strategy to fight cancer. The

nswer is argued for instance in Enderling (2013) , where it is ex-

lained how CSCs can initiate and regenerate cancers, while differ-

ntiated cancer cells (called CCs Enderling, 2013 ) will inevitably die
ut (see the section “Cancer stem cells and non-stem cancer cells”,

nderling, 2013 ). Thus, promoting the differentiation of CSCs into

Cs appears as a sustainable way to both limit cancer progression,

nd avoid the escape from cancer dormancy. 

Now, let us assume that an adequate combination of drugs has

een fixed. We can highlight one suggestion among other possibil-

ties, in which we propose: 

1 ©a shock treatment through chemotherapy that promotes

poptosis ˜ γ and cell arrest ˜ τ (using volasertib for both objectives),

nd targeting ˜ K using AC220 (which has also a suitable effect on

ell arrest ˜ τ ), 

2 © followed by a more differentiation-oriented treatment (using

rugs based on DHODH inhibitors) and mitotic/proliferation inhibi-

ion of unhealthy cells (possibly using some immunotherapy-based

rugs, or vincristine, see also Saygin and Carraway, 2017 ). 

We aim through the selected therapy to achieve an evolution

attern of the model parameters as close as possible to the ideal-

stic ones given in Fig. 9 . 

emark 9. The treatment protocol that we suggest have many

imilarities with classical methods in AML therapeutics ( Saygin and

arraway, 2017 ). We can mention in particular the 3+7 most fa-

ous strategy, which is also based on two main separated phases

7 days of intensive induction through cytarabine, plus 3 days of

n anthracycline ( Saygin and Carraway, 2017 ), and then possibly

ollowed by consolidation chemotherapy and hematopoietic cell

ransplant ( Döhner et al., 2015; Saygin and Carraway, 2017 ). 

Next, we apply the therapeutic strategy given in Fig. 9 to our

odel, starting the first infusion at t = 1 day, and considering a

xed treatment step of 1 day between successive infusions (an-

ther choice may be envisaged if needed). One notices that the

odel parameters after Infusion 9 are those given in Example 4 ,

or which the decay conditions (64) of Theorem 2 are satisfied. 

The evolution of the ordinary and mutated cell densities is

hown in Fig. 10 . It is worth mentioning that in practice, the

reatment of AML is spread over several separated phases. For in-

tance, in the recent experimental work ( Stone et al., 2017 ), an

ML (FLT3-type) therapy based on midostaurin and chemother-

py, has been separated into two induction phases , a consolidat-

ng phase and maintenance phase (59% of patients that have un-

ergone the previously mentioned therapeutic protocol, then un-

erwent bone marrow transplant, have reached the complete re-

ission state ( Stone et al., 2017 ). Similarly, in our example, we

ssume that after Infusion 9, a consolidating and a maintenance
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phases continue so as to correct, adjust, strengthen, and fortify the

desired dormancy state of the hematopoietic system (which is the

state described by the set of parameters of Infusion 9). 

We conclude this work by referring to Table 1 in Saygin and

Carraway (2017) , which summarizes a number of emerging

promising AML therapies, that open up other possibilities to act

on cancerous hematopoietic systems. Many of these strategies can

in fact be implemented and discussed within the modeling and

analysis framework that we introduced in our current work. It is

worth mentioning that the addition of midostaurin to chemother-

apy resulted in a 22% lower risk of death among patients, in

comparison to another more classical treatment (see Stone et al.,

2017 ). Notice that, most of the molecules listed in Saygin and Car-

raway (2017) (and the references therein) are in early phases of de-

velopment and trials, but they participate greatly, as well as many

multidisciplinary works, to nourish this hope of moving towards

systematic treatments for cancer, in general, and leukemia, in par-

ticular. 
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Appendix A. Proof of Theorem 1 (cell extinction) 

Simple calculations show that the derivative of W, defined in

(28) , along the trajectories of (10) , satisfies, for almost all t ≥ 0, 

˙ W (t) = 

[
− ˜ δ + ( ψ 1 − 1 ) ̃  β( x (t) + ˜ α ˜ x (t) ) 

]
˜ x (t) 

−
[
ψ 1 (e −ρ∗

1 ̃ τ − 2 ̃

 K e − ˜ γ ˜ τ ) − 2(1 − ˜ K ) e − ˜ γ ˜ τ
]

