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ABSTRACT
Thispaperdealswith asymptotic stabilisationof a classof nonlinear input-delayed systemsviadynamicout-
put feedback in thepresenceof disturbances. Theproposed strategyhas the structure of anobserver-based
control law, inwhich the observer estimates and predicts both the plant state and the external disturbance.
A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequal-
ities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or
the time delay is constant. The controller design problem is also addressed and a numerical example with
an unstable system is provided to illustrate the usefulness of the proposed strategy.
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1. Introduction

Time delays are ubiquitous in many engineering applications
such as chemical or biological processes, oil or gas factories, and
networked control. Large delays often lead to closed-loop insta-
bility if they are not taken into account and limit the achievable
performance of conventional controllers (Fridman, 2014a).

When dealing with stabilisation of input-delayed systems,
predictive feedback plays a key role. For the linear SISO case,
the stabilisation problem in the presence of input/output delays
can be solved by the so-called Smith Predictor (Smith, 1957),
which is actually a predictive model-based controller formu-
lated in the frequency domain. In the time domain, similar
control strategies have been proposed (Artstein, 1982; Mani-
tius & Olbrot, 1979), even for nonlinear time-varying systems
(Bekiaris-Liberis & Krstic, 2012), all of them requiring a state
predictor. However, in many cases, little attention is devoted
to the predictor implementation, often assuming the stability
of the open-loop process. This has been a matter of concern
for some researchers (Engelborghs, Dambrine, & Roose, 2001;
Mondié & Michiels, 2003; Zhong, 2004), as the discretisation
of the integral terms involved may lead to instability of the
closed-loop. For nonlinear systems, the implementation may
be even more challenging as it requires the on-line integration
of nonlinear functions. See the recent monograph (Karafyllis
& Krstic, 2017).

In order to avoid integral terms in the control law, the idea of
a predictor in observer formhas been receiving increasing atten-
tion. It was first introduced in Besançon, Georges, and Benay-
ache (2007) for systems with small input delays and extended
in Najafi, Hosseinnia, Sheikholeslam, and Karimadini (2013)
and Najafi, Sheikholeslam, Wang, and Hosseinnia (2014) to

CONTACT R. Sanz risanzdi@gmail.com Department of Systems Engineering and Automation, Universitat Politècnica de València, Camino de Vera s/n –
Edificio 8G, acceso D, piso 1, ala este, 46022 Valencia, Spain

larger delays by using the cascade observer structure initi-
ated in Germani, Manes, and Pepe (2002). The idea is to use
a chain of observers so that each of them predicts the state
over a fraction of the delay. This is known in the literature
as the sequential predictors technique. Recently, this method-
ology has been exploited by some researchers (Ahmed-Ali,
Cherrier, & Lamnabhi-Lagarrigue, 2012; Léchappé, Moulay,
& Plestan, 2016; Mazenc & Malisoff, 2016; Sanz, Garcia, Frid-
man, & Albertos, 2018). However, in the context of sequential
predictors, nonlinearities have not been addressed in any of the
aforementioned works.

Disturbance rejection is also a central issue in process
control, especially challenging for time-delay systems. Several
works devoted to improving disturbance rejection of state pre-
dictors have been reported recently in the literature. The inverse
optimality of a filtered state predictor with respect to a func-
tional involving the disturbance was shown in Krstic (2008).
A filtered prediction was also considered in Sanz, García,
and Albertos (2018) with a frequency-domain approach. Addi-
tional delayed feedback was considered in Léchappé, Moulay,
Plestan, Glumineau, and Chriette (2015) to reject constant
disturbances. A modified prediction based on a disturbance
observer was proposed in Sanz, García, and Albertos (2016),
leading to rejection of polynomial-in-time disturbances and
also better attenuation of sufficiently smooth signals. Similar
results are also reported in Furtat, Fridman, and Fradkov (2018).
For unknown sinusoidal disturbances, cancellation by means
of adaptive control schemes has been also achieved in Basturk
and Krstic (2015), Basturk (2017).

The observer structure of the sequential predictor approach
makes it suitable to combine with a disturbance observer. This
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key idea was recently used in Sanz, García, Fridman, and Alber-
tos (2017), where nonlinearities were introduced. The previous
work is extended in different directions in this paper. First, an
additional nonlinear term is used in the control law in order
to counteract the nonlinearity. Second, a chain of observers of
arbitrary length is considered here, while only a one-element
chain was considered in Sanz et al. (2017) for simplicity. Third,
a generator model of the disturbance is considered to achieve
rejection of time-varying disturbances. These modifications
lead to a substantially more complicated closed-loop stability
analysis. A systematic design procedure is given to compute the
observer gains of all elements in the chain, as well as the feed-
back gain for the controller. Stability is then guaranteed in spite
of the nonlinearity and the time-varying delay.

