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Summary
This paper considers discrete-time large-scale networked control systems with mul-

tiple local communication networks connecting sensors, controllers, and actuators.

The local networks operate asynchronously and independently of each other in the

presence of variable sampling intervals, transmission delays, and scheduling pro-

tocols (from sensors to controllers). The time-delay approach that was recently

suggested to decentralized stabilization of large-scale networked systems in the

continuous time is extended to H∞ decentralized control in the discrete time. An

appropriate Lyapunov-Krasovskii method is presented that leads to efficient LMI

conditions for the exponential stability and l2-gain analysis of the closed loop

large-scale system. Differences from the continuous-time results are discussed. A

numerical example of decentralized control of 2 coupled cart-pendulum systems

illustrates the efficiency of the results.
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1 INTRODUCTION

Networked control systems (NCS) are systems with spatially distributed sensors, actuators, and controller nodes, which exchange

data over a communication data channel.1 In the case of large-scale or spatially distributed systems, local groups of sensors and

actuators may be located far apart, leading to a decentralized networked control design. Here, the design may be based on local

controllers and networks.

Decentralized control of continuous-time large-scale systems with independent networks was initiated in Heemels et al2,3 via

the hybrid-system approach. To manage with large communication delays (that may be larger than sampling intervals) in the

presence of scheduling protocols from sensors to actuators, the time-delay approach to continuous-time decentralized NCS was

suggested in Freirich and Fridman.4 The results of Freirich and Fridman4 were confined to stability analysis.

In the discrete-time, stability analysis of large-scale nonlinear systems with application to a power system network was devel-

oped in Gielen and Lazar.5 Self-triggered control of discrete-time systems was studied in Zhang et al.6 The time-delay approach

to discrete-time NCS was developed in Liu and Fridman,7 where the scheduling protocols from sensors to controllers were

considered. The results were confined to the case of 1-plant and 2-sensor nodes.

The goal of this paper is to extend the time-delay approach to decentralized stabilization and H∞ control of large-scale

discrete-time systems with multiple local communication networks connecting sensors, controllers, and actuators. Local net-

works operate asynchronously and independently of each other in the presence of variable sampling intervals, transmission

delays and scheduling protocols from sensors to controllers.
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FIGURE 1 Two coupled inverted pendulums [Colour figure can be viewed at wileyonlinelibrary.com]

The main challenge is in the stability and performance analysis of the closed-loop discrete-time NCS under try-once-discard

(TOD) scheduling protocol.8 Note that as in the continuous-time case,4,9 the closed-loop system in the discrete-time is modeled

as a hybrid large-scale system with delays. However, its structure is different, where the same state equation appears also in the

reset system. This leads to a different from the continuous-time case Lyapunov technique (see Liu and Fridman7 for the case of

one plant). We present a novel Lyapunov functional candidate explaining that its continuous counterpart leads to simplified LMIs

comparatively to Freirich and Fridman.4 Under the round robin (RR) protocol, the closed-loop system is modeled as a system

with multiple delays, and the stability conditions naturally extend the conditions of Freirich and Fridman4 to the discrete-time

case. Extension to l2-gain analysis considers both, independent and coupled disturbances. A numerical example of decentralized

control of 2 coupled inverted pendulums with local networks (see Figure 1) illustrates the efficiency of the results.

Notation: Throughout the paper the superscript “T” stands for matrix transposition, n denotes the n dimensional Euclidean

space with vector norm | · |. l2(n) is the space of sequences x(t) ∈ n, t ∈ [0,∞) with
∑∞

t=0 ||x(t)||2 < ∞. n×m is the set of

all n × m real matrices, and the notation P > 0, for P ∈ n×n means that P is symmetric and positive definite. The symmetric

elements of the symmetric matrix will be denoted by ∗. + and  denote the set of nonnegative integers and positive integers,

respectively. TOD stands for try-once-discard and LKF stands for Lyapunov-Krasovskii functional. MATI and MAD denote

maximum allowable transmission interval and maximum allowable delay, respectively. By 𝛿ij, we denote the Kronecker delta

meaning 𝛿nm = 0, n ≠ m and 𝛿nn = 1 (n,m ∈  ). Throughout this paper the letter “j” (subscript or superscript) will stand for

a subsystem index, while subscript “i” will stand for sensor index.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem formulation
Consider the large-scale system with M interconnected subsystems (see Figure 2).

xj(t + 1) = Ajxj(t) + Bjuj(t) + Djw(t) +
∑

l≠j
Fl

jxl(t),

yij(t) = Cijxj(t) ∈ n j
i , i = 1 … Nj t ∈ +,

(1)

where xj(t) ∈ n j
is the state, w(t) ∈ l2(nw) is a perturbation, and Fl

j are the coupling matrices. The jth subsystem has Nj local

sensors and a local controller, and yj(t) = [yT
1j(t) … yT

Njj
(t)]T ∈ n j

y is the local measurement vector.

The jth subsystem is assumed to have an independent sequence of sampling instants

0 = s j
0
< s j

1
< · · · < s j

k < · · · , lim
k→∞

s j
k = ∞

with bounded sampling intervals 1 ⩽ s j
k+1

− s j
k ⩽ MATIj. At each sampling instant s j

k, one of the sensors i∗k is being chosen

by a scheduling protocol, and its output yi∗k j(s j
k) is being transmitted via a local sensor network to the local controller node. We

assume that the local network is independent of other subsystems' networks.

Suppose that data loss is not possible and that the transmission of the information over the networks from sensors to actuators

(through controller) is subject to a variable round-trip delay 𝜂
j
k. Then t j

k = s j
k + 𝜂

j
k is the updating time instant of the subsystem

input uj(t). Communication delay is assumed to be bounded 𝜂
j
k ∈ [𝜂 j

m, 𝜂
j
M],where 𝜂

j
M ≡ MADj. We will assume that an old sample

cannot get to the same destination (same controller or same actuator) after the most recent one. Suppose that the controllers and

the actuators are event driven (in the sense that they update their outputs as soon as they receive a new sample).

https://onlinelibrary.wiley.com/
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FIGURE 2 Decentralized networked control system with plants P1,… , PM and controllers C1,… , CM [Colour figure can be viewed at

wileyonlinelibrary.com]

Similar to Freirich and Fridman4, we assume the following:

A1 There exist M gain matrices Kj =
[

K1j … KNjj
]
, Kij ∈ m j×n j

i such that the matrices Aj + BjKjCj are Schur, where

Cj =
[

CT
1j · · · CT

Njj

]T
.

