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a b s t r a c t

The problems of state estimation and observer-based control for heat non-homogeneous equations
under distributed in space point measurements are considered. First, an interval observer is designed
in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions
of boundedness of the interval observer solutions with non-zero boundary conditions and mea-
surement noise are proposed. Third, the obtained interval estimates are used to design a dynamic
output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the
approximation-based one are clearly shown in the numerical example.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Due to various technical (complexity of implementation) or
economic (price of solution) issues, an explicit measurement of
state vector of a dynamical system may be impossible. This is
especially the case, for example, in distributed parameter sys-
tems, where the system state is a function of the space and
time, and only pointwise and discrete measurements are realiz-
able by conventional sensors. Consequently, the system state in
these cases has to be reconstructed using estimation algorithms
(Besançon, 2007; Fossen & Nijmeijer, 1999; Meurer, Graichen, &
Gilles, 2005). The most popular approaches in this domain in-
clude Luenberger observer and Kalman filter for deterministic and
stochastic settings, respectively, which are developed for linear
time-invariant models, that is the case where the existing theory
disposes plenty of solutions. For nonlinear dynamical systems, the
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state estimation algorithms are often based on a partial similarity
of the plant models to linear ones, or representations in various
canonical forms are widely used. The same observations are also
valid for control synthesis.

Many physical phenomena can be formalized in terms of
PDEs (e.g. sound, heat, electrostatics, electrodynamics, fluid flow,
elasticity, or quantum mechanics), whose distributed nature in-
troduces additional level of complexity in design. That is why
control and estimation of PDEs are very popular directions of re-
search nowadays (Bredies, Clason, Kunisch, & von Winckel, 2013;
Smyshlyaev & Krstic, 2010). Frequently, for design of a state esti-
mator or control, the finite-dimensional approximation approach
is used (Alvarez & Stephanopoulos, 1982; Dochain, 2000; Hagen
& Mezic, 2003; Vande Wouver & Zeitz, 2002), then the control
or estimation problems are addressed in the framework of finite-
dimensional systems using well-known tools. Analysis and design
in the original distributed coordinates are more complicated, but
also attract attention of many researchers (Ahmed-Ali, Giri, Krstic,
& Lamnabhi-Lagarrigue, 2015; Fridman, 2013; Fridman & Bar Am,
2013; Fridman & Blighovsky, 2012; Hidayat, Babuska, De Schutter,
& Nunez, 2011; Schaum, Moreno, Fridman, & Alvarez, 2014;
Selivanov & Fridman, 2018; Smyshlyaev & Krstic, 2010). In Pisano
and Orlov (2017) a stabilizing control design with a proportional-
discontinuous feedback is proposed for a parabolic PDE with
pointwise collocated sensing and actuation, and with in-domain
distributed disturbances. The work (Wang, Liu, & Sun, 2018)
presents a Luenberger-type observer-based distributed control
with non-collocated sensors and actuators.
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Inline with the model complexity, the system uncertainty
represents another difficulty for synthesis of an estimator or
a controller. The uncertainty may consist in unknown parame-
ters or/and external disturbances. Appearance of uncertainty may
block a design of a conventional estimator, converging to the ideal
value of the state. In this case an interval estimation becomes
more attainable: an observer can be constructed such that using
input–output information it evaluates the set of admissible values
(interval) for the state at each instant of time. The interval width
is proportional to the size of the model uncertainty (it has to be
minimized by tuning the observer parameters). There are several
approaches to design interval/set-membership estimators (Jaulin,
2002; Kieffer & Walter, 2004; Olivier & Gouzé, 2004). This work
is devoted to interval observers, which form a subclass of set-
membership estimators and whose design is based on the theory
of monotone systems (Efimov, Fridman, Raïssi, Zolghadri, & Sey-
dou, 2012; Moisan, Bernard, & Gouzé, 2009; Olivier & Gouzé,
2004; Raïssi, Efimov, & Zolghadri, 2012; Raïssi, Videau, & Zol-
ghadri, 2010). The idea of interval observer construction has been
proposed rather recently in Gouzé, Rapaport, and Hadj-Sadok
(2000), but it has already received numerous extensions for var-
ious classes of dynamical models. Interval observers for systems
described by PDEs have been proposed in Kharkovskaya, Efimov,
Polyakov, and Richard (2016, 2018), Perez and Moura (2015) and
Rauh, Kersten, and Aschemann (2018). The finite-dimensional ap-
proximation approach was applied in Kharkovskaya et al. (2018)
using the discretization error estimates from Wheeler (1973),
and in Rauh et al. (2018) for temperature estimation in fuel
cells. In Perez and Moura (2015) the sensitivity function interval
estimates are used in order to design an interval observer.

The main contributions of the present paper are as follows.
First, an interval observer described by PDEs without applying
finite-element approximations is proposed for uncertain dis-
tributed parameter systems. Second, an additional design of an
output stabilizing control is performed based on interval obser-
vations. The estimation error dynamics (also distributed) of the
proposed interval observer is guaranteed to be positive follow-
ing the conditions of positivity of solutions of parabolic PDEs
presented in Nguyen and Coron (2016). The stability analysis
from Fridman and Blighovsky (2012) is also extended to the con-
sidered scenario with non-zero measurement noise and boundary
conditions, and further applied for a stabilizing control synthesis
for an unstable PDE. An advantage of using interval observers,
over Luenberger type observers of Fridman and Blighovsky (2012)
and approximation-based interval observer of Kharkovskaya et al.
(2018), consists in calculation on-line of accurate bounds explic-
itly on the given distributed trajectories. It is assumed that the
control is spatially distributed influencing the system dynamics
through shape functions. Such a hypothesis is introduced to
respect the implementation feasibility of the designed control
law, since infinitesimal in space variations of the actuator signal
cannot be realized in practice. It is worth to highlight that here
such a restriction on shape functions is not related with any early
lumping procedure. Some preliminary results on an interval PDE
observer have been proposed in Kharkovskaya, Efimov, Fridman,
Polyakov, and Richard (2017).

The outline of this paper is as follows. After preliminaries
in Section 2, and introduction of distributed parameter system
properties in Section 3, the interval observer design is given in
Section 4. The design of an output control method based on
proposed interval observer is considered in Section 5. The results
of numerical experiments and a comparison with Fridman and
Blighovsky (2012) and Kharkovskaya et al. (2018) for an unstable
parabolic equation are presented in Section 6.

