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Robust stability and the guaranteed cost control problem are considered for discrete-time

systems with time-varying delays from given intervals. A new construction of Lyapunov–

Krasovskii functionals (LKFs), which has been recently introduced in the continuous-time

case, is applied. To a nominal LKF, which is appropriate to the system with nominal delays,

terms are added that correspond to the system with the perturbed delays and that vanish

when the delay perturbations approach zero. The nominal LKF is chosen in the form of the

descriptor type and is applied either to the original or to the augmented system. The delay-

independent result is derived via the Razumikhin approach. Guaranteed cost state-feedback

control is designed. The advantage of the new tests is demonstrated via illustrative examples.

1. Introduction

During the last decade, a considerable amount of

attention has been payed to stability and control of

continuous-time linear systems with delays (see e.g. Li

and de Souza 1997, Kolmanovskii and Richard 1999,

Fridman 2001, 2004, Niculescu 2001, Fridman and

Shaked 2002, and the references therein). Delay-

independent and, less conservative, delay-dependent

sufficient stability conditions in terms of Riccati or

linear matrix inequalities (LMIs) have been derived by

using Lyapunov–Krasovskii functionals or Lyapunov–

Razumikhin functions. Delay-dependent conditions are

based on different model transformations. The most

recent one, a descriptor representation of the system

(Fridman 2001), minimizes the overdesign that stems

from the model transformation used. The conservatism

that stems from the bounding of the cross-terms in

the derivation of the derivative of the Lyapunov–

Krasovskii functional has also been significantly

reduced in the past few years. An important result

that improves the standard bounding technique of, for

exmaple, Li and de Souza (1997) has been proposed in

Moon et al. (2001).
Less attention has been drawn to the corresponding

results for discrete-time delay systems (Verriest and

Ivanov 1995, Kapila and Haddad 1998, Song et al.

1999, Mahmoud 2000, Lee and Kwom 2002, Chen

et al. 2003, Gao et al. 2004). This is mainly due to the

fact that such systems can be transformed into aug-

mented systems without delay. This augmentation of

the system is, however, inappropriate for systems with

unknown delays or systems with time-varying delays

(such systems appear, for example, in the field of

communication networks).
For the case of constant ‘small’ delay from ½0,�� the

delay-dependent conditions were derived in Lee and

Kwon (2002), Gao et al. (2004) and Chen et al. (2003)

by applying the discrete counterparts of the method

developed in Moon et al. (2001) and of the descriptor

approach of Fridman and Shaked (2002) corres-

pondingly. There is a difference between the Lyapunov

functions V for the descriptor discrete-time system

Exðkþ 1Þ ¼ AxðkÞ, E ¼ diagfI , 0g and the continuous-

time system E _xxðtÞ ¼ AxðtÞ. Thus, in the discrete-

time V ¼ xTEPEx, where P¼PT is a full matrix

(Xu and Yang 1999), while in the continuous-time

V ¼ xTEPx with P of block-triangular structure*Corresponding author. E-mail: emilia@tau.ac.il
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(Takaba et al. 1995). The method of Chen et al. (2003)

allows the treatment of the discrete-time case in a

continuous-time manner with block triangular P. The

case of ‘small’ time-varying delay has been studied in

Fridman and Shaked (2005) via a discrete descriptor

Lyapunov function.
The case of uncertain ‘non-small’ time-varying delay,

where the nominal delay value is non-zero and constant,

has been recently considered in Xu and Chen (2004).

A Lyapunov function has been used there with a

‘nominal’ part that corresponds to delay-independent

stability of the nominal system (i.e. of the systems

with a nominal value of the delay). Thus, the necessary

condition for the feasibility of the LMIs derived

in Xu and Chen (2004) for stability is the delay-

independent stability of the nominal system, which is

very restrictive.
For continuous-time systems with uncertain non-

small delay a new construction of the LKF has been

introduced recently in Fridman (2004). To a nominal

LKF, which is appropriate to the nominal system (with

nominal delays), terms are added which correspond to

the perturbed system and which vanish when the delay

perturbations approach zero.
In the present paper we apply such a construction

of the LKF to the discrete-time systems with time-

varying ‘non-small’ delay, where the descriptor type

nominal LKF is applied first to the original system.

Further, we augment the system to one with uncertain

delay in a segment, starting from zero, and apply

the conditions via descriptor nominal LKF to this

augmented system. Such an augmentation is impossible

in the continuous-time case, where the complete

LKF should be used (see, e.g. Kharitonov and Zhabko

2003), which leads to complicated conditions. The

augmented system approach essentially improves

the results obtained by the direct application of the

descriptor nominal LKF (see, Examples 1 and 3).

The trade-off is in the higher-dimensional LMIs that

are obtained, which require more computational

efforts. Moreover, the state-feedback via augmentation

depends on the current and the delayed states, while

in the direct descriptor approach a memoryless state-

feedback is obtained. To derive the reduced-order condi-

tions we apply the descriptor model transformation

of the augmented system and the discrete descriptor

Lyapunov function of the form V ¼ xTEPEx. New

delay-independent robust stability conditions are

derived in the case of time-varying delay, that are

based on the Razumikhin approach. Guaranteed cost

state-feedback control is designed via descriptor

nominal LKF. Examples are given which show that

our conditions are less conservative than those that

have appeared in the literature.

2. Robust stability

2.1 Problem formulation

We consider the following unforced discrete-time state-
delayed system

xðkþ1Þ ¼ ðAþH�ðkÞEÞxðkÞþ ðA1þH�ðkÞE1Þxðk� �ðkÞÞ,

xðkÞ ¼�ðkÞ, �h��2 � k� 0 ð1Þ

where xðkÞ 2 Rn is the state vector, �(k) is a positive
number representing the delay �ðkÞ ¼ hþ �ðkÞ with the
nominal constant value h>0 and a time-varying pertur-
bation �ðkÞ 2 ½��1,�2�, h� �1 � 0, �2 � 0. The matrices
A, A1, H, E and E1 are constant and �ðkÞ 2 Rr1�r2 is a
time-varying uncertain matrix satisfying the following
inequality

�TðkÞ�ðkÞ � I : ð2Þ

For simplicity only we consider the single delay. The
results are easily extended to systems with multiple
delay.

