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structure, the behavior of the curve is extremely complicated. The num-
bers written inside each region indicate the respective number of RHP
roots. The shaded region indicates the set of controller parameters that
stabilizes the given plant (i.e., number of RHP roots= 0).

Fig. 3 depicts the three dimensional stability region in the controller
parameter space. The two-dimensional sections of the region are for
�1:25 � x3 � 1:375. The figure shows that the region gets smaller
asx3 approaches+1.375 and�1.25.

IV. CONCLUDING REMARKS

An effective computational procedure to determine all first-order
controllers that stabilize a given discrete-time LTI system is described
in this note. The determination of the complete set requires fixingx3,
obtaining the stabilizing set in thex1�x2 plane and repeating this solu-
tion by sweeping over allx3. In practice, the range ofx3 may be prede-
termined based on other design considerations and a method involving
sweeping overonly one parameter is quite practical, given the avail-
able computational power. As in [4], the result can also be extended
to simultaneous stabilization, maximal delay tolerance and maximally
deadbeat designs. A control scheme that optimizes a given optimality
criteria and the attainment of other performance criteria over these sets
is currently under investigation. We anticipate the parameter plane tech-
niques developed in [11] to be useful in this context.
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Parameter Dependent Stability and Stabilization of
Uncertain Time-Delay Systems

E. Fridman and U. Shaked

Abstract—A new robust delay dependent stability test is introduced that
determines the asymptotic stability of linear systems with state delays. The
parameters of the system are not exactly given. They are known to reside
in a given polytope. The test provides an efficient sufficient condition for
the stability of the system over the uncertainty polytope. This condition is
parameter dependent and it therefore improves previous results that were
derived using a single Lyapunov–Krasovskii functional. The stability test
is readily extended to provide a criterion for robust stabilization via state-
feedback.

Index Terms—Lyapunov–Krasovskii functionals, parameter dependent
stability, time-delay systems.

I. INTRODUCTION

Efficient conditions for the stability and the stabilizability via state-
feedback control of linear systems with time-delay have been intro-
duced recently [1]. These conditions are expressed via linear matrix
inequalities (LMIs) that are tuned by a scalar parameter. The condi-
tions provide delay dependent sufficient conditions for the stability of
the system and for a specific value of the tuning parameter they provide
the condition for delay-independent stability. The LMIs obtained are
affine in the matrices of the system’s state space model. This affinity
enables the consideration of systems with uncertain parameters. As-
suming this uncertainty is of the polytopic type [2], conditions have
been derived in [1] also for the quadratic stability and stabilizability of
the time-delayed system over the entire uncertainty polytope.

Quadratic stability conditions are conservative [2]. Many attempts
have been made in the past few years to reduce the latter conservatism by
seeking parameter dependent techniques for determining the stability
of systems with polytopic type uncertainties. These techniques assign a
different Lyapunov function to each vertex of the uncertainty polytope
and due to the convexity of the resulting LMIs the parameter dependent
condition is obtained [3]. One of the most efficient parameter dependent
condition for the stability of linear systems with polytopic uncertainty
has been recently introduced [4]. This condition applies to systems
without delay and it outperforms other known method for robust
stability determination. Unfortunately, its application to synthesis is
limited since the inequalities obtained by this method contain bilinear
terms in the decision variables and some iterations should be used
to derive, say, the stabilizing state-feedback. The iteration procedure
requires an initial state-feedback gain matrix which stabilizes the
system over the entire uncertainty polytope, and this gain matrix
in not easy to come by.

The problem of verifying the stability and the stabilizability of
time-delay systems with polytopic parameter uncertainty has been
treated in the past by applying quadratic stability arguments [1],
[5]. Recently, another method which is based on parameter varying
Lyapunov–Krasovskii functionals has been introduced [6]. This
method is based on an improved first model transformation (see [7]
and [8] for different model transformations) and it applies the gridding
method to cope with the parameter uncertainty.
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In this note, we develop efficient, delay dependent, conditions for the
stability and the stabilizability of systems with time delay. These condi-
tions are based on the descriptor model transformation of [1]. They ex-
tend the idea of the stability conditions of [4] to systems with time delay
and apply the resulting criteria to the augmented descriptor model of the
system. Sufficient conditions are obtained for the stability of the system
that improves the corresponding quadratic stability results. These con-
ditions are LMIs that are tuned by a scalar parameter. A specific value
of this parameter leads to a corresponding delay-independent criterion
for stability. The stabilizability problem is then solved by assigning a
special structure to the decision variables in the relevant LMIs. This
structure allows the derivation of the stabilizing gain by applying stan-
dard methods for the solution of LMIs.