The rest of the paper is structured as follows. The prob-
lem formulation and preliminaries are given in Section 2. The
proposed strategy is developed in Section 3, while the closed-
loop stability and the controller design are tackled in Section 4.
The main results are illustrated through a numerical example in
Section 5.

2. Preliminaries

The present work deals with the class of input-delayed systems
defined by

ẋ(t) = Ax(t)+ B[u(t − τ(t))+ w(t)+ g(t, x)], (1)

y(t) = Cx(t), (2)

where A,B,C are known matrices of appropriate dimensions,
x ∈ R

n is the state, y ∈ R
q is the measured output and u ∈ R

is the control input, w : R≥0 → R is an unknown external dis-
turbance and g : R≥0 × R

n → R
n is a known nonlinearity. The

time-varying delay is assumed to have the form

τ(t) = h + η(t), 0 ≤ η(t) ≤ η̄, (3)

where the nominal value of the delay, h ≥ 0, is known.
The unknown time-varying function η(t) is supposed to be
piecewise-continuous and non-negative. In addition, the fol-
lowing assumptions are made:

Assumption 2.1: The pair (A,B) is stabilisable and the pair
(A,C) is detectable.

Assumption 2.2: The nonlinearity has the structure g(t, x) =
gt(t)gx(x). There exist known constants c1, c2 > 0 such that
|gt(t)| ≤ c1, ∀t ≥ 0 and

|gt(t1)− gt(t2)| ≤ c2|t1 − t2|, ∀t1, t2 ≥ 0.

Furthermore, gx(0) = 0 and there exists a known vector
m ∈ R

n such that

|gx(x1)− gx(x2)| ≤ |lT(x1 − x2)|,

for all x1, x2 in some regionD, containing the origin.

Assumption 2.3: The disturbance signal can be modelled by
the exogenous system

ξ̇ (t) = Gξ(t), (4)

w(t) = Hξ(t), (5)

where G ∈ R
r×r , H ∈ R

1×r are known and form a completely
observable pair and ξ ∈ R

r is a generator vector with unknown
initial condition ξ(0).

The first assumption is necessary for the stabilisation
of (1)–(2) via dynamic output feedback. Assumption 2.2 basi-
cally implies Lipschitz continuity of the nonlinearity with
respect to both arguments, since it is assumed to be the product
of two Lipschitz functions. Assumption 2.3 allows to represent a
variety of signals such as sinusoidal or polynomial disturbances.
Let us state the following auxiliary lemma, which will be used in
the stability proof.

Lemma 2.1: Under Assumption (2.2), the following holds:

|g(t1, x1)− g(t2, x2)| ≤ c1|lT(x1 − x2)| + c2|t1 − t2||lTx2|,
for all t1, t2 ≥ 0 and any x1, x2 ∈ D.

Proof: Computing the norm and adding and subtracting
gt(t1)gx(x2) leads to

|g(t1, x1)− g(t2, x2)| = |gt(t1)gx(x1)− gt(t2)gx(x2)|
= |gt(t1)gx(x1)− gt(t1)gx(x2)

+ gt(t1)gx(x2)− gt(t2)gx(x2)|
≤ |gt(t1)||gx(x1)− gx(x2)|

+ |gx(x2)||gt(t1)− gt(t2)|,
and thus the result follows by employing the bounds stated in
Assumption 2.2. �

The goal is to find an observer-based output-feedback con-
trol law such that the system (1)–(2) is robustly stabilised for
all time-varying delays described by (3) when either the dis-
turbance or the delay are constant. It should be remarked that
asymptotic stability in the presence of both time-varying distur-
bances and delays is not pursued in this work, for which a delay
estimation strategy would be necessary.

3. Proposed strategy

Let us define z(t) = [xT(t), ξ(t)]T ∈ R
nz as an extended state

with nz = n + r, containing both the system state and the dis-
turbance. Then the dynamics (1)–(2) can be rewritten as

ż(t) = Azz(t)+ Bz[u(t − τ(t))+ g(t, x)], (6)

y(t) = Czz(t), (7)

where

Az =
[
A BH
0 G

]
, Bz =

[
B
0

]
, and Cz = [

C 0
]
.

