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Abstract

Linear systems with constant coe0cients and time-varying delays are considered. We address the problem of 4nding an ellipsoid that
bounds the set of the states in the Euclidean space that are reachable from the origin, in 4nite time, by inputs with peak value that is
bounded by a prechosen positive scalar. The system may encounter uncertainties in the matrices of its state space model and in the delay
length. The Lyapunov–Razumikhin approach is applied and a bounding ellipsoid is obtained by solving a set of linear matrix inequalities
that depend on the upper-bound of the delay length.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Reachable set bounding was 4rst considered in the late
1960s in the context of state estimation and it has later re-
ceived a lot of attention in parameter estimation (see Durieui,
Walter, & Polyak, 2001 and references therein). The bound-
ing of the reachable set by an ellipsoid is an important
issue even in robust control. It may be used for solving
peak-to-peak minimization problem (Abegor, Nagpal, &
Poolla, 1996) or to control problems with saturating actua-
tors (Tarbouriech, Garcia, & Gomes da Silva, 2002; Hu, Lin,
& Chen, 2002). In cases without time delay, a linear matrix
inequality (LMI) solution to this problem is given in Boyd,
El Ghaoui, Feron, and Balakrishnan, (1994) via Lyapunov
function applying the S-procedure. The result obtained there
stems from the work of Schweppe (1973).
In the present note we derive, for the 4rst time, an ellipsoid

bound on the reachable set of linear system with time delay.
We adopt the method of Boyd et al. (1994) for treating

� This paper was not presented at any IFAC meeting. This
paper was recommended for publication by Associate Editor Rick
Middleton under the direction of Editor Prof. P. Van den Hof. This
work was supported by the Ministry of Absorption of Israel and by
C&M Maus Chair at Tel Aviv University.

∗ Corresponding author. Tel.: +54-947935; fax: +3640-7095.
E-mail addresses: emilia@eng.tau.ac.il (E. Fridman),

shaked@eng.tau.ac.il (U. Shaked).

systems with time delay. Reachable sets for such a system
is, the set of all the states in the Euclidean space that are
reachable from the origin, in 4nite time, by inputs with peak
value that is bounded by some given positive scalar.
The methods which are most commonly used in the

analysis and synthesis of time-delay systems are based on
the Lyapunov–Krasovskii functionals, which are a natu-
ral generalization of the direct method of Lyapunov for
ordinary diGerential equations (see Hale & Lunel, 1993;
Kolmanovskii & Myshkis, 1999; Niculescu, 2001). On the
other hand, functions are much simpler to use, and it is more
natural to explore Lyapunov–Razumikhin functions when
seeking su0cient, 4nite dimensional, conditions for the
existence of ellipsoids that bound the set of the reachable
states in the Euclidean space.
For systems with uncertain (but probably bounded) de-

lay, LMI delay-independent and delay-dependent stability
conditions have been derived by using either Lyapunov–
Krasovskii functionals or Lyapunov–Razumikhin func-
tions (see e.g. Boyd et al., 1994; Li & de Souza, 1997;
Verriest & Niculescu, 1998; Kolmanovskii, Niculescu, &
Richard, 1999; Niculescu, 2001 and references therein).
Delay-dependent conditions via Lyapunov–Krasovskii
functionals are based on diGerent model transformations
of the original system (Kolmanovskii & Myshkis, 1999;
Niculescu, 2001; Fridman & Shaked, 2002). The corre-
sponding conditions via Lyapunov–Razumikhin functions
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are derived by using the ‘4rst-order model transformation’
(see Niculescu, Dion, & Dugard, 1998; Niculescu, 2001).
In the present note, an ellipsoid is derived that contains

the reachable set in the Euclidean space for a linear system
with time-varying delay. A delay-dependent su0cient con-
dition is obtained in terms of a LMI via the Razumikhin
approach. The ‘4rst-order’ model transformation is applied,
together with the ‘parameterized’ model transformation (see
Niculescu, 2001), in order to derive this condition.

Notation. Throughout the paper the superscript ‘T’ stands
for matrix transposition, Rn denotes the n-dimensional
Euclidean space with vector norm | · |, Rn×m is the set of all
n × m real matrices, and the notation P¿ 0, for P ∈Rn×n

means that P is symmetric and positive de4nite. The
space of continuous functions � : [ − h; 0] → Rn with the
supremum norm | · | is denoted by Cn[− h; 0] and xt(�) ,
x(t + �) (�∈ [− h; 0]).