2. Preliminaries

The real numbers are denoted by R, R+ = {τ ∈ R : τ ≥ 0}.
Euclidean norm for a vector x ∈ Rn will be denoted as |x|.

If X is a normed space with the norm ∥ · ∥X , Ω ⊂ Rn for some
n ≥ 1 and φ : Ω → X , define

∥φ∥
2
L2(Ω,X) =

∫
Ω

∥φ(s)∥2
Xds,

∥φ∥L∞(Ω,X) = ess sup
s∈Ω

∥φ(s)∥X .

By L∞(Ω, X) and L2(Ω, X) denote the spaces of functions Ω → X
with the properties ∥ · ∥L∞(Ω,X) < +∞ and ∥ · ∥L2(Ω,X) < +∞,
respectively. Denote I = [0, ℓ] for some ℓ > 0, let Ck(I, X) be
the set of functions having continuous derivatives at least up
to order k ≥ 0 on I . For any q > 0 and an interval I ′ ⊆ I
define W q,∞(I ′,R) as a subset of functions y ∈ Cq−1(I ′,R) with
an absolutely continuous y(q−1) and essentially bounded y(q) on
I ′, ∥y∥Wq,∞ =

∑q
i=0 ∥y(i)∥L∞(I ′,R). Denote by Hq(I,R) with q ≥ 0

the Sobolev space of functions with derivatives through order q
in L2(I,R).

For two functions φ1, φ2 : I → R their relation φ1 ≤ φ2 has
to be understood as φ1(x) ≤ φ2(x) for almost all x ∈ I , the inner
product is defined in a standard way:

(φ1, φ2) =

∫ ℓ

0
φ1(x)φ2(x)dx.

For φ ∈ R define two operators φ+ and φ− as follows:

φ+
= max{0, φ}, φ−

= φ+
− φ.

Lemma 1 (Kharkovskaya et al., 2018). Let s, s, s : I → R admit the
relations s ≤ s ≤ s, then for any φ : I → R we have

(s, φ+) − (s, φ−) ≤ (s, φ) ≤ (s, φ+) − (s, φ−).

For later use, we need the following inequalities:

Lemma 2 (Hardy, Littlewood, & Polya, 1988 Wirtinger’s Inequality).
Let z ∈ H1(I,R), then∫ ℓ

0
z2(ξ )dξ ≤

bℓ2

π2

∫ ℓ

0

[
dz(ξ )
dξ

]2

dξ, (1)

and if z(0) = z(ℓ) = 0, then b = 1; if only z(0) = 0 or z(ℓ) = 0,
then b = 4.

Lemma 3 (Bar Am & Fridman, 2014 Poincare’s Inequality). Let z ∈

H1(I,R) with
∫ ℓ

0 z(ξ )dξ = 0, then∫ ℓ

0
z2(ξ )dξ ≤

ℓ2

π2

∫ ℓ

0

[
dz(ξ )
dξ

]2

dξ . (2)

3. Input-to-state stability and positivity of non-homogeneous
heat equation

In this section the basic facts on heat equation and positivity
of its solutions are given.

3.1. Heat equation

Consider the following PDE with associated boundary condi-
tions:

∂z(x, t)
∂t

= L[x, z(x, t)] + r(x, t) +

p∑
j=0

bj(x)uj(t)

∀(x, t) ∈ I × T ,
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z(x, t0) = z0(x) ∀x ∈ I, (3)
z(0, t) = α(t), z(ℓ, t) = β(t) ∀t ∈ T ,

where I = [0, ℓ] with 0 < ℓ < +∞, T = [t0, t0 + T ) for t0 ∈ R
and T > 0,

L(x, z) =
∂

∂x

(
a(x)

∂z
∂x

)
+q(x)z,

a ∈ C1(I,R), q ∈ C(I,R) and there exist amin, amax ∈ R+ such that

0 < amin ≤ a(x) ≤ amax ∀x ∈ I;

the boundary conditions α, β ∈ C2(T ,R) and the external input
r ∈ C1(I × T ,R); the initial conditions z0 ∈ Z0 = {z0 ∈ H2(I,R) :

z0(0) = α(0), z0(ℓ) = β(0)}; the controls uj : T → R are Lipschitz
continuous functions. The space domain I is divided into p + 1
subdomains Ij for j = 0, 1, . . . , p, where the control signals uj(t)
are applied through the shape functions bj ∈ L2(I, [0, 1]) such that{
bj(x) = 0 x /∈ Ij,
bj(x) = 1 x ∈ Ij.

(4)

The controls uj are designed in Section 5, in Sections 3 and 4 they
are assumed to be given and uj ∈ L∞(T ,R) for all j = 0, 1, . . . , p.

Proposition 4. Assume

amin
π2

ℓ2
> qmax, (5)

where qmax = supx∈I q(x), then for the solutions of (3) the following
estimate is satisfied for all t ∈ T :

1
2

∫ ℓ

0
z2(x, t)dx ≤ e−χ (t−t0)

∫ ℓ

0
w2

0(x)dx (6)

+χ−2
∫ ℓ

0
r̃2(x, t)dx +

ℓ

2
[α2(t) + β2(t)],

where χ = amin
π2

ℓ2
− qmax, w0(x) = z0(x) − δ(x, t0), δ(x, t) =

α(t) +
x
ℓ
(β(t) − α(t)), and

r̃(x, t) = r(x, t) +
1
ℓ

∂a(x)
∂x

(β(t) − α(t))

+ q(x)δ(x, t) − δt (x, t) +

p∑
j=0

bj(x)uj(t). (7)

Proof. Denote w(x, t) = z(x, t) − δ(x, t), then

∂w(x, t)
∂t

= L[x, w(x, t)] + r̃(x, t) ∀(x, t) ∈ I × T ,

w(x, t0) = w0(x) ∀x ∈ I, (8)

w(0, t) = w(ℓ, t) = 0 ∀t ∈ T . (9)

We start with the well-posedness analysis of the system (8) under
Dirichlet boundary conditions (9). The boundary-value problem
(8) can be represented as an abstract differential equation

ζ̇ (t) = Aζ (t) + F (t, ζ (t)), t ≥ t0, ζ (t0) = ζ0 (10)

in the Hilbert space L2(I,R), where the operator A =
∂
∂x

(
a(x) ∂

∂x

)
has the dense domain D(A) = {ζ ∈ H2(I,R) : ζ (0) = ζ (ℓ) = 0}.
The nonlinear term F : T × L2(I,R) → L2(I,R) is defined on
functions ζ (·, t) according to

F (t, ζ (x, t)) = q(x)ζ (x, t) + r̃(x, t),

where r̃(x, t) is given in Eq. (7). It is a well-known fact that A
generates a strongly continuous exponentially stable semigroup

Φ , which satisfies the inequality ∥Φ(t)∥ ≤ κe−ρt for all t ≥ 0
with some constant κ ≥ 1 and decay rate ρ > 0.