II. ROBUST STABILITY

Consider the following system with time-varying delay:

_x(t) = A0x(t) + A1x (t� � (t)) ; x(t) = �(t); t 2 [�h; 0] (1)

wherex(t) 2 Rn, A0 andA1 are constantn � n-matrices and� is
a continuously differentiable initial function. We assume that� (t) is a
differentiable function, satisfying for allt � 0

0 � � (t) � h; _� (t) � d: (2a,b)

We are looking for a stability criterion that depends onh andd. We
consider, for simplicity, only one delay in (1) but all the results are
easily generalized to the case of any finite number of delays.

The solution to (1) satisfies, fort � h, the following descriptor
system:

_x(t) = y(t); y(t) = [A0 + A1]x(t)�A1

t

t��(t)

y(s)ds: (3)

Conversely, if the pairfx(t); y(t + �)g, t � 0, � 2 [�h; 0] satisfies
(3) for t � 0, thenx(t) satisfies (1) fort � h. Note that the descriptor
system (3) has no impulsive solutions since in the second equation of
(3) y(t) is multiplied by the nonsingular matrixI [10]. Hence, (3) and
(1) are equivalent from the point of view of stability, i.e., they are stable
or unstable simultaneously.

Denoting

�x(t) = col fx(t); y(t)g

the following Lyapunov–Krasovskii functional is applied:

V (t) = �xT (t)EP �x(t) + V2 + V3 (4)

where

E =
I 0

0 0

P =
P1 0

P2 P3

P1 =P
T
1 > 0 (5a-c)

and

V2 =

0

�h

t

t+�

y
T (s)Ry(s)dsd�

V3 =

t

t��(t)

x
T (�)Sx(�)d�:

The following result has been obtained in [13].

Lemma 1: System (1) is asymptotically stable if there exist2n�2n
matrices:P of the form (5b, c) andZ, an � 2n matrixY andn � n

matricesS andR that satisfy the following LMIs:

� =

P T ~A0 + ~AT0 P + I

0
Y + Y T

�[I 0] +
S 0

0 hR
+ hZ Y T � P T 0

A

� �S(1� d)

< 0

and
R Y

� Z
> 0 (6a,b)

where

~A0 =
0 I

A0 �I
: (7)

The last lemma provides an efficient sufficient condition for the asymp-
totic stability of (1) in the case where the parameters ofA0 andA1 are
known.

In the case where the matrices of the system are not exactly known,
we denote


 = [A0 A1]

and assume that
 2 Cof
j ; j = 1; . . .Ng, namely


 =

N

j=1

fj
j for some 0 � fj � 1;

N

j=1

fj = 1 (8)

where theN vertices of the polytope are described by


j = A
(j)
0 A

(j)
1 :

In order to guarantee the stability of (1) over the entire polytope, one
can use the result of Lemma 1 by applying the same matrixP for all
the points in the polytope and solving (6a,b) for theN vertices only. A
quadratic stability type criterion is then obtained which may be quite
conservative. In order to allow aP that depends on the parameters of
the system, we apply the following.

Lemma 2: The LMIs of Lemma 1 are satisfied for a specific point
in 
 iff there exist2n� 2n matrices:P , of the form (5b, c),G, �G, Z,
H and �Q, an� 2n matrixY andn� n matricesS andR that satisfy
(6b) and

� P �G �

~A H

0
P �

�G

[0 A ] �Q

� �H �HT 0

� � � �Q� �QT

< 0: (9)

Proof: Obviously, if (9) is satisfied (6a) follows. In order to show
the inverse direction, namely that a solution to (6a) implies that there
exists a solution also to (9) we chooseH = �Q = �I2n andP = G =
�G. It clearly follows that if� = W < 0 there exists0 < � � 1 for
which

�
~AT0 ~A0 0

0 AT1 A1
< �2W:

Denoting

� =

I2n 0 0 0

0 In 0 0

� ~A0 0 I2n 0

0 0
A

0 I2n

we multiply both sides of (9) by�T and�, from the left and the right,
respectively, and obtain that (9), and therefore also (6a), are equivalent
to the LMI shown in (10) at the bottom of the next page.
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Remark 1: In the case whereh = 0, the result obtained in (10) and
(6b) is similar, for �G = P , Y = [0 AT

1 ]P , S ! 0 andR, �Q ! 0, to
the stability condition that was obtained in [4]. The latter was obtained
using positive real arguments that are not directly applicable to systems
with time delay.