2.2 Lyapunov–Krasovskii method for discrete
systems with delays

Denoting

yðkÞ ¼ xðkþ 1Þ � xðkÞ ð3Þ

and taking into account that

xðk� �ðkÞÞ ¼ xðk� hÞ �
Xk�h�1

j¼k�h��ðkÞ

yð jÞ

we represent (1) in the descriptor form

xðkþ 1Þ

0

2
4

3
5 ¼

yðkÞ þ xðkÞ

�yðkÞ þ ðAþH�E � IÞxðkÞ

þðA1 þH�E1Þxðk� hÞ

�
Pk�h�1

j¼k�h��ðkÞðA1 þH�E1ÞyðkÞ

0
B@

1
CA

2
6664

3
7775,
ð4Þ

xð0Þ ¼ �ð0Þ,
yð0Þ ¼ ðAþH�E � IÞ�ð0Þ þ ðA1 þH�E1Þ�ð��ð0ÞÞ,
yðkÞ ¼ �ðkþ 1Þ � �ðkÞ, k ¼ �h� �2, . . . ,� 1:

9=
;
ð5Þ

Thus, if x(k) is a solution of (1), then fxðkÞ, yðkÞg, where
yðkÞ is defined by (3), is a solution of (4) and (5) and vice
versa.
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Lemma 1: If there exist positive numbers �, � and a

continuous functional

VðkÞ ¼ Vðxðk� hÞ, . . . , xðkÞ, yðk� h� �2Þ, . . . , yðk� 1ÞÞ

such that

0�VðkÞ ��maxf max
j2½k�h��2,k�

jxð jÞj2, max
j2½k�h��2,k�1�

jyð jÞj2g

�VðkÞ¼
�
Vðkþ1Þ�VðkÞ ���jxðkÞj2

9=
;

ð6a,bÞ

for x(k) and y(k) satisfying (4), then (1) is asymptotically

stable.

Proof: From (6b) it follows that

Xk
j¼0

ðVð j þ 1Þ � Vð jÞÞ ¼ Vðkþ 1Þ � Vð0Þ � ��
Xk
j¼0

jxð jÞj2:

Therefore, for x(k) and y(k) satisfying (4) we have due to

(6a)

jxðkÞj2 �
Xk
j¼0

jxjj
2 �

1

�
Vð0Þ �

�

�
max max

j2½�h��2, 0�
jxð jÞj2,

�

max
j2½�h��2,�1�

jyjj
2

�
, 8k � 0: ð7Þ

Let x(k) be a solution of (1) and y(k) be defined

by (3), then fxðkÞ, yðkÞg satisfies (4), (5) and thus (7).

Equation (7) implies that jxðkÞj2 is small enough for

small enough k�k2 ¼
�
maxj2½� �hh, 0� j��jj

2. Moreover,P1

j¼0jxð jÞj
2 <1 and, hence, jxð jÞj2 ! 0 for j!1. œ

We suggest to construct the LKF for (4) in the form

of

VðkÞ ¼ VnðkÞ þ VaðkÞ ð8Þ

where

VaðkÞ ¼
X�1�1

m¼��2

Xk�1

j¼kþm�h

yð jÞTRayðjÞ, 0 < Ra ð9Þ

and Vn is a nominal Lyapunov function which

corresponds to (4), with �ðkÞ ¼ 0 and H¼ 0.
We intend to construct Vn in the form of ‘descriptor

type’ (see, e.g. Chen et al. 2003) and to apply it either

to the original system or to the augmented one.

2.3 Robust stability via descriptor type nominal LKF

The nominal LKF (which corresponds to (4) with

�ðkÞ ¼ 0, H ¼ 0) is given by (see, e.g. Chen et al. 2003)

VnðkÞ ¼ xTðkÞP1xðkÞ þ
X�1

m¼�h

Xk�1

j¼kþm

yð jÞTRyð jÞ

þ
Xk�1

j¼k�h

xð jÞTSxð jÞ, P1>0, R>0, S>0: ð10Þ

The nominal system is asymptotically stable if there

exist n�n matrices 0<P1, P2, P3, S, Y , Z1, Z2, Z3,

R such that the following LMIs are feasible

Gn ¼
Cn þ hZ PT

0

A1

� �
� YT

� �S

2
4

3
5 < 0,

R Y

� Z

� �
� 0

ð11a, bÞ

where

P ¼
P1 0

P2 P3

� �

Y ¼ ½Y1 Y2�, Z ¼
Z1 Z2

� Z3

� �
, i ¼ 1, 2

Cn ¼ PT 0 I

A� I �I

� �
þ

0 I

A� I �I

� �T
P

þ
S 0

0 hRþ P1

� �
þ

Y

0

� �
þ

Y

0

� �T
,

ð12a�dÞ

We obtain the following lemma.