Denoted by

ŷj

(
s j

k

)
=
[

ŷT
1j

(
s j

k

)
… ŷT

Njj

(
s j

k

) ]T
∈ n j

y , (2)

the most recent output information submitted to the scheduling protocol of the jth subsystem (ie, the most recent information

at the jth controller side) at the sampling instant s j
k. Then under A1 the static output-feedbacks are given by

uj(t) =
Nj∑

i=1

Kijŷij

(
s j

k

)
, t j

k ⩽ t < t j
k+1

. (3)

We assume uj(t) = 0 for t < t j
0
.

Define the initial time

T0 = maxjt j
0
. (4)

Definition 1. (Exponential stability)

A closed-loop system (1), (3) with w(t) ≡ 0 is exponentially stable(with a decay rate 𝜆 ∈ [0, 1)) if there exists 𝛽 > 0 such

that for any initial condition x0 the following inequality holds

||x(t)||2 ⩽ 𝛽||x||2T0
𝜆t−T0

for t > T0, where x(t) = col{x1(t),… ,xM(t)} ∈ n and ||x||2T0
≡
∑T0

t=0
||x(t)||2.

In this paper, sufficient conditions are given for exponential stability of the unperturbed closed-loop system, as well as for

l2-gain analysis of the perturbed one.

3 STABILITY OF DECENTRALIZED NETWORKED CONTROL UNDER TOD

Consider the system (1), (6) with M locally controlled subsystems, where the jth subsystem is under TOD scheduling. In this

section, we study the case where w(t) ≡ 0.

https://onlinelibrary.wiley.com/
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Following Liu et al,9 denote the error states {eij, i = 1 … Nj} by

eij(t) = ŷij

(
s j

k−1

)
− yij

(
s j

k

)
, t j

k ⩽ t < t j
k+1

, (5)

and the error-state vectors

ej(t) = col{e1j(t) … eNjj(t)}, j = 1...M.

Using this notation the feedback (3) can be presented as

uj(t) =
Nj∑

i=1

KijCijxj(sk) +
Nj∑

i = 1
i ≠ i∗k

Kijeij(t), t j
k ⩽ t < t j

k+1
. (6)

Denote

eij[k] ≡ eij

(
t j
k

)
, k = 0, 1, … (7)

for the error-states in order to better express their piecewise-constant nature.

In TOD scheduling, the transmitted measurement sent at each instance is chosen according to (weighted) error discriminant

function

ij∗k = argmaxi eT
ij [k]Qijeij[k], (8)

with some weight matrices Qij. Conditions for choosing weight matrices will be given below. For simplicity, we will omit the

subsystem index j in ij∗k throughout the rest of the paper. The error state vector is given by

eij

(
t j
k+1

)
=
⎧⎪⎨⎪⎩
−Cij

[
xj

(
s j

k+1

)
− xj

(
s j

k

)]
, i = i∗k

eij

(
t j
k

)
− Cij

[
xj

(
s j

k+1

)
− xj

(
s j

k

)]
, else

, (9)

with eij

(
t j
0

)
= −Cijx

(
s j

0

)
.

The jth subsystem closed loop is then given by

xj(t + 1) = Ajx(t) + A1jxj(t − 𝜏j(t)) +
∑
i≠i∗k,j

Bijeij(t) +
∑

l≠j
Fl

jxl(t),

ej(t + 1) = ej(t), t j
k ⩽ t ⩽ t j

k+1
− 2,

(10)

with the reset equations (ie, equations at reset times t = t j
k+1

− 1)

xj

(
t j
k+1

)
=Ajxj

(
t j
k+1

− 1
)
+ A1jxj

(
s j

k

)
+
∑

i≠i∗k
Bijeij

(
t j
k

)
+
∑

l≠j
Fl

jxl

(
t j
k+1

− 1
)
,

eij

(
t j
k+1

)
=(1 − 𝛿i∗k )eij

(
t j
k

)
− Cij[xj

(
s j

k+1

)
− xj

(
s j

k

)
], k ∈ +,

eij

(
t j
0

)
= − Cijxj

(
s j

0

)
,

(11)

where A1j = BjKjCj and 𝜏j(t) = t − s j
k is the subsystem delay. We have

𝜏j(t) ⩽ t j
k+1

− 1 − s j
k ⩽ MADj + MATIj − 1 ≡ 𝜏

j
M

𝜏j(t) ⩾ t j
k − s j

k ⩾ 𝜂
j
m ⩾ 0.

(12)

Remark 1. Note that in the discrete time domain, the equation for xj(t) at reset times t = t j
k−1 is given by the same difference

equation as for t ∈ [t j
k−1

, t j
k − 2]. This is different from the continuous-time case, where xj

(
t j−

k

)
= xj

(
t j
k

)
.

We define a functional Vj(t) for the jth subsystem. Consider the following LKF:

Vj(t) = xT
j (t)Pjxj(t) + Ṽj(t) + VQ(t, k) + VG(t, k), t j

k ⩽ t ⩽ t j
k+1

− 1, (13)
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where 𝜆 ∈ (0, 1) and

VQ(t, k) = 𝜆t−t j
k

Nj∑
i=1

eT
ij (t)Qijeij(t) −

∑
i≠i∗k

(
t − t j

k

)
eT

ij (t)Uijeij(t),

VG(t, k) =
t−1∑
s=s j

k

Nj∑
i=1

𝜆t−s−1zT
j (s)C

T
ij GijCijzj(s),

Ṽj(t) = V0j(t) + V1j(t),

V0j(t) =
t−1∑

s=t−𝜂 j
m

𝜆t−s−1xT
j (s)S0jxj(s) + 𝜂

j
m

𝜂m∑
θ=1

t−1∑
s=t−θ

𝜆t−s−1zT
j (s)R0jzj(s),

V1j(t) =
t−𝜂m−1∑
s=t−𝜏 j

M

𝜆t−s−1xT
j (s)S1jxj(s) + hj

𝜏
j

M∑
θ=𝜂 j

m+1

t−1∑
s=t−θ

𝜆t−s−1zT
j (s)R1jzj(s),

zj(t) = xj(t + 1) − xj(t), hj = (𝜏 j
M − 𝜂

j
m).

(14)

Here, xT
j (t)Pjxj(t) + Ṽj(t) is a standard LKF for the stability of systems with interval delays,10 VQ(t, k) is constructed to deal with

the error states that appear in (10). The term VG(t, k) allows to compensate the delayed terms Cij[xj

(
s j

k+1

)
− xj

(
s j

k

)
] in the

reset (11).