2. Problem formulation

Consider the following linear system with delay:

ẋ(t) = A0x(t) + A1x(t − (t)) + Bw(t); (1a)

x(t) ≡ 0; t ∈ [− h; 0]; (1b)

where x(t)∈Rn is the system state, w(t)∈Rp is the con-
strained input, and A0, A1 and B are constant matrices of
appropriate dimensions. For simplicity, we consider the
case of a single delay. The results are easily generalized to
the case of multiple delays. We assume that  satis4es

06 (t)6 h ∀t¿ 0 (2)

and that

wT(t)w(t)6 Pw ∀t¿ 0; (3)

where Pw is a given positive scalar.
We denote the set of the reachable states with w that

satis4es (3) by

Rx , {x(t)∈Rn | x(t); w(t) satisfy (1) and (3); t¿ 0}:
(4)

We will bound Rx by an ellipsoid of the form

E= {� | �TP�6 1; �∈Rn}; (5)

where 0¡P.
For the case without delay, a LMI condition for an el-

lipsoid that bounds the reachable set has been derived in
Boyd et al. (1994). In the present note, an ellipsoid of the
form (5) is derived that contains the reachable set Rx for
the time-delay system (1). A delay-dependent su0cient con-
dition for the existence of such an ellipsoid is obtained in
terms of a LMI via the Razumikhin approach. A method for
reducing the size of this ellipsoid is introduced.

3. The bounding ellipsoid

We apply the following ‘4rst-order’ model transfor-
mation, together with the ‘parameterized’ transformation
(Niculescu, 2001):

ẋ(t) = (A0 + F) x(t) + (A1 − F)x(t − )

−F
∫ t

t−
[A0x(s) + A1x(s− ) + Bw(s)] ds+ Bw(t);

x(t) ≡ 0; t ∈ [− 2h; 0]: (6)

We suppose that w(t)=0 and x(t)=0 for t ¡ 0. Since x0=0,
if x(t) satis4es (1) for t¿ 0, then it satis4es also (6) for the
same values of t (and not only for t¿ h as in the case of the
nonzero initial condition). The latter model transformation
will lead to a delay-independent condition if one takes F=0.
Taking F=A1 a delay-dependent condition will be obtained
which corresponds to the ‘4rst-order’ model transformation
(Niculescu, 2001). Note that (6) is not equivalent to (1),
having a double delay and additional dynamics. However,
all the solutions of (1) satisfy (6).
Clearly if the function

V (�) = �TP� (7)

satis4es

d
dt
V (x(t))6 0 ∀x(t); w(t) satisfying (6); (3)

and V (x(t))¿ 1; t ¿ 0; (8)

then the ellipsoid E given by (5) contains all the solutions
of (6) starting from 0 with w(t) satisfying (3) (and thus the
reachable set Rx of (1)).

Since the expression for (d=dt)V (x(t)) depends on
x(t + �); �∈ [ − 2h; 0] (and not just on x(t)), it is di0cult
to satisfy (8) for all x(t + �). In fact, if a solution of (1)
begins inside the ellipsoid E, and is to leave this ellipsoid
at some time t, then

xT(t + �)Px(t + �)6 xT(t)Px(t); ∀�∈ [− 2h; 0]: (9)

Consequently, (8) need only be satis4ed if (9) is true. This
is the basic idea of Razumikhin approach (see Razumikhin,
1960; Hale & Lunel, 1993).

Lemma 1. Assume that (8) holds if (9) is satis2ed. Then
Rx ⊂ E.

Proof. Denoting

PV (xt) = sup
−2h6�60

V (x(t + �));

there exists �0 ∈ [ − 2h; 0] such that PV (xt) = V (x(t + �0))
and either �0 = 0 or �0¡ 0 and V (x(t + �))¡V (x(t +
�0)) if �0¡�6 0. We 4rst prove that for all xt (and not
just for those satisfying (9)) ṖV (xt)6 0 if wTw6 P! and
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V (x(t))¿ 1, where ṖV is de4ned as an upper right derivative
as follows:

ṖV (xt) = lim
r→0+

sup
1
r
[ PV (xt+r)− PV (xt)]:

Given that w(t) satis4es (3), we consider the case where
V (x(t))¿ 1. If �0¡ 0, then for a su0ciently small scalar
r ¿ 0, PV (xt+r) = PV (xt), and thus ṖV (xt) = 0. If �0 = 0, then
ṖV (xt)6 0 by (8). Therefore,

ṖV (xt)6 0 ∀x(t); w(t) satisfying (6); (3)

if V (x(t))¿ 1; t ¿ 0: (10)

We show next that it is impossible for V (x(t)) to be
greater than 1. Assuming that V (x(t0))¿ 1 for some t0¿ 0
then, since V (x(0)) = V (0) = 0, there exist t1 and t2 such
that V (x(t1)) = 1, V (x(t))¡ 1 for t ¡ t1 and V (x(t))¿ 1
for t16 t6 t2. Hence, PV (xt1 ) = 1. On the other hand, from
(10) we 4nd that

1 = PV (xt1 )¿ PV (xt)¿V (x(t)) for t16 t6 t2:

We obtained a contradiction and thus V (x(t))6 1 for all
t¿ 0.