Lemma 2: Equation (1) with � � 0 is asymptotically

stable for 0 � h� �1 � �ðkÞ � hþ �2 if there exist n� n

matrices 0 < P1, P2, P3, S, Y1, Y2,R and Ra > 0 that

satisfy the LMI

G1 ¼

C PT 0

A1

� �
� YT �PT 0

A1

� �
hYT

� �S 0 0

� � ��Ra 0

� � � �hR

2
666664

3
777775 < 0

ð13Þ

where � ¼ maxf�1,�2g, Y and Cn are given by (12) and

C ¼ Cn þ
0 0
0 ð�1 þ �2ÞRa

� �
: ð14Þ
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Proof: We find when �VðkÞ is strictly negative. The
difference �VnðkÞ along the trajectories of the nominal
system satisfies the inequality (Chen et al. 2003)

�VnðkÞ � �TðkÞGn�ðkÞ ð15Þ

where Gn is given by (11a) and

�ðkÞ ¼ colfxðkÞ, yðkÞ, xðk� hÞg ð16Þ

provided (11b) is satisfied. Note that along the trajec-
tories of (4)

xTðkþ 1ÞP1xðkþ 1Þ � xTðkÞP1xðkÞ

¼ 2xTðkÞP1yðkÞ þ yTðkÞP1yðkÞ

¼ 2 �xxTðkÞPT
yðkÞ

0

" #
þ yTðkÞP1yðkÞ

¼ 2 �xxTðkÞPT
yðkÞ

�yðkÞ þ ðA� IÞxðkÞ þ A1xðk� hÞ

" #

þ yTðkÞP1yðkÞ þ �ðkÞ ð17Þ

where �xxðkÞ ¼ colfxðkÞ, yðkÞg

�ðkÞ ¼ �2 �xxTðkÞPT
Xk�h�1

j¼k�h��ðkÞ

0
A1

� �
yð jÞ

while along the trajectories of the nominal system with
�ðkÞ � h (17) is obtained with �ðkÞ � 0.
Therefore �Vn along the trajectories of the perturbed

system satisfies the inequality

�VnðkÞ � �TðkÞGn�ðkÞ þ �ðkÞ: ð18Þ

We have

�ðkÞ �
Xk�h�1

j¼k�h��ðkÞ

�xxTðkÞPT
0

A1

" #
R�1

a ½0 AT
1 �P �xxðkÞ

������
������

þ
Xk�h�1

j¼k�h��ðkÞ

yTð jÞRayð jÞ

������
������

� � �xxTðkÞPT
0

A1

" #
R�1

ia ½0 AT
1 �P �xxðkÞ

þ
Xk�hþ�1�1

j¼k�h��2

yTð jÞRayð jÞ: ð19Þ

From (8), (9), (18), (19) and Schur complements formula

we find, provided (11b) is satisfied, the following

�VðkÞ � �1ðkÞ
T
ðG1 þ diagfhZ, 0, 0, 0gÞ�1ðkÞ ð20Þ

where �1ðkÞ ¼ colf�ðkÞ, yðkÞ, 0g. From (11b) it follows

that Z � YTR�1Y . Choosing therefore in (20) Z ¼

YTR�1Y and applying Schur complements formula it

is obtained that (13) implies �VðkÞ < 0 and the asymp-

totic stability of (1). œ

In the case of norm-bounded uncertainties (i.e. � 6¼ 0)

we replace A and A1 in Lemma 2 by AþH�E

and A1 þH�E1, respectively. Applying the bounding

(Xie 1996)

��ðkÞ�þ �T�TðkÞ�T � 	�1
0 ��

T þ 	0�
T� ð21Þ

where 	0 is a positive number and where �T ¼

½HTP2 HTP3 0 0 0� and � ¼ ½E 0 E1 �E1 0�, we

obtain by Schur complements that �VðkÞ < 0 along

the trajectories of (4) if the following LMI holds

G1

PT
2H

PT
3H

0

0

0

2
666666664

3
777777775

	0

ET

0

ET
1

�ET
1

0

2
666666664

3
777777775

� �	0I 0

� � �	0I

2
666666666666664

3
777777777777775

< 0: ð22Þ

We have thus proved the following

Theorem 1: Consider (1), where 0 � h� �1 � �ðkÞ �
hþ �2. This system is asymptotically stable if

there exist n� n matrices 0 < P1, P2, P3, S, Y1, Y2,

R,Ra and a scalar 	0 that satisfy (22), where

� ¼ maxf�1,�2g.

2.4 Augmentation and descriptor nominal LKF

In the case when the non-delayed system is not asymp-

totically stable or h� �1 is not large, we represent (1)

in the form of the augmented system


ðkþ 1Þ ¼ ðA þH�ðkÞEÞ
ðkÞ

þ ðA1 þH�ðkÞE1Þ
ðk� �1 � �ðkÞÞ ð23Þ
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where


ðkÞ ¼

xðk� hþ�1Þ

xðk� hþ�1 � 1Þ

:::

xðkÞ

2
66664

3
77775, A¼

0 In ::: 0 0

::: ::: ::: ::: :::

0 0 ::: 0 In

0 0 ::: 0 A

2
66664

3
77775

A1 ¼

0 0 ::: 0

::: ::: ::: :::

0 0 ::: 0

A1 0 ::: 0

2
66664

3
77775, H¼

0

:::

0

H

2
66664

3
77775,

E ¼ ½0 0 � � � 0 E�, E1 ¼ ½E1 0 � � � 0�: ð24Þ

Note that for �1 ¼ 0, the nominal system (23), where
�ðkÞ � 0 and � � 0, has no delay and the nominal

exact Lyapunov function VnðkÞ ¼ 
TðkÞP1
ðkÞ should be

used. This is different from the continuous case, where

the exact (complete) LKF has a complicated form

and leads to complicated robust stability conditions

(Kharitonov and Zhabko 2003).
In the general case of �1 � 0 we apply Theorem 1 to

(23), where h ¼ �1, and obtain the following:

Theorem 2: Consider (1), where 0 � h� �1 � �ðkÞ �
hþ �2. This system is asymptotically stable if there

exist ðh� �1 þ 1Þn� ðh� �1 þ 1Þn matrices 0 < P1,

P2, P3, S, Y1, Y2, R, Ra and scalars 	i > 0, i ¼ 0, 1

that satisfy (22) with � ¼ maxf�1,�2g and h ¼ �1,

where A,A1, E,E1 and H should be changed correspond-

ingly to A,A1, E, E1 and H.