Now, a predictive observer is adopted to obtain a future esti-
mation of the augmented state h units of time ahead. Following
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the ideas in Germani et al. (2002), Besançon et al. (2007), and
Najafi et al. (2013), the proposed observer has a chain struc-
ture, such that each of the observer states, denoted by z̄j(t) =
[x̄Tj (t), ξ̄j(t)]

T, estimates a prediction of the augmented state
over a fraction of the total delay, z(t + hj), with hj = j

mh. The
proposed observer is given by

˙̄z1(t) = Azz̄1(t)+ Bz[u(t − h̄1)+ g(t + h1, x̄1(t))]

+ L1
(
y(t)− Czz̄1

(
t − h

m

))
, (8)

˙̄zj(t) = Azz̄j(t)+ Bz[u(t − h̄j)+ g(t + hj, x̄j(t))]

+ Lj
(
zj−1(t)− z̄j

(
t − h

m

))
, (9)

for j = 2, . . . ,m, being L1 ∈ R
nz×q, Lj ∈ R

nz×nz and h̄j = h −
hj = (1 − j

m )h. Note that the particular case m= 1 is feasible
and then the observer is simply given by (8). Let us define the
prediction error z̃j(t) = [x̃Tj (t), ξ̃j(t)]

T, by

z̃j(t) = z(t)− z̄j(t − hj), (10)

so that z̃j(t) → 0 implies z̄(t) → z(t + hj), as discussed above.
Differentiating (10), using (6)–(9) and the Newton–Leibniz
formula to rewrite u(t − τ(t)) = u(t − h)− I(u̇) with I(φ)
�

∫ t−h
t−τ(t) φ(s) ds, the error dynamics satisfies1

˙̃z1(t) = Azz̃1(t)− L1Czz̃1
(
t − h

m

)
− BzI(u̇)+ Bzδg1, (11)

˙̃zj(t) = Azz̃j(t)− Ljz̃j
(
t − h

m

)
+ Ljz̃j−1(t − h

m
)

− BzI(u̇)+ Bzδgj, (12)

where

δgj = g(t, x(t))− g(t, x̄j(t − hj)). (13)

Now, the proposed control law

u(t) = −Kx̄m(t)− g(t + h, x̄m(t))− Hξ̄m(t), (14)

withK ∈ R
1×n, is composed of three terms, the first two provid-

ing internal stability and the third onemitigating the effect of the
disturbance. Note that (14) is a slight departure from the control
law proposed in Sanz et al. (2017), in which the nonlinear term
was neglected.

Delaying (14) by h units of time and using (10) with j=m,
one can prove that the following holds:

u(t − h) = −Kx(t)− w(t)− g(t, x̄m(t − h))+ Fz̃m(t), (15)

where F � [K,H]. Using again the Newton–Leibniz equation
into (1) and plugging (15) into the resulting expression , yields

ẋ(t) = (A − BK)x(t)+ BFz̃m(t)− BI(u̇)+ Bδgm. (16)

4. Closed-loop analysis

Let us define μ(t) = [xT(t), z̃T1 (t), . . . , z̃
T
m(t)]T ∈ R

N as an aug-
mented state, where N = n + m · nz, and whose dynamics can
be obtained from (11)–(12) and (16) as

μ̇(t) = A0μ(t)+ A1μ

(
t − h

m

)
− �0I(u̇)+ �1δg, (17)

where δg = [δg1, . . . , δgm]T and

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A − BK 0 . . . 0 BF

0 Az
. . . . . . 0

...
. . . . . . . . .

...

0
. . . . . . . . . 0

0 0 . . . 0 Az

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

0 −L1Cz
. . . . . . 0

... L2 −L2
. . .

...

0
. . . . . . . . . 0

0 0 . . . Lm −Lm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

�0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

B
Bz
...
...
Bz

⎤
⎥⎥⎥⎥⎥⎥⎦
, �1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 B

0 Bz
. . . . . . 0

...
. . . . . . . . .

...

0
. . . . . . . . . 0

0 0 . . . 0 Bz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to derive stability conditions for (17), the term I(u̇)
should be rewritten as a function of the augmented state
μ. Similarly, the bounds on the uncertain terms should be
also expressed in that form. This is done in the following
propositions.

Proposition 4.1: The integral I(u̇) can be expressed as

I(u̇) = �0

∫ t

t−η(t)
μ̇(s) ds −	g − ϕ(t), (18)

where�0 = [−K, 0, . . . , 0, F] and

	g = g (t, x̄m(t − h))− g (t − η(t), x̄m(t − τ(t))) ,

ϕ(t) =
∫ t

t−η(t)
ẇ(θ) dθ .

Proof: Introducing the change of variables s = θ − h, the inte-
gral termcanbewritten asI(u̇)= ∫ t−h

t−τ(t) u̇(s) ds=
∫ t
t−η(t) u̇(θ−

h) dθ . Differentiating (15) and plugging it into the integral
expression just derived yields the desired result. Note that the
term 	g = ∫ t

t−η(t)
dg
dθ (θ , x̄(θ − h)) dθ has been expanded for

convenience. �

Proposition 4.2: The following inequalities hold:

S1 � μT(t)M1μ(t)− |δg|2 ≥ 0,
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S2 �
[
μT(t)

∫ t
t−η(t) μ̇

T(s) ds
] [

M3 −M3
(∗) M2 + M3

]
[

μ(t)∫ t
t−η(t) μ̇(s) ds

]
− |	g|2 ≥ 0,

where M1 = diag{0n, M̄1, . . . , M̄1} and

�1
T = [In, 0n×1], �2

T = [In, 0n×nz , . . . , 0n×nz ,−�1
T],

M̄1 = c21�1llT�T
1 , M2 = 2c21�2llT�T

2 ,

M3 = 2c22η
2�2llT�T

2 .

