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1. Introduction

It is known that all industrial systems are affected by exter-
nal disturbances and/or internal uncertainties that bring adverse
effects in the controller performance, degrading its nominal be-
havior, or even causing instability [1-4]. In order to deal with
them, different Disturbance/Uncertainty Estimation and Attenu-
ation (DUEA) techniques have been proposed [ 1], from which the
Extended State Observer (ESO)-based control [5,6] has become
of notably interest. The ESO was proposed as a methodology
to estimate and compensate for unknown uncertainties in real-
time. Since it was proposed, it has been subject to theoretical
developments [7-9], it has been successfully applied in different
scenarios [10-13] and it has become the main core of the Active
Disturbance Rejection Control (ADRC) [5,14].

However, there is a lack of numerical methods to guarantee
its closed-loop stability when it is used to compensate for state-
dependent uncertainties, such as modeling errors or non-linear
terms, which widely appear in practice. Initially, the ESO was
developed for a system expressed as a chain of n integrators, with
the uncertain-term, f(-), and the control action, u(t), satisfying the
so-called matched condition [6]. In this scenario, its closed-loop
stability was firstly guaranteed under the assumption of global
boundedness of %(f(d) [15]; a strong assumption that was also
taken in the works that followed [16-19], and was not relaxed
until 2009 and 2011 in [20] and [21], respectively.
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The main problem with this assumption is that, in general,
it cannot be strictly guaranteed a priory if f(-) is dependent on
the system state. Some works need to consider that the system is
originally stable [21], or that the dependency of f(-) on the system
state is weak-enough [8,9], in order to stablish the boundedness
of %(f(-)), Other results indicate that the stability of an ESO-based
controller can be still guaranteed if the partial derivatives of f(-)
are bounded [14,22,23].

On the other hand, to consider that the system is expressed
as a chain of n integrators satisfying the matched condition is
a strong restriction that cannot be always considered as pointed
out in [1,8,9]. By this reason, it was recently developed in [8,9],
a Generalized ESO (GESO) for systems, not necessarily expressed
as chain of integrators, with possibly mismatched uncertainties.
But, due to the technical difficulties, its closed-loop stability was
proved under the assumption of boundedness of %U(-)).

This paper presents LMI-based stability conditions for the
GESO-based control when system is affected by locally Lipschitz
uncertainties. In contrast to previous results, the stability con-
ditions of this paper do not rely on the assumption of global
boundedness of %(f(-)). Instead, simple local requirements over
its partial derivatives are taken. LMI-based optimization method-
ologies, which can be used to get numerical results of the closed-
loop response, are also given and tested in some examples. The
results of this paper are also be valid for the conventional ESO,
or the linear ADRC, since the so-called matched condition, or the
plant being expressed in the canonical integral chain form, are
particular cases of the problem being considered.

The rest of the paper is structured as follows. Section 1.1
presents the main notation. Section 2 introduces the problem
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being considered. The main results are given in Section 3, where
the stability theorems are developed. In Section 4, different LMI-
based optimization methodologies are introduced. Finally,
Sections 5 and 6 contain numerical examples and the main
conclusions, respectively.

1.1. Notation

Through the paper, R" denotes the n-dimensional Euclidean
space with vector norm | - ||. R™™ denotes the set of n x m
real matrices. The superscript ‘T" denotes matrix transposition,
while the notation P > 0 means that P is positive definite. The
symmetric elements of a symmetric matrix are denoted by (),
while the maximum and minimum eigenvalues of a given matrix,
P, are denoted by A(P) and A(P), respectively.

Let & 2 [xT,el1T € R¥™4, with x € R" and e, € R". A
symmetric matrix 0 < P; € R"+9*2n+4] defines an ellipsoid in
R?"4 given by

& S {f;' [ R2n+q|f;'TPi‘é < ki- k,‘ > 0}.

whose projection onto R", 5}, is automatically defined by Pﬁ e R™

g2 {xeR" | X Pix < ki, ki > 0}.
2. Problem formulation

Let us consider the following class of non-linear systems:

X = Ax + Byu + Brf(x, o(t)),
{ . (1)

y=0Cx
where x = [x1,.... x,]7 € R" is the system state; u € R™ is
the control action; y € RP is the measurable output; A € R™",
B, e R™™, By e R™% and C e RP*" are the nominal system
matrices; o(t) : R.g — R’ is a differentiable time-varying func-
tion representing the external disturbances; f : A x R" — RY is
a possibly non-linear function, differentiable in .A x R", for some
domain .4 C R" containing the origin.