Remark 1: The augmentation of the system till some

h0 < h� �1 with 

TðkÞ ¼ ½xTðk� h0Þ, . . . , x

TðkÞ� can also

be applied to obtain less restrictive conditions than those

obtained by the descriptor approach. Such augmented

system is of lower-order than (23) and has delay

h� h0 þ �ðkÞ. Here Theorem 1 should be applied with

h substituted by h� h0.

2.5 Augmentation and discrete descriptor
Lyapunov function

We consider �1 ¼ 0 and �¼ 0. To reduce the size and

the number of the decision variables by the previous

augmented method, we consider h� 1 and the state

vector 
 ¼ ½
1 . . . 
hþ1�
T given by (24). Defining yðkÞ ¼

xðkþ 1� hÞ � xðk� hÞ ¼ 
2ðkÞ � 
1ðkÞ and representing

(1) in the form

xðkþ 1Þ ¼ AxðkÞ þ A1xðk� hÞ � A1

Xk�1

j¼k��ðkÞ

yð jÞ ð25Þ

we obtain the descriptor form

E �

ðkþ 1Þ ¼ Ad �

ðkÞ þA1

Xk�1

j¼k��ðkÞ

yð jÞ

E ¼ diagfIðhþ1Þn, 0n�ng, �

ðkÞ ¼

ðkÞ

yðkÞ

" #

Ad ¼

In 0 0 ::: 0 In

0 0 In ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: In 0

A1 0 0 ::: A 0

�In In 0 ::: 0 �In

2
666666666664

3
777777777775
, A1 ¼�

0

0

:::

0

A1

0

2
666666666664

3
777777777775
:

ð26a�eÞ

We construct the LKF for (4) in the form of

VðkÞ ¼ VnðkÞ þ VaðkÞ, where

VaðkÞ ¼ �2

X�1

m¼��2

Xk�1

j¼kþm

yð jÞTRayð jÞ, 0 < Ra ð27Þ

and Vn is a nominal Lyapunov function which

corresponds to (26a), with �ðkÞ ¼ 0

Vn ¼ �

 TðkÞEPE �

ðkÞ, P ¼ PT, EPE � 0: ð28Þ

We have

�VnðkÞ ¼ �TðkÞ
A

T
d

A
T
1

" #
P Ad A1

� �
�ðkÞ � �

 TðkÞEPE �

ðkÞ

�TðkÞ ¼ �

 TðkÞ
Pk�1

j¼k��ðkÞ y
Tð jÞ

h i
ð29Þ

and

�VaðkÞ ¼ �2
2y

TðkÞRayðkÞ � �2

Xk�1

j¼k��2

yTð jÞRayð jÞ

� �2
2y

TðkÞRayðkÞ � �ðkÞ
Xk�1

j¼k��ðkÞ

yTð jÞRayð jÞ:

By Cauchy–Schwartz inequality

�ðkÞ
Xk�1

j¼k��ðkÞ

yTð jÞRayð jÞ �
Xk�1

j¼k��ðkÞ

yTð jÞRa

Xk�1

j¼k��ðkÞ

yð jÞ

 ! !
:
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Hence

�VaðkÞ � �2
2 y

TðkÞRayðkÞ

�
Xk�1

j¼k��ðkÞ

yTð jÞ

 !
Ra

Xk�1

j¼k��ðkÞ

yð jÞ

 !
: ð30Þ

Finally we find that

�VðkÞ ¼ �VnðkÞ þ�VaðkÞ � �TðkÞGd�ðkÞ

where

Gd ¼
A

T
d PAd �EPEþ

0 0

0 �2
2Ra

� �
A

T
d PA1

� �RaþA
T
1PA1

2
64

3
75ð31Þ

Therefore, Gd < 0 implies asymptotic stability of (1). We
proved the following.

Lemma 3: Consider (1), where � � 0, 1 � h � �ðkÞ �
hþ �2. This system is asymptotically stable if there
exist a ðhþ 2Þn� ðhþ 2Þn matrix P¼PT, such that
½Iðhþ1Þn 0�P½Iðhþ1Þn 0�T > 0, and a n� n matrix Ra that
lead to Gd < 0, where Gd, Ad and A1 are given by (31),
(26d) and (26e), correspondingly.

The condition of Lemma 3 can also be written as

C¼

�AATP2I
T þIPT

2
�AAþIP3I

T

þdiagf�P1,�
2
2Ra, �Rag

 !
�AATP1

P1
�AA �P1

2
664

3
775< 0 ð32Þ

where

�AA ¼ Iðhþ1Þn 0
� �

Ad

0
. . .
A1

" #" #
, I ¼ 0 In

� �
Ad 0

� �T

and where we substituted in (31) the structure of

P ¼
P1 P2

PT
2 P3

� �

and applied the Schur complements formula.
In the case where A and A1 are replaced by AþH

�ðkÞE and A1 þH�ðkÞE1, respectively, we require that

Cþ
IP2

P1

� �
H�ðkÞ �EE þ �EET�ðkÞTHT P2I

T P1�
� �

� Cþ 	�1 IP2

P1

� �
HHT PT

2 I
T P1

� �
þ 	 �EET �EE < 0

for a positive scalar 	, where H is defined in (24) and
�EE ¼ ½E1 0 � � � E 0 E1 0�: The latter leads to the
following.

Theorem 3: Consider (1), where 1 � h � �ðkÞ � hþ �2.
This system is asymptotically stable if there exist:
ðhþ 1Þn� ðhþ 1Þn matrix 0 < P1, ðhþ 1Þn� n matrix
P2, n� n matrix P3, n� n matrix 0 < Ra and a positive
scalar 	 that satisfy the following LMI

C IPT
2

P1

� �
H 	 �EET

� �	I 0
� � �	I

2
664

3
775 < 0 ð33Þ

where C is defined in (32).

