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SUMMARY

This paper presents a new stability and L2-gain analysis of linear Networked Control Systems (NCS).
The new method is inspired by discontinuous Lyapunov functions that were introduced by Naghshtabrizi
et al. (Syst. Control Lett. 2008; 57:378–385; Proceedings 26th American Control Conference, New York,
U.S.A., July 2007) in the framework of impulsive system representation. Most of the existing works on the
stability of NCS (in the framework of time delay approach) are reduced to some Lyapunov-based analysis
of systems with uncertain and bounded time-varying delays. This analysis via time-independent Lyapunov
functionals does not take advantage of the sawtooth evolution of the delays induced by sample-and-hold.
The latter drawback was removed by Fridman (Automatica 2010; 46:421–427), where time-dependent
Lyapunov functionals for sampled-data systems were introduced. This led to essentially less conservative
results. The objective of the present paper is to extend the time-dependent Lyapunov functional approach
to NCS, where variable sampling intervals, data packet dropouts, and variable network-induced delays are
taken into account. The Lyapunov functionals in this paper depend on time and on the upper bound of the
network-induced delay, and these functionals do not grow along the input update times. The new analysis
is applied to the state-feedback and to a novel network-based static output-feedback H∞ control problems.
Numerical examples show that the novel discontinuous terms in Lyapunov functionals essentially improve
the results. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Three main approaches have been used to the sampled-data control and later to the Networked
Control Systems (NCS), where the plant is controlled via communication network. The first
one is based on discrete-time models [1, 2]. This approach is not applicable to the perfor-
mance analysis (e.g. to the exponential decay rate) of the resulting continuous-time closed-loop
system. The second one is a time delay approach, where the system is modeled as a continuous-
time system with a time-varying sawtooth delay in the control input [3, 4]. The time delay
approach via time-independent Lyapunov–Krasovskii functionals or Lyapunov–Razumikhin func-
tions leads to linear matrix inequalities (LMIs) [5] for analysis and design of linear uncertain
NCS [6–10]. The third approach is based on the representation of the sampled-data system in
the form of impulsive model [11, 12]. Recently, the impulsive model approach was extended
to the case of uncertain sampling intervals [13] and to NCS [14]. In [13, 14] a discontin-
uous Lyapunov function method was introduced, which improved the existing Lyapunov-based
results.
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For systems with time-varying delays, stability conditions via time-independent Lyapunov func-
tionals guarantee also the stability of the corresponding systems with constant delay. However, it
is well known (see examples in [15] and discussions on quenching in [16], as well as Example 1)
that in many particular systems the upper bound on the sawtooth delay that preserves the stability
may be higher than the corresponding bound for the constant delay. In the recent paper [17], time-
dependent Lyapunov functionals have been introduced for the analysis of sampled-data systems
in the framework of time delay approach. The introduced time-dependent terms of Lyapunov
functionals lead to qualitatively new results, taking into account the sawtooth evolution of the
delays induced by sample-and-hold. In some well-studied numerical examples, the results of [17]
approach the analytical values of minimum L2-gain and of maximum sampling interval, preserving
the stability.

The objective of the present paper is to extend the discontinuous Lyapunov functional method (in
the framework of time delay approach) to network-based H∞ control, where data packet dropouts
and variable network-induced delays are taken into account. Our Lyapunov functional depends on
time and on the upper bound of the network-induced delay and it does not grow along the input
update times. We apply our analysis results to state-feedback and to a novel static output-feedback
H∞ control. We note that the observer-based control via network is usually encountered with
some waiting strategy and buffers [18]. The implementation of the network-based static output-
feedback controller is simple. Sufficient conditions for the stabilization via the continuous static
output-feedback can be found in the survey [19]. Similar to the sampled-data H∞ control [20], we
consider an H∞ performance index that takes into account the updating rates of the measurement.
This index is related to the energy of the measurement noise. Numerical examples show that the
novel discontinuous terms in the Lyapunov functional essentially reduce the conservatism.

A conference version of the paper has been presented in [21].

Notation
Throughout the paper the superscript ‘T’ stands for matrix transposition, Rn denotes the n-
dimensional Euclidean space with vector norm ‖·‖, Rn×m is the set of all n×m real matrices, and
the notation P>0, for P∈Rn×n means that P is symmetric and positive definite. The symmetric
elements of the symmetric matrix will be denoted by ∗. Given a positive number �M>0, the
space of functions � : [−�M ,0]→Rn , which are absolutely continuous on [−�M ,0), have a finite
lim�→0− �(�) and have square integrable first-order derivatives denoted by W with the norm

‖�‖W = max
�∈[−�M ,0]

|�(�)|+
[∫ 0

−�M
|�̇(s)|2 ds

] 1
2

.

We also denote xt (�)= x(t+�), ẋt (�)= ẋ(t+�), (�∈ [−�M ,0]).

2. PROBLEM FORMULATION

Consider the system

ẋ(t) = Ax(t)+B2u(t)+B1w(t),

z(t) = C1x(t)+D12u(t),
(1)

where x(t)∈Rn is the state vector, w(t)∈Rq is the disturbance, u(t)∈Rm is the control input,
and z(t)∈Rr is the signal to be controlled or estimated, A, B1, B2, C1, and D12 are system
matrices with appropriate dimensions. We will consider exponential stabilization (for w=0) and
H∞ control of (1) via state feedback or static output feedback.