By introducing restrictions on the initial and boundary con-
ditions α(t), β(t) and δ(x, t) in the PDE (8) and if uj(t) is Lips-
chitz continuous in t , then F (t, ζ ) is Lipschitz continuous in both
variables:

∥F (t1, ζ1) − F (t2, ζ2)∥L2(I,R) ≤ L1 |t1 − t2| + L2 ∥ζ1 − ζ2∥L2(I,R)

for all t1, t2 ∈ T and ζ1, ζ2 ∈ L2(I,R), with some L1 > 0 and
L2 > 0. Therefore, for all ζ0 ∈ D(A) there exists a strong solution
of the initial value problem (10) in C(T , L2(I,R)) by Pazy (1983,
Theorem 6.1.6).

Now consider for (8) the following Lyapunov function

V (t) =

∫ ℓ

0
w2(x, t)dx.

We have

V̇ (t) = 2
∫ ℓ

0
w(x, t)[

∂

∂x
(a(x)wx(x, t))

+ q(x)w(x, t) + r̃(x, t)]dx.

Integrating by parts and substituting the boundary conditions of
w(x, t) lead to

V̇ (t) = 2a(x)w(x, t)wx(x, t)|ℓ0−2
∫ ℓ

0
a(x)w2

x (x, t)dx

+ 2
∫ ℓ

0
q(x)w2(x, t) + w(x, t)r̃(x, t)dx

= 2
∫ ℓ

0
q(x)w2(x, t) − a(x)w2

x (x, t) + w(x, t)r̃(x, t)dx.

Using Wirtinger’s inequality (1) and Young’s inequality (Hardy
et al., 1988),

2w(x, t)r̃(x, t) ≤ χw2(x, t) + χ−1 r̃2(x, t),

we obtain (recall that χ = amin
π2

ℓ2
− qmax, see the formulation of

the proposition):

V̇ (t) ≤ −2(amin
π2

ℓ2
− qmax)

∫ ℓ

0
w2(x, t)dx

+ 2
∫ ℓ

0
w(x, t)r̃(x, t)dx

≤ −χV (t) + χ−1
∫ ℓ

0
r̃2(x, t)dx.

Therefore, if χ > 0 then the system (8) has bounded solutions:∫ ℓ

0
z2(x, t)dx ≤ 2V (t) + 2

∫ ℓ

0
δ2(x, t)dx

≤ 2(e−χ (t−t0)V (t0) + χ−2
∫ ℓ

0
r̃2(x, t)dx

+
ℓ

2
[α2(t) + β2(t)])

for all t ∈ T , that completes the proof.

Consequently, Proposition 4 fixes the conditions under which
the distributed parameter system (3) possesses the input-to-state
stability (ISS) property (Dashkovskiy, Efimov, & Sontag, 2011;
Dashkovskiy & Mironchenko, 2013) with respect to the boundary
conditions α, β , the external disturbance r and the control signals
uj. The main restriction of that proposition is (5) and can be easily
validated for a sufficiently small ℓ.
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Note that after a straightforward calculus the estimate from
Proposition 4 can be rewritten as follows for all t ∈ T :

∥z(·, t)∥2
L2(I,R) ≤ 4e−χ (t−t0)[∥z0∥2

L2(I,R) + ϱ(t0)]

+ 8χ−2
∥r(·, t)∥2

L2(I,R) + γ (t),

where ϱ(t) =
ℓ
2 [α

2(t) + β2(t)] (weighted norm of the boundary

conditions), γ (t) = 8χ−2ϱ′(t) + 2(1 + 4 q2max
χ2 + 16 ∂a2max

χ2ℓ2
)ϱ(t) and

ϱ′(t) =
ℓ
2 [α̇

2(t) + β̇2(t)] (weighted norm of derivative of the
boundary conditions) are all bounded functions of time t ∈ T ,
∂amax = supx∈I

∂a(x)
∂x .

3.2. Positivity of solutions

In general, the solution z(·, t) of (3) takes its values in R and it
can change sign with (x, t) ∈ I × T . For brevity of presentation of
the results of this subsection we will always assume that uj(t) = 0
for all t ∈ T and j = 0, 1, . . . , p.

Definition 5. The system (3) with uj(t) = 0 for all j = 0, 1, . . . , p
is called nonnegative (positive) on the interval T if for

α(t) ≥ 0, β(t) ≥ 0, r(x, t) ≥ 0 ∀(x, t) ∈ I × T

the implication z0(x) ≥ 0 ⇒ z(x, t) ≥ 0 (z0(x) > 0 ⇒ z(x, t) > 0)
holds for all (x, t) ∈ I × T and for all z0 ∈ Z0.

A well-known example of a nonnegative system is non-
homogeneous heat equation defined over x ∈ (−∞, +∞):

∂ζ (x, t)
∂t

= a
∂2ζ (x, t)

∂2x
+ r(x, t) ∀(x, t) ∈ R × T , (11)

ζ (x, 0) = ζ0(x) ∀x ∈ R,

where a > 0 is a constant, q = 0 and ζ0 : R → R+, whose
solution can be calculated analytically using Green’s function
(fundamental solution or the heat kernel) (Thomée, 2006):

ζ (x, t) =
1

2
√

πat

∫
+∞

−∞

e−
(x−y)2
4at ζ0(y)dy

+

∫ t

0

∫
+∞

−∞

e−
(x−y)2
4a(t−s)

2
√

πa(t − s)
r(y, s)dy ds.