The LMI obtained in (10) is affine in the decision variablesP , Z,
G, �G, H , �Q, Y , S, andR. The matrixP does not multiply there any
of the system matrices. Thus, one can apply this LMI on the vertices of

 allowingP , Y , S, andR to be parameter dependent. Since (10) is
affine in the system matrices (A0 andA1), a solution, if exists, to the
set of the LMI’s that are written for all the vertices of
 will guarantee
the asymptotic stability of the system (1) over the entire polytope and
for all � (t) that satisfy (2). Considering the following structures:

Gj =
G

(j)
1 G

(j)
2

G3 G4

�Gj =
�G
(j)
1

�G
(j)
2

�G3
�G4

Hj =
H

(j)
1 H2

H
(j)
3 H4

and

�Q =
�Q
(j)
1

�Q2

�Q
(j)
3

�Q4
(11a-d)

the latter result is summarized in the following theorem.
Theorem 1: System (1) is asymptotically stable for allA0 andA1

that reside in
 of (8) and for all delays� (t) that satisfy (2) if there exist
Pj ,Gj , �Gj ,Hj , �Qj , of the form (5b, c) and (11a–d), respectively, and
Zj inR2n�2n,Yj 2 Rn�2n,Sj andRj inRn�n, j = 1; . . . ; N , that
satisfy the LMIs shown in (12a–c) at the bottom of the page.

In the case whereA1 is known, a simpler condition is obtained taking
�Gj to be fully parameter dependent,�Gj = Pj , and �Qj = �I2n, where
� tends to zero. The result obtained is given by the following.

Corollary 1: In the case where the uncertainty occurs only inA0

and� (t), the system (1) is asymptotically stable if there existPj , Gj ,
Hj , of the form (5b, c) and (11a, c), respectively, andZj in R2n�2n,
Yj 2 R

n�2n, Sj andRj in Rn�n, j = 1; . . . ; N , that satisfy (12b)
and (13), as shown at the bottom of the page, where~A

(j)
0 is defined in

(12c).
The previous results provide delay-dependent sufficient conditions

for the stability of (1) over the entire uncertainty polytope. The corre-
sponding delay-independent result is obtained by substituting in The-
orem 1Rj = �In, Zj = �I2n andYj = 0, and taking the limit where
the positive scalar� tends to zero. We then obtain the following.

Corollary 2: System (1) is asymptotically stable for allA0 andA1

that reside in
 of (8), independently of delay length, if there exist
Pj , Gj , �Gj , Hj , �Qj , of the form (5b, c) and (11a–d), respectively, in
R2n�2n, andSj 2 Rn�2n, j = 1; . . . ; N , that satisfy (12a), where
Rj = 0, Zj = 0 andYj = 0.

The aforementioned results correspond to time-varying delays sat-
isfying (2). The delay-dependent/rate-independent results for delays
0 � � (t) � h which may be fastly varying follow from Theorem 1
by takingSj = 0, Yj = [0 A

(j)
1 ] �Gj . We obtain the following.

Corollary 3: System (1) is asymptotically stable for allA0 andA1

that reside in
 of (8) and for all delays� (t) that satisfy0 � � (t) � h

if there existPj , Gj , �Gj , Hj , �Qj , of the form (5b, c) and (11a–d),
respectively,Zj inR2n�2n andRj inRn�n,j = 1; . . . ; N that satisfy
(12a) with deleted second column and second row and (12b), where
Sj = 0, Yj = [0 A

(j)
1 ] �Gj .

GT ~A0 + ~AT
0 G+ I

0
Y + Y T [I 0] +

S 0

0 hR
+ hZ Y T � �GT 0

A
P T �GT + ~AT

0H
T P T � �GT

� �S(1� d) 0 � 0 AT
1

�QT

� � �H �HT 0

� � � � �Q� �QT

< 0: (10)

GT
j
~A
(j)
0 + ~A

(j)T
0 Gj +

I

0
Yj + Y T

j [I 0] +
Sj 0

0 hRj

+ hZj Y T
j � �GT

j
0

A
P T
j �GT

j + ~A
(j)T
0 HT

j P T
j � �GT

j

� �Sj(1� d) 0 � 0 A
(j)T
1

�QT
j

� � �Hj �HT
j 0

� � � � �Qj � �QT
j

< 0

(12a)
Rj Yj

� Zj
> 0; j = 1; . . . ; N (12b)

where

~A
(j)
0 =

0 I

A
(j)
0 �I

: (12c)