2.1. Static output-feedback control

Consider the static output-feedback control of NCS shown in Figure 1. The sampler is time-driven,
whereas the controller and the Zero-Order Hold (ZOH) are event-driven (in the sense that the
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Figure 1. Networked static output-feedback control system.

Figure 2. The timing diagram of the NCS (s ′
k denotes the sampling instant that the measurement is lost).

controller and the ZOH update their outputs as soon as they receive a new sample). We assume
that the measurement output y(sk )∈Rp is available at discrete sampling instants

0= s0<s1< · · ·<sk< · · ·, lim
k→∞

sk =∞

and it may be corrupted by a measurement noise signal v(sk ) (see Figure 1):

y(sk)=C2x(sk )+D21v(sk). (2)

We take into account data packet dropouts by allowing the sampling to be nonuniform. Thus, in
our formulation y(sk ), k=0,1,2 . . . , correspond to the measurements that are not lost.

Denote by tk the updating instant time of the ZOH, and suppose that the updating signal at the
instant tk has experienced a signal transmission delay �k . The timing diagram of the considered
NCS with both delay and packet dropout is shown in Figure 2, where sk = tk−�k denotes the
sampling time of the data that has not been lost. Following [14], we allow the delays �k to grow
larger than sk+1−sk , provided that the sequence of input update times tk remains strictly increasing.
This means that if an old sample gets to the destination after the most recent one, it should be
dropped.

The static output-feedback controller has a form u(tk )=Ky(tk−�k), where K is the controller
gain. Thus, considering the behavior of the ZOH, we have

u(t)=Ky(tk−�k), tk�t<tk+1, k=0,1,2, . . . (3)

with tk+1 being the next updating instant time of the ZOH after tk .
As in [7–9, 14], we assume that

tk+1− tk+�k��M , 0��k��M , k=0,1,2, . . . (4)

where �M is a known upper bound on the network-induced delays �k and �M denotes the maximum
time span between the time sk = tk−�k at which the state is sampled, and the time tk+1 at which
next update arrives at the ZOH. As a Corollary from the main result, we will formulate sufficient
conditions for stabilization of NCS with constant delay �k ≡�M .
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Remark 1
The assumption (4) is equivalent to

sk+1−sk+�k+1��M , 0��k+1��M , k=0,1,2, . . . (5)

The latter implies that sk+1−sk��M , i.e. the sampling intervals and the numbers of successive
packet dropouts are uniformly bounded.

Remark 2
Consider now a more general situation, where the older sample can get the destination later than
the most recent one and where the older data packet is not discarded. In this more general case
our results will remain true provided that �M satisfying (4) can be found and that limk→∞ tk =∞.

Defining

�(t)= t− tk+�k, tk�t<tk+1, (6)

we obtain the following closed-loop system (1), (3):

ẋ(t) = Ax(t)+A1x(t−�(t))+A2v(t−�(t))+B1w(t),

z(t) = C1x(t)+D1x(t−�(t))+D2v(t−�(t)),
(7)

where

A1 = B2KC2, A2= B2K D21,

D1 = D12KC2, D2=D12K D21.
(8)

Under (4) and (6), we have 0��(t)�tk+1− tk+�k��M and �̇(t)=1 for t 	= tk .
Denote v̄(t)=v(t−�(t)) (t�t0). Then (7) has two disturbances v̄∈ L2[t0,∞) and w∈ L2[t0,∞),

where

‖v̄‖2L2
=

∫ ∞

t0
vT(t−�(t))v(t−�(t))dt =

∞∑
k=0

(tk+1− tk)v
T(tk−�k)v(tk −�k). (9)

For a given scalar �>0, we thus define the following performance index [20]:

J = ‖z‖2L2
−�2(‖v̄‖2L2

+‖w‖2L2
)

=
∫ ∞

t0
[zT(s)z(s)−�2wT(s)w(s)]ds−�2

∞∑
k=0

(tk+1− tk)v
T(tk−�k)v(tk −�k). (10)

Our objective is to find a controller of (3) that internally exponentially stabilizes the system and
that leads to L2-gain of (7) less than �. The latter means that along (7) J<0 for the zero initial
function and for all non-zero w∈ L2, v∈ l2, and for all allowable sampling intervals, data packet
dropouts, and network-induced delays, satisfying (4).

We note that the last term of the performance index J takes into account the updating rates
of the measurement and is thus related to the energy of the measurement noise [20]. For the
sampled-data control under uniform sampling intervals, a conventional performance index has a
form [12, 22]:

Jsamp=
∫ ∞

t0
[zT(s)z(s)−�2wT(s)w(s)]ds−�2

∞∑
k=0

vT(tk)v(tk ). (11)

Index Jsamp has a little physical sense for NCS since it does not take the updating rates into
account.
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2.2. State-feedback control

For the state-feedback case, we consider the static output-feedback formulation, where C2=
I,D21 =0, and v(tk−�k)≡0. Thus, the resulting state-feedback controller has a form

u(t)=Kx(tk−�k), tk�t<tk+1 (12)

and leads to the following closed-loop system (1), (12):

ẋ(t) = Ax(t)+A1x(t−�(t))+B1w(t),

z(t) = C1x(t)+D1x(t−�(t)),
(13)

where �(t) is defined by (6) and where

A1= B2K , D1=D12K . (14)

The corresponding performance index has a form:

J1= J|v(tk−�k )=0=
∫ ∞

t0
[zT(s)z(s)−�2wT(s)w(s)]ds. (15)

Our objective is to find a state feedback (12) that internally exponentially stabilizes the system and
that leads to J1<0 for the zero initial function and for all non-zero w∈ L2, and for all allowable
sampling intervals, data packet dropouts, and network-induced delays, satisfying (4). For the sake
of brevity, in the remainder of this paper the notation � stands for the time-varying delay �(t).