It is straightforward to verify that for nonnegative ζ0 and r
the expression on the right-hand side stays nonnegative for all
(x, t) ∈ R × (0, +∞). This conclusion is valid for the case x ∈ R.
However, if x ∈ I , even the homogenous heat equation (11) with
r(x, t) = 0 for all (x, t) ∈ I × T , and with the boundary condition

0 = ζ (0, t) = ζ (ℓ, t) ∀t ∈ T (12)

admits the solution in the form (Thomée, 2006):

ζ (x, t) =

+∞∑
n=1

Dn sin(
nπx
ℓ

)e−a n2π2

ℓ2
t
,

Dn =
2
ℓ

∫ ℓ

0
ζ0(x) sin(

nπx
ℓ

)dx,

whose positivity is less trivial to establish.
For this reason, using Maximum principle (Friedman, 1964)

the following general result has been proven in Nguyen and Coron
(2016):

Proposition 6. Let α, β ∈ L2(T ,R+), r ∈ L2(I × T ,R+) and
z0 ∈ H1(I,R+), then

z(x, t) ≥ 0 ∀(x, t) ∈ I × T ,

i.e. (3) with uj(t) = 0 for all j = 0, 1, . . . , p is nonnegative on the
interval T .

Therefore, if boundary and initial conditions, and external
inputs, take only nonnegative values, then the solutions of (3)
possess the same property.

4. Interval observer design for the heat equation

Consider (3) with some uncertain boundary conditions α, β ∈

C2(T ,R), an uncertain external input r ∈ C(I × T ,R) and
initial conditions z0 ∈ Z0, and assume that the state z(x, t) is
available for measurements in certain points 0 < xm1 < xm2
< · · · < xmp < ℓ:

yj(t) = z(xmj , t) + νj(t), j = 1, . . . , p, (13)

where y(t) = [y1(t), . . . , yp(t)]T ∈ Rp is the measured output
signal, ν(t) = [ν1(t), . . . , νp(t)] ∈ Rp is the output disturbance
(measurement noise). Design of a conventional observer under
similar conditions has been studied in Fridman and Blighovsky
(2012) and Schaum et al. (2014). Further, to simplify the technical
presentation (to simplify the proof of well-posedness of the esti-
mation error dynamics) we assume differentiability of the output
disturbance:

Assumption 1. Let ν ∈ C2(T ,Rp).

A goal of the work consists in design of interval observers for the
distributed parameter system (3), (13). For this purpose we need
the following hypothesis.

Assumption 2. Let z0 ≤ z0 ≤ z0 for some known z0, z0 ∈ Z0,
let also functions α, α, β, β ∈ C2(T ,R), r, r ∈ C1(I × T ,R) and a
constant ν0 > 0 be given such that for all (x, t) ∈ I × T :

α(t) ≤ α(t) ≤ α(t), β(t) ≤ β(t) ≤ β(t),

r(x, t) ≤ r(x, t) ≤ r(x, t), |ν(t)| ≤ ν0.

Thus, by Assumption 2 five intervals, [α(t), α(t)], [β(t), β(t)],
[z0, z0], [r(x, t), r(x, t)] and [−ν0, ν0], determine for all (x, t) ∈

I × T in (3), (13) the uncertainty of the values for α(t), β(t), z0,
r(x, t) and ν(t), respectively.

Remark 7. These imperfections can be related to various reasons,
e.g. unknown parameters, external signals, nonlinearities, etc.,
but they have to be included in the corresponding intervals. For
example, consider even more complicated case, let

r(z, x, t) = θ1 r̃(x, t) + θ2(z, x, t),

where

θ1 ∈ [θ1, θ1]

is an unknown parameter taking values in the given interval
[θ1, θ1], r̃ : I×T → R+ is a known function and θ2 : L2(I,R)×I×
T → [θ2, θ2] is an unknown function taking values in the given
set [θ2, θ2]. Then

r(z, x, t) ∈ [θ1 r̃(x, t) + θ2, θ1 r̃(x, t) + θ2] = [r(x, t), r(x, t)],

and this case also can be studied in the same way as (3).

The simplest interval observer for (3) under the introduced as-
sumptions is as follows for j = 0, 1, . . . , p:

∂z(x, t)
∂t

= L[x, z(x, t)] + r(x, t) + bj(x)uj(t)

∀(x, t) ∈ Ij × T ,

z(x, t0) = z0(x) ∀x ∈ Ij,

z(xmj , t) = Z j(t), z(xmj+1, t) = Z j+1(t) ∀t ∈ T ; (14)
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∂z(x, t)
∂t

= L[x, z(x, t)] + r(x, t) + bj(x)uj(t)

∀(x, t) ∈ Ij × T ,

z(x, t0) = z0(x) ∀x ∈ Ij,

z(xmj , t) = Z j(t), z(xmj+1, t) = Z j+1(t) ∀t ∈ T ,

where z ∈ C(T , L2(I,R)) and z ∈ C(T , L2(I,R)) are upper and
lower estimates of the solution z(x, t); Ij = [xmj , xmj+1] with xm0 = 0
and xmp+1 = ℓ; the upper and lower estimates for the boundary
conditions are

Z(t) = [Z0(t), . . . , Zp(t)]T

= [α(t), y1(t) + ν0, . . . , yp(t) + ν0, β(t)]T ,

Z(t) = [Z0(t), . . . , Zp(t)]
T

= [α(t), y1(t) − ν0, . . . , yp(t) − ν0, β(t)]T .

Therefore, the domain I of the solution of (3) is divided on p + 1
subdomains with appropriate boundary conditions. It is related
to the manner the output injection is applied. In (14) the use of
the output injection directly on the observer right-hand side is
avoided since the analysis of positivity of the estimation error
dynamics, which is obligatory for an interval observer and given
below, is straightforward if the output injection is present at the
boundaries, but it is more evolved in other cases.

The upper and the lower interval estimation errors for (3) and
(14) can be introduced as follows:

e(x, t) = z(x, t) − z(x, t), e(x, t) = z(x, t) − z(x, t), (15)

whose dynamics take the form for j = 0, 1, . . . , p:

∂e(x, t)
∂t

= L[x, e(x, t)] + r(x, t)

− r(x, t) ∀(x, t) ∈ Ij × T ,

e(x, t0) = z0(x) − z0(x) ∀x ∈ Ij,
e(xmj , t) = Z j(t) − z(xmj , t) ∀t ∈ T ,

e(xmj+1, t) = Z j+1(t) − z(xmj+1, t) ∀t ∈ T ;

∂e(x, t)
∂t

= L[x, e(x, t)] + r(x, t) (16)

−r(x, t) ∀(x, t) ∈ Ij × T ,

e(x, t0) = z0(x) − z0(x) ∀x ∈ Ij,
e(xmj , t) = z(xmj , t) − Z j(t) ∀t ∈ T ,

e(xmj+1, t) = z(xmj+1, t) − Z j+1(t) ∀t ∈ T .