Proof: See Appendix. �

Plugging (18) into (17), the closed-loop dynamics can be
rewritten as

μ̇(t) = A0μ(t)+ A1μ(t − h)− A2

∫ t

t−η(t)
μ̇(s) ds + �0	g

+ �1δg + �0ϕ(t), (19)

where

A2 =

⎡
⎢⎢⎢⎢⎢⎣

−BK 0 . . . 0 BF
−BzK 0 . . . 0 BzF

...
...

. . .
...

...
−BzK 0 . . . 0 BzF
−BzK 0 . . . 0 BzF

⎤
⎥⎥⎥⎥⎥⎦ .

One can see that (19) is driven by ϕ(t), which arises as a conse-
quence of the unknown time-varying delay. Asymptotic stability
to zero will only be possible if η̄ = 0 or limt→∞ ẇ(t) = 0. Oth-
erwise, we look at a conveniently defined L2-gain performance.
For a given γ > 0, let us introduce the performance index

J =
∫ ∞

0
yT(t)y(t)− γ 2η̄ψ(t) dt, (20)

where ψ(t) = ∫ t
t−η(t) ẇ(s)

2 ds > 0 for all 0 	= ẇ ∈ L2[0,∞).
Next, an auxiliary result is given in Lemma 4.1, followed by a
sufficient criterion for the closed-loop stability in Theorem 4.1.
The design problem is then solved in Theorem 4.2.

Lemma 4.1: Let us denote μt(θ) = μ(t + θ), θ ∈ [−h − η̄, 0]
and ‖μt‖W = max[−h−η̄,0] |μt| + ‖μt‖L2[−h−η̄,0]. If there is a
Lyapunov–Krasovskii functional satisfying

β1|μ(t)|2 ≤ V(t,μt , μ̇t) ≤ β2‖μt‖2W ,

withβ1,β2 > 0, such that, along the solutions of (19), the inequal-
ity

V̇(t,μt , μ̇t)+ 2αV(t,μt , μ̇t)+ yT(t)y(t)− γ 2η̄ψ(t) ≤ 0
(21)

holds locally, then (19) is internally exponentially stable with
decay rate α and achieves performance J< 0 for allψ(t) 	= 0 and
zero initial conditions. Furthermore, if η̄ = 0, thenμ(t) converges
to zero.

Proof: Settingψ(t) = 0 in (21) leads to V̇ + 2αV ≤ 0 and thus
|μ(t)|2 ≤ β−1

1 V(t) ≤ β−1
1 V(0)e−2αt ≤ β2β

−1
1 e−2αt‖μ0‖2W ,

where the second inequality follows by the comparison prin-
ciple. This proves the internal α-exponential stability. On the
other hand, integration from 0 to∞ leads to J< 0, provided that
μ0 = 0 implies V(0,μ0, μ̇0) = 0. Finally, setting η̄ = 0 in (21)
also leads to V̇ + 2αV ≤ 0 and thus by the same arguments as
above, the convergence of μ(t) to zero follows. For additional
details see Fridman (2014b) and the references therein. �

Theorem 4.1: Given scalars γ > 0 and h̄, η̄ ≥ 0, let there exist
positive definite matrices P,Q,R, S ∈ R

N, full matrices P2,P3 ∈
R
N and positive scalars λ1, λ2 such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (1, 2) PT2A1 + Re−2αh̄ −PT2A2 − λ2M3
(∗) (2, 2) PT3A1 −PT3A2

(∗) (∗) −(S + R)e−2αh̄ 0
(∗) (∗) (∗) (3, 3)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

PT2�0 PT2�1 PT2�0
PT3�0 PT3�1 PT3�0
0 0 0
0 0 0

−λ2 0 0
(∗) −λ1Im 0
(∗) (∗) −γ 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (22)

where

(1, 1) = A0
TP2 + P2TA0 + S − R + η̄2Q + λ1M1 + λ2M3,

(1, 2) = P − P2T + A0
TP3,

(2, 2) = −P3 − P3T + h̄2R,

(3, 3) = −Ue−2αη̄ + λ2(M2 + M3).

Then the closed-loop composed of the plant (1)–(2), the
observer (8)–(9) and the control law (14) is internally exponen-
tially stable and achieves J< 0 for all ψ(t) 	= 0, with zero initial
conditions and for any 0 ≤ h ≤ h̄. Furthermore, if η̄ = 0, then
μ(t) converges to zero with decay rate α.