3. MAIN RESULTS

3.1. Exponential stability and L2-gain analysis

In this section, we analyze the closed-loop systems (7) (and its particular case (13), where C2= I
and v(tk−�k)≡0). Exponential stability of (7) with w=v=0 , i.e. of

ẋ(t)= Ax(t)+A1x(t−�), �= t− tk+�k, tk�t<tk+1, (16)

as well as the L2-gain analysis of (7) will be based on the following.

Lemma 1
Let there exist positive numbers �, �, 	, and a functional V :R×W×L2[−�M ,0]→ [t0,∞) such
that

�|�(0)|2�V (t,�, �̇)�	‖�‖2W . (17)

Let the function V̄ (t)=V (t, xt , ẋt ) be continuous from the right for x(t) satisfying (7), absolutely
continuous for t 	= tk and satisfies

lim
t→t−k

V̄ (t)�V̄ (tk). (18)

(i) If along (16)

˙̄V (t)+2�V̄ (t)�0 almost for all t, (19)

then V̄ (t)�e−2�t V̄ (t0), i.e. |x(t)|2�e−2�t 	
�‖xt0‖2W for xt0 ∈W and thus (16) is exponentially stable

with the decay rate �.
(ii) For a given �>0, if along (7)

˙̄V (t)+zT(t)z(t)−�2wT(t)w(t)−�2vT(tk−�k)v(tk −�k)<0 ∀w 	=0,v 	=0, tk�t�tk+1, (20)

then the performance index (10) achieves J<0 for all non-zero w∈ L2, v∈ l2 and for the zero
initial function.
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Proof
For (i) see [17].

(ii) Given N>>1, we integrate the first inequality (20) from t0 till tN . We have

V̄ (tN )− V̄ (tN−1)+ V̄ (t−N−1)− V̄ (tN−2) · · ·+ V̄ (t−1 )− V̄ (t0)

+
∫ tN

t0
[zT(t)z(t)−�2wT(t)w(t)]dt−�2

N−1∑
k=0

(tk+1− tk)v
T(tk −�k)v(tk −�k)<0.

As V̄ (tN )�0, V̄ (t−k−1)− V̄ (tk−1)�0 for k=2, . . . ,N and V̄ (t0)=0, we find

∫ tN

t0
[zT(t)z(t)−�2wT(t)w(t)]dt−�2

N−1∑
k=0

(tk+1− tk)v
T(tk−�k)v(tk −�k)<0.

Thus, for N →∞ we arrive to J<0. �

A standard time-independent functional for delay-dependent stability of (16) with fast varying
delay �∈ [0,�M ] has a form (see [23–25])

V0(xt , ẋt )= xT(t)Px(t)+
∫ t

t−�M
e2�(s−t)xT(s)Sx(s)ds

+ 1

�M

∫ 0

−�M

∫ t

t+�
e2�(s−t) ẋT(s)Rẋ (s)ds d�, P>0, S>0, R>0, (21)

where �>0 corresponds to exponential stability with the decay rate �>0. In the existing papers
[4–9] in the framework of input delay approach, time-independent Lyapunov functionals are usually
involved.

For the case of �k ≡0 (when there are no network-induced delays) and �= t− tk , the following
time-dependent functional has been introduced in [17]:

Vs (t, xt , ẋt )= V̄s(t)= xT(t)Px(t)+
2∑

i=1
Vis(t, xt , ẋt ),

where the discontinuous terms V1s and V2s have the form

V1s (t, xt , ẋt ) = �M −�

�M
[x(t)−x(t−�)]TX [x(t)−x(t−�)], X>0,

V2s (t, xt , ẋt ) = �M −�

�M

∫ t

t−�
e2�(s−t)ẋT(s)Uẋ (s)ds, U>0, �>0.

(22)

For �k ≡0, V1s and V2s do not increase along the jumps, since these terms are nonnegative before
the jumps at tk and become zero just after the jumps (because t|t=tk = (t−�)|t=tk ). Thus, V̄s (t) does
not increase along the jumps and the condition limt→t−k

V̄s (t)�V̄s (tk) holds.
In the case of �k 	=0 and �= t− tk+�k , the discontinuous terms (22) cannot be used, because

t|t=tk 	= (t−�)|t=tk = tk−�k . One can modify V1s and V2s as follows:

Ṽ1s (t, xt , ẋt ) = (tk+1− t)[x(t)−x(tk )]
TX [x(t)−x(tk)], X>0,

Ṽ2s (t, xt , ẋt ) = (tk+1− t)
∫ t

tk
e2�(s−t)ẋT(s)Uẋ (s)ds, U>0, �>0

(23)

and use the bounds 0��k��M and tk+1− tk = tk+1−sk−�k��M . However, this leads to the overall
bound �M +�M on the delay �, which is greater than �M , because

�= t− tk+�k�tk+1− tk+�k��M +�M . (24)
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Such an extension can be efficient only for �M →0, whereas for bigger �M it can lead to more
conservative results than the standard results for the uncertain time-varying delays �∈ [0,�M ].