˜ u (t − ˜ τ ) 

− [ δ + ( 1 − ψ 2 ) β(x (t) + 

˜ x (t)) ] x (t) 

− ψ 1 ρ
∗
1 

∫ t 

t− ˜ τ
e ρ

∗
1 (� −t) ˜ u (� ) d� 

− (ψ 3 e 
−ρ∗

2 τ − 1)2 e −γ τ β( x (t − τ ) + 

˜ x (t − τ ) ) x (t − τ ) 

− ψ 2 ρ
∗
2 

∫ t 

t−τ
e ρ

∗
2 (� −t) β( x (� ) + 

˜ x (� ) ) x (� ) d�. 

Now, according to (29) , the conditions 2 ̃  K e − ˜ γ ˜ τ < 1 and ψ 

∗ > 0 are

satisfied. It follows that for all ρ∗
1 ∈ (0 , 1 

˜ τ ln ( k 
1+2(k −1) ̃ K e − ˜ γ ˜ τ )) , where

k > 1 is a constant that we will select later, we get 0 < 

1 −2 ̃ K e − ˜ γ ˜ τ

k 
<

e −ρ1 ̃ τ − 2 ̃  K e − ˜ γ ˜ τ < 1 − 2 ̃  K e − ˜ γ ˜ τ . On the other hand, using the defini-

tion of ψ 1 , we can readily check that: 

ψ 1 

(
1 − 2 ̃

 K e − ˜ γ ˜ τ
)

− 2 

(
1 − ˜ K 

)
e − ˜ γ ˜ τ > 0 . 

Therefore, we can notice that for all k ∈ (1 , 
(1 −2 ̃ K e − ˜ γ ˜ τ ) ψ 1 

2(1 − ˜ K ) e − ˜ γ ˜ τ ) , the con-

stant: 

k = ψ 1 

(
1 − 2 ̃

 K e − ˜ γ ˜ τ

k 

)
− 2 

(
1 − ˜ K 

)
e − ˜ γ ˜ τ , 

is strictly positive. Next, since ˜ β is decreasing, and using the

fact that ψ 11 > 1, it follows that (ψ 11 − 1) ̃  β(x (t) + ˜ α ˜ x (t)) ≤ (ψ 11 −
1) ̃  β(0) . From the previous intermediate results, we conclude that

for all t ≥ 0, − ˜ δ + (ψ 1 − 1) ̃  β(x (t) + ˜ α ˜ x (t)) ≤ ψ 12 ̃
 β(x (t) + ˜ α ˜ x (t)) ,

where, ψ 12 < 0. Now, we assume that the third decay con-

dition, δ > (2 e −γ τ − 1) β(0) , is satisfied, and we put ψ 3 =
2 β(0)+(δ+ β(0)) e γ τ

4 β(0) 
. Therefore, it is easy to check that, in this case, we
w  

t  
ave ψ 3 ∈ (1 , δ+ β(0) 
2 β(0) 

e γ τ ) . It follows that δ + (1 − ψ 2 ) β(0) is pos-

tive. For later use we denote δ∗ = δ + (1 − ψ 2 ) β(0) . Next, by se-

ecting ρ∗
2 = 

1 
2 τ ln ( 

2 ψ 3 
ψ 3 +1 

) > 0 , we deduce that ψ 3 e 
−ρ2 τ − 1 is pos-

tive. For later use we denote ρ∗ = ψ 3 e 
−ρ∗

2 
τ − 1 . We conclude that

˙ 
 (t) satisfies, for almost all t ≥ 0, 

˙ 
 (t) ≤ψ 12 ̃

 β( x (t) + ˜ α ˜ x (t) ) ̃  x (t) − ψ 1 ρ1 

∫ t 

t− ˜ τ
e ρ1 (� −t) ˜ u (� ) d� 

− k ̃  u (t − ˜ τ ) − 2 ρ∗e −γ τβ( x (t − τ ) + 

˜ x (t − τ ) ) x (t − τ ) 