GT
j
~A
(j)
0 + ~A

(j)T
0 Gj +

I

0
Yj + Y T

j [I 0] +
Sj 0

0 hRj

+ hZj Y T
j � P T

j
0
A

P T
j �GT

j + ~A
(j)T
0 HT

j

� �Sj(1� d) 0

� � �Hj �HT
j

< 0

j = 1; . . . ; N (13)
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III. STABILIZATION

We consider the system

_x(t) = A0x(t) + A1x (t� � (t)) +Bu(t); x(t) = �(t)

t 2 [�h; 0] (14)

wherex(t) 2 Rn is the state,u(t) 2 Rm is the control input,A0,A1

andB are constant matrices of the appropriate dimensions, and� is a
continuously differentiable initial function. We assume that the delay
� (t) satisfies (2).

We consider the state-feedback control law

u(t) = Kx(t) (15)

whereK is a constant matrix, and we address the problem of finding
K that asymptotically stabilizes the closed-loop obtained by applying
(15) to (14).

ReplacingA0 in Lemma 1 byA0 + BK, a nonlinear inequality is
obtained. It follows, however, from the requirement of0 < P1, and
the fact that in (6)�(P3 + P T3 ) must be negative definite, thatP is
nonsingular. Defining

P
�1 = Q =

Q1 0

Q2 Q3
and �� = diagfQ; Ing (16a-b)

we multiply (6a) by��T and ��, on the left and on the right, respec-
tively and (6b), on the left and on the right, bydiagfR�1;QT g and
diagfR�1;Qg, respectively. Applying Schur formula to the emerging
quadratic term inQ, denoting�S = S�1, �Z = QTZQ and �R = R�1

and choosingY = "AT1 [0 I]P , where" is a tuning scalar, we obtain,
similarly to [13], the following.

Lemma 3: System (14) is asymptotically stabilized by the controller
of (15), for all the delays� (t) that satisfy (2), if for some scalar"
there exist2n � 2n matrices:Q of the form (16a) and�Z , am � n

matrix �Y andn � n matrices�S and �R that satisfy the LMIs shown
in (17a)–(18) at the bottom of the page. The feedback gainK is then
given byK = �Y Q�11 . Denoting

Â = �A+
0

I
BK[I 0]

we obtain similarly to the derivation of Lemma 2 that (17a) is satisfied
iff there exist2n� 2n matrices:Q of the form (16),G, Z andH and
n � n matrices�S and �R that satisfy

�� Q �G �ÂH

0

� �H �HT
< 0: (19)

Denoting

�̂ =

I2n 0 0

0 I2n 0

�ÂT 0 I2n

we multiply both sides of (19) bŷ�T and �̂, from the left and the
right, respectively and obtain that (19), and therefore also (17a), are
equivalent to the LMI shown in (20) at the bottom of the page. The latter
inequality is nonlinear since products ofK byG andH are obtained.
In order to obtain a linear inequality with a tuning parameter" we seek
G andH of a special structure. We choose

G =
G1 0

G2 G3
H =

�G1 0

H2 H3
(21a,b)

where� is some positive scalar. Substituting the latter in (17) and de-
noting �Y = KG1, we obtain the following.

Lemma 4: System (14) is asymptotically stabilized by the controller
of (15), for all the delays� (t) that satisfy (2), if for some positive
scalars" and� there exist2n � 2n matrices:Q, G andH , of the
form (16a), (21a) and (21b), respectively, and�Z, am � n matrix �Y
andm� n matrices�S and �R that satisfy (17b) and the LMI shown in
(22a) and (22b) at the bottom of the next page. The state-feedback gain
is then obtained by

K = �Y G�11 : (23)

Note that the inverse ofG1 exists because of (21b) and the positive
definiteness ofH + HT in (22a).

The last lemma was derived for a single system (14) with known pa-
rameters. As such, it provides no improvement to the result of Lemma
3. The merit of (22) lies in its ability to cope with uncertain systems.