In the case of �k 	=0, the upper bound �M , that preserves the stability, is between the corre-
sponding upper bounds on the (arbitrary) fast varying delay and on the sampling in the absence
of network-induced delays (with �k ≡0). As the biggest bound is the one for the case of �k ≡0,
we construct the discontinuous terms of Lyapunov functional that correspond to the ‘worst case’,
where we have the maximum network-induced delay �M . Defining

�1=max{0, �−�M }=max{0, t− tk−�M +�k}, tk�t<tk+1, (25)

we note that �1|t=tk =0 and that �1��M −�M . We consider the functional of the form

V (t, xt , ẋt )= V̄ (t)=V0(xt , ẋt )+
2∑

i=1
Vi (t, xt , ẋt ), (26)

where V0 is defined by (21) and

V1(t, xt , ẋt ) = �M −�

�M −�M
[x(t)−x(t−�1)]

TX [x(t)−x(t−�1)], X>0,

V2(t, xt , ẋt ) = �M −�

�M −�M

∫ t

t−�1
e2�(s−t)ẋT(s)Uẋ (s)ds, U>0, �>0.

(27)

Along the input update times t= tk , V1 and V2 do not increase since these terms are nonnegative
before tk and become zero just after tk (because t|t=tk = (t−�1)|t=tk ). Thus, V̄ does not increase
along the input update times and the condition limt→t−k

V̄ (t)�V̄ (tk) holds.
By using the discontinuous Lyapunov functional (26), we obtain the following sufficient condi-

tions:

Theorem 1
(i) Given �>0, let there exist n×n-matrices P>0, R>0, U>0, X>0, S>0, T11, P2i , P3i , T2i ,
M2i , Yij, and Zij(i, j =1,2) such that the following four LMIs:

�11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �M ZT
11 ZT

11 �16

∗ �22 �M ZT
12 ZT

12 �26

∗ ∗ −Re−2��M 0 0

∗ ∗ ∗ −Se−2��M 0

∗ ∗ ∗ ∗ T11+T T
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, (28)

�12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �MY T
11 (�M −�M )ZT

11 ZT
11 �16

∗ �22 �MY T
12 (�M −�M )ZT

12 ZT
12 �26

∗ ∗ −�M
�M

Re−2��M 0 0 �MT11

∗ ∗ ∗ −�M −�M
�M

Re−2��M 0 0

∗ ∗ ∗ ∗ −Se−2��M 0

∗ ∗ ∗ ∗ ∗ T11+T T
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, (29)
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�21=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11− 1−2�(�M −�M )

�M −�M
X �12+X ZT21 (�M −�M )ZT21 �M MT

21 �17+ 1−2�(�M −�M )

�M −�M
X �18

∗ �22+U ZT22 (�M −�M )ZT22 �M MT
22 �27−X �28

∗ ∗ −Se−2��M 0 0 0 T22

∗ ∗ ∗ �55|�=�M 0 0 (�M −�M )T22

∗ ∗ ∗ ∗ �66 0 0

∗ ∗ ∗ ∗ ∗ �77− 1−2�(�M −�M )

�M −�M
X 0

∗ ∗ ∗ ∗ ∗ ∗ −T22−TT22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0,

(30)

�22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11−X �12 ZT
21 (�M −�M )YT

21 �MMT
21 �17+ 1

�M −�M
X �18

∗ �22 ZT
22 (�M −�M )YT

22 �MMT
22 �27 �28

∗ ∗ −Se−2��M 0 0 0 T22

∗ ∗ ∗ �44|�=�M 0 (�M −�M )T21 0

∗ ∗ ∗ ∗ �66 0 0

∗ ∗ ∗ ∗ ∗ �77− 1

�M −�M
X 0

∗ ∗ ∗ ∗ ∗ ∗ −T22−T T
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (31)

are feasible, where

�11 = ATP21+PT
21A+2�P+S−Y11−Y T

11, �12= P−PT
21+ATP31−Y12,

�22 = −P31−PT
31+R, �16=Y T

11−ZT
11+PT

21A1−T11, �26=Y T
12−ZT

12+PT
31A1,

�11 = ATP22+PT
22A+2�P+S−Y21−Y T

21, �12= P−PT
22+ATP32−Y22,

�17 = Y T
21−MT

21−T21, �18=MT
21−ZT

21+PT
22A1, �22=−P32−PT

32+R,

�27 = Y T
22−MT

22, �28=MT
22−ZT

22+PT
32A1,

�44 = −(�−�M )

[
1

�M
e−2��M R+ 1

�M −�M
e−2�(�M−�M )U

]
,

�55 = −�M −�

�M
Re−2��M , �66=−�M

�M
Re−2��M , �77=T21+T T

21.

(32)

Then system (16) is exponentially stable with the decay rate � for all delays (6) satisfying (4).
If the above LMIs hold with �=0, then they are feasible for a small enough �0>0, i.e. (16) is
exponentially stable with the decay rate �0.

(ii) Given �>0, if the following LMIs:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| PT
2i A2 PT

2i B1 CT
1

| PT
3i A2 PT

3i B1 0

�ij|�=0 | 0 0 0

| 0 0 DT
1

− − − − −
∗ | −�2 I 0 DT

2

∗ | ∗ −�2 I 0

∗ | ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, i, j =1,2 (33)
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with notations given in (32) are feasible. Then (7) is internally exponentially stable and has L2-gain
less than �.

Proof
(i) In order to apply V of (26), we consider two cases: �∈ [0,�M ) and �∈ [�M ,�M ].