Remark 2: Considering�1 > 0 and combiningVn of the
form of discrete descriptor LKF (i.e. Vn of (10), where
the first term should be changed to xTðkÞEPExðkÞ with
Va of (30) may lead to further improvement of the
results by Lemma 3 and Theorem 3.

We next consider the case of the ‘small’ delay
�ðkÞ 2 ½0,�2� with h¼ 0, �¼ 0 and representing (1) in
the descriptor form

E �xxðkþ 1Þ ¼ ~AA �xxðkÞ þ ~AA1

Xk�1

j¼k��ðkÞ

yð jÞ, E ¼ diagfIn, 0n�ng

�xxðkÞ ¼
xðkÞ

yðkÞ

� �
, ~AA ¼

In In

A1 þA� In �In

� �

~AA1 ¼ �
0

A1

� �
: ð34a�eÞ

By applying the above derivations to (34) we obtain a
new stability criterion:

Corollary 1: Consider (1), where � � 0, 0 � �ðkÞ � �2.
This system is asymptotically stable if there exist 2n� 2n
matrix P¼PT, satisfying ½In 0�P½In 0�T > 0 and n� n
matrix Ra such that Gd < 0, where Gd is given by (31)
and where Ad and A1 should be substituted by ~AA and
~AA1 correspondingly.

2.6 Delay-independent conditions in the case
of time-varying delays

As in the continuous-time situation, this case is treated
adopting the Lyapunov–Razumikhin approach (see
Zhang and Chen 2001).

Lemma 4: Consider the system (1), where �ðkÞ � 0,
with time-varying delay. This system is asymptotically
stable if there exist 0 < P 2 Rn�n and scalars � 2 ð0, 1Þ
and q > 1 that satisfy the LMI

�GGind ¼
� ATPA� �P ATPA1

� AT
1PA1 � ðð1� �Þ=qÞP

� �
< 0:

ð35Þ
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Proof: Choosing the Lyapunov–Razumikhin function
VðkÞ ¼ xðkÞTPxðkÞ and assuming that for some q>1

Vðk� iÞ � qVðkÞ, � �hh � i � �1, k � 0

we find

Vðkþ 1Þ �VðkÞ ¼ ðxðkÞTAT þ xðk� �ðkÞÞAT
1 ÞPðAxðkÞ

þA1xðk� �ðkÞÞ � xðkÞTPxðkÞ

¼ xðkÞTðATPA� �PÞxðkÞ

þ 2xTðk� �ðkÞÞAT
1PAxðkÞ

þ xTðk� �ðkÞÞAT
1PA1xðk� �ðkÞÞ

� ð1� �ÞxðkÞTPxðkÞ

� xðkÞT xTðk� �ðkÞÞ
� �

�GGind

xðkÞ

xðk� �ðkÞÞ

" #

and thus due to (35) Vðkþ 1Þ � VðkÞ < 0, which implies
the asymptotic stability of (1) (see Zhang and Chen
1998). œ

By Schur complements (35) is equivalent to

O ¼
�

��P 0 ATP
� �ðð1� �Þ=qÞP AT

1P
� � �P

2
4

3
5 < 0: ð36Þ

We replace A with AþH�ðkÞE and A1 with
A1 þH�ðkÞE1 and obtain, applying Lemma 2 to the
uncertain system (1), that the stability of the system is
guaranteed if the following inequality holds

Oþ
0

ET

ET
1

" #
�THTP

� 0

2
664

3
775

�Oþ "

ET

ET
1

" #
½E E1� 0

� 0

2
664

3
775þ "�1

0 0 0

0 0 0

� � PHHTP

2
664

3
775< 0:

ð37Þ

In the latter inequality we used the bounding (21) where
	0 ¼ " and

�T ¼

0 0 0
0 0 0
0 0 HTP

2
4

3
5, �T ¼

0 0 ET

0 0 ET
1

0 0 0

2
4

3
5:

We proved the following.

Theorem 4: Consider the system (1) with �(k) that satis-
fies (2). This system is asymptotically stable for all delays
�(k) if there exist P ¼ PT 2 Rn�n, � 2 ð0, 1Þ, q > 1 and
">0 that satisfy the LMI

��Pþ "ETE "ETE1 ATP 0
� �ðð1��Þ=qÞPþ "ET

1 E1 AT
1P 0

� � �P PH
� � � �"I

2
664

3
775< 0:

ð38Þ

2.7 Examples

Example 1: We consider the system (1) where

A ¼
0:8 0
0 0:97

� �
, A1 ¼

�0:1 0
�0:1 �0:1

� �
and H ¼ 0:

ð39Þ

Assuming that h is constant, we seek the maximum
value of �hh for which the asymptotic stability of the
system is guaranteed. We compare three methods: the
criterion of Song et al. (1999), Theorem 1 in Lee and
Kwon (2002) and Theorem 1 above. It is found that
the method of Song et al. (1999) does not provide a solu-
tion even for �hh ¼ 1. The maximum value of �hh, achievable
by the method of Lee and Kwon (2002), is 12, whereas
a value of �hh ¼ 16 was obtained by applying Chen et al.
(2003). Using augmentation it is found that the system
considered is asymptotically stable for all h � 18. The
criterion of Lemma 3 did not provide a solution, so
that no delay-independent solution has been found.