Remark 2. In the continuous-time case, an LKF candidate Vj for the stability analysis of the resulting jth hybrid subsystem

under TOD protocol was suggested in Liu and Fridman9 (for the uncoupled case, where Fl
j = 0, l ≠ j) and was modified

in Freirich and Fridman4 for coupled (large-scale) systems leading to simplified stability conditions. Thus, the stability of

uncoupled jth subsystem was guaranteed in Freirich and Fridman4 if the following derivative condition holds V̇j +2𝛼Vj ⩽ 0

for some 𝛼 > 0 along the continuous-time dynamics, and if Vj does not grow in the reset times. Differently from this, in

the discrete-time case the stability of the uncoupled jth subsystem can be guaranteed if Vj(t + 1) − 𝜆Vj(t) ⩽ 0 with some

𝜆 ∈ (0, 1) for all t (including the reset times t = t j
k−1).7 Note that the Lyapunov-Krasovskii method of Liu and Fridman7 was

confined to the case of 2 sensor nodes Nj = 2, and only partial x-stability was established. As in the continuous-time case,4

an extension of results to large-scale systems is not a trivial result that will be presented in Proposition 1 and Theorem 1.

Remark 3. In the discrete-time, by introducing the term VQ(t, k) of (14), we avoid the positive terms containing ||√Qi∗k ei∗k ||2
in the upper bound on V(t + 1) − 𝜆V(t) for t ≠ tk − 1. The Qij-terms of VQ in (14) is a discrete-time and modified version of

the corresponding terms in Freirich and Fridman4

VconQ(t) =
∑Nj

i=1
eT

ij (t)Qi,jeij(t) − 2𝛼
(

t − t j
k

)
eT

i∗k j(t)Qi∗k ,jei∗k j(t),

where the negative term −2𝛼(t j
k − t)eT

i∗k j(t)Qi∗k ,jei∗k j(t) allows to compensate a positive term of the form 2𝛼eT
i∗k j(t)Qi∗k ,jei∗k j(t) that

arises in V̇j(t) + 2𝛼Vj(t).
The continuous-time counterpart of Q-terms given by (14) has a form

VcQ(t) = e−2𝛼(t−tk)
∑Nj

i=1
eT

ij (t)Qi,jeij(t). (15)

The term (15) improves and simplifies the condition for V̇ + 2𝛼V of Freirich and Fridman4 based on VconQ:

V̇cQ(t) + 2𝛼VcQ(t) = 0 ⩽,

V̇conQ(t) + 2𝛼VconQ(t) =
∑

i≠i∗k
eT

ij (t)Qi,jeij(t).

However, in the jump condition t = t j
k+1

, these functionals lead to different results:

VcQ

(
t j+
k+1

)
− VcQ

(
t j−
k+1

)
=
∑Nj

i=1
eT

ij

(
t j
k+1

)
Qi,jeij

(
t j
k+1

)
− e−2𝛼

(
t j
k+1

−t j
k

)∑Nj

i=1
eT

ij

(
t j
k

)
Qi,jeij

(
t j
k

)
,
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whereas

VconQ

(
t+j
k+1

)
− VconQ

(
t+j
k−1

)
=
∑Nj

i=1
eT

ij

(
t j
k+1

)
Qi,jeij

(
t j
k+1

)
−
∑Nj

i=1
eT

ij

(
t j
k

)
Qi,jeij

(
t j
k

)
+2𝛼(t j

k+1
− t j

k)e
T
ij

(
t j
k

)
Qi,jeij

(
t j
k

)
|i=i∗k

.

Hence, VcQ may lead to different from Freirich and Fridman4 (complementary) results. Note that in the example from Freirich

and Fridman4, VcQ does not change the numerical result, but Qi,j terms are eliminated from part of LMIs (simplifying them).

Proposition 1. Consider the jth closed-loop subsystem (10), (11). Given parameters 0 < 𝜆 < 1 and 𝜀 ⩽ 1 − 𝜆(
∑

j≠l𝜀jl ⩽
𝜀, l = 1 … M) and matrices Pl > 0, l = 1 … M, let there exist matrices S0j,R0j, S1j,R1j,Qij,Uij,Gij > 0, and Wj that
satisfy LMIs,

Ωj =
[

R1j Wj
∗ R1j

]
⩾ 0 (16)

and

Σ j
i − Υ̃ j

i + ẼT
ij2GjẼij2 < 0,

Ψ j
i + [I 0]TUij[I 0] < 0,

i = 1, … ,Nj,

(17)

where

Σ j
i = ẼT

ij1PjẼij1 + ẼT
ij2HjẼij2 − ẼT

ij3𝜆
𝜏

j
MΩjẼij3 − ẼT

ij4𝜆
𝜂

j
m R0jẼij4 + Ẽij5,

hj = 𝜏
j
M − 𝜂

j
m,  j = [F1

j · · ·F
l≠j
j · · ·FM

j ],Hj = 𝜂
j2

m R0j + h2
jR1j, Gj =

Nj∑
i=1

CT
ij GijCij,

Eij1 =
[
Aj

[
0 1 0

]
⊗ A1j Θij

]
, Eij2 =

[(
Aj − In j

) [
0 1 0

]
⊗ A1j Θij

]
, Θij =

[
B1j · · ·Br≠ij · · ·BNjj

]
,

Eij3 =
[

02n j×n j

[
1 − 1 0
0 1 − 1

]
⊗ In j 0

2n j×(n j
y−n j

i )

]
, Eij4 = [In j − In j 0],

Ei5 = diag{S0j − 𝜆Pj,−(S0j − S1j)𝜆𝜂
j

m , 0n j ,−S1j𝜆
𝜏

j
M , 0},

Ψ j
i =

⎡⎢⎢⎢⎣
𝜆hjUij +

(
1 − Nj𝜆

hj+1

Nj−1

)
Qij Qij

∗ Qij − 𝜆
𝜏

j
M

hj+1
Gij

⎤⎥⎥⎥⎦ ,
Υ j

i = diag{04n j ,U1j, · · · ,Ur≠i,j, · · · ,UNjj},

Ẽij1 = [Eij1  j], Ẽij2 = [Eij2  j], Ẽij4 = [Eij4 0 ·  j], Ẽij3 =
[

Eij3 0 ·
[
 j

 j

]]
,

Ẽij5 = diag{Eij5,− j},  j = diag{𝜀jlPl, ł ≠ j}, Υ̃ j
i = diag{Υ j

i , 0n−nj}.