Case 1: �∈ [0,�M ), where �1=0 and thus V1=V2=0. Differentiating V̄ along (16), we find

[ ˙̄V (t)+2�V̄ (t)]|�<�M � 2xT(t)Pẋ(t)+ ẋT(t)Rẋ (t)− 1

�M
e−2��M

∫ t

t−�M
ẋT(s)Rẋ (s)ds

+2�[xT(t)Px(t)]+xT(t)Sx(t)−xT(t−�M )e−2��M Sx(t−�M ). (34)

Following [24], we employ the representation

−
∫ t

t−�M
ẋT(s)Rẋ (s)ds=−

∫ t−�

t−�M
ẋT(s)Rẋ (s)ds−

∫ t

t−�
ẋT(s)Rẋ (s)ds. (35)

We apply the Jensen’s inequality [26]∫ t

t−�
ẋT(s)Rẋ (s)ds � 1

�

∫ t

t−�
ẋT(s)dsR

∫ t

t−�
ẋ(s)ds,

∫ t−�

t−�M
ẋT(s)Rẋ (s)ds � 1

�M −�

∫ t−�

t−�M
ẋT(s)dsR

∫ t−�

t−�M
ẋ(s)ds.

(36)

Here for �=0 we understand by

1

�

∫ t

t−�
ẋ(s)ds= lim

�→0

1

�

∫ t

t−�
ẋ(s)ds= ẋ(t).

For �M −�=0 the vector 1/(�M −�)
∫ t−�
t−�M

ẋ(s)ds is defined similarly as ẋ(t−�M ). Then, denoting

v11= 1

�

∫ t

t−�
ẋ(s)ds, v12= 1

�M −�

∫ t−�

t−�M
ẋ(s)ds, (37)

we obtain

[ ˙̄V (t)+2�V̄ (t)]|�<�M�2xT(t)Pẋ (t)+ ẋT(t)Rẋ (t)−e−2��M �

�M
vT11Rv11

−e−2��M �M−�

�M
vT12Rv12+2�[xT(t)Px(t)]+xT(t)Sx(t)−e−2��M xT(t−�M )Sx(t−�M ). (38)

We further insert free-weighting n×n-matrices by adding the following expressions to ˙̄V [24]:

0 = 2[xT(t)Y T
11+ ẋT(t)Y T

12+xT(t−�)T T
11][−x(t)+x(t−�)+�v11],

0 = 2[xT(t)ZT
11+ ẋT(t)ZT

12][−x(t−�)+x(t−�M )+(�M −�)v12].
(39)

We use also the descriptor method [23], where the right-hand side of the expression

0=2[xT(t)PT
2 j + ẋT(t)PT

3 j ][Ax(t)+A1x(t−�)− ẋ(t)], (40)

with some n×n-matrices P2 j , P3 j ( j =1) is added into the right-hand side of (38). Setting

�1(t)=col{x(t), ẋ(t),v11,v12, x(t−�M ), x(t−�)},
we obtain that

[ ˙̄V (t)+2�V̄ (t)]|�<�M��T1 (t)�|�<�M �1(t), (41)
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where

�|�<�M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �Y T
11 (�M −�)ZT

11 ZT
11 �16

∗ �22 �Y T
12 (�M −�)ZT

12 ZT
12 �26

∗ ∗ − �

�M
Re−2��M 0 0 �T11

∗ ∗ ∗ −�M −�

�M
Re−2��M 0 0

∗ ∗ ∗ ∗ −Se−2��M 0

∗ ∗ ∗ ∗ ∗ T11+T T
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

with notations are given in (32).
Denoting �12(t)=col{x(t), ẋ(t),v12, x(t−�M ), x(t−�)}, we note that the two LMIs �11<0 and

�12<0 imply �|�<�M<0 because

�M −�

�M
�T12(t)�11�12(t)+

�

�M
�T1 (t)�12�1(t)=�T1 (t)�|�<�M �1(t)<0.

This means that if �11<0 and �12<0, then [ ˙̄V (t)+2�V̄ (t)]|�<�M<0.
Case 2: �∈ [�M ,�M ] and �1=�−�M . Taking into account that

d

dt
x(t−�1)= (1− �̇1)ẋ(t−�1)=0,

we have

d

dt
V1 = − 1

�M −�M
[x(t)−x(t−�1)]

TX [x(t)−x(t−�1)]+2
�M −�

�M −�M
ẋT(t)X [x(t)−x(t−�1)],

d

dt
V2 = − 1

�M −�M

∫ t

t−�1
e2�(s−t)ẋT(s)Uẋ (s)ds+ �M −�

�M −�M
ẋT(t)Uẋ(t)−2�V2.

After differentiating V̄ along (16), we employ the representation

−
∫ t

t−�M
ẋT(s)Rẋ (s)ds = −

∫ t−�

t−�M
ẋT(s)Rẋ (s)ds−

∫ t−�1

t−�
ẋT(s)Rẋ (s)ds

−
∫ t

t−�1
ẋT(s)Rẋ (s)ds. (43)

Then, similar to (36), applying Jensen’s inequality and denoting

v21= 1

�−�M

∫ t

t−�1
ẋ(s)ds, v22= 1

�M −�

∫ t−�

t−�M
ẋ(s)ds, v23= 1

�M

∫ t−�1

t−�
ẋ(s)ds, (44)

we obtain

[ ˙̄V (t)+2�V̄ (t)]|���M � 2xT(t)Pẋ(t)+ ẋT(t)

[
R+ �M −�

�M −�M
U

]
ẋ(t)