In the case where the matrices of the system are not exactly known,
we denote

�
 = [A0 A1 B]

and assume that�
 2 Cof
j ; j = 1; . . . �Ng, namely

�
 =

�N

j=1

fj �
j for some 0 � fj � 1;

�N

j=1

fj = 1 (24)

where the�N vertices of the polytope are described by

�
j = A
(j)
0 A

(j)
1 B

(j)
:

�� =

QT �AT + �AQ+ I

0
�Y TBT [0 I] + 0

I
B �Y [I 0] + h �Z 0

("�1)A
�S QT

� � �S(1� d) 0

� � �diagf�S; h�1 �Rg

< 0 (17a)

and
�R �R [ 0 "AT1 ]

� �Z
> 0 (17b)

where

�A =
0 I

A0 + "A1 �I
: (18)

GT ÂT + ÂG + h �Z 0
("�1)A

�S QT QT �GT + ÂH

� � �S(1� d) 0 0

� � �diagf�S; h�1 �Rg 0

� � � �HT �H

< 0: (20)
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In order to guarantee the stability of (14) over the entire polytope, one
can use the result of Lemma 3 by applying the same matrixQ for all
the points in the polytope and solving (17a,b) for the�N vertices only.
A quadratic stabilizability type criterion is then obtained which may be
quite conservative. In order to allow aQ that depends on the parameters
of the system, we apply Lemma 4 and define the structures

Gj =
G1 0

G
(j)
2 G

(j)
3

Hj =
�G1 0

H
(j)
2 H

(j)
3

: (25a,b)

We obtain the following.
Theorem 2: Consider the system (14) and assume that its parame-

ters lie in the polytope�
. The system is asymptotically stabilized, over
the entire polytope, by the controller of (15), for all the delays� (t)
that satisfy (2a,b), if for some tuning positive scalar parameters" and
� there exist2n�2n matrices:Qj ,Gj andHj , of the form (16a), and
(25a,b), respectively, and�Zj , j = 1; . . . ; �N , am � n matrix �Y and
n � n matrices �R and �S that satisfy the LMIs (26a–c) shown at the
bottom of the page. The state-feedback gain that stabilizes the system
over the uncertainty polytope is then given by (23).

Remark 2: In the case whereA1 is known, the matricesR andS in
(26a, b) can also be parameter dependent.

Remark 3: In the case where a state-feedback controller exists that
quadratically stabilizes the system, it can be obtained as a special case
of the last theorem by takingGj = Qj = Q,Hj ! 0, and�! 0.

Remark 4: Inequalities (26a, b) can be combined into
one inequality, thus, reducing the computational burden in-

volved in solving these inequalities. It follows from (26b)

that �Zj > "2[0 A
(j)T
1 ]

T �R[0 A
(j)T
1 ]. Since �Zj appears only

in Mj in (26a), one may replace the smallest possible�Zj by

"2[0 A
(j)T
1 ]

T �R[0 A
(j)T
1 ] + �"I2n where�" is a small positive scalar

that tends to zero.
Similarly to the derivation of Corollary 2 we obtain from Theorem

2 the following delay-independent result.
Corollary 4: Consider (14) and assume that its parameters lie in the

polytope �
. The system is asymptotically stabilized, over the entire
polytope, by the controller of (15), for all the delays� (t) that satisfy
(2b), if for some tuning positive scalar parameter� there exist2n�2n
matrices:Qj ,Gj andHj , of the form (16a), (25a,b), respectively,j =
1; . . . ; �N , am � n matrix �Y and an � n matrix �S, that satisfy the
LMIs shown in (27a, b) at the bottom of the page. The state-feedback
gain is then given by (23).

Remark 5: The corresponding delay-dependent/rate-independent
result follows from Theorem 2 by taking" = 1 and deleting rows and
columns containing�S.

IV. EXAMPLES

A. Stability

The time delayed uncertain system of (14) is considered where

A0 =
0 �0:12 + 12�

1 �0:465� �
and A1 =

�0:1 �0:35

0 0:3

M 0
("�1)A

�S QT QT �GT + �AH + 0
�I

B �Y [I 0]

� � �S(1� d) 0 0

� � �diagf �S; h�1 �Rg 0

� � � �HT �H

< 0 (22a)

where

M = G
T �AT + �AG +

I

0
�Y T

B
T [0 I] +

0

I
B �Y [I 0] + h �Z: (22b)

Mj
0

("�1)A
�S QT

j QT
j �GT

j + �A(j)Hj +
0

�B
[ �Y 0]

� � �S(1� d) 0 0

� � �diagf�S; h�1 �Rg 0

� � � �HT
j �Hj

< 0 (26a)