Theorem 8. Let Assumptions 1 and 2 be satisfied, then in (3), (14):

z(x, t) ≤ z(x, t) ≤ z(x, t) ∀(x, t) ∈ I × T . (17)

In addition, if

∆xm < π

√
amin

qmax
, (18)

where ∆xm = maxj∈{0,1,...,p}(xmj+1 − xmj ), then for all t ∈ T :

∥z(·, t) − z(·, t)∥2
L2(I,R) ≤ 4e−χ (t−t0)[∥z0 − z0∥2

L2(I,R) + ϱ(t0)]

+ 8χ−2
∥r(·, t) − r(·, t)∥2

L2(I,R) + γ (t),

∥z(·, t) − z(·, t)∥2
L2(I,R) ≤ 4e−χ (t−t0)[∥z0 − z0∥

2
L2(I,R) + ϱ(t0)]

+ 8χ−2
∥r(·, t) − r(·, t)∥2

L2(I,R) + γ (t),

where ϱ(t) = ℓ∥Z(t) − Z(t)∥2, ϱ′(t) = ℓ∥
˙Z(t) − Ż(t)∥2, γ (t) =

8χ−2ϱ′(t) + 2(1 + 4 q2max
χ2 + 16 ∂a2max

χ2ℓ2
)ϱ(t), ϱ(t) = ℓ∥Z(t) − Z(t)∥2,

ϱ′(t) = ℓ∥Ż(t) − Ż(t)∥2, γ (t) = 8χ−2ϱ′(t) + 2(1 + 4 q2max
χ2 +

16 ∂a2max
χ2ℓ2

)ϱ(t) and

Z(t) = [α(t), yT (t) − νT (t), β(t)]T .

Proof. Under Assumption 2, for all (x, t) ∈ I × T , in (16) the
external inputs

r(x, t) − r(x, t) ≥ 0, r(x, t) − r(x, t) ≥ 0,

the initial conditions

z0(x) − z0(x) ≥ 0, z0(x) − z0(x) ≥ 0,

the boundary conditions

e(xm0 , t) = α(t) − α(t) ≥ 0,
e(xmi , t) = yi(t) + ν0 − z(xmi , t)
= ν(t) + ν0 ≥ 0, i = 1, . . . , p,

e(xmp+1, t) = β(t) − β(t) ≥ 0; (19)
e(xm0 , t) = α(t) − α(t) ≥ 0,
e(xmi , t) = z(xmi , t) − yi(t) + ν0

= ν0 − ν(t) ≥ 0, i = 1, . . . , p,
e(xmp+1, t) = β(t) − β(t) ≥ 0,

are all nonnegative. Therefore, according to Proposition 6 the PDE
(16) is nonnegative on the interval T , which implies the required
interval estimates by the definition of e and e.

Boundedness of z, z for all t ≥ t0 follows from Proposition 4
and the condition (18) under Assumption 1.

Remark 9. Following the idea from Fridman (2013), the
well-posedness of (14) can be established by showing the well-
posedness of the estimation errors (15), which satisfy the Eqs.
(16). By the introduced constraints on the system parameters,
r(x, t), r(x, t) and r(x, t); initial conditions z0(x), z0(x) and z0(x),
and boundary conditions for the error dynamics (16) (recall (19)
for α, β, α, α, β, β ∈ C2(T ,R) and ν ∈ C2(R+,Rp) by Assump-
tions 1 and 2), and for z0 − z0, z0 − z0 ∈ D(A) there exists a strong
solution e, e ∈ C(T , L2(I,R)) of initial value problem (16) with
e(t, ·), e(t, ·) ∈ D(A) by Pazy (1983, Corollary 4.2.5). Therefore, if
e(t, ·), e(t, ·) ∈ D(A) and z(t, ·) ∈ D(A), then there exists a unique
solution z, z ∈ C(T , L2(I,R)) to the interval observer system (14)
with z(t, ·), z(t, ·) ∈ D(A) for all t ∈ T .

It is a well-known fact that the system (16) can be unstable
if the function q takes sufficiently big values (Curtain & Zwart,
1995). In Fridman and Blighovsky (2012) it has been proven,
for α(t) = β(t) = 0 and ν(t) = 0, that the observer (14) is
asymptotically stable if the difference ∆xm is sufficiently small
(i.e. there are sufficient quantity of sensors uniformly distributed
in I). The presented Theorem 8 ensures positiveness of the inter-
val estimation errors and boundedness of the interval estimates z
and z in the presence of non-zero boundary conditions α(t), β(t)
and measurement noise ν(t).

5. Stabilizing control

In this section the interval observer (14) is used for design of
a control law ensuring stabilization of (3).

The main restriction on stability for the system (3) is qmax <

amin
π2

ℓ2
. The inequality (18) imposes the same property for the

interval observer (14): if the difference ∆xm is sufficiently small,
which means that the quantity of measurement points is suffi-
ciently high, then the observer estimation error is bounded, but
it does not imply stability of the original system. To overcome
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this restriction, let us consider together the system (3) and the
interval observer (14), designed in Section 4, both endowed with
control input uj(t) ∈ H1(T ,R) through the shape functions bj(x) ∈

L2(I,R) on each space subdomain Ij, where the control is chosen
as an interval observer state feedback:

uj(t) = −
Kj

∆xmj

∫ xmj+1

xmj

(
z(ξ, t) + z(ξ, t)

)
dξ, j = 0, . . . , p, (20)

where Kj are the sequential feedback gains to be designed on each
Ij, Kj > 0 and

∆xmj = (xmj+1 − xmj ) ∀j ∈ {0, 1, . . . , p}.

Remark 10. For brevity we consider the same number of sensors
and actuators with collocated subintervals Ij. It is not difficult
to extend our results to the non-collocated case by modifying
arguments of Selivanov and Fridman (2018). This is because our
design is based on separation of the controller and the observer
designs. While the observer part of this paper is completely new,
the controller part is based on a modification of the existing
controller method from Fridman and Bar Am (2013). Our mod-
ification of the existing controller design is as follows: we use
transformation to move boundary disturbances into the right-
hand side of PDE and employ a special structure of the controller
based on the interval observer. Then the ISS analysis of the
closed-loop system follows the existing method for controller
design. Thus, by modifying arguments of Section 2 of Selivanov
and Fridman (2018), it is possible to achieve ISS by using a
boundary controller at x = ℓ via the backstepping.