−(�−�M )vT21

[
1

�M
e−2��M R+ 1

�M −�M
e−2�(�M−�M )U

]
v21

−e−2��M �M −�

�M
vT22Rv22−e−2��M �M

�M
vT23Rv23+xT(t)Sx(t)
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−xT(t−�M )e−2��M Sx(t−�M )− 1

�M −�M
[x(t)−x(t−�1)]

TX [x(t)

−x(t−�1)]+2
�M −�

�M −�M
ẋT(t)X [x(t)−x(t−�1)]

+2�

[
xT(t)Px(t)+ �M −�

�M −�M
[x(t)−x(t−�1)]

TX [x(t)−x(t−�1)]

]
. (45)

We also insert free-weighting n×n-matrices by adding the following expressions:

0 = 2[xT(t)Y T
21+ ẋT(t)Y T

22+xT(t−�1)T
T
21][−x(t)+x(t−�1)+(�−�M )v21],

0 = 2[xT(t)ZT
21+ ẋT(t)ZT

22+xT(t−�)T T
22][−x(t−�)+x(t−�M )+(�M −�)v22],

0 = 2[xT(t)MT
21+ ẋT(t)MT

22][−x(t−�1)+x(t−�)+�Mv23]

(46)

and (40) with j =2 to the right-hand side of (45). Setting �2(t)=col{x(t), ẋ(t),
x(t−�M ),v21,v22,v23, x(t−�1), x(t−�)}, we finally obtain that

[ ˙̄V (t)+2�V̄ (t)]|���M��T2 (t)�|���M �2(t), (47)

where

�|���M

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11−
1−2�(�M−�)

�M−�M
X �12+

�M−�
�M−�M

X ZT21 (�−�M )YT
21 (�M−�)ZT21 �MMT

21 �17+
1−2�(�M−�)

�M−�M
X �18

∗ �22+
�M−�

�M−�M
U ZT22 (�−�M )YT

22 (�M−�)ZT22 �MMT
22 �27−

�M−�
�M−�M

X �28

∗ ∗ −Se−2��M 0 0 0 0 T22

∗ ∗ ∗ �44 0 0 (�−�M )T21 0

∗ ∗ ∗ ∗ �55 0 0 (�M−�)T22
∗ ∗ ∗ ∗ ∗ �66 0 0

∗ ∗ ∗ ∗ ∗ ∗ �77−
1−2�(�M−�)

�M−�M
X 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −T22−T T
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

with notations given in (32).
Similar to the case 1, we note that �21<0 and �22<0 imply �|���M<0. So [ ˙̄V (t)+

2�V̄ (t)]|���M<0. Therefore, along (16) we have

V̇ (t, xt , ẋt )+2�V (t, xt , ẋt )�max{�T1 (t)�|�<�M �1(t),�
T
2 (t)�|���M �2(t)}<0 (49)

and the proof of (i) is completed.
(ii) Consider Lyapunov functional of (26) with �=0. By using arguments similar to the proof

of (i), we find that (20) holds if LMIs (33) are feasible. �

When the network-induced delay is constant, i.e. �k ≡�M , we have only one case of �∈ [�M ,�M ].
So the following result is obtained from Theorem 1:

Corollary 1
(i) Consider (7) with �k ≡�M . Given �>0, let there exist n×n-matrices P>0, R>0,U>0, X>0,
S>0, P22, P32,T2i ,M2i , Y2i , and Z2i (i =1,2) such that two LMIs �2i<0(i =1,2) with notations
given in (32) are feasible. Then (16) is exponentially stable with the decay rate �. If LMIs
�2i<0(i =1,2) hold with �=0, then (16) is exponentially stable with a small enough decay rate.

(ii) Given �>0, if two LMIs (33), where i =2, j=1,2 are feasible, then (7) is internally
exponentially stable and the cost function (10) achieves J<0 for all non-zero w∈ L2, v∈ l2 and
for the zero initial condition.
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Remark 3
We note that the LMIs of Theorem 1 and Corollary 1 are affine in the system matrices. Therefore, in
the case of polytopic type uncertainty with A, B1, B2, C1, and D12 from the uncertain time-varying
polytope

� =
M∑
j=1

f j (t)� j , 0� f j (t)�1,
M∑
j=1

f j (t)=1,

� j = [A( j ) B( j )
1 B( j )

2 C ( j )
1 D( j )

12 ],

(50)

one have to solve these LMIs simultaneously for all the M vertices � j , applying the same decision
variables.

Remark 4
The method of this paper can be extended to the case of 0<�m��k��M by modifying the functional
(26) as follows:

V�m (t, xt , ẋt )= V̄�m (t)=V�m (xt , ẋt )+
2∑

i=1
Vi (t, xt , ẋt ),

where V1, V2 are defined by (27) and

V�m (xt , ẋt )= xT(t)Px(t)+
∫ t

t−�m

e2�(s−t)xT(s)S0x(s)ds+
∫ t−�m

t−�M
e2�(s−t)xT(s)S1x(s)ds

+�m

∫ 0

−�m

∫ t

t+�
e2�(s−t) ẋT(s)R0 ẋ(s)dsd�+ 1

�M −�m

∫ −�m

−�M

∫ t

t+�
e2�(s−t) ẋT(s)

×R1 ẋ(s)ds d�,

where P>0, Si>0, Ri>0 (i =0,1). The latter functional leads to analysis in the following two
cases: (1) �m+�M��M (e.g. if �k�sk+1−sk) and (2) �m+�M>�M . In the first case one can
consider three intervals for �:

�m+�M��M �⇒�∈ [�m,�M ), �∈ [�M ,�m+�M ) and �∈ [�m+�M ,�M ],

which will result in six LMIs (instead of four for �m =0). The second case leads to consideration
of two intervals for �:

�m+�M>�M �⇒�∈ [�m,�M ) and �∈ [�M ,�M ]

and to four LMIs. It can be seen that such an extension essentially complicates the conditions and
will not be given in this paper.