The function f(x, w(t)) represents an unknown term that con-
tains the internal uncertainties as well as the external distur-
bances. The main control purpose is to stabilize system (1), while
being actively compensating for f(x, w(t)). To this purpose, the
next control law is considered [8]:

u= K&+ Kf (2)

where K, is a state feedback gain, K is a disturbance feed-forward
gain and )"cf are estimates of x and f(x, w(t)), respectively.

To get the estimates X, f note that, for all x € A, system (1)
can be equivalently represented in the extended-state form:

{ iy = A + Bt + Bif (x, w(0)) -

X
>
—
o x>
o
1
[wo]]
=

e,
=~}
o =
1
L=
I3
—
i)
| —

This allows to construct the following ESO [8], which provides
the desired estimates:

0 = An + Byu + L(y — C#), (4)
where L € R™9*? is the observer gain.

Let us now consider the following assumptions:

Assumption 1. The pair (A, By) is controllable.

Assumption 2. rank ([? %f

:|) =n+ q; and the pair (A, C) is
observable.

Assumption 1 guarantees that Ky can be found such that
(A + BuKy) is Hurwitz, while Assumption 2 guarantees the observ-
ability of (A, C) [24].

3. Closed-loop stability

Let us define the observation error as

e Xx—X
e & ox| a l=n—5. 5
° I:eo,f} [ftx, olt) —f} U ®)
By differentiating (5) and substituting (3) and (4), the obser-
vation error dynamics are given by

&, = (A —LC)e, + Byf(x. w(1)). (6)

On the other hand, the control action (2) can be rewritten as

U = K& + Kif = KX + Kef (x, (£)) — Ky — Kreo s
= Kux + Kif(x, (1)) + Egeq

where E, £ —[K,. K;].
Therefore, by substituting (7) into (1) and incorporating (6),
the following closed-loop is obtained:

E = Dk + Dif(x, (1)) + Df (x. oot)), (8)

where

(7)

A+ BuK, BLE
A1yl TqT s ulix _Puto_
S*[X El 80] » (pcf[ O A—LC],

. [Buk; +B L To
ne[M0] o nelg)

In the next sections, the local/global input-to-state and expo-
nential stability of the resulting closed-loop (8) is analyzed. To
this purpose, let us define a ball B, 2 {x e R" | ||x|| <r} € 4,
r > 0, and let us state the following assumption, being needed
for well-posedness problem formulation:

Assumption 3. Under Assumptions 1-2 and the control law (2),
(4), and in the absence of external disturbances (i.e. w(t) =0,
w(t) = 0), the state x* = 0 is the unique equilibrium point of (8)
inB. A

3.1. Input-to-state stability
In order to prove ISS, let us consider that

Assumption 4. There exist scalars, ff =0, B; > 0, fax >0,
Baw = 0, such that,

e o)) < fr. 1601 < Ao
| o) < a2 (06| < e

forallxe B,,t >0. A
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Fig. 1. Illustration of the sets being considered in this problem.

Assumption 4 states that f(x, (t)) and its partial derivatives
are bounded in B; x R~ (not necessarily globally bounded). This
also implies that f(x, e(t)) is Lipschitz in By x Rsp and, if the
control action is chosen such that x(t) does not leave B, it also
ensures the existence and uniqueness of the solution of (1) for all
t > 0 [25]. Note that, in contrast to previous works [8,21] whose
stability results rely on different assumptions that imply the
boundedness of f(x, w(t)), Assumption 4 just guarantees the fol-
lowing worst-case upper bound: ||f(x. w(t))] < BuwBa + BaxX(L),
forallx e B, and t > 0.