Using the S-procedure (see e.g. Boyd et al., 1994), the
requirements of (8) are satis4ed if there exist positive scalars
�1 and �2 such that

�(x(t)),
d
dt
V (x(t)) + �1(V (x(t))− 1)

+ �2( Pw − wT(t)w(t))6 0: (11)

It readily follows from (11) and (6) that

�(x(t)) =

[
x(t)

w(t)

]T

×
[
P(A0 + F) + (AT0 + F

T)P + �1P PB

∗ −�2I

]

×
[
x(t)

w(t)

]
+ �0 + �1 + �2 + �3 + �2 Pw − �1;

(12a)

where

�0 = −2xT(t)P(A1 − F)x(t − )
6 �−1

0 x
T(t)P(A1 − F)P−1(A1 − F)TPx(t)

+ �0xT(t)Px(t); (12b)

�1 = −2xT(t)PF
∫ t

t−
A0x(s) ds

6 �−1
1 x

T(t)PFA0P−1AT0F
TPx(t) + �1xT(t)Px(t);

(12c)

�2 = −2xT(t)PFA1

∫ t

t−
x(s− ) ds

6 �−1
2 x

T(t)PFA1P−1AT1F
TPx(t) + �2xT(t)Px(t);

(12d)

�3 = −2xT(t)PF
∫ t

t−
Bw(s) ds

6 �−1
3 x

T(t)PFBBTFTPx(t) + �3 Pw (12e)

and where �i, i=0; : : : ; 3 are positive scalars. Requiring that

(�2 + �3h) Pw − �16 0 (13)

we obtain that �6 0 for all  that satisfy (2) if the following
inequality holds:


 PB P(A1 − F) hPFA0 hPFA1 hPFB

∗ −�2I 0 0 0 0

∗ ∗ −�0P 0 0 0

∗ ∗ ∗ −h�1P 0 0

∗ ∗ ∗ ∗ −h�2P 0

∗ ∗ ∗ ∗ ∗ −h�3I




6 0; (14a)

where

 = P(A0 + F) + (AT0 + F
T)P + (�1 + �0 + h�1 + h�2)P:

(14b)

Denoting W , PF and noticing that the smaller �1 is in
(14) the less restrictive the inequality becomes, we obtain
the following result.

Theorem 1. Consider system (1) with a delay that satis2es
(2). The reachable set of the system states achieved by the
input that satis2es (3) is bounded by the prescribed ellipsoid
E of (5) if for some positive scalars �i, i = 0; : : : ; 3 and �
there exists W ∈Rn×n that satisfy the following LMI:


P PB PA1 −W hWA0 hWA1 hWB

∗ −�I 0 0 0 0

∗ ∗ −�0P 0 0 0

∗ ∗ ∗ −h�1P 0 0

∗ ∗ ∗ ∗ −h�2P 0

∗ ∗ ∗ ∗ ∗ −h�3I




6 0; (15a)

where

P =W +W T + PA0 + AT0P

+(� Pw + �0 + �3h Pw + h�1 + h�2)P: (15b)
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Remark 1. The LMI (15) guarantees also the internal sta-
bility of (1), where w=0, but not necessarily the asymptotic
stability of the system.

Remark 2. Inequality (15) is linear in the decision variables
only when the ellipsoid E is given. If the latter is not the case
and one consider the matrix 0¡P as an additional decision
variable, (15) is no longer linear in all its variable. One
can, however, regard then the positive scalars �i, i=0; : : : ; 3
and �, as tuning parameters. For each combination of these
parameters the inequality is linear in P and W .

Since inequality (15) is a0ne in the system matrices the
criterion of Lemma 1 can be applied to the case where these
matrices are uncertain. In this case we denote

" = [A0 A1 B]

and assume that "∈Co{"j; j = 1; : : : ; N}, namely,

" =
N∑
j=1

fj"j for some 06fj6 1;
N∑
j=1

fj = 1; (16)

where the N vertices of the polytope are described by

"j = [A( j)0 A( j)1 B(j)]:

We obtain the following.

Corollary 1. Consider system (1) where the delay satis2es
(2) and the parameters of the system reside in the given
polytope". The reachable set of the system states achieved
by the input that satis2es (3) is bounded by the prescribed
ellipsoid E of (5), over the entire polytope, if there exist
positive scalars �i, i = 0; : : : ; 3 and � and W ∈Rn×n that
satisfy the following set of LMIs:


P j PB(j) PA( j)1 −W hWA( j)0 hWA( j)1 hWB(j)

∗ −�I 0 0 0 0

∗ ∗ −�0P 0 0 0

∗ ∗ ∗ −h�1P 0 0

∗ ∗ ∗ ∗ −h�2P 0

∗ ∗ ∗ ∗ ∗ −h�3I




6 0; j = 1; : : : ; N; (17a)

where

P j =W +W T + PA( j)0 + A( j)T0 P

+(�0 + � Pw + �3h Pw + h�1 + h�2)P: (17b)