(18)

Then Vj given by (13) satisfies the following inequalities along (10), (11) (with some 𝛽 j > 0):

Vj(t) ⩾ 𝛽j(||xj(t)||2 + ||ej(t)||2), t ⩾ t j
0
, (19)

Vj(t + 1) − 𝜆Vj(t) ⩽
∑

l≠j
𝜀jlxT

l (t)Plxl(t), t ⩾ t j
0
. (20)

Proof. We prove first the positivity condition 19. Note that

t j
k+1

− t j
k − 1 = (t j

k+1
− 1 − s j

k) − 𝜂
j
k ⩽ 𝜏

j
M − 𝜂

j
m = hj. (21)
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We have

VQ(t, k) ⩾ 𝜆t j
k+1

−1−t j
k

Nj∑
i=1

eT
ij (t)Qijeij(t) − (t j

k+1
− 1 − t j

k)
∑
i≠i∗k

eT
ij (t)Uijeij(t)

⩾ 𝜆hj

Nj∑
i=1

eT
ij (t)Qijeij(t) − hj

∑
i≠i∗k

eT
ij (t)Uijeij(t),

t j
k ⩽ t ⩽ t j

k+1
− 1.

(22)

From the second inequality (17) it follows that

𝜆hjUij <

[
Nj𝜆

hj+1

Nj − 1
− 1

]
Qij < 𝜆hj+1

[ Nj

Nj − 1
− 1

]
Qij =

𝜆hj+1

Nj − 1
Qij ⩽ 𝜆hj+1Qij.

The latter inequality together with (22) imply

VQ(t, k) ⩾ 𝛽j||ej(t)||2, t j
k ⩽ t ⩽ t j

k+1
− 1

for some 𝛽 j > 0, yielding (19).

We prove next inequality (20). We find

V0j(t + 1) − 𝜆V0j(t) ⩽ 𝜂
j2
m zT

j (t)R0jzj(t)

+ xT
j (t)S0jxj(t) − 𝜆𝜂

j
m xT

j

(
t − 𝜂

j
m

)
S0jxj

(
t − 𝜂

j
m

)
− 𝜂

j
m

𝜂
j

m∑
θ=1

𝜆θzT
j (t − θ)R0jzj(t − θ),V1j(t + 1) − 𝜆V1j(t)

⩽ h2
j z

T
j (t)R1jzj(t) + 𝜆𝜂

j
m xT

j

(
t − 𝜂

j
m

)
S1jxj

(
t − 𝜂

j
m

)
− 𝜆𝜏

j
M xT

j

(
t − 𝜏

j
M

)
S1jxj

(
t − 𝜏

j
M

)
− hj

𝜏
j

M∑
θ=𝜂 j

m+1

𝜆θzT
j (t − θ)R1jzj(t − θ).

(23)

By using Jensen's inequality, we obtain

𝜂
j
m

𝜂
j

m∑
θ=1

𝜆θzT
j (t − θ)R0jzj(t − θ) ⩾ 𝜆𝜂

j
m ||√R0j

(
xj(t) − xj

(
t − 𝜂

j
m

)) ||2 =

[
𝜂j(t)
𝜉ij(t)
Xc

j (t)

]T

ẼT
ij4𝜆

𝜂
j

m R0jẼij4

[
𝜂j(t)
ξij(t)
Xc

j (t)

]
. (24)

Under (16) the following holds11:

hj

𝜏
j

M∑
θ=𝜂 j

m+1

𝜆θzT
j (t − θ)R1jzj(t − θ) ⩾ 𝜆𝜏

j
M

⎡⎢⎢⎣
xj

(
t − 𝜂

j
m

)
− xj(t − 𝜏j(t))

xj(t − 𝜏j(t)) − xj

(
t − 𝜏

j
M

) ⎤⎥⎥⎦
T

Ωj

⎡⎢⎢⎣
xj

(
t − 𝜂

j
m

)
− xj(t − 𝜏j(t))

xj(t − 𝜏j(t)) − xj

(
t − 𝜏

j
M

) ⎤⎥⎥⎦
=

[
𝜂j(t)
ξij(t)
Xc

j (t)

]T

ẼT
ij3𝜆

𝜏
j

MΩjẼij3

[
𝜂j(t)
ξij(t)
Xc

j (t)

]
.

(25)

Denote

𝜂j(t) = col
{

xj(t), xj

(
t − 𝜂

j
m

)
, xj(t − 𝜏j(t)), xj

(
t − 𝜏

j
M

)}
Xc

j (t) = col{xl(t), l ≠ j}, ξij(t) = col{erj(t), r ≠ i},

σij[k] = Cij

(
xj

(
s j

k+1

)
− xj

(
s j

k

))
.
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Employing the relations

zj(t) = Ẽi∗k j2

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ , xj(t + 1) = Ẽi∗k j1

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ (26)

and ∑
l≠j
𝜀jlxT

l (t)Plxl(t) = XcT
j (t) jXc

j (t), (27)

from (23)-(25), we obtain

xT
j (t + 1)Pjxj(t + 1) + Ṽj(t + 1) − 𝜆(xj(t)TPjxj(t) + Ṽj(t))

−
∑

l≠j
𝜀jlxT

l (t)Plxl(t) ⩽
[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
]
Σ j

i∗k

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ ,
tk ⩽ t ⩽ tk+1 − 1.

(28)

Consider t j
k ⩽ t ⩽ t j

k+1
− 2. From (21) and definition of VQ(t),

VQ(t + 1, k) − 𝜆VQ(t, k) =
(
−1 + (𝜆 − 1)

(
t − t j

k

))∑
i≠i∗k

||√Uijeij(t)||2
⩽ −

∑
i≠i∗k

||√Uijeij(t)||2 ⩽ −
[
𝜂T

j (t) ξT
i∗k j(t)

]
Υ j

i∗k

[
𝜂j(t)
𝜉i∗k j(t)

]
= −

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦
T

Υ̃ j
i∗k

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ .
(29)

Note that the terms |√Qijeij(t)|2 vanish in Equation 29 due to multiplication of them by 𝜆t−t j
k .

Therefore,

Vj(t + 1) − 𝜆Vj(t) −
∑

l≠j
𝜀jlxT

l (t)Plxl(t) ⩽
[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
] (

Σ j
i∗k
− Υ̃ j

i∗k

) ⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ + zT
j (t)Gjzj(t), t j

k ⩽ t ⩽ t j
k+1

− 2.