Now, let us recall the next well-known result that is needed
for the subsequent analysis:

Lemma 1 (ISS). Define V(§(t)) = E(t)TPE(L), with P > 0. Let
V(t) 2 V(E(t)) be absolutely continuous and let gi(x(t),t),
22(x(t), t) be essentially bounded functions, i.e. ||g1(x(t), t)]| < a1,
llg2(x(t). O)|| < oz, forall £ = 0, with a1 > 0, a3 > 0. If there exist
§ > 0,y1 =0,y > 0such that

V(t) 4+ 8V(t) — yllgi(x(t), )] — yallga(x(t). £)]> < 0, ¥Vt =0

2 2
then, the ellipsoid £ 2 {& € R4 |gTpg < % , is a posi-
tively invariant and exponentially attractive set, with decay rate 5,2,

for E(t).

Proof. The proof is similar to the one presented in Lemma 4.1
of [26], where the term b||w(t)||? is substituted by y1 g (x(t), £)]1?

+v2llg(x(t). OI*. O
The above lemma is employed in the next theorem represent-
ing conditions for the local ISS of (1) controlled by (2), (4).

Theorem 1 (Local ISS). Let i £ {0, co}. Under Assumptions 1-4,
given any §;, let there exist positive definite P; € RZnHa)x(2nta) gqng
scalars Ty > 0, y1; = 0, y2; = 0, that satisfy the following LMIs:

yffliss Pl + TiﬁngTAf Pl Pl

ia | (x) -y, tmpiAala 0 0
iss — (*) (*)d ! —1 0 = 01 (9)
() (%) (%) —wy

being i, £ Pibe + ®IPi+ 8iPi + g AL Ae, Ap = (BuKy + Br) and
AE = [(A + BUKX)! Bqu]-
Assume additionally that

R \/J/l,-ﬂfz + 2 Bawhi
i = <T
L(Pil)(si

(10)

Then, for all states & starting from the initial ellipsoid

V1oB? + V2o (BawBi ) }

& 2 {‘5 € Rz"”ltETPo‘E < 5
0

the solution x(t) of the closed-loop system (1)—(2), (4), does not leave
the ball B, and it exponentially approaches, with a decay rate /2,
to the attractive ellipsoid

oo

1
gLe {xeR“ [x"PLx <
So

V1B + Voo (BawBi) }

Proof. See Appendix B. O

Fig. 1 represents an illustration of the sets that are being
considered in this problem. The domain .4 is the region of R"
in which f(x, w(t)) is continuously differentiable and, therefore,
is the set in which the extended state representation (3) is
equivalent to the original system (1). B, is the ball where
Assumptions 3-4 hold. Theorem 1 states that, if (9)-(10) hold,
then for any £(0) 2 [x7(0), el(0)]" € &, the state x(t) does not
leave B; and it approaches to E;. If £(0) ¢ &, convergence is not
guaranteed as the state could leave B;.

Conditions (9)-(10) have a simple meaning. Eq. (9) guarantees
that the obtained ellipsoids, &, £, are positively invariant and
exponentially attractive, i.e. any trajectory &(t) starting inside the
ellipsoids is kept inside them for all t > 0, while trajectories
starting outside approach to them. Eq. (10) guarantees that é:DL
and &2 are strictly inside B,. It is clear that, if (9)-(10) are
satisfied, then the stability result of Theorem 1 hold.

Also, Theorem 1 defines two i-independent sets of parameters,
ie.s; £ {Py, 8i. Tj. ;. vo,) withi = 0, oo, that may satisfy (9)-(10).
The parameters in So define the set of allowable initial states &g,
while the parameters in s, define the terminal ellipsoid £,. This
provides an additional degree of freedom so that Theorem 1 can
be optimized to find SDL as large as possible and £ as small as
possible (as depicted in Fig. 1). In Section 4, different optimization
methodologies to address this issue are introduced.

Finally, the next corollaries can be established from Theo-
rem 1. Corollary 1 shows that local ISS is guaranteed for weak-
enough uncertainties if A+B,K, and A—LC are Hurwitz. Corollar-
ies 2 and 3 represent simplified stability conditions for the cases
of matched uncertainties and A = B, = R", respectively.

Corollary 1 (Local ISS for Weak-Enough Uncertainties). Consider
that Assumption 4 is satisfied with a small-enough ff, Pax and
BawPeo. Then, if A + BuKy and A — LC are Hurwitz, the solution
x(t) of the closed-loop system (1)-(2), (4) is locally ISS for any £(0)
sufficiently close to the origin.