Proof: Let us consider a Lyapunov–Krasovskii functional of the
form (see e.g. Section 3.7 of Fridman, 2014a)

V(t) = μ(t)TPμ(t)+ Vh(t)+ Vη(t), (23)

where

Vh(t) =
∫ t

t−h
e−2α(s−t)μT(s)Sμ(s) ds

+ h
∫ 0

−h

∫ t

t+θ
e2α(s−t)μ̇(s)TRμ̇(s) ds, (24)

Vη(t) = η̄

∫ 0

−η̄

∫ t

t+θ
e2α(s−t)μ̇(s)TQμ̇(s). (25)
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Differentiating (23) and using the descriptor method (Fridman,
2001), one has that

V̇(t) = 2μT(t)Pμ̇(t)+ μT(t)Sμ(t)

− e−2αhμT(t − h)Sμ(t − h)+ h2μ̇T(t)Rμ̇(t)

− e−2αhh
∫ t

t−h
μ̇T(s)Rμ̇(t) ds + η̄2μ̇T(t)Qμ̇(t)

− e−2αη̄η̄

⎛
⎜⎜⎜⎜⎝
∫ t−η(t)

t−η̄
μ̇T(s)Qμ̇(t) ds

︸ ︷︷ ︸
neglected

+
∫ t

t−η(t)
μ̇T(s)Qμ̇(t) ds

⎞
⎟⎟⎟⎟⎠

+ 2[μT(t)P2T + μ̇T(t)P3T][RHS of (19)− μ̇(t)],
(26)

where the last term in (26) can be added as it is identically zero.
Now, by Jensen’s inequality, it follows that

−η̄
∫ t

t−η(t)
μ̇T(s)Qμ̇(t) ds ≤

∫ t

t−η(t)
μ̇T(s) dsQ

∫ t

t−η(t)
μ̇(t) ds,

(27)

−h
∫ t

t−h
μ̇T(s)Rμ(t) ds ≤

∫ t

t−h
μ̇T(s) dsR

∫ t

t−h
μ̇(t) ds

= −[μ(t)− μ(t − h)]R[μ(t)

− μ(t − h)]. (28)

Then, using (26)–(28) and Jensen’s inequality to bound
−η̄ψ(t) ≤ −ϕ(t)2, one can write

V̇(t)− 2αV(t)+ yT(t)y(t)− γ 2η̄ψ(t) ≤ qT(t)�q(t), (29)

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 PT2A1 + Re−2αh −PT2A2
(∗) �22 PT3A1 −PT3A2
(∗) (∗) −(S + R)e−2αh 0
(∗) (∗) (∗) −Ue−2αη̄

(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

PT2�0 PT2�1 PT2�0
PT3�0 PT3�1 PT3�0
0 0 0
0 0 0
0 0 0
(∗) 0 0
(∗) (∗) −γ 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

�11 = A0
TP2 + P2TA0 + S − R + η̄2Q,

�12 = P − P2T + A0
TP3,

�22 = −P3 − P3T + h2R,

and

q(t) = col
{
μ(t), μ̇(t),μ(t − h),

∫ t

t−η(t)
μ(s) ds,	g, δg,ϕ(t)

}
.

To deal with the uncertain terms δg and 	g, the S-procedure
is invoked. Given the quadratic forms S1,S2 ≥ 0 in Proposi-
tion 4.2, it is verified that qT(t)�q(t) ≤ 0 if there exist scalars
λ1, λ2 > 0 such that

qT(t)�q(t)+ λ1S1 + λ2S2 ≤ 0. (31)

Rearranging (31) into amatrix form leads to (22). Since the LMI
is convex in h, its feasibility for h̄ implies its feasibility for any
0 ≤ h ≤ h̄. Finally, if (22) holds then so does (29). Furthermore,
since V(t,μt , μ̇t) in (23) clearly satisfies the lower and upper
bounds in Lemma 4.1, then the theorem follows. �

Theorem4.2: Given scalars γ , ε > 0 and h̄, η̄ ≥ 0, let there exist
positive definite matrices W ∈ R

n,P,Q,R, S ∈ R
N, full matrices

X ∈ R
1×n,P20 ∈ R

n×n, P21, . . . , ,P2m ∈ R
nz×nz , Y21 ∈ R

nz×1,
Y22, . . . , ,Y2m ∈ R

nz×nz and positive scalars λ1, λ2 such that

WAT + AW − XTBT − BX + 2αW < 0, (32)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (1, 2) Y + Re−2αh̄ −PT2A2 − λ2M3
(∗) (2, 2) εY −εPT2A2

(∗) (∗) −(S + R)e−2αh̄ 0
(∗) (∗) (∗) (3, 3)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

PT2�0 PT2�1 PT2�0
εPT2�0 εPT2�1 εPT2�0

0 0 0
0 0 0

−λ2 0 0
(∗) −λ1Im 0
(∗) (∗) −γ 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (33)

where

(1, 1) = A0
TP2 + P2TA0 + S − R + η̄2Q + λ1M1 + λ2M3,

(1, 2) = P − P2T + εA0
TP2,

(2, 2) = −εP2 − εP2T + h̄2R,

(3, 3) = −Ue−2αη̄ + λ2(M2 + M3),

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

0 −Y1Cz
. . . . . . 0

... Y2 −Y2
. . .