�R �R 0 "A
(j)T
1

� �Zj
> 0; j = 1; . . . ; �N (26b)

where

Mj = G
T
j
�A(j)T + �A(j)

Gj +
�Y T

0
0 B

(j)T +
0

B(j)
[ �Y 0] + h �Zj : (26c)

�Mj
0

A
�S QT

j
I

0
QT
j �GT

j + �A(j)Hj +
0

�B
[ �Y 0]

� � �S(1� d) 0 0

� � � �S 0

� � � �HT
j �Hj

< 0

j = 1; . . . ; �N (27a)

where

�Mj = G
T
j
�A(j)T + �A(j)

Gj +
�Y T

0
0 B

(j)T +
0

B(j)
[ �Y 0]: (27b)
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and wherej�j � 0:035. The time delay is assumed to be constant,
namelyd = 0 in (2b) and bounded byh as in (2a). It is first realized
that the uncertainty polytope possesses two vertices that correspond to
� = 0:035 and� = �0:035. Applying the methods of [6], [9], and [11]
for h > 0, no quadratic stability could be verified by LMI Toolbox
of Matlab. Applying the method of [1], which implies the quadratic
stability of the system, a maximum value ofh = 0:782 is obtained.
Solving the LMIs of Theorem 1 asymptotic stability is guaranteed for
all delays that are less or equal toh = 0:863. Note that this is the
maximum value ofh that was obtained in one of the vertices by [6],
[11], and [13] (by [9] the corresponding value ish = 0:454).

B. Stabilization

The time delayed uncertain system of (14) is considered where

A0 = 0 A1 =
0 1

�1 + g1 �:5
B =

�1 + g2

1

where jg1j � 0:53 and jg2j � 1:7. The time delay is assumed to
be constant, namelyd = 0 in (2b) and bounded byh as in (2a). The
uncertainty in this system is described by a polytope with four vertices.
It is verified that forh = 0 the system is not quadratically stabilizable.
Therefore, by the delay-dependent methods of [12], [13] and of Lemma
3 the quadratically stabilizing controller can not be found forh > 0.
By Theorem 2 it is found, using" = 1 and� = 0:1, that a solution
to the stabilization problem over the polytope is achieved forh � 0:2.
The state-feedback gain that solves the problem forh = 0:2 is K =

[0:0329 � 0:1016]. The result was obtained for" = 1 and thus the
derived state-feedback design stabilizes the system also when the time-
delay is fastly varying but bounded by 0.2. The asymptotic stability of
the resulting closed-loop is checked and verified by applying Lemma
1.

Remark 6: Recently, an example of chatter during milling has been
introduced [6]. Applying a stability criterion, which depends on the
cutting stiffness as a parameter, the maximum delay between succes-
sive passes of the blades has been determined which still guarantees
the stability of the cutting system for all possible angular position of
the blades. It has been found there that for stiffnessk less than 0.27
the system is asymptotically stable for all delays. Applying Corollary
2 of the present note the delay-independent stability of the system is
guaranteed fork less than 0.44. A maximum allowable delay of 0.53
is found using Theorem 1 fork = 0:45. The corresponding allowable
delay in [6] is less and is equal to 0.41 in one of the vertices.

V. CONCLUSION

Efficient parameter dependent stability and stabilizability sufficient
conditions are obtained for continuous time linear systems with time-
varying delays. These conditions are delay dependent and they are ex-
pressed in terms of LMIs that are tuned by a scalar parameter. The
delay-independent conditions are obtained from the former conditions
by taking the tuning parameter to be zero. The efficiency of the pro-
posed method is demonstrated by simple examples which show the ad-
vantage of the derived condition in comparison to other methods.
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An LPD Approach to Robust and Static
Output-Feedback Design

U. Shaked

Abstract—A linear parameter dependent approach for designing a
constant output feedback controller for a linear time-invariant system
with uncertain parameters that achieves a minimum bound on either
the H or the H performance level is introduced. Assuming that the
uncertain parameters reside in a given polytope a parameter dependent
Lyapunov function is described which enables the derivation of the
required constant gain via a solution of a set of linear matrix inequalities
that correspond to the vertices of the uncertainty polytope.

Index Terms—H control, linear parameter dependent (LPD) design,
robust static output control.

I. INTRODUCTION

The static output-feedback problem has attracted the attention of
many in the past [1]–[5]. The main advantage of the static output-feed-
back is the simplicity of its implementation and the ability it provides
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