Proof. Since A + ByK, and A — LC are Hurwitz, given any é;,
there exist P; such that P&, + (PCTPi + §;P; < 0. Then, by Schur
complements, l,!li;S ~< 0 for large enough y1,, ¥, 7, and small
enough fBy. On the other hand, for a given P;, y1;, 2,, 8i, condition
(10) is satisfied if Br and B4, B, are sufficiently small. Therefore,
if the initial state is chosen sufficiently close to the origin, then

£(0) € & and Theorem 1 is verified. [

Corollary 2 (Local ISS for Matched Uncertainties). Consider that
By = By, K = —I. Given any §;, i £ {0, oo}, let there exist positive
definite P; € R 0x@n+0) and scalars 1; > 0, y5, > 0, that satisfy:

» vl P P .
Wl o 0 |zo n= [PPEBE g,
(5 (0 -7 AP

Then, for any arbitrarily large g;, and for all states & starting

.2
from & = [S € R | £Tps < %} the solution x(t) of
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the closed-loop system (1)-(2), (4), does not leave the ball B, and it
exponentially approaches, with a decay rate 5,/2, to the attractive
(Bawbi) ]
B0 :

ellipsoid £ = [x eR"[x"PLx < =

Proof. If B, = Bf and K; = —I, then Iy =0 and A; = 0. In this
case the LMI in (9) is reduced to (11), subject to y;; = 0. As py
is a free parameter, it can be set y;, = 0, which completes the
proof. O

Corollary 3 (Global ISS). Consider that A = B, = R", ie. 1 — oo.
Given any 8, let there exist a positive definite P, € R2n+a)x(2n+q)
and scalars 7, > 0, y1, = 0, yo, = 0, that satisfy ¥ 0 < 0. Then,
for any initial state, the solution x(t) of the closed-loop system
(1)-(2), (4), exponentially approaches, with a decay rate §~,/2, to
the attractive ellipsoid £X.

Proof. Since r — oo, condition (10) holds in any case. Also, if
there exist doc, Poor Toor Vi V2o SUch that ¥y <0, it can be
always set 8g < 8o, Po = Pooy To = Toos ¥1; = Vie AN Y25, = V2,5
which satisfy 2. < 0. By decreasing 8o, the set of allowable initial

states, &£, can be made arbitrarily large. O
3.2. Exponential stability
In order to prove ES, let us consider that

Assumption 5. There exist scalars, S,
matrices, I1; € R™" 11, € R™" such that

> 0, Bax =0, and

IF(x, ()] < ITx]. Hg—i(x, ol0))| = fi

d
1601 = o 2L (x, )0 < ollTant,
forallx e B,,t =0. A

Assumption 5 is stronger than 4 as it further restricts the class
.. of
of uncertainties to those whose terms f(x, o(t)) and 3-(x, (t))
vanish when the state goes to zero.
In the same way, let us recall the next result being needed for
the subsequent analysis:

Lemma 2 (ES). Define V(&(t)) = £(t)TPE(L), with P > 0. Let
V(t) £ V(&(t)) be absolutely continuous. If there exists § > 0 such
that

V(t)+8V(t)<0, Vt=0 (12)

then &£(t) is exponentially stable with decay-rate §/2.

Proof. The proof follows from Lemma 1. O

The above lemma is employed to establish the following the-
orem representing conditions for the local ES.

Theorem 2 (Local ES). Let i £ {0, co}). Under Assumptions 1-3 and
5, given any &, let there exist positive definite P; € R a)x@n+4) qng
scalars Ty, = 0, 15, = 0, 13, = 0, that satisfy the following LMIs:

lr"f’[(:s Pil* +T1iﬂ3xA]ErAf Py P

ia | (x) —m T pRAlay 0 0

Ve = () (*)d ! -7, 0 =0, (13)
(%) (%) (x) 13

being
L EP® + P 4 8P+
—+ IlrﬁnggA&f + HT(rziﬂlrﬂl + T}rﬁingnz)h’

Then, for all states & starting from the initial ellipsoid
G 2 {5 e ¥ |£TPos < A(Pg)r?}, the solution x(t) of the closed-
loop system (1)-(2), (4), does not leave the ball B, and it is expo-
nentially stable with a decay rate §,,/2.