...

0
. . . . . . . . . 0

0 0 . . . Ym −Ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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and P2 = diag{P20, . . . , P2m}. Then the closed-loop composed of
the plant (1)–(2), the observer (8)–(9) with Lj = (PT2j)

−1Yj and
the control law (14) with K = XW−1 is internally asymptotically
stable and achieves J< 0 for all ψ(t) 	= 0, with zero initial con-
ditions any for any 0 ≤ h ≤ h̄. Furthermore, if η̄ = 0, then the
closed-loop converges exponentially to zero with decay rate α.

Proof: Given the complexity of linearising (22) to obtain both
K and L simultaneously, the matrix K is simply computed
to guarantee that the plant (1) under the controller u(t) =
−Kx(t)− g(t, x(t)) is α-exponentially stable, which is guar-
anteed by (32). Now, let us consider as in Suplin, Fridman,
and Shaked (2007) and Shustin and Fridman (2007) the sim-
plifications P3 = εP2, with ε > 0 a scalar tuning parame-
ter and P2 = diag{P20, . . . ,P2m}. Defining Yj = PT2jLj, for j =
1, 2, . . . ,m,Y = PT2A1, and after some straightforwardmanipu-
lations, the LMI (22) is transformed into (33), which completes
the proof. �

5. Simulations

The proposed strategy is illustrated in this section with three
examples. The first one is an academic example to validate the
theoretical results stated in Theorem 4.2. The others are focused
on physical systems to illustrate the usefulness of this approach.
First, a servo motor with a nonlinear friction model is consid-
ered. Second, a simplified model of the longitudinal dynamics
of an aircraft is also studied.

5.1 Example 1

Let us consider the following system:

ẋ1(t) = x2(t), (34)

ẋ2(t) = x1(t)+ x21(t) sin t + u(t − τ(t))+ w(t), (35)

where τ(t) = 0.2 + 0.05 sin2 t and y(t) = x1(t). The time-delay
function matches (3) with h= 0.2 and η̄ = 0.05. The system
matrices

A =
[
0 1
1 0

]
, B =

[
0
1

]
, C = [

1 0
]

(36)

satisfy Assumption 2.1. It should be remarked that eig(A) =
{−1, 1} and thus the open-loop system is exponentially unstable.
The nonlinearity g(x, t) can be decomposed as the product of
gt(t) = sin t and gx(x) = x21. Clearly, |gt(t1)− gt(t2)| ≤ |t2 −
t1|, ∀t1, t2 ≥ 0. Also, |gx(y)− gx(z)| = |(y1 + z1)(y1 − z1)| ≤
β|[1, 0, 0](y − z)|,∀|y1 + z1| ≤ β . Therefore, Assumption 2.2
is satisfied with c1 = 1, c2 = 1 and lT = [β , 0, 0] for all |x1| ≤
β/2. The value of β should be selected according to some
design requirements and it is here arbitrarily chosen as β = 3,
which makes Assumption 2.2 to hold locally in the regionD =
{x ∈ R

n : |x1| ≤ 1.5}. The disturbance is considered to be con-
stant, which satisfies Assumption 2.3 withG= 0 andH= 1. The
observer (8)–(9) and the control law (14) are implemented with

Figure 1. Example 1: state (top) starting from x(0) = [0.5, 0]T, with the observer
starting from zero initial conditions and a disturbancew(t) = −1,∀t ≥ 15; control
action (bottom).

m= 2. The gains K and L are designed using Theorem 4.2. The
problem

min
γ>0

γ subject to (32)− (33) (37)

is solved using the Yalmip toolbox for Matlab. There are two
parameters left to adjust, namely, the decay rate α ≥ 0 and aux-
iliary variable ε > 0. For a given value of α, the problem (37)
is solved for different values of ε and the one leading to the
minimum γ is taken as the optimal solution. This procedure
is repeated for increasing values of α until the problem becomes
unfeasible. In this example, we obtained γ = 63, for α = 0.15
and ε = 0.23, leading to the gains

K = [
2.54 1.18

]
, L1 =

⎡
⎣ 8.92
32.54
10.50

⎤
⎦ ,

L2 =
⎡
⎣ 6.65 0.01 0.51
22.22 0.27 1.81
4.15 0.21 0.41

⎤
⎦ .