Substituting into the latter inequality 26, we see that the first inequality 17 implies the inequality 20 for t j
k ⩽ t ⩽ t j

k+1
− 2.

Consider now the case of reset times, where t = t j
k+1

− 1. Using notation 7, we have

VQ

(
t j
k+1

, k + 1
)
− 𝜆VQ

(
t j
k+1

− 1, k
)

⩽
Nj∑

i=1

[
eT

ij [k + 1]Qijeij[k + 1] − eT
ij [k]𝜆

t j
k+1

−t j
k Qijeij[k]

]
+ 𝜆hj

∑
i≠i∗k

eT
ij [k]Uijeij[k].

(30)

Exploiting the reset Equation 9, we find

Nj∑
i=1

eT
ij [k + 1]Qijeij[k + 1] = σT

i∗k j[k]Qi∗k jσT
i∗k j[k] +

∑
i≠i∗k

(eij[k] + σij[k])TQij(eij[k] + σij[k]). (31)

Since under TOD |√Qi∗k jei∗k j(t)|2 ⩾ 1

Nj − 1

∑
i≠i∗k
|√Qi,jeij(t)|2, (32)

we arrive at
Nj∑

i=1

eT
ij [k]Qijeij[k] = eT

i∗k j[k]Qi∗k jeT
i∗k j[k] +

∑
i≠i∗k

eij[k]TQijeij[k]

⩾
∑
i≠i∗k

eij[k]T
(

1 + 1

Nj − 1

)
Qijeij[k].

(33)



FREIRICH AND FRIDMAN 373

Substituting Equations 31 and 33 into Equation 30 and using Equation 21, we obtain

VQ

(
t j
k+1

, k + 1
)
− 𝜆VQ

(
t j
k+1

− 1, k
)

⩽
∑
i≠i∗k

eT
ij [k]

[
1 − 𝜆hj+1(1 + 1

Nj − 1
)
]

Qijeij[k] + 𝜆hj
∑
i≠i∗k

eT
ij [k]Uijeij[k] + 2

∑
i≠i∗k

eT
ij [k]Qijσij[k]

+
∑
i≠i∗k

σij[k]TQijσij[k] + σT
i∗k j[k]Qi∗k jσT

i∗k j[k].

(34)

For VG, consider 2 cases. In the case, where t = t j
k+1

− 1 ⩽ s j
k, we have t j

k = s j
k, t j

k+1
= s j

k+1
. Thus,

VG

(
t j
k+1

, k + 1
)
− 𝜆VG

(
t j
k+1

− 1, k
)
= 0

=
Nj∑

i=1

zT
j

(
t j
k+1

− 1
)

CT
ij GijCijzj

(
t j
k+1

− 1
)
−

Nj∑
i=1

zT
j

(
s j

k

)
CT

ij GijCijzj

(
s j

k

)
⩽

Nj∑
i=1

zT
j (t)C

T
ij GijCijzj(t) −

𝜆𝜏
j

M

hj + 1

Nj∑
i=1

σT
ij [k]Gijσij[k].

(35)

Here, the latter inequality is due to Jensen's inequality.

Otherwise, t j
k+1

− 1 > s j
k, and similarly to Equation 35, we have

VG

(
t j
k+1

, k + 1
)
− 𝜆VG

(
t j
k+1

− 1, k
)

⩽
Nj∑

i=1

zT
j

(
t j
k+1

− 1
)

CT
ij GijCijzj

(
t j
k+1

− 1
)
−

s j
k+1

−1∑
s=s j

k

Nj∑
i=1

𝜆t j
k+1

−s−1zT
j (s)C

T
ij GijCijzj(s)

⩽
Nj∑

i=1

zT
j (t)C

T
ij GijCijzj(t) −

𝜆𝜏
j

M

hj + 1

Nj∑
i=1

σT
ij [k]Gijσij[k].

(36)

Summarizing, we obtain

VQ

(
t j
k+1

, k + 1
)
+ VG

(
t j
k+1

, k + 1
)
− 𝜆(VQ

(
t j
k+1

− 1, k
)
+ VG

(
t j
k+1

− 1, k
)
)

⩽ zj(t)TGjzj(t) +
∑
i≠i∗k

[
eij[k]
σij[k]

]T

Ψ j
i

[
eij[k]
σij[k]

]
+
[

ei∗k j[k]
σi∗k j[k]

]T
(

Qi∗k j −
𝜆𝜏

j
M

hj + 1
Gi∗k j

)[
ei∗k j[k]
σi∗k j[k]

]
,

(37)

and together with Equation 28

Vj

(
t j
k+1

)
− 𝜆Vj

(
t j
k+1

− 1
)
−
∑

l≠j
𝜀jl||√Plxl(tk+1 − 1)||2

⩽
[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
]
Σ j

i∗k

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ + zj(t)TGjzj(t)

+
∑
i≠i∗k

[
eij[k]
σij[k]

]T

Ψ j
i

[
eij[k]
σij[k]

]
+
[

ei∗k j[k]
σi∗k j[k]

]T
(

Qi∗k j −
𝜆𝜏

j
M

hj + 1
Gi∗k j

)[
ei∗k j[k]
σi∗k j[k]

]
.

(38)

From the second inequality (Equation 17), it follows that

Qi∗k j −
𝜆𝜏

j
M

hj + 1
Gi∗k j < 0.
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Therefore,

Vj

(
t j
k+1

)
− 𝜆Vj

(
t j
k+1

− 1
)
−
∑

l≠j
𝜀jl||√Plxl(tk+1 − 1)||2

⩽
[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
]
Σ j

i∗k

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ + zj(t)TGjzj(t) +
∑
i≠i∗k

[
eij[k]
σij[k]

]T

Ψ j
i

[
eij[k]
σij[k]

]
.

(39)

Note that

[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
]
Υ̃ j

i∗k

⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ −
∑
i≠i∗k

eT
ij [k]Uijeij[k] = 0. (40)

So, by adding Equation 40 to Equation 39, we arrive at

Vj

(
t j
k+1

)
− 𝜆Vj

(
t j
k+1

− 1
)
−
∑

l≠j
𝜀jl||√Plxl(tk+1 − 1)||2 ⩽

[
𝜂T

j (t) ξT
i∗k j(t) XcT

j (t)
] (

Σ j
i∗k
− Υ̃ j

i∗k

) ⎡⎢⎢⎣
𝜂j(t)
ξi∗k j(t)
Xc

j (t)

⎤⎥⎥⎦ + zj(t)TGjzj(t)

+
∑
i≠i∗k

[
eij[k]
σij[k]

]T

Ψ j
i

[
eij[k]
σij[k]

]
+
∑
i≠i∗k

eT
ij [k]Uijeij[k].