− δ∗x (t) − ψ 2 ρ2 

∫ t 

t−τ
e ρ2 (� −t) β( x (� ) + 

˜ x (� ) ) x (� ) d�, 

(A.1)

here, ψ 12 < 0, k > 0 , δ∗ > 0, and, ρ∗ > 0. By integrating the previ-

us inequality (A.1) , we deduce that the functional W is bounded

ver [0 , + ∞ ) . From the definition of W, it follows that for all t ≥ 0,

he trajectories ˜ x (t) and x ( t ) are bounded by, respectively, the pos-

tive constants ˜ x s and x s . A direct consequence is that for almost

ll t ≥ 0, 

˙ 
 (t) ≤ψ 12 ̃

 β( x s + ˜ α ˜ x s ) ̃  x (t) − ψ 1 ρ1 

∫ t 

t− ˜ τ
e ρ1 (� −t) ˜ u (� ) d� 

− δ∗x (t) − ψ 2 ρ2 

∫ t 

t−τ
e ρ2 (� −t) β( x (� ) + 

˜ x (� ) ) x (� ) d�. 

e conclude that for almost all t ≥ 0, we have, 

˙ 
 (t) ≤ −ψ 4 W ( ̃  x t , ˜ u t , x t ) , (A.2)

here ψ 4 = min {−ψ 12 ̃
 β(x s + ˜ α ˜ x s ) , δ∗, ρ∗

1 
, ρ∗

2 
} > 0 . Now, by inte-

rating the inequality (A.2) , we deduce that for all t ≥ 0, 

 ( ̃  x t , ˜ u t , x t ) ≤ e −ψ 4 t W ( ϕ ˜ x , ϕ ˜ u , ϕ x ) . (A.3)

t follows from the definition of W that ˜ x and x converge exponen-

ially to zero with a decay rate larger than, or equal to, ψ 4 . From

he second equation in (10) , we note that the linearity in ˜ u and the

act that 2 ̃  K e − ˜ γ ˜ τ < 1 , imply that ˜ u converges exponentially to the

-equilibrium of the shifted system when ˜ x and x also converge

xponentially to zero. This concludes the proof of Theorem 1 . 

ppendix B. Determining s , ˜ s , m , and ˜ m , in (37) and (38) 

Since R and 

˜ R have similar forms, we prove the desired results

nly for R . Using the expression of β given in (1) , we rewrite for

ll e > 0 and z > −e , 

 (z ) = β(0) 
(

1 

1 + b(z + e ) n 
− 1 

1 + be n 

)
− θ z . (B.1)

bviously, when | z | > 1 , we have 

| R (z | 
| z | ≤ 2 β(0) + | θ | 

| z | ≤ 2 β(0) + | θ | . (B.2)

o address the case where | z | ≤ 1 for all z > −e and e > 0 , we con-

ider first the function: 

† (z ) = 

1 

1 + b(z + e ) n 
− 1 

1 + be n 
= 

b [ e n − (z + e ) n ] 

q (z ) 
, 

here q (z ) = [1 + b(z + e ) n ](1 + be n ) . Using, 

(z + a ) n − a n = na n −1 z + n (n − 1) 

∫ z 
0 

∫ a + l 

a 

m 

n −2 d md l, 

e deduce that, 

† (z ) = −nbe n −1 z 

q (z ) 
+ C (z ) , (B.3)

here C (z ) = −nb(n − 1) 1 
q (z ) 

∫ z 
0 

∫ � 
0 (m + e ) n −2 d md � . We ease the no-

ation by considering h = 1 + be n . Then, by noticing that 1 
q (z ) 

=
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1 
h 
(ρ† (z ) + 

1 
h 
) , it follows that ρ† (z ) = −nbe n −1 ( ρ

† (z ) 
h 

+ 

1 
h 2 

) z + C (z ) .

onsequently, 

† (z ) = −nbe n −1 

h 

2 
z + C (z ) − nbe n −1 

h 

ρ† (z ) z . (B.4)

e recall that, by definition, θ = β ′ (e ) = β(0) nbe n −1 

h 2 
. Therefore, 

† (z ) + 

θ

β(0) 
z = C (z ) − nbe n −1 

h 

ρ† (z ) z . (B.5)

n the other hand, observe that (B.1) is equivalent to R (z ) =
(0)[ ρ† (z ) − θ

β(0) 
z ] . By combining the last equality with (B.5) , we

et the intermediate consequence, 

R (z ) 