Allowing � to be time-varying we apply Lemma 2,
where h ¼ �1 ¼ 1 and �2 ¼ 7. We obtain thus that
asymptotic stability is guaranteed for all 0 � �ðkÞ � 8.
The same result is obtained by Corollary 1 via discrete
descriptor Lyapunov function. Choosing h ¼ 8, �1 ¼

�2 ¼ 3; h ¼ 10, �1 ¼ �2 ¼ 2 and h¼ 11, �1 ¼ 1,
�2 ¼ 2 we verified that conditions of Lemma 2 are
feasible. Hence the system is asymptotically stable for
all �(k) from the following intervals: ½3, 10�, ½5, 11�,
½8, 12� and ½10, 13�. Note that conditions of Xu and
Chen (2004) are not feasible even for 0 � �ðkÞ � 1.

By augmentation via the discrete descriptor Lyapunov
function we verify that the conditions of Lemma 3 are
feasible for h ¼ 3,�2 ¼ 7; h ¼ 5,�2 ¼ 6; h ¼ 7,�2 ¼ 5
and for h ¼ 9,�2 ¼ 4 and thus the stability intervals are
larger for h� 7: ½3, 10�, ½5, 11�, ½7, 12� and ½9, 13�. The aug-
mented approach via descriptor LKF of Lemma 2 leads
to the same stability intervals as Lemma 3, but needs
essentially more time for computation.

Next considering the case where the system parameters
are uncertain, with A and A1 given in (39) and with

H ¼
0:1 0
0 0:02

� �
, E ¼ I2 and E1 ¼ 0:5I2,
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we apply Theorem 1 for h¼ 0, 3 and 5 and verify that the
system (1) is asymptotically stable for all �(k) that
satisfy (19) and for �(k) from the following segments:
½0, 4�, ½3, 5� and ½5, 6�.
By the augmented system approach via descriptor

LKF, we find that the conditions of Theorem 2
are feasible for h¼ 3, �1 ¼ 1, �2 ¼ 2 and for h ¼ 5,
�1 ¼ 1, and �2 ¼ 1. Thus the stability intervals, starting
from non-zero values, are larger ½2, 5� and ½4, 6�. By
augmentation via discrete descriptor approach we find
the following intervals: ½3, 5� and ½4, 6�.
The augmented system approach improves the results,

but it takes essentially more time for computations
due to high dimensional LMIs. The conditions by
Theorem 3 need less time for verification than those
by Theorem 2.

Example 2 (Wu and Hong 1994): We consider the
system (1) where

A ¼
0 0:5
0:5 0:2

� �
, A1 ¼

�0:4 0
0 0

� �
and H ¼ 0:

In the case of constant delay, this system is delay-
independently stable by the conditions of Wu and
Hong (1994). In the case of time-varying delay, by con-
ditions of Song et al. (1999) the system is asymptotically
stable for 0 < �ðkÞ � 2. By Theorem 4, it is verified that
also in the case of time-varying delay the system is delay-
independently stable. This is achieved by taking �¼ 0.5
and q ¼ 1:01.

3. Guaranteed cost control

Extending the description of (1) to include a control
input uðkÞ 2 Rm, we consider the system

xðkþ 1Þ ¼ ðAþH�ðkÞEÞxðkÞ þ ðA1 þH�ðkÞE1Þ

� xðk� �ðkÞÞ þ ðBþH�ðkÞE2ÞuðkÞ,

xðkÞ ¼ �ðkÞ, � h� �2 � k � 0 ð40Þ

where xðkÞ 2 Rn, �(k), A, A1, H, E, E1 and �(k) are
as in (1) and (2) and B and E2 are constant matrices
of the appropriate dimensions. We also consider the
cost function

J ¼
X1
j¼0

zTðkÞzðkÞ ð41Þ

where the objective vector zðkÞ 2 Rp is defined by

zðkÞ ¼ LxðkÞ þDuðkÞ ð42Þ

for matrices L and D of the appropriate dimensions.
A control law

uðkÞ ¼ KxðkÞ ð43Þ

is sought that for a given �ðkÞ, 0 � h� �1 � �ðkÞ �
hþ �2 leads to a minimum guaranteed cost � for J(�),
namely, Jð�Þ � � for the delay described in (1) and for
all � that satisfy (2).

3.1 Guaranteed cost via descriptor nominal LKF

Denoting

�FðkÞ ¼ Vðkþ 1Þ � VðkÞ þ zTðkÞzðkÞ ð44Þ

where V(k) is defined in (8) and (9), it is obtained, simi-
larly to the proof of Lemma 2, that in the case where
H¼ 0 and uðkÞ � 0 the following holds

�FðkÞ � ��� TðkÞGz
���ðkÞ ð45Þ

where ���ðkÞ ¼ colfxðkÞ, yðkÞ, xðk� hÞ, yðkÞ, zðkÞg and

Gz ¼
G1

LT

0

� �
� �Ip

2
4

3
5: ð46Þ

Requiring that

Gz < 0 ð47Þ

we take the sum of the two sides of (45), from 0 to N,
and obtain that

XN
k¼0

zTðkÞzðkÞ � Vð0Þ � VðN þ 1Þ � Vð0Þ ð48Þ

and thus

J � Vð0Þ ¼ �Tð0ÞP1�ð0Þ þ
X�1

m¼�h

X�1

j¼m

ð�Tð j þ 1Þ � �ð jÞÞ

� Rð�ð j þ 1Þ � �ð jÞÞ þ
X�1

j¼�h

�Tð jÞS�ð jÞ

þ
X�1�1

m¼��2

X�1

j¼m�h

ðð�Tð j þ 1Þ

� �Tð jÞÞRað�ð j þ 1Þ � �ð jÞÞ: ð49Þ

Admitting the control law (43) the following result is
thus obtained.
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Lemma 5: Consider the system (40) where H¼ 0 and the

cost function (41). The control law (43) stabilizes the

system and achieves a prescribed guaranteed cost 0 < ���,
namely J � ���, if there exit n� n matrices 0 < P1, P2,

P3, S, Y1, Y2, R and Ra and a m� n matrix K that

satisfy the following two inequalities

ĜGz ¼
ĜG1

LT þ KTDT

0

" #

� �Ip

2
664

3
775 < 0 ð50aÞ

Vð0Þ � ��� ð50bÞ

where

ĜG1 ¼

ĈC PT
0

A1

" #
�YT �PT

0

A1

" #
hYT

� �S 0 0

� � ��Ra 0

� � � �hR

2
6666666664

3
7777777775
< 0 ð50cÞ

ĈC ¼ PT 0 I

Aþ BK � I �I

� �
þ

0 I

Aþ BK � I �I

� �T
P

þ
S 0

0 hRþ P1 þ ð�1 þ �2ÞRa

� �
þ

Y

0

� �
þ

Y

0

� �T
ð50d Þ

and where V(0) is given in (49) and P has the structure of

(12a).