A simulation with the system starting from x(0) = [0.5, 0]T and
a disturbance signalw(t) = −1,∀t ≥ 15 is carried out. The evo-
lution of the system state and the control action are depicted in
Figure 1, where it can be seen that the state converges asymp-
totically to zero, as expected from Theorem 4.2. The observer
error is also shown in Figure 2. It should be remarked that, in the
example here considered, the previous work in Sanz et al. (2017)
fails to produce any stabilising controller.

5.2 Example 2

Another example is considered, which consists of a servo posi-
tioning system governed by (Yao, Jiao, & Ma, 2014)

θ1ÿ(t) = −F(ẏ)− θ4ẏ(t)+ τ(t − h)+ τL(t), (38)

where F(s) = θ2 tanh(c1s)+ θ3[tanh(c2s)− tanh(c3s)] is the
friction model, y is the motor rotation angle, τ is the motor
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Figure 2. Example 1: observer error with the state starting from x(0) = [0.5, 0]T,
the observer starting from zero initial conditions and a disturbance w(t) =
−1,∀t ≥ 15.

torque, τL is a load disturbance torque and θ1, θ2, θ3, θ4 is a
set of physical parameters. The following parameters c1 = 700,
c2 = 15, c3 = 1.5, θ1 = 2.5 × 10−3, θ2 = 0.02, θ3 = 0.01 and
θ4 = 0.205 are given in Yao et al. (2014). Only x1 is assumed
to be measured here and the model is modified to include an
input delay of h= 0.1 s. The system (38) is then written in the
form of (1)–(2) with

A =
[
0 1
0 − θ4

θ1

]
, B =

[
0
1
θ1

]
, C = [

1 0
]
,

and g(t, x) = −F(x2), w(t) = τL(t). Assumption 2.1 is fulfilled
by the triple (A,B,C) and the nonlinearity satisfies Assump-
tion 2.2 with c1 = 1, c2 = 0 and lT = [0, l2], where l2 is
the Lipschitz constant that is computed numerically as l2 =
sups |F′(s)| ≈ 14.13. The disturbance is assumed to be a con-
stant, which simulates a load attached to the motor shaft. Such
disturbance satisfies Assumption 2.3 with G= 0 and H= 1.

Using Theorem 4.2 withm= 2, α = 2 and ε = 0.1 yields the
following gains:

L1 =
⎡
⎣ 7.49

−1.10
2.71

⎤
⎦ , L2 =

⎡
⎣6.47 −0.33 1.55
3.64 −0.91 15.40
0.97 −0.11 2.51

⎤
⎦

and K = [0.180 − 0.157]. A simulation with the system start-
ing from x = [1, 0]T is shown in Figure 3. A constant load
disturbance is introduced at t= 4 s. One can see that systemper-
formance is fairly good in spite of the time delay and how the
load disturbance is successfully identified and rejected.

5.3 Example 3

The aim of this example is to illustrate the rejection of a time-
varying disturbance. The following model is an approximation
of the longitudinal dynamics of A4D aircraft at a flight condition

Figure 3. Example 2: State (top and centre) starting from x(0) = [1, 0]T, with the
observer starting from zero initial conditions and a disturbancew(t) = 0.5,∀t ≥ 4;
control action and disturbance (bottom).

of 15,000 ft and 0.9Mach (Guo & Chen, 2005):

A =

⎡
⎢⎢⎣

−0.0605 32.3700 0 32.2000
−0.0001 −1.4750 1.0000 0
−0.0111 −34.7200 −2.7930 0

0 0 1.0000 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
−0.1064
−33.8000

0

⎤
⎥⎥⎦ ,

where the state x = [x1, x2, x3, x4] is assumed to be measurable,
x1 is the forward velocity (ft/s), x2 is the angle of attack (rad),
x3 is the pitching rate rad/s, x4 is the pitch angle (rad) and u is
the elevator deflection (deg). As in Guo and Chen (2005), the
external disturbance is assumed to be a sinusoidal signal with
frequency 5 rad/s, described by Assumption 2.3 with

H = [
25 0

]
, G =

[
0 5

−5 0

]
.

The example ismodified by including an input delay of h= 0.1 s,
which could be caused by a slow actuator dynamics. For the sake
of comparison, the sameK as inGuo andChen (2005) is chosen,
which is given by

K = [
2.32 9.94 4.00 13.85

]
.