(41)

Hence, taking into account Equation 26, the inequality 17 implies Equation 20 for t = t j
k+1

− 1.

We are in a position to formulate the stability result.

Theorem 1. Consider the large-scale system (Equations 10 and 11), j = 1 … M. Given tuning parameters 0 < 𝜆 < 1

and 𝜀 ⩽ 1 − 𝜆(
∑

j≠l𝜀jl ⩽ 𝜀, l = 1 … M), let there exist matrices Pj, S0j,R0j, S1j,R1j,Qij,Uij,Gij > 0, and Wj that satisfy
Equations 16 and 17 for all j = 1 … M. Then the system (Equations 10 and 11) is exponentially stable with a decay rate
𝜆 + 𝜀.

Proof. From Proposition 1, Equations 16 and 17 imply the inequality 19 for j = 1 … M. Then there exist positive {𝛽j}M
j=1

such that

Vj(t) ⩾ xT
j (t)Pjxj(t) + 𝛽j||ej(t)||2. (42)

Consider now the LKF

V(t) =
M∑

j=1

Vj(t). (43)

Since xT
j (t)Pjxj(t) ⩽ Vj(t) and

∑
j≠l𝜀jl ⩽ 𝜀, l = 1 … M, summing Equation 20 over j = 1 … M for t ⩾ T0, we obtain

V(t + 1) − (𝜆 + 𝜀)V(t) ⩽ 0

that implies

V(t) ⩽ (𝜆 + 𝜀)t−T0 V(T0), t > T0. (44)

Inequalities (Equation 20) for j = 1...M yield

Vj(T0) ⩽ 𝜆T0−t j
0 Vj

(
t j
0

)
+

T0∑
s=t j

0

∑
l≠j

𝜆T0−s𝜀jlxT
l (t)Plxl(t).
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Then there exist some constants Cj such that

Vj(T0) ⩽ Vj

(
t j
0

)
+ 1

2
Cj||x||2T0

⩽ Cj||x||2T0
,∀j.

Hence, for some constant C, we have

V(T0) ⩽ C||x||2T0
,

implying (for some 𝛽− > 0)

𝛽−(||x(t)||2 + M∑
j=1

||ej(t)||2) ⩽ V(t) ⩽ C||x||2T0
(𝜆 + 𝜀)(t−T0)

with 𝜆 + 𝜀 < 1.

Remark 4. Note that differently from Freirich and Fridman,4 the LMIs (Equation 17) are not affine in the system matrices.

This is due to substitution of Equation 26 into the positive terms zT
j (t)HjzT

j (t), z
T
j (t)GjzT

j (t), and xT
j (t + 1)Pjxj(t + 1) of

Vj(t + 1) − 𝜆Vj(t). However, by applying Schur complements to these terms, one can arrive at equivalent to Equation 17

LMIs that are affine in the systems matrices. Hence, the result of Theorem 1 is applicable to the case of system matrices

from an uncertain time-varying polytope, where one can solve the LMIs (Equation 17) simultaneously for all the vertices

of the polytope applying the same decision matrices.

4 L2-GAIN ANALYSIS OF THE LARGE-SCALE SYSTEM

Consider now the large-scale system (Equation 1) under the controller (Equation 6), where all subsystems are orchestrated by

TOD protocol. The closed loop is then given by

xj(t + 1) = Ajx(t) + A1jxj(t − 𝜏j(t)) +
∑
i≠i∗k,j

Bijeij[k] +
∑

l≠j
Fl

jxl(t) + Djwj(t), t j
k ⩽ t ⩽ t j

k+1
− 1, j = 1 … M,

(45)

where w(t) = col{wj(t), j = 1 … M} ∈ l2([T0,∞),Rnw) is a disturbance. Let Z(t) = col{Zj(t), j = 1 … M} be the controlled

output, where

Zj(t)= 𝛬1jxj(t)+𝛬2juj(t) ∈ nz .

Given 𝛾 > 0, define the following performance index

J =
∞∑

t=t0

[∑
j

ZT
j (t)Zj(t) − γ2wT (t)w(t)

]
.

Definition 2. The closed-loop large-scale system (Equation 45) with initial time T0 = maxj{t j
0
} is said to have an induced

l2-gain less than 𝛾 , if

J < V(T0), ∀w ∈ l2(nw), w ≠ 0

holds for V given by Equation 43.

It is well known (see, eg, Fridman10) that J < V(T0) if for some 𝛼 > 0, the following condition holds along Equation 45

V(t + 1) − V(t) + ZT (t)Z(t) − γ2wT (t)w(t) ⩽ −α[||x(t)||2 + ||w(t)||2], t ⩾ T0. (46)
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Lemma 1. Consider {Vj(t)}M
j=1

given by Equation 13. Let there exist positive tuning parameters 𝜀 < 1 and {𝜀jl}M
j,l=1

such
that

∑
j≠l𝜀jl ⩽ 𝜀, l = 1 … M and

Vj(t + 1) − (1 − 𝜀)Vj(t) + ZT
j (t)Zj(t) − 𝛾2wT

j (t)wj(t) ⩽
∑

l≠j
𝜀jlxT

l (t)Plxl(t) (47)

for t ⩾ T0, then Equation 46 holds along Equation 45 with V(t) =
∑M

j=1 Vj(t).

Taking into account Equation 42, the result of Lemma 1 follows from summation in Equation 47. By extending derivations

of Proposition 1, we arrive at the following LMI conditions that guarantee Equation 47.