The inequality (50a) is non-linear in P and K. In order

to obtain a LMI we consider the case where Y ¼

" 0 AT
1

� �
P, for some tuning parameter ". Realizing

that the second block on the diagonal of ĈC in ĜG1 is

�P3 � PT
3 þ hRþ P1 þ ð�1 þ �2ÞRa it is found that P

is invertible. Denoting

P�1 ¼ Q ¼
Q1 0
Q2 Q3

� �

we obtain the following.

Lemma 6: Consider the system (40) where H¼ 0 and the

cost function (41). The control law (43) stabilizes the

system and achieves a prescribed guaranteed cost 0 < ���
if for some tuning scalar parameter " there exit n� n

matrices Q1, Q2, Q3, �SS, �RR, �RRa, MR, MRa
and MS,

a scalar MQ, and a m� n matrix �YY that satisfy the fol-

lowing six inequalities

ĜGk

Q1L
T þ �YYTDT

0

" #

� �Ip

2
664

3
775 < 0 ð51aÞ

MQ �Tð0Þ

� Q1

" #
> 0,

MR In

� �RR

" #
> 0 ð51b, cÞ

MRa
In

� �RRa

" #
> 0,

MS In

� �SS

" #
> 0 ð51d, eÞ

and

�JJð�Þ¼MQþ
X�1

m¼�h

X�1

j¼m

�Tð jþ1Þ��Tð jÞ
� 	

MRð�ð jþ1Þ��ð jÞÞ

þ
X�1

j¼�h

�Tð jÞMS�ð jÞþ
X�1�1

m¼��2

X�1

j¼m�h

�Tð jþ1Þ��Tð jÞ
� 	

�MRa
ð�ð jþ1Þ��ð jÞÞ� ��� ð51fÞ

where

ĜGk ¼

Ck ð1� "Þ
0
A1

� �
�SS �

0
A1

� �
�RRa "h

0
A1

� �
�RR

� � �SS 0 0
� � �� �RRa 0
� � � �h �RR

2
66664

3
77775

ð51gÞ

and

Ck ¼

Q2 þQT
2

�Q1 þQ3 �QT
2

þQ1ðA
T þ "AT

1 Þ þ
�YYTBT

 !

� �Q3 �QT
3

� �
� �

� �

� �

� �

2
666666666664

Q1 hQT
2 QT

2 ð�1 þ�2ÞQ
T
2

0 hQT
3 QT

3 ð�1 þ�2ÞQ
T
3

� �SS 0 0 0

� �h �RR 0 0

� � �Q1 0

� � � �ð�1 þ�2Þ �RRa

3
777777775
: ð51hÞ
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If a solution to the above exists, the feedback gain that
achieves the guaranteed cost ��� is given by

K ¼ �YYQ�1
1 : ð52Þ

Proof: We first multiply (50a) by diagfQT, 0, 0, 0g and
diagfQ, 0, 0, 0g, from the left and the right, respectively.
Using the fact that:

QT
0 0

0 hR

" #
Q ¼

QT
2

QT
3

" #
hR Q2 Q3

� �
and

QT
S 0

0 0

" #
Q ¼

Q1

0

" #
S Q1 0
� �

and denoting �YY ¼ KQ1, �RR ¼ R�1, �RRa ¼ R�1
a , �SS ¼ S�1,

the requirement of (51a) follows applying Schur
complements arguments. The requirement (51b) follows
from the fact that MQ, MR, MR_a and MS are upper-
bounds on Q1, R, Ra and S, respectively, and thus
Vð0Þ < �JJð�Þ. œ

Lemma 5 addresses the case where H¼ 0. Its result
can be readily extended to the case where H 6¼ 0.
Replacing A, A1 and B in the LMI of Lemma 5 by
AþH�E, A1 þH�E1 and BþH�E2, respectively,
and applying Schur complements arguments we readily
obtain the following result for the case with norm-
bounded uncertainties.

Theorem 5: Consider the system (40) and the cost func-
tion (41). The control law (43) stabilizes the system and
achieves a prescribed guaranteed cost 0 < ��� if for some
tuning scalar parameter " there exit n� n matrices
Q1, Q2, Q3, �SS, �RR, �RRa, MQ, MR, MRa

and MS, a m� n
matrix �YY and a scalar 	 that satisfy (51b–f) and

ĜGk 	

0

H

0

0

0

0

2
666666664

3
777777775

Q1ðEþ "E1Þ
T

þ �YYTET
2

 !

0

0

ð1� "Þ �SSET
1

� �RRaE
T
1

"h �RRET
1

2
666666666664

3
777777777775

Q1L
T

þ �YYTDT


 �
0

0

0

0

0

2
66666666664

3
77777777775

� �	I 0 0

� � �	I 0

� � � �I

2
66666666666666666664

3
77777777777777777775

< 0

ð53Þ

where ĜGk is defined in (51g). If a solution to the latter
inequalities exists, the state-feedback gain K that achieved
the guaranteed cost is given by (52).