3.2. Application to network-based design

We apply the results of the previous section to design problems.

3.2.1. State-feedback design. In order to find the unknown gain K that exponentially stabilizes
(13) with notations (14) and leads to J1<0, we apply matrix inequalities of Theorem 1 to (13).
This leads to nonlinear matrix inequalities because of the terms PT

2 B2K , PT
3 B2K . Following [20],

we assume that P3i =εP21(i =1,2), where ε is a scalar. We arrive to

Corollary 2
Given �>0, let there exist n×n-matrices P̄>0, R̄>0, Ū>0, X̄>0, S̄>0, Q, T̄11, T̄2i , M̄2i , Ȳij, and
Z̄ij(i, j =1,2), an nu×n-matrix L and a tuning parameter 
>0 such that four LMIs (28)–(31) are
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feasible, where P , R, U , X , S and T , M , Y , Z with subindexes are taken with bars and where

�11 = QTAT+AQ+2�P̄+ S̄− Ȳ11− Ȳ T
11, �12= P̄−Q+
QTAT− Ȳ12,

�22 = −
(Q+QT)+ R̄, �16= Ȳ T
11− Z̄T

11+B2L− T̄11, �26= Ȳ T
12− Z̄T

12+
B2L,

�11 = QTAT+AQ+2�P̄+ S̄− Ȳ21− Ȳ T
21, �12= P̄−Q+
QTAT− Ȳ22,

�18 = M̄T
21− Z̄T

21+B2L, �22=−
(Q+QT)+ R̄, �28= M̄T
22− Z̄T

22+
B2L .

(51)

Then the stabilizing gain is given by K = LQ−1. In the above conditions if only two LMIs �2, j<0,
j =1,2, are feasible, then the results are valid for (13) with constant delay �k ≡�M .

Proof
Consider (42), (48) with notations (14). Assuming P3i =εP21(i =1,2), where ε is a scalar, we
denote Q= P−1

21 , P̄=QTPQ, R̄=QTRQ, Ū =QTUQ, S̄=QTSQ, X̄=QTXQ, T̄11=QTT11Q,
T̄2i =QTT2i Q, M̄2i =QTM2i Q, Ȳij=QTYijQ, Z̄ij=QTZijQ (i, j =1,2), and L=K Q. Multipli-
cation of (42), (48) by diag{QT, . . . ,QT} and diag{Q, . . . ,Q}, from the right and the left, completes
the proof. �

For the state-feedback H∞ control, the resulting LMIs have the following form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| B1 CT
1

| 
B1 0

�ij|�=0 | 0 0

| 0 LTDT
12

− − − −
∗ | −�2 I 0

∗ | ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, i, j =1,2. (52)

Remark 5
The results of Corollary 2 apply the tuning scalar parameter 
. One way to address the tuning issue
is to apply a numerical optimization algorithm, such as the program fminsearch in the optimization
toolbox of Matlab.

3.2.2. Static output-feedback H∞ control. It is well known that static output-feedback stabilization
is a non-convex problem. We suggest here some solution to this problem (which may be conser-
vative). Assume that B2 is of full rank. Then there exists a mapping x → T̃ x with non-singular
n×n-matrix T̃ , such that B2 has the following partitioned form BT

2 = [0 BT], where B∈Rm×m is
non-singular. Hence, without loss of generality, we take B2 in the above form.

Corollary 3
Given �>0 and tuning scalar parameters εi (i =2,3) and a constant matrix G∈Rm×(n−m), let there
exist n×n-matrices P>0, R>0, U>0, X>0, S>0, T11, T2i , M2i , Yij, Zij(i, j =1,2) and matrices
K ∈Rm×p , Gk1∈R(n−m)×(n−m), Gk2∈R(n−m)×m(k=2,3), such that four LMIs (33), where the
slack variables P2i , P3i , i =1,2 are chosen of the following form:

P2i =
[
G21 G22

G ε2 Im

]
, P3i =

[
G31 G32

G ε3 Im

]
, i =1,2 (53)

with notations given in (8), (32), are feasible. Then (7) is internally exponentially stable and the
cost function (10) achieves J<0 for all non-zero w∈ L2, v∈ l2 and for the zero initial condition.
If in the above conditions only two LMIs, corresponding to i =2, j=1,2, are feasible, then the
results are valid for (7) with constant delay �k ≡�M .
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Proof
Taking into account (53), we have

PT
j i B2KC2=col{GTBKC2,ε j BKC2}, i =1,2, j =2,3.

Substitution of (8) and (53) into matrix inequalities of Theorem 1 and Corollary 1 completes the
proof. �

The result for the static output-feedback exponential stabilization with a given decay rate can
be formulated similarly.

4. EXAMPLES

Example 1
Exponential stability and L2-gain analysis.