Theorem 2. Given 𝛾 > 0, consider the closed-loop system (Equation 45) with a tuning parameter 0 < 𝜀 < 1(
∑

j≠l𝜀jl ⩽
𝜀, l = 1 … M). Let there exist matrices Pj, S0j,R0j, S1j,R1j,Qij,Uij,Gij > 0 and Wj such that Equation 16 holds for all
j = 1 … M, and

Σ j
i − Υ̃ j

i + ẼT
ij2GjẼij2 + 𝜁T

ij 𝜁ij < 0,Ψ j
i + [I 0]TUij[I 0] < 0,

i = 1, … ,Nj, j = 1, … ,M,
(48)

where 𝜆 = 1 − 𝜀 and

Σ j
i = ẼT

ij1PjẼij1 + ẼT
ij2HjẼij2 − ẼT

ij3𝜆
𝜏MΩjẼij3 − ẼT

ij4𝜆
𝜂

j
m R0jẼij4 + Ẽij5,

hj = 𝜏
j
M − 𝜂

j
m,  j = [F1

j · · ·F
l≠j
j · · ·FM

j ],

Ẽij1 = [Eij1  j Dj], Ẽij2 = [Eij2  j Dj],

Ẽij4 = [Eij4 0 ·  j 0 · Dj], Ẽij3 =
[

Eij3 0 ·
[
 j Dj
 j Dj

]]
,

Ẽij5 = diag{Eij5,− j,−𝛾2In j
w
},  j = diag{𝜀jlPl≠j},

Υ̃ j
i = diag{Υ j

i , 0n−nj , 0n j
w
}, 

j
i = row{Krj, r ≠ i}

𝜁ij = [𝛬1j [0 1 0]⊗𝛬2jKjCj 𝛬2j
j
i 0]

(49)

with notations given by Equation 18. Then the large-scale system (Equation 45) has an induced l2-gain less than 𝛾 , where
V(t) =

∑
jVj(t) and Vj(t) are given by Equation 13.

Remark 5. In the general case where disturbance is common for all subsystems (ie, wj(t) ≡ w(t), j = 1 … M), we modify

condition 47 as

Vj(t + 1) − (1 − 𝜀)Vj(t) + ZT
j (t)Zj(t) − wT (t)Γjw(t) ⩽

∑
l≠j
𝜀jlxT

l (t)Plxl(t),

where nw × nw positive definite matrices 𝛤j are subject to 𝛾2Inw ⩾
∑

j
Γj. Then Theorem 2 still holds if for every j, 𝛾2In j

w

in Equation 49 is replaced by 𝛤j. Here, {Γj}M
j=1

are additional decision variables of LMIs. The resulting bound 𝛾Rem on

the l2-gain is given by 𝛾2
Rem = 𝛾2

Rem(Γj) = 𝛾2. Simpler LMIs, where 𝛾2In j
w

in Equation 49 is replaced by (common for all

j)𝛾2Inw∕M may lead to a larger bound 𝛾2
Rem = 𝛾2

Rem(𝛾) = 𝛾2 (as shown in the example below).

5 ABOUT DECENTRALIZED CONTROL UNDER RR PROTOCOL

Consider next stabilization of Equation 1 (wj = 0), where RR scheduling protocol orchestrates the transmitted measurements

sent at each instance from sensors to a controller for every subsystem. Under RR scheduling, transmitted sensor measurement

is chosen in a periodic manner. In this case the control law (6) can be presented as

uj(t) =
Nj∑

i=1

KijCijxj(t − 𝜏j(t)),
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where 𝜏 j(t) are piecewise-linear delays with known bounds

𝜂
j
m ⩽ 𝜏j(t) ⩽ Nj · MATIj + 𝜂

j
M − 1 = 𝜏

j
M .

The closed-loop system is then given by

xj(t + 1) = Ajxj(t) +
Nj∑

i=1

Aijxj(t − 𝜏j(t)) +
∑
l≠j

Fl
jxl(t), t ⩾ t j

Nj
, j = 1, … M, (50)

where Aij = BjKijCij. We use Lyapunov functional of the form

Vj(t) = xT
j (t)Pjxj(t) + V j

0
(t) +

Nj∑
i=1

V j
1i(t),

where

V j
0
(t) =

t−1∑
s=t−𝜂 j

m

𝜆t−s−1xT
j (s)S0jxj(s) +

t−𝜂 j
m−1∑

s=t−𝜏 j
M

𝜆t−s−1xT
j (s)S1jxj(s)

+ 𝜂
j
m

𝜂
j

m∑
θ=1

t−1∑
s=t−θ

𝜆t−s−1zT
j (s)R0jzj(s),

V j
1i(t) = (𝜏 j

M − 𝜂
j
m)

𝜏
j

M∑
θ=𝜂 j

m+1

t−1∑
s=t−θ

𝜆t−s−1zT
j (s)R1ijzj(s).

By using arguments of Theorem 1, we arrive at the following result:

Theorem 3. Consider the closed-loop large-scale system (Equation 50). Given tuning parameters 0 < 𝜆 < 1 and 𝜀 ⩽ 1−𝜆

(
∑

j≠l𝜀jl ⩽ 𝜀, l = 1 … M), let there exist matrices Pj, S0j,R0j, S1j,R1ij > 0, and Wij(i = 1 … Nj, j = 1 … M) that satisfy[
R1ij Wij
∗ R1ij

]
⩾ 0, i = 1, … ,Nj,

Σ j < 0, j = 1, … ,M,

(51)

where

Σ j = ET
1jPjE1j + ET

2jHjE2j −
Nj∑

i=1

ET
3ij𝜆

𝜏
j

MΩijE3ij − ET
4j𝜆

𝜂
j

m R0jE4j + E5j,

 j = [F1
j · · ·F

l≠j
j · · ·FM

j ], Hj = 𝜂
j
m

2R0j + (𝜏 j
M − 𝜂

j
m)2

Nj∑
i=1

R1ij,

E1j =
[[

100
]
⊗ AjAij · · ·ANjj

j] ,E2j =
[[

100
]
⊗ (Aj − In j ) Aij · · ·ANjj

j] ,
E3ij =

[[
0
0

]
⊗ Aj

[
1 0

0 − 1

]
⊗ In j 𝜒 i

1
… 𝜒 i

Nj

[
0
0

]
⊗  j

]
, 𝜒 i

r = 𝛿i,r

[
−1
1

]
⊗ In j ,

E4j = [In j − In j 0], E5j = diag{S0j − 𝜆Pj,−(S0j − S1j)𝜆𝜂
j

m ,−S1j𝜆
𝜏

j
M , 0n j

y
,− j},

 j = diag{𝜀jlPl, ł ≠ j}.

Then the closed-loop system (Equation 50) is exponentially stable with a decay rate 𝜆 + 𝜀, where T j
0
= t j

Nj
.

Derivation of LMIs consists of arguments similar to Proposition 1, where

𝜂j(t) = col{xj(t), xj

(
t − 𝜂

j
m

)
xj

(
t − 𝜏

j
M

)
, xj(t − 𝜏

j
1
(t)), … , xj(t − 𝜏

j
Nj
(t))}.
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Remark 6. In the numerical example below, the results that follow from Theorem 3 (under RR protocol) are less conservative

than the results based on Theorem 1. However, the improvement is achieved on the account of the numerical complexity:

• the conditions of Theorem 1 possess LMIs of Njn + (4Nj + 7)nj + 4nj
y total rows and

5Tn j + nj2 + 3
∑Nj

i=1
Tn j

i
scalar decision variables for each subsystem j, where Tn = n2+n

2
is the nth triangular number;

• the conditions of Theorem 3 possess LMIs of (6 + 4Nj)nj + n total rows and

(4 + Nj)Tn j + Njn j2 scalar decision variables for each subsystem j.