Thus, the control is applied in order to ensure boundedness of the
observer estimates z(x, t), z(x, t), that in its turn (since z(x, t) ≤

z(x, t) ≤ z(x, t) for all (x, t) ∈ I × T , see Theorem 8) will provide
boundedness of z(x, t) as in Efimov, Raïssi, and Zolghadri (2013).
Recall the shape functions (4) bj(x) = 1 on Ij and bj(x) = 0 if
x /∈ Ij and substitute the control (20) in (3) on interval Ij for all
j = 0, . . . , p:

∂z(x, t)
∂t

=
∂

∂x
(a(x)zx(x, t)) +q(x)z(x, t) + r(x, t) (21)

−
Kj

∆
xmj

∫ xmj+1

xmj

(
z(ξ, t) + z(ξ, t)

)
dξ, ∀(x, t) ∈ Ij × T .

We consider the same shift for the system as before δ(x, t) =

α(t)+ x
ℓ
(β(t)−α(t)), then the new state variable (as in the proof

of Proposition 4) is w(x, t) = z(x, t) − δ(x, t), and it satisfies the
following PDE with zero boundary conditions:

∂w(x, t)
∂t

=
∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + r̃(x, t)

−

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

(
z(ξ, t) + z(ξ, t)

)
dξ ∀(x, t) ∈ I × T ,

w(x, t0) = w0(x) ∀x ∈ I,
w(0, t) = w(ℓ, t) = 0 ∀t ∈ T .

where r̃(x, t) = r(x, t) + 1
ℓ

∂a(x)
∂x (β(t) − α(t)) + q(x)δ(x, t) − δt (x, t)

(before this auxiliary perturbation also included the control part∑p
j=0 bj(x)uj(t)).
Consider the interval observer error dynamics (16), which is

nonnegative by Theorem 8 and bounded if the condition (18)
is satisfied. Recall the relations z(x, t) = z(x, t) − e(x, t) and
z(x, t) = z(x, t) + e(x, t) and substitute them into the dynamics
of w(x, t):

∂w(x, t)
∂t

=
∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + r̃∗(x, t)

+

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

(
e(ξ, t) − e(ξ, t)

)
dξ

−2
p∑

j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

w(ξ, t)dξ ∀(x, t) ∈ I × T ,

where r̃∗(x, t) = r̃(x, t) − 2
∑p

j=0 bj(x)
Kj
∆
xmj

∫ xmj+1
xmj

δ(ξ, t)dξ . Since
e(x, t) ≥ 0, e(x, t) ≥ 0 and bounded under the condition (18),

the terms
∫ xmj+1
xmj

(
e(ξ, t) − e(ξ, t)

)
dξ can be made a part of a new

disturbance

R(x, t) = r̃∗(x, t) +

p∑
j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

(
e(ξ, t) − e(ξ, t)

)
dξ,

then
∂w(x, t)

∂t
=

∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + R(x, t)

−2
p∑

j=0

bj(x)
Kj

∆
xmj

∫ xmj+1

xmj

w(ξ, t)dξ ∀(x, t) ∈ I × T .

In order to analyze the influence of the integral feedback, let
us use the relation

1
∆

xmj

∫ xmj+1

xmj

w(ξ, t)dξ = w(x, t) − f (x, t), x ∈ Ij,

proposed in Fridman and Bar Am (2013), where

f (x, t) ≜
1
∆

xmj

∫ xmj+1

xmj

[w(x, t) − w(ξ, t)]dξ

is a piecewise continuous function and ∂ f
∂x =

∂w
∂x . Finally, the

following closed-loop system has been obtained:

∂w(x, t)
∂t

=
∂

∂x
(a(x)wx(x, t)) +q(x)w(x, t) + R(x, t) (22)

−2
p∑

j=0

Kjbj(x)w(x, t) + 2
p∑

j=0

Kjbj(x)f (x, t).

Validity of the interval inclusion (17) can be proven repeating
the same arguments as in Theorem 8 since the observer design
is independent on the form of control. To analyze stability of the
closed-loop system (22) let us consider a Lyapunov function:

V (t) =

∫ ℓ

0
w2(x, t)dx,

whose derivative takes the form for any γ > 0 and κ > 0:

V̇ (t) + 2κV (t) − γ 2
∫ ℓ

0
R(x, t)2dx =

= 2
∫ ℓ

0
w(x, t)[

∂

∂x
(a(x)wx(x, t))

+q(x)w(x, t) + R(x, t)]dx + 2κ
∫ ℓ

0
w2(x, t)dx

−γ 2
∫ ℓ

0
R2(x, t)dx − 4

∫ ℓ

0

⎡⎣ p∑
j=0

Kjbj(x)w(x, t)

⎤⎦w(x, t)dx (23)

+4
∫ ℓ

0

⎡⎣ p∑
j=0

Kjbj(x)f (x, t)

⎤⎦w(x, t)dx.
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Integration by parts and substitution of the boundary conditions
for w(x, t) lead to

2
∫ ℓ

0
w(x, t)

∂

∂x
(a(x)wx(x, t)) dx ≤ −2amin

∫ ℓ

0
w2

x (x, t)dx.

The function f (x, t) has the zero average
∫ xmj+1
xmj

f (x, t)dx = 0 and
fx = wx, and by applying Poincare’s inequality (2) on subdomains
Ij the following upper estimate is obtained:

−2amin

∫ xmj+1

xmj

w2
x (x, t)dx ≤ −2amin

π2(
∆xmj

)2 ∫ xmj+1

xmj

f 2(x, t)dx,

then

−2amin

∫ ℓ

0
w2

x (x, t)dx = −2amin

p∑
j=0

∫ xmj+1

xmj

w2
x (x, t)dx

≤ −2amin
π2(

∆xmj
)2 p∑

j=0

∫ xmj+1

xmj

f 2(x, t)dx.