Remark 3. The solution for (17), or (15), if it exists, need
not be unique. One may then seek the ‘smallest’ possible
ellipsoid. For this purpose, one may consider P as a decision

variable and add the additional requirement that

'I6P: (18)

The problem will then become one of solving (17) and (18),
following the method of Remark 3, while maximizing '.
This is achieved by adding the following LMI to those solved
in Corollary 1:
 P'In In

In P


¿ 0; (19)

where P'= '−1 is minimized.
It is also noted that since (17a) is convex in h, a bound

on the reachable set that is found by Corollary 1 for a given
delay Ph will also be a bound on all the reachable sets that
are obtained via Corollary 1 for h¡ Ph. It is thus expected
that P' will be an increasing function of h.

The result of Corollary 1 leads to the following
delay-independent criterion.

Corollary 2. The reachable set of the states of (1) achieved
by the input that satis2es (3) is bounded by the prescribed
ellipsoid E of (5), over the entire polytope, for all positive
delays, if there exist positive scalars � and � that satisfy
the following set of LMIs:

 ̂j PB(j) PA( j)1

∗ −�I 0

∗ ∗ −�P


6 0; j = 1; : : : ; N; (20a)

where

 ̂j = PA
( j)
0 + A( j)T0 P + (�+ � Pw)P: (20b)

Remark 4. The results of Theorem 1 and its corollar-
ies apply the tuning parameters � and �i, i = 0; : : : ; 3.
The question arises, how to 4nd the optimal combina-
tion of these parameters. One way to address the tun-
ing issue is to choose for a cost function the parameter
tmin that is obtained while solving the feasibility prob-
lem using Matlab’s LMI toolbox (Gahinet, Nemirovski,
Laub, & Chilali, 1995). This scalar parameter is
positive in cases where the combination of the tuning
parameters is one that does not allow a feasible solution
to the set of LMIs considered. Applying a numerical
optimization algorithm, such as the program fminsearch
in the optimization toolbox of Matlab (Coleman, Branch,
& Grace, 1999), to the above cost function, a locally
convergent solution to the problem is obtained. If the
resulting minimum value of the cost function is nega-
tive, the tuning parameters that solve the problem are
found.
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4. Example

We consider system (1) where

A0 =

[−2 0

0 −0:9 + (

]
; A1 =

[−1 0

−1 −1 + 0:5(

]
;

B=

[−0:5

1

]
; and Pw = 1

and where ( is a scalar parameter that satis4es |(|¡ 0:2 and
h= 0:7. This system has been considered by many authors
in the past. In Fridman and Shaked (2002) the H∞-norm
of the system was considered for ( = 0. The uncertainty
polytope in this case possesses N = 2 vertices. A solution
for the three LMIs in (17) and (19) was obtained for the
parameters: �=0:25; �0 = 0:2, �1 = 1, �2 = 1, and �3 = 0:17.
The P and F obtained were

P =

[
0:7855 0:0164

0:0164 0:0511

]
and

F =−
[
0:6635 0:0274

0:4983 0:9024

]
:

The corresponding value of P' is 19.7052. The maximum axis
length of the resulting ellipsoid is 4.4391 and the smallest
axis length is 1.128.
The reachable set that corresponds to the system is

depicted in Figs. 1–4. The size of the bounding ellipsoid
depends on the delay bound h of (2). It increases with
h. For example, for h = 0:75 a minimum value of
P' = 65:42 is obtained (using � = 0:14, �0 = �3 = 0:11,
�1 = �2 = 1:1).
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5. Conclusions

The problem of 4nding an ellipsoid that bounds the set
of the reachable states (in the Euclidean space) for a linear
system with time-varying delay is considered in the case of
inputs with bounded peaks. A solution to the problem is de-
rived by applying Lyapunov–Razumikhin functions and the
S-procedure. Delay-dependent conditions for the reachable
set to reside in a given ellipsoid are obtained. These condi-
tions are based on the ‘4rst-order’ and the ‘parameterized’
model transformations. They are expressed in terms of in-
equalities that are a0ne in the system matrices. The latter
fact allows the consideration of polytopic uncertainty in the
parameters of these matrices.
The solution obtained can be used to verify whether a

given ellipsoid bounds the set of the reachable states, or to
4nd ellipsoids that bound this set. In the former problem,
the solution is obtained by solving a single LMI, in the case
with no uncertainty, or a set of LMIs that correspond to the
vertices of the uncertainty polytope in the case with uncer-
tainty. In the second problem, in order to obtain linear in-
equalities, the scalar decision parameters in the inequalities
obtained should be used as tuning parameters.
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