Consider the system from [1, 9]:

ẋ(t) =
[
0 1

0 −0.1

]
x(t)+

[
0

0.1

]
u(t)+

[
0.1

0.1

]
w(t),

z(t) = [0 1]x(t)+0.1u(t),

(54)

where u(t)=−[3.75 11.5]x(tk−�k), tk�t<tk+1. The closed-loop system with w=0 and with
constant delay �

ẋ(t)=
[
0 1

0 −0.1

]
x(t)+

[
0 0

−0.375 −1.15

]
x(t−�) (55)

is asymptotically stable for ��1.16 and becomes unstable for �>1.17. The latter means that all
the existing methods via time-independent Lyapunov functionals cannot guarantee the stability of
(55) for the sampling intervals that may be greater than 1.17. When there is no network-induced
delay, i.e. �k ≡0, the resulting �M determines an upper bound on the variable sampling intervals
tk+1− tk . The results (obtained by various methods in the literature and by Theorem 1 with �=0)
for the admissible upper bounds on the sampling intervals, which preserve the stability, are listed
in Table I. From Table I, we can see that the result by Theorem 1 almost coincides with the result
of [17] and is close to the exact bound 1.72 for the constant sampling.

For the values of �M given in Table II, by applying various methods in the literature and
by Theorem 1 with �=0, we obtain the maximum values of �M that preserve the stability (see
Table II). The LMIs of Theorem 1 with X>0 and U>0 (the non-zero X and U correspond to the
discontinuous terms of Lyapunov functional) lead to less conservative results than the same LMIs,
where U =0 or X=0 (see Table II). We note that in this example the results of Corollary 1 for
the constant �k ≡�M coincide with the results of Theorem 1 for the variable 0��k��M . Choosing
next �M =1.1137, by applying Theorem 1, we obtain the maximum value of the decay rate � given
in Table III for different bounds �M .

Consider next the static output-feedback controller u(t)=−0.1122y(tk−�k), tk�t<tk+1, where

y(tk−�k)= [1 0]x(tk−�k)+0.2v(tk−�k), (56)

and where �M =0.1, �M =1.5. Applying LMIs of Theorem 1 (with the zero and with the non-
zero X and U ), we find that the resulting closed-loop system has an L2-gain less than �=1.27

Table I. Maximum upper bound on the variable sampling.

Method [25] [13] [27] [28] [17] Th 1

�M 1.04 1.11 1.36 1.36 1.69 1.68
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Table II. Maximum value of �M for different �M .

�M/�M 0 0.2 0.4 0.6 0.8

[25] 1.04 1.04 1.04 1.04 1.04
[14] 1.11 1.01 0.95 0.90 0.88
Th 1 (U =0) 1.28 1.22 1.17 1.13 1.09
Th 1 (X =0) 1.61 1.17 1.10 1.08 1.07
Th 1 1.68 1.26 1.18 1.14 1.10

Table III. Maximum value of � for different �M .

�M 0 0.01 0.1 0.2

�(U>0, X>0) 0.26 0.21 0.12 0.07
�(U>0, X =0) 0.14 0.12 0.05 0.01

(for X=U =0) and less than �=1.17 (for X>0 and U>0). Hence, the discontinuous terms of
Lyapunov functional improve the performance (the exponential decay rate and the L2-gain).

Example 2
State-feedback stabilization.

Consider a two axis example of a three-axis milling machine tool from [2]:

ẋ(t)=

⎡
⎢⎢⎢⎢⎣
0 1 0 0

0 −18.18 0 0

0 0 0 1

0 0 0 −17.86

⎤
⎥⎥⎥⎥⎦ x(t)+

⎡
⎢⎢⎢⎢⎣

0 0

515.38 0

0 0

0 517.07

⎤
⎥⎥⎥⎥⎦u(t), (57)

where the constant network-induced delays �k ≡�M =50ms were considered, the sampling period
was chosen to be 100ms and it was assumed at most two successive data packet dropouts. Under
the above assumptions the resulting value of �M equals 350ms. Under some additional assumptions
on the distribution of packet dropouts, a state feedback controller has been found in [2] that
exponentially stabilizes the system with the decay rate �=1.0735.

Without additional assumptions on the packet dropouts, we apply Corollary 2 with 
=0.4 and
we find that the state feedback with the gain

K =
[−0.0775 −0.0043 0 0

0 0 −0.0759 −0.0042

]

stabilizes the system with a greater decay rate �=1.2408 for variable network-induced delays
0��k�50ms.

Example 3
Static output-feedback H∞ control.

We consider (54) with the measurement given by (56). It is assumed that the network-induced
delay �k satisfies 0��k��M =0.1 and that 0�tk+1−sk��M =1.5. Choosing ε2=ε3=10,G=0.5
and applying Corollary 3, we obtain a minimum performance level of �=1.51. The corresponding
static output feedback control law is u(t)=−0.1122y(t). As we have seen in Example 1, the
above controller, in fact, leads to a smaller performance level of �=1.17 (which follows from
the application of Theorem 1 to the resulting closed-loop system). The latter improvement of �
illustrates the conservatism of the design method.
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5. CONCLUSIONS

A piecewise-continuous in time Lyapunov functional method has been presented for analysis and
design of linear networked control systems, where variable sampling intervals, data packet dropouts,
and variable network-induced delays are taken into account. This method has been developed in
the framework of time delay approach. The presented results depend on the upper bound �M of
the network-induced delays. The new analysis has been applied to the state-feedback and to a
novel static output-feedback H∞ control. Different from the observer-based control, the static one
is easy for implementation.

The presented method essentially reduces the conservatism. It gives insight for new constructions
of Lyapunov functionals for systems with time-varying delays. The method can be applied to
different networked control design problems.
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