Comparatively to LMIs of Theorem 1, the number of lines in LMIs of Theorem 2 is enlarged by Njn j
w, whereas the number

of scalar decision variables remains the same.

Remark 7. There is a trade-off between enlarging the decay rate and the values of MATI/MAD. The choice of a decay rate

𝜆 close to 1 enlarges the values of MATI/MAD. Moreover, fast convergence of subsystems without coupling, where 𝜆 ≪ 1

if Fl
j = 0, allows stronger coupling.

6 EXAMPLE: 2 COUPLED INVERTED PENDULUMS

Consider the example of 2 coupled inverted pendulums on carts (Figure 1), under the scenario of decentralized networked

control. We discretize the continuous-time model of Borgers and Heemels2 with the sampling time Ts = 10−4. Here M = 2,

Nj = 2 or Nj = 4(j = 1, 2). The resulting system matrices of Equations 1 and 3 are given by

Aj = A = I4 + 10−4 ·
⎡⎢⎢⎢⎣

0 1 0 0
2.9156 0 −0.0005 0

0 0 0 1
−1.6663 0 0.0002 0

⎤⎥⎥⎥⎦ ,
BT

j = BT = 10−4 ·
[

0 − 0.0042 0 0.0167
]
,

F2
1
= F1

2
= A12 = 10−4 ·

⎡⎢⎢⎢⎣
0 0 0 0

0.0011 0 0.0005 0
0 0 0 0

−0.0003 0 −0.0002 0

⎤⎥⎥⎥⎦ ,
K1 = [k11 k21 k31 k41] = [11396 7196.2 573.96 1199.0] ,
K2 = [k12 k22 k32 k42] = [29241 18135 2875.3 3693.9] .

In the case of Nj = 2, we consider

C1j =
[

1 0 0 0
0 1 0 0

]
, C2j =

[
0 0 1 0
0 0 0 1

]
,

K1j = [k1j k2j], K2j = [k3j k4j], j = 1, 2.

In the case of Nj = 4, C1j, … ,C4j are the rows of I4 and K1j, … ,K4j are the entries of Kj.

We start with the stability analysis and apply conditions of Theorems 1 and 3. Choosing the tuning parameters 𝜆 =
e−3×10−6

, 𝜀12 = 𝜀21 = 1 − 𝜆, we achieve maximal delays preserving the stability that are given in Table 1. For constant commu-

nication delays MAD1 = MAD2 = 1, MATI1, and MATI2 are given in Table 2. It is seen that in this example, the results under

TOD are more conservative (see Remark 7).

TABLE 1 Maximal values of 𝜏1
M , 𝜏2

M preserving stability

𝜂1
m = 𝜂2

m N1 = N2 Theorem 1 (TOD) Theorem 3 (RR)
𝜏1

M 𝜏2
M 𝜏1

M 𝜏2
M

1 2 102 39 339 133

1 4 29 10 327 130

Abbreviations: RR, round robin; TOD, try-once-discard.
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TABLE 2 MATI1,MATI2 preserving stability for MAD = 1

𝜂1
m = 𝜂2

m N1 = N2 Theorem 1 (TOD) Theorem 3 (RR)
MATI1 MATI2 MATI1 MATI2

1 2 101 38 169 66

1 4 28 9 81 32

Abbreviations: RR, round robin; TOD, try-once-discard.

TABLE 3 Results of Freirich and Fridman4: max. value of 𝜏
j

M preserving

stability ( j = 1, 2) for 𝜂1
m = 𝜂2

m = 10−4

#Sensors(Nj) 2 4
𝜏1

M 𝜏2
M 𝜏1

M 𝜏2
M

Freirich and Fridman4 (TOD) 0.0103 0.004 0.003 0.001

Abbreviation: TOD, try-once-discard.

TABLE 4 Minimal values of γ2
Rem

N1 = N2 𝜂1
m = 𝜂2

m 𝜏1
M 𝜏2

M γ2
Rem(Γj) γ2

Rem(γ)

2 1 2 2 0.0262 0.0482

4 1 2 2 0.0461 0.0791

Table 3 illustrates that in this example under TOD, the discrete-time results with Ts = 10−4 are similar to the continuous-time

ones obtained in Freirich and Fridman.4 The same is true for the results under RR.

Consider now the perturbed model of 2 coupled inverted pendulums given as above, where each system input is perturbed

such that

uj(t) = ũj(t) + 𝜈j(t) +
9

10
𝜈3−j(t), j = 1, 2.

Here, ũj(t) are the controllers as considered above, and 𝜈1 and 𝜈2 ∈ l2 are the perturbations. The system is now given by

Equation 45 where wT
1
(t) = wT

2
(t) =

[
𝜈T

1
(t) 𝜈T

2
(t)
]

and

D1 =
[

B1
9

10
B1

]
, D2 =

[
9

10
B2 B2

]
.

The controlled output is given by

Z1(t) = [500 0 0 0] · x1(t), Z2(t) = [100 0 0 0] · x2(t).

Choosing 𝜆, 𝜀12, and 𝜀21 as above, we find bounds on l2-gain by using Remark 5 with different 𝛤j, denoted by 𝛾Rem(𝛤j), and

common 𝛾2Inw∕M, denoted by 𝛾Rem(𝛾), (see Table 4). Here, for Nj = 2, the following gain matrices are obtained:

Γ1 = diag{0.0224, 0.0216}, Γ2 = diag{0.0038, 0.0045},

and for Nj = 4,

Γ1 = diag{0.04, 0.0388}, Γ2 = diag{0.0061, 0.0073}.

It is seen that the bounds on 𝛾Rem achieved by using different 𝛤j are less restrictive. However, the corresponding LMIs possess

more decision variables.

7 CONCLUSIONS

In this paper, a time-delay approach has been developed for the decentralized networked control of large-scale discrete-time sys-

tems with local networks, where asynchronous variable sampling intervals, large variable communication delays and scheduling

protocols from sensors to controllers were taken into account. The proposed Lyapunov-Krasovskii method leads to efficient

LMI conditions for the exponential stability and l2-gain analysis of the closed-loop large-scale system.
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