The next term of (23) can be rewritten using the fact that bj(x) =

1 on Ij in (4) and under a mild simplifying restriction that Kj = K
for all j = 0, . . . , p:

−4
∫ ℓ

0

⎡⎣ p∑
j=0

Kjbj(x)w2(x, t)

⎤⎦ dx = −4K
p∑

j=0

∫ xmj+1

xmj

w2(x, t)dx.

And the cross term of (23) can be treated in the same way:

4
∫ ℓ

0

⎡⎣ p∑
j=0

Kjbj(x)f (x, t)w(x, t)

⎤⎦ dx

= 4K
p∑

j=0

∫ xmj+1

xmj

w(x, t)f (x, t)dx.

Therefore, using an upper bound
∫ ℓ

0 q(x)w2(x, t) ≤ qmax
∫ ℓ

0 w2

(x, t) and denoting η ⊤
= [w(x, t) f (x, t) R(x, t)], we get

V̇ (t) + 2κV (t) − γ 2
∫ ℓ

0
R(x, t)2dx ≤

p∑
j=0

∫ xmj+1

xmj

η ⊤Φηdx ≤ 0

provided that

Φ ≜

⎡⎣ 2(κ + qmax − 2K ) 2K 1
2K −2aminπ2

(∆xm)2
0

1 0 −γ 2

⎤⎦ ≤ 0

for ∆xm = maxj∈{0,1,...,p} ∆xmj . Using the Schur complement the
above inequality is satisfied if[

2aminπ2

∆xm 0
0 γ 2

]
> 0, 2K −

(∆xm)2

aminπ2 K 2
− κ − qmax −

1
2
γ −2

≥ 0,

where the first property is valid by proposed construction and
the last one is a quadratic inequality with respect to K . Using the
imposed restriction (18) there exists ϱ > 0 such that

(∆xm)2

aminπ2 =
1

qmax + ϱ
,

then the needed inequality holds if

2K −
1

qmax + ϱ
K 2

− κ − qmax −
1
2
γ −2

≥ 0,

that always has a solution for

κ +
1
2
γ −2

≤ ϱ.

In particular, for κ +
1
2γ

−2
= ϱ we obtain:

K = qmax + ϱ =
aminπ

2

(∆xm)2
.

The inequality

V̇ (t) + 2κV (t) − γ 2
∫ ℓ

0
R(x, t)2dx ≤ 0

implies boundedness of the solutions w(x, t) as in the proof of
Proposition 4. We have proved the following theorem.

Theorem 11. Let Assumptions 1 and 2 be satisfied. Let there exist
κ > 0, K > 0, γ > 0 and ∆xm < π

√
amin
qmax

that satisfy the LMI

Φ ≤ 0.

Then for the solutions of the closed-loop system (21), the interval
inclusion (17) and the estimates on ∥z(·, t)−z(·, t)∥L2(I,R), ∥z(·, t)−
z(·, t)∥L2(I,R) from Theorem 8 are valid and

1
2

∫ ℓ

0
z2(x, t)dx ≤ e−2κ(t−t0)

∫ ℓ

0
w2

0(x)dx +
γ 2

2κ

∫ ℓ

0
R(x, t)2dx

+
ℓ

2
(α2(t) + β2(t)) ∀(x, t) ∈ I × T .

Remark 12. Note that qualitatively the above L2 boundedness
estimate for z can also be obtained using static output feedback,
however it can be rather conservative, and using the on-line
calculated upper and lower observer bounds z and z we can
deduce a tighter interval estimate on the state. This can be an im-
portant advantage for applications dedicated to state constrained
problems (e.g. in reactors).

6. Example

In this section we will consider two applications of the pro-
posed interval observer in order to compare the obtained results
with the interval observer from Kharkovskaya et al. (2018) and
the control from Fridman and Blighovsky (2012).

6.1. Controller based on the interval observer

Consider an academic example of (3) for

a(x) =
1
4
(1 +

3
4
sin(2πx)), q(x) = 5 +

1
2
cos(πx),

r(x, t) = sin(πx)[cos(2t) + ϵ(t)], |ϵ(t)| ≤ 1,

with T = 2 and ℓ = 1, then ϵ is an uncertain part of the input r
(for simulation ϵ(t) = cos(10t)), and

r(x, t) = sin(πx)[cos(2t) − 1], r(x, t) = sin(πx)[cos(2t) + 1].

The uncertainty of initial conditions is given by the interval

z0(x) = z0(x) − 1, z0(x) = z0(x) + 1,

where z0(x) = 5 sin(πx), and for boundary initial conditions

α(t) = sin(2t) − 1, α(t) = sin(2t) + 1,

β(t) = sin(5t) − 1, β(t) = sin(5t) + 1,

where α(t) = sin(2t) and β(t) = sin(5t). Let p = 3 with xm1 = 0.3,
xm2 = 0.6, xm3 = 0.8, and

ν(t) = 0.1[sin(20t) sin(15t) cos(25t)] ⊤,

then ν0 = 0.173. In this case amin =
1
16 , qmax = 5 1

2 . With
these parameters, qmax is larger than amin

π2

ℓ2
, which means that
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Fig. 1. The results of the interval observer based control of the heat equation
for N = 20: the lower bound z(x, t), the state z(x, t) and the upper bound z(x, t).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the system is unstable (the conditions of Proposition 4 fail to
satisfy). The maximum distance between sensors is ∆xm = 0.3,
and the restriction (18) for the interval observer is still verified.
Therefore, Theorem 8 can be used to construct an observer for the
unstable system (3). Then, to stabilize it, following the conditions
of Theorem 11, the control gain K = 3.2865 was calculated, and
the controls uj(t) on each interval Ii = [xmi , xmi+1], i = 0, p with
xm0 = 0 and xmp+1 = ℓ were computed by (20).

For calculation of scalar product in space and for simulation of
the discretized PDE in time, the implicit Euler method has been
used with the step size dt = 0.01. The results of a simultaneous
interval estimation and control are shown in Fig. 1, where the
red surface corresponds to z(x, t), while green and blue ones
represent z(x, t) and z(x, t), respectively (20 and 100 points are
used for plotting in space and in time).