β(0) 
= C (z ) − nbe n −1 

h 

ρ† (z ) z . (B.6)

ow, we readily check that 

 

C (z ) | ≤ nb(n − 1) 

q (z ) 
( | z | + e ) 

n −2 z 
2 

2 

. (B.7) 

rom (B.3) we deduce that | ρ† (z ) | ≤ nbe n −1 

q (z ) 
| z | + | C (z ) | . Using (B.7) ,

t follows that 

z ρ† (z ) 
∣∣ ≤ nbe n −1 

q (z ) 
z 2 + 

nb(n − 1) 

2 q (z ) 
( | z | + e ) 

n −2 | z | 3 . (B.8)

onsequently, from (B.6) , and using (B.7) and (B.8) , we obtain the

pper bound, 

| R (z ) | 
β(0) 

≤ (nb) 2 (n − 1) e n −1 

2 hq (z ) 
( | z | + e ) 

n −2 | z | 3 

+ 

[ 

nb(n − 1) 

2 q (z ) 
( | z | + e ) 

n −2 + 

(
nbe n −1 

)2 

hq (z ) 

] 

z 2 . 

(B.9) 

n the other hand, we observe that, 1 
q (z ) 

= 

1 
[1+ b(z + e ) n ] h . Therefore,

hen z ≥ 0 , we have, 1 
q (z ) 

= 

1 
[1+ b(| z | + e ) n ] h , and when z ≤ 0 , then z ∈

(−e , 0] . Thus, 1 
q (z ) 

≤ 1 
h 

≤ 1+ b(2 e ) n 

[1+ b(| z | + e ) n ] h . Consequently, for all z > −e ,

e have, 

1 

q (z ) 
≤ 1 + b(2 e ) n 

[ 1 + b(| z | + e ) n ] h 

. (B.10) 

rom (B.10) and (B.9) , we deduce that 

| R (z ) | 
β(0) 

≤
[
p 1 

1 + ( | z | + e ) 
n −2 

1 + b ( | z | + e ) 
n + p 2 

( | z | + e ) 
n −2 | z | 

1 + b ( | z + e ) 
n 

]
z 2 

≤
[
p 1 

1 + ( | z | + e ) 
n −2 

1 + b ( | z | + e ) 
n + p 2 

( | z | + e ) 
n −1 

1 + b ( | z + e ) 
n 

]
z 2 , 

here the positive constants p 1 and p 2 are given by: 

 1 = 

[
1 + b(2 e ) 2 

]n 
max 

{ 

nb(n − 1) 

2 h 

, 

(
nbe n −1 

)2 

h 

2 

} 

, 

nd, p 2 = 

((nb) 2 (n −1) e n −1 )(1+ b(2 e ) n ) 

2 h 2 
. Next, observe that: 

case 1: if | z | + e ≤ 1 , then 

1+(| z | + e ) n −2 

1+ b(| z | + e ) n ≤ 2 , and , 
(| z | + e ) n −1 

1+ b(| z + e ) n ≤ 1 .

case 2: if | z | + e > 1 , then 

1+(| z | + e ) n −2 

1+ b(| z | + e ) n ≤ b , and , 
(| z | + e ) n −1 

1+ b(| z + e ) n ≤ b ,

here, b = max { 1 , 1 
b 
} . Therefore, in both cases, we proved that: 

 R (z ) | ≤mz 2 , (B.11) 

here, m = β(0) max { p 1 max { 2 , b −1 } , p 2 b } . 
Now, recall that R (z ) = β(0)[ ρ† (z ) − θ

β(0) 
z ] . From (B.11) , we

et, 

| β(0) ρ† (z ) − θ z | 
| z | ≤m | z | . (B.12) 
herefore, we observe that if | z | ≤ 1 , the inequality (B.12) implies

hat 

 β(0) ρ† (z ) − θ z | ≤m | z | . (B.13) 

rom (B.2) and (B.13) , we conclude that, for all z > −e and e > 0 ,

e have, 

 R (z ) | ≤ s | z | , (B.14)

here s = max { m , 2 β(0) + | θ |} . 
Finally, based on (B.11), (B.14) and similar results for ˜ R , one can

asily determine constants c i so that (39) and (40) are satisfied. 