3.2 Guaranteed cost via augmentation
and descriptor nominal LKF

The stability result of x 2.4 can be extended to solve

the guaranteed cost problem. However, dissimilar

to the solution of the stability verification problem

there, when attempting to obtain a state-feedback con-

trol law that stabilizes the system and achieves a given

bound on its cost, using the augmented system of (23),

the problem becomes one of finding a static output-

feedback controller. The latter task is known to be

non-convex. If, on the other hand, a state-feedback

control law of the form

uðkÞ ¼
Xh��1

j¼0

Kjxðk� jÞ ð54Þ

is sought the problem can be solved using the augmen-

ted system representation of (23). We have


ðkþ 1Þ ¼ ðA þH�ðkÞEÞ
ðkÞ

þ ðA1 þH�ðkÞE1Þ
ðk� �1 � �ðkÞÞ þ BuðkÞ


TðkÞ ¼ �Tðk� hþ �1Þ �
Tðk� hþ �1 þ 1Þ � � � �TðkÞ

� �
¼
�
 TðkÞ, � �2 � �1 � k � 0

zðkÞ ¼ L
ðkÞ þDuðkÞ ð55Þ

where B ¼ ½0 . . . 0 BT�
T, L ¼ ½0, . . . , 0 L� and

uðkÞ ¼ ½Kh��1
::: K0�
ðkÞ:

Then Theorem 4 implies the following result.

Theorem 6: Consider the system (40) and the cost func-

tion (41). The control law (54) stabilizes the system and

achieves a prescribed guaranteed cost 0 < ��� if for some

tuning scalar parameter " there exist nðh� �1 þ 1Þ�

nðh� �1 þ 1Þ matrices Q1, Q2, Q3, �SS, �RR, �RRa, MQ,MR

MR, MRa
, MS, a m� nðh� �1 þ 1Þ matrix �YY and scalars

�		0 and �		1 that satisfy (51b–e),(53a, b) with ĜGk and �JJð�Þ
given by (51g) and (51f), where h, A, A1, E, E1, H, L

and � should be substituted by �1, A, A1, E, E1, H, L

and  correspondingly. If a solution to the above inequal-

ities exists, the state-feedback gain K ¼ ½Kh��1
::: K0�

that achieves the guaranteed cost is given by (52).

Remark 3: Guaranteed cost control via the augmented

discrete descriptor approach may be designed by an

iterative method similarly to Fridman and Shaked

(2005) and will not be considered here. Razumikhin

approach seems to be inapplicable to guaranteed cost

and to H1 control.
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3.3. Example 3

We consider the problem of Chen et al. (2003). Given
the system (40) with

A ¼
1:01 0

0 1:2

" #
, A1 ¼

�0:25 0:1

0 0:1

" #
, B ¼

0

1

" #

H ¼ I2, E ¼ E1 ¼ 0:08I2, E2 ¼ 0

L ¼
ffiffiffiffiffiffiffi
0:1

p I2

0

" #
, D ¼

ffiffiffiffiffiffiffi
0:1

p

0

0

1

2
6664

3
7775, �ð�kÞ ¼

e�k

0

" #
:

For h¼ 2, �1 ¼ �2 ¼ 0 a state-feedback control law (43)
is sought that stabilizes the system and achieves a
minimum cost bound. In Chen et al. (2003) such a feed-
back control has been found which achieves the cost
bound of ��� ¼ 1:2387. Applying the result of Theorem
5 for "¼ 1 we obtain a cost bound of ��� ¼ 0:1392 for
K ¼ �½0:2763 1:3471�.
For a smaller uncertainty, where H ¼ I2, E ¼ E1 ¼

0:02I2 and E2¼ 0, application of Theorem 5 yields a
cost bound of ��� ¼ 0:05 for K ¼ �½0:2231 1:034�: For
this uncertainty we also consider the case where h¼ 2,
�1 ¼ 0 and �2 ¼ 1. For xð�3Þ ¼ ½e�3 0�T, the applica-
tion of Theorem 5 yields a minimum cost bound of
��� ¼ 0:1282 for K ¼ �½0:0737 1:2503�.
Applying the exact LKF result of Theorem 6 to the

system with the latter uncertainty (where H is 0:02I2,
h¼ 2, �1 ¼ 0 and �2 ¼ 1) we obtain ��� ¼ 0:0891, for
k¼ [0.1438 �0.1520 0.3422 �0.1661 �0.2766
�1.135]. The difference between the latter result and
the corresponding result that was obtained via descrip-
tor Vn is accentuated in the case where H¼ 0. Then,
the descriptor based result of Theorem 4 yields a
bound of ��� ¼ 0:0661 compared to ��� ¼ 0:0383 obtained
by the exact LKF result of Theorem 6.

4. Conclusions

Delay-dependent and delay-independent criteria have
been derived for determining the asymptotic stability
of discrete-time systems with uncertain delay and
norm-bounded uncertainties. The delay is assumed
to be time-varying either from a given interval or
unbounded. In the first case the Lyapunov–Krasovskii
method is applied via descriptor model transformation,
while the second (delay-independent) case is treated
by Laypunov–Razumikhin technique. The Lyapunov–
Krasovskii method is applied to guaranteed cost
control.

For the first time, augmentation is applied to the case

of time-varying delay in order to reduce the nominal

value of the delay which appears in the augmented
system. Such an augmentation leads to less conservative

conditions. However, the resulting LMIs possess high-

dimensional decision variables which require longer
computational time.

Another possibility for reducing the conservatism is

to apply the discrete-time counterpart of the complete

LKF that corresponds to the necessary and sufficient

conditions for the stability of the nominal system and
which was applied to robust stability of continuous-

time systems by Kharitonov and Zhabko (2003). The

latter LMIs may have computational advantages over
the high-order ones that are based on the augmentation.

This issue is currently under study.
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