Proof. See Appendix B. O

Theorem 2 also defines two i-independent set of parameters,
i.e. 5 2 (P, 8, Ty, T2, T3,} with i = 0, co; which may satisfy (13).
The set 55 should be optimized so that the initial ellipsoid is
obtained as large as possible, while the set 5., should be opti-
mized so that the higher exponential decay rate is obtained. These
optimization issues are discussed in Section 4.

Remark 1. The same arguments employed in Corollaries 1-3
could be reproduced for the case of ES.

4. Optimization issues

In this section, different optimization problems are introduced
in order to check, and optimize, the stability conditions presented
in Theorems 1 and 2.

4.1. Numerical optimization of Theorem 1

Let s; £ {P;. 6. 7. 1. ¥, ), with i = 0, 00, be the sets of
parameters in Theorem 1 that should be optimized. The set s, is
optimized such that £, is minimized [27]. This can be performed
by solving

max «
{So0.t}

St WY <0, P = tlantq,

Vlooﬁj? + yZm(ﬁdmﬁd))z = SOG',
o >0, 00 >0, 70 >0, y1, >0, 92, >0.

(14)

The first constrain assures that condition (9) of Theorem 1 is
satisfied. The second constraint assures that A(P,,) > «. The third

constraint forces that r., in (10) takes the form r,, = A(P]H <

\/az. So, if « is maximized, then ry is being minimized. Finally,
note that the feasibility of (14) guarantees (9) but not (10), which
should be checked with the obtained values in s,

The set sg is optimized such that & is maximized. This can
be done by minimizing the condition number of Py (so that & is
as similar as possible to a sphere), while forcing condition (10)
to be strictly satisfied, i.e. as an equality. In this way, the largest
ellipsoid such that its projection strictly fits inside B; is obtained.
This can be performed by solving the next optimization problem
for different fixed (and decreasing) values of «, until the following
equality holds rp =r.

min  y,
{so.a. 7}

stWg <0, Po=aP, yhayg =P = g

Y1oBF + V2o B}’ = do.
y=>1lLa>08>0 1%>0 >0, 1,=0,

(15)

The second and third constraints force & to have the following
form & = {§ € R*"* | £7T(aP)s < 1}. Hence, if y is minimized,
then Py is forced to be as similar as possible to an sphere; while,
by decreasing «, & is enlarged; so « should be chosen such that
(10) strictly holds.
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1+ F— F— T — F——— = == Table 1
i':(f) Example Section 5.1. Results of the optimization for g = 2.
o5l . P:,c oo Too Vi V2oo
= 45.4 —248 2.95
= —248  151e3  —3.17e3 1.33 5.57 0 1.33
or i 295 —3.17e3 817
05 \ ) \ L I I \ Po 8o T Vg Y20
0 1 2 3 4 5 6 7 1 014  —0052
time (sec) 014 134  —0.70 05 0.1 0 05
o i , i , , ~0.052 -0.70  0.15

u(t)

3 L I i L I | i
0 1 2 3 4 5 6 7

time (sec)

Fig. 2. Simulation of Section 5.1.

4.2. Numerical optimization of Theorem 2

Let 5; = (P, 8. 1y, T2, 13}, with i = 0, 00, be the set of
parameters in Theorem 2 that should be optimized. The set s,
is optimized such that é,, is maximized. This can be performed
by solving:

max deo,
Seo
sLw® <0, (16)

Poo >0, 000 >0, 11, > 0,72, >0, 13, >0.

The set s, is optimized in order to obtain the largest &. This
can be done by minimizing the condition number of Py by solving:

min y,
S0.¥
StWe <0, Py >0, ¥hnig = Po = hnig, (17

80 >0, 1, >0,125 >0, 13, > 0.
5. Numerical examples
5.1. Example 1

Let us consider the following system:

X(t£) = x(t) 4 u(t) + Bx(t) + ew(t), Vx| <r. (18)
y=x,
where § > 0 is an unknown parameter and w(t) = sin(t)
represents the external disturbance.
The control law (2), (4) is applied with L = [41, 40071,

Ky=—2and K; = —1. Let us consider r = 1. For all x € B;
and t > 0, Assumption 4 is satisfied with

IfGe ()l = B+ 1, o)l <1
af
|52 )] <5,

Theorem 1 is applied to check the closed-loop ISS. Consider
an upper bound of 8 < 2. Theorem 1 is optimized according to
(14)-(15). The resulting sg, S, are presented in Table 1. Since
both g, Ss satisfy (9)-(10) (concretely (10) is satisfied with ry, =
0.15 < 1 and rp = 0.99 < 1), the results of Theorem 1 hold.