In order to compare the proposed interval observer based
control (20) with a static output feedback control

uj(t) = −K ∗yj(t), (24)

the feedback gain K ∗
= 4.8832 is calculated following the result

of the work (Fridman & Blighovsky, 2012). Since the system (3)
contains uncertainties in disturbances r(x, t), ν(t) and boundary
conditions α(t), β(t), the static output feedback can guarantee
only input-to-state stability in the sense of Proposition 4 with
respect to the input r̃(x, t), which contains all this incertitude.
To compare the precision ensured by both controllers in our
example, first, the L2 upper estimate of z(x, t) for this feedback
control is calculated as follows. Note that

V (t) = ∥z∥L2(I,R) ≤ ℓz2(t),

where

z(t) = max
x∈I

|z(x, t)|

Clearly,

z(t, x) ∈ [−z(t), z(t)] ∀(x, t) ∈ I × T .

From another side, the obtained L2 estimates can be presented as

V (t) ≤ e−2δ(t−t0)V (t0) + γ

∫ ℓ

0

⏐⏐r̃(x, t)⏐⏐2 dx = V (t),

Fig. 2. The results of the interval observer based control and the L2 estimate of
the static output feedback control for the heat equation for different instants of
time: t = 0, 0.5, 1, 2 for N = 20. Here z(x, ·) and z(x, ·) represent the interval
observer bounds, z(x, ·) is the stabilized state using observer, black dashed lines
represent a state of (3) stabilized by output feedback (24), black solid lines are
[−z(t), z(t)]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

where V (t) can be calculated on-line for the given gain K ∗ (it
determines the values of parameters δ > 0 and γ > 0) and the
imposed upper bounds on r̃(x, t). Second, for illustration we as-
sume that V (t) = ℓz2(t), then the obtained bounds [−z(t), z(t)] =

[−

√
ℓ−1V (t),

√
ℓ−1V (t)] are shown in Fig. 2 (black solid lines)

together with the interval estimates of the proposed observer
(14) (green and blue ones) for different instances of time. Red
curves in Fig. 2 represent the simulation of the stabilized heat
equation (3) state using the interval observer, while the black
dashed curves represent the state of (3) stabilized by output
feedback (24). As we can conclude from this evaluation, the
guaranteed bounds given by the interval observer based control
are almost always more accurate than provided by the static
feedback from L2 estimates.

Remark 13. Note that since for calculation of solutions the
finite-element discretization/approximation methods are used,
then their error of approximation has to be taken into account
in the final estimates in order to ensure the desired interval
inclusion property for all x ∈ I and t ∈ T , see Kharkovskaya et al.
(2018) where the result from Wheeler (1973) was applied for an
evaluation of this error.

Remark 14. As mentioned in Fridman and Blighovsky (2012),
there are no advantages of the Luenberger observer-based con-
troller in the case of collocated sensors and actuators over the
corresponding static output-feedback. However, as it is shown
in this example, interval observer allows to achieve essentially
lower state bounds than the corresponding static output-
feedback.
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6.2. The interval observer comparison

Consider a heat equation (3) with:

a(x) = 2 + 0.7 sin(πx), q(x) = 0.5sin(0.5x),
r(x, t) = r1(x)r2(t), r1(x) = 2cos(3πx), |r2(t)| ≤ 1,

T = 10 and ℓ = 1. Here r2 is an uncertain part of the input r (for
simulation r2(t) = cos(15t)), and

r(x, t) = −|r1(x)|, r(x, t) = |r1(x)|.

The uncertainty of initial conditions is given by the interval

z0(x) = z0(x) − 1, z0(x) = z0(x) + 1,

where z0(x) = cos(5πx), and the boundary conditions α(t) and
β(t) are assumed to be 0, since the approach from Kharkovskaya
et al. (2018) does not employ nonzero conditions. Let p = 3 with
xm1 = 0.3, xm2 = 0.5, xm3 = 0.8, and

ν(t) = 0.2[sin(20t) sin(15t) cos(25t)] ⊤,

then ν0 = 0.2. In this case ∆xm = 0.3, amin = 1.3 qmax = 0.5 and
the restriction (18) is satisfied. Take ∆ = {0, h, 2h, . . . , 1 − h, 1}
with h = 1/N ′, and a pyramidal basis

Φi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x ≤ xi−1,
x−xi−1
xi−xi−1

xi−1 < x ≤ xi,
xi+1−x
xi+1−xi

xi < x ≤ xi+1,

0 x ≥ xi+1

for i = 0, . . . ,N = N ′ (it is assumed x−1 = −h and xN+1 =

1 + h). For simulation we took N = 20, then the approxi-
mated dynamics from Kharkovskaya et al. (2018) is an observable
system, and assume that the error of approximation for both
approaches ϱhs+1(l1 + l2) = 0.1. For the Galerkin approximation
approach (Kharkovskaya et al., 2018) the matrix L has been
chosen to ensure distinct eigenvalues of the matrix A − LC in
the interval [−30.9, −0.67], then S−1 has been composed by
eigenvectors of the matrix A − LC and the matrix D has been
selected diagonal (all these matrices are defined in Kharkovskaya
et al., 2018).

As before, for the calculation of scalar product in space and
for simulation of the discretized PDE in time, the implicit Euler
method has been used with the step size dt = 0.01 for the
PDE interval observer, and the explicit one with the same step
for the approximation approach. The results of comparison of
the two approaches, the present and the approximation one
from Kharkovskaya et al. (2018), are shown in Fig. 3, where the
red lines corresponds to z(x, ·), while green and blue ones repre-
sent z(x, ·) and z(x, ·), respectively, at the instances t = 0, 1, 5, 10.
From this figure one can clearly notice that the obtained interval
for the state is more precise with the PDE interval observer
approach (14).

7. Conclusion

Taking a heat equation with Dirichlet boundary conditions, a
method of design of interval observers is proposed, which is not
based on a finite-element approximation. The design employs the
positivity of solutions of the heat equation proposed in Nguyen
and Coron (2016). The proposed interval observer is used for
stabilization of an uncertain PDE system. The efficiency of the
approach is demonstrated through numerical experiments.

For future developments, more complex uncertainty of PDE
equation can also be incorporated in the design procedure and
the approach can be extended to PDEs with Neumann, Robin,

Fig. 3. The results of (1) the PDE interval observer (14) and (2) the approx-
imation approach interval observer from Kharkovskaya et al. (2016), N = 20.
Here the lower bound is z(x, ·), the state is z(x, ·) and the upper bound is z(x, ·).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

or mixed boundary conditions. Possibility of averaged measure-
ments and the corresponding positivity conditions can also be
considered as a direction of future research.
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