ppendix C. Subsequent steps in the proof of Theorem 2 

Now, we focus on the function H , defined after (59) . We recall

hat there exist c i > 0 , i = 1 , . . . , 6 such that (39) and (40) are sat-

sfied. In addition, from the expression of V † , defined in (53) , we

otice that since λ1 = 2 , we get, 

 

† (X t , ˜ X t , ˜ U t ) ≥ c 1 

max { c 1 , c 2 } Q(X (t)) + 

c 2 

max { c 1 , c 2 } Q( ̃  X (t) , 

˜ X (t) 
∣∣ ≤

√ 

V 

† (X t , ˜ X t , ˜ U t ) , and, | X (t) | ≤
√ 

2 V 

† (X t , ˜ X t , ˜ U t ) . 

y combining the previous inequalities, we get the following upper

ound: 

H(X t , ˜ X t ) 
∣∣ ≤ v V 

† 2 (X t , ˜ X t , ˜ U t ) + c 5 

√ 

2 V 

† (X t , ˜ X t , ˜ U t ) Q(X (t − τ )) 

+ [ λ4 c 1 (a 4 + a 2 ) + c 3 ] 
√ 

2 V 

† (X t , ˜ X t , ˜ U t ) Q(X (t)) 

+ [ λ4 c 2 (a 4 + a 2 ) + c 4 ] 
√ 

2 V 

† (X t , ˜ X t , ˜ U t ) Q( ̃  X (t)) 

+ c 6 

√ 

2 V 

† (X t , ˜ X t , ˜ U t ) Q( ̃  X (t − τ )) , 

(C.1) 

here, v = 

(d 1 λ4 +2(a 5 λ4 ) 
2 ) max { c 1 , c 2 } 2 

2 d 1 
. A direct consequence is that

he time derivative of V † satisfies for almost all t ≥ 0, 

˙ 
 

† (t) ≤ − 2 d V 

† (X t , ˜ X t , ˜ U t ) − d 1 

2 

Q( ̃  U (t − ˜ τ )) 

−
[
d − v V 

† (X t , ˜ X t , ˜ U t ) 
]
V 

† (X t , ˜ X t , ˜ U t ) 

−
[ 
d 4 

2 

− ( λ4 c 2 (a 4 + a 2 ) + c 4 ) 
√ 

2 V 

† (X t , ˜ X t , ˜ U t ) 
] 

Q( ̃  X (t)) 

−
[ 
d 2 − c 5 

√ 

2 V 

† (X t , ˜ X t , ˜ U t ) 
] 

Q(X (t − τ )) 

−
[ 
d 5 

2 

− ( λ4 c 1 (a 4 + a 2 ) + c 3 ) 
√ 

2 V 

† (X t , ˜ X t , ˜ U t ) 
] 

Q(X (t)) 

−
[ 
d 3 − c 6 

√ 

2 V 

† (X t , ˜ X t , ˜ U t ) 
] 

Q( ̃  X (t − τ )) . 

(C.2) 

onsequently, for all initial conditions belonging to the set 

 = 

{ (
ϕ X , ϕ ˜ X , ϕ ˜ U 

)
∈ C τ × ˜ C τ × ˜ C ˜ τ | V 

† 
(
ϕ X , ϕ ˜ X , ϕ ˜ U 

)
< V 

† 
} 
, (C.3) 

here, with an abuse of notation, we consider the spaces

f continuous functions: C τ = C([ −τ, 0] , (−x e , + ∞ )) , ˜ C τ =
([ −τ, 0] , (− ˜ x e , + ∞ )) , and, ˜ C ˜ τ = C([ − ˜ τ , 0] , (− ˜ u e , + ∞ )) , as well

s the upper bound: V 
† = min { d v , u 

2 
1 
, u 2 

2 
, u 2 

3 
, u 2 

4 
} , where, u 1 =

d 4 
8(λ4 c 2 (a 4 + a 2 )+ c 4 ) , u 2 = 

d 5 
8(λ4 c 1 (a 4 + a 2 )+ c 3 ) , u 3 = 

d 4 
4 c 5 

, and, u 4 = 

d 3 
4 c 6 

,

e finally find that the derivative of the functional V † satisfies: 
˙ V † (t) ≤ −2 d V † (X t , ˜ X t , ˜ U t ) , where d > 0 , for almost all t ≥ 0. 
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