A simulation result is presented in Fig. 2, where system (18),
with B = 2, is controlled under (2), (4). The initial state is set to

[ twto)] =1

x(0) = X(0) = X and f(0) = 0. It is verified that £(0) € & for
all x, < 0.625, so the simulation is performed with x, = 0.625.
It can be seen that the simulation results match with the results
given by Theorem 1.

On the other hand, Theorem 1 can be also employed to get
robustness properties of the closed-loop response against the
uncertain parameter 8. It is verified that the closed-loop becomes
unstable for g > 10.17. By evaluation of Theorem 1 it is found
that none set, s;, satisfying (9), can be found if 8 > 10.04, which
is remarkable.

5.2. Example 2
Let us consider the system presented in [8], which, in order to

satisfy Assumption 3, is conveniently rewritten after translating
its equilibrium point up to the origin:

X1 =x2 +f(x),
P.('Z = —2X1 — X2 + H{f),
YV = X1,

being f(x) £ e — 1, and B = 0 a constant unknown parameter.

As proposed in [8], the observer gain is set to L = [14, —G86,
125]", the state-feedback gain is set to Ky = [—4, —4] and the
disturbance feed-forward gain is set to Ky = —5. Let us fix B, of
radius r = 1. For all x € B, and t > 0, Assumption 5 is satisfied
with

p_
I, o)l < | [e 0! g] A e =o,

|ete )] = 6. [ noro] < rowa

Theorem 2 is optimized by solving (16)-(17) in order to get
robustness properties of the closed-loop against the uncertain
parameter B. It is found that none set of parameters, $;, satisfy-
ing (13), can be found if g > 0.54.

Simulation results are depicted in Figs. 3-4. The initial state is
set to x1(0) = xg, X1(0) = xp, X3(0) = 0, X,(0) = 0 and f(0) = 0.
It can be checked that, for X < 0.21, this initial state belongs
to the allowable set of initial states for all 8 < 0.54; so it is set
Xo = 0.21. Figs. 3-4 depict simulation results for § = 0, 8 = 0.54,
and B8 = 1.59, respectively. The trajectories leave B, for 8 > 1.59
and the closed-loop becomes unstable for g > 2.04.

6. Conclusions

In this paper, different LMI-based stability conditions for a
generalized extended state observer-based control have been
developed. The provided stability conditions do not rely on the as-
sumption of global boundedness of the total disturbance deriva-
tive. Furthermore, they can be easily optimized by LMI solvers
to get numerical properties of the closed-loop behavior. The
results presented in this paper are also valid for the conventional
Extended State Observer or the Active Disturbance Rejection
Control, since both techniques are particular cases of the problem
being considered.
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Fig. 3. Simulation of Section 5.2 for different values of f.
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Appendix A. Proof of Theorem 1

By Lemma 1. Consider the Lyapunov function Vj(§) =
Pi > 0. Let us set g(x. t) = f(x, (1)), g2(x. t) = L (x, w(t))a(t
with 1 = fy and a2 = Ba.fBs. If there exist 1, > 0, y2, > 0,
8; > 0 such that

k) 2
i(X.w(r))cb(r)H <0, (A1)

dw

Vit 8iVi— y e, O~ 13

for all t = 0, then, the ellipsoid

Bf + va(BawBs) }

&2 18 € R™™I|£TRE < (A2)

8

is positively invariant and exponentially attractive.
Hence, the proof is reduced to show how (9)-(10) imply (A.1).
The derivative of V;, with & substituted by (8) is