The observer gains were then chosen using Theorem 4.2, as
explained in the previous example. Selecting α = 0.5 and ε =
0.5, the following gains were obtained:

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

10.3 150.3 0.3 −116.8
0.2 17.3 0.9 −12.2
4.1 154.4 4.7 −150.6
0.4 17.5 0.9 −11.7
0.008 −0.07 −0.01 0.1
0.003 0.06 0.02 0.1

⎤
⎥⎥⎥⎥⎥⎥⎦
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Figure 4. Example 3: State (top) starting from x(0) = [2, −2, 3, 2]T, with the
observer starting from zero initial conditions and a disturbancew(t) = sin 5t,∀t ≥
0; control action (bottom).

and

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

16.8 444.9 −2.9 −426.9 −60.6 26.1
0.5 35.2 −0.5 −22.5 −23.5 5.7
1.2 168.9 −0.05 −122.8 −10.6 35.4
0.8 41.5 −0.5 −28.6 −24.5 6.1

−0.005 −0.5 0.004 0.3 0.4 −0.06
0.01 0.4 −0.005 −0.3 −0.3 0.1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A simulation shows that the strategy reported in Guo
and Chen (2005) becomes unstable when the input delay
h= 0.1 s is introduced. The results of the strategy proposed in
this paper are shown in Figure 4. One can see that, although the
performance is obviously degraded, stability is preserved and
the sinusoidal disturbance is rejected in spite of the delay.

6. Conclusions

A robust control strategy for a class of nonlinear systems with
time-varying input delay was proposed. This strategymakes use
of sequential predictors whose implementation is straightfor-
ward, in contrast to prediction-based controllers. Nonlinearities
have been considered, which is an open problem in the context
of sequential predictors. Furthermore, a designmethodology by
means of linearmatrix inequalities has been derived. The design
procedure has been illustrated with a numerical example.

Simulations show that the LMI design conditions are
quite conservative. This is due to the restrictions imposed
in the decision variables in order to derive computable
design criteria. Therefore, other design procedures and/or Lya-
punov–Krasovskii functionals that introduce less conservatism
could be investigated in the future. Simulations also point
out the so-called peaking phenomenon. This is a well-known
behaviour that can cause instability of nonlinear systems. There-
fore, future research may also be focused on mitigating this
effect by using saturation functions.

Note

1. The equality zj−1(t − hj)− z̄(t − h/m − hj) = z̃j(t − h/m)− z̃j−1
(t − h/m) was used to derive (12), which can be obtained by subtract-
ing z̃j(t) and z̃j−1(t) as defined in (10), delaying the resulting expression
by h/m units of time, and using the fact that hj−1 + h/m = hj.
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Appendix. Proof of Proposition 4.2
Taking the norm of (13) and using Lemma 2.1 with t1 = t2 = t, x1 = x(t)
and x2 = x̄j(t − hj) yields

|δgj| ≤ c1
∣∣∣mT (

x(t)− x̄j(t − hj)
)∣∣∣ = c1|mTx̃j(t)| = c1|mT�T

1 z̃j(t)|.
(A1)

Taking squares on both sides of (A1) yields |δgj|2 ≤ z̃Tj (t)M̄1z̃j(t).
Since |δg|2 = ∑m

j=1 |δgj|2 ≤ ∑m
j=1 z̃

T
j (t)M1z̃j(t) and recalling that μ(t) =

[xT(t), z̃T1 (t), . . . , z̃
T
m(t)]T, then S1 ≥ 0 follows.

Now, using Lemma 2.1 with t1 = t, t2 = t − η(t), x1 = x̄m(t − h) and
x2 = x̄m(t − τ(t)) yields

|	g| ≤ c1|mT[x̄m(t − h)− x̄m(t − τ(t))]| + c2η|mTx̄m(t − τ(t))|. (A2)

Let us rewrite

x̄m(t − h)− x̄m(t − τ(t)) =
∫ t−h

t−τ(t)
˙̄xm(θ) dθ =

∫ t

t−η(t)
˙̄xm(s − h) ds,

(A3)

where the change of variable θ = s − h was performed. From (10), noting
that h = hm, we have that

x̄m(t − h) = x(t)− x̃m(t) = x(t)−�1
Tz̃m(t) = �2

Tμ(t). (A4)

Plugging (A4) into (A3), it follows that

x̄m(t − h)− x̄m(t − τ(t)) =
∫ t

t−η(t)
�2

Tμ̇(s) ds. (A5)

On the other hand, delaying (A4) by η(t) units of time leads to

x̄m(t − τ(t)) = �2
Tμ(t − η(t)). (A6)

Plugging (A5)–(A6) into (A2) yields

|	g| ≤ c1

∣∣∣∣mT�T
2

∫ t

t−η(t)
μ̇(θ) dθ

∣∣∣∣ + c2η
∣∣∣mT�T

2μ(t − η(t))
∣∣∣ . (A7)

Squaring both sides of (A7) and using Young’s inequality to bound the cross
term leads to

|	g|2 ≤
(∫ t

t−η(t)
μ̇T(θ) dθ

)
M2

(∫ t

t−η(t)
μ̇(θ) dθ

)

+ μT(t − η(t))M3μ(t − η(t)). (A8)

Finally, replacingμ(t − η(t)) byμ(t)− ∫ t
t−η(t) μ̇(s) dθ in (A8) yieldsS2 ≥

0, which completes the proof.
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