Vi =£T(Pidc + . P) + 25" PiNf + 25" Pl
+ 2&"Piydf,.
where, for simplicity, f 2 f(x, (1)), df, = %(X w(t))ic, and

dfe 2 L (x, o(1))ax1).
Substituting (A.3) into (A.1) leads to

ENP®, + ®LP)E + 26T PN + 28T P df+
+ 28"PIdf, + 8iE"PE — yifTf — yydf]df <0,
being expressed as ¢"(¥; o)¢ < 0, ¢ = [E7.f. df,, dfi]",
Pibe + [P+ 8P Piln Pl Pl

(A.3)

wi 2 (%) —y; O 0
iss,0 ™ (%) (%) 0 0
() () (%) —py
So, if llll.;s o =< 0, then (A.1) is satisfied. The next step follows

by the application of the S-procedure in the term df;. It is known
that

a

df, = a(x, w(t)) [Ax + Buu + Byf ]
= %(X» C’-’(f))[AX + Bu(Kx(X - eﬂ,x] + Kf(f - eo.j)) + ij]
ad
= %(x, (1)) [AsE + Aff].

with Ag £ [(A + BuKy), BuEol, Ay £ (BuKy + By).
Hence, by Assumption 4 and for all x € B;, the following upper
bound can be established:

dffdf < B3, [€7 AL AcE + 26T AL A + T A] Aff], (A4)
which can be written as ¢)T(lpf£s,l)¢ < 0, with
—BiAt A —ﬁéxﬁ%f g g
wi e E:; _ﬂdff*)f 00 (AS5)
(%) () () 0
The knowledge of ¥ , < 0 implies that ¥ ; < 0 if there

exist ; > 0 such that ¢ ¥l (¢ < 1" W |
T (Wi, — u¥l )¢ <0, leading to (9).

So, if (9) holds, then the ellipsoid (A.2) is attractive and posi-
tively invariant. Condition (10) follows from a short analysis of
the sets that are being considered in this problem. Lemma 1
considers that g;(x, t) = f(x, o(t)) and g,(x. t) = %(x, w(t))w(t)
are bounded. However, by Assumption 4, this bound can be only
established in B,. So it must be required that x(t) lies inside B,
for all t > 0.

As mentioned in Section 1.1, the ellipsoid (A.2) has a projection
onto R" given by

¢ < 0. This holds if

- yuBi + va(BawBi P
= 5

g2

x € R"|x"Pix

Therefore, it must be imposed that Sil C By, which is satisfied
if (10) holds. Finally, the theorem follows by defining two inde-
pendent solutions, given by i £ {0, oo}, such that both satisfy
(9)-(10). In this case, two attractive ellipsoids, i.e &), £x; are
obtained. If the initial state is restricted to be inside &y, then
x(t) € By for all t > 0, and x(t) approaches to £, with an
exponential rate §,/2.
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Appendix B. Proof of Theorem 2

By Lemma 2. Let us consider the Lyapunov function V; = £Tp,
where the derivative V;, which is given by (A.3), is substituted into
(12) and expressed as ¢' (¥, o)¢ < 0, with ¢ £ [£7, f. dfy, df]"
and

Po.+@P+5P PIY Py Pl

. (%) 0 0 0
es0 ™ (%) (%)) 0 0
(%) (%) (%) O

The term dfy satisfies the inequality (A.4), which leads to
d)T(llff'ssyl)qb < 0, being ¥, , defined in (A.5). The terms f and df;

satisfy the inequalities in Assumption 5 leading to ¢T(ufe‘$’1)¢ <0,
$T(W! )¢ < 0, with

es,2

s1= 1 ) (x)

oo oo

[—B2H'IIMH 0
i (%) 0
Yoz = (%) () 0
(%) () (%)
where H £ [I, Opyniq)]" is defined so that x = HE. ‘
By the S-procedure, the knowledge of W, ; < 0, ¥, ; < 0,
tlfgsyz =< 0, implies that !I/E"S,O =< 0 if there exist 7; > 0, 7 > 0 and
13 > 0 such that

WL 00 < 11" Wi 1+ T2 W ¢ + T30 W 40 < 0,

leading to (13).

Finally, similarly to Theorem 1, the proof follows by defining
two independent solutions that satisfy (13); while the set of al-
lowable initial states is defined so that it strictly fits
inside B;,.

== =)
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