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Abstract
This paper presents an output-feedback Lyapunov redesign for uncertain sys-
tems with the delayed measurements, which recasts the state estimation
and robust control into a unified framework. Instead of the traditional
observer/differentiator-based output-feedback design, a static state estimator is
constructed by the Taylor expansion of delayed measurements with the integral
remainders. Then, a sliding variable is constructed according to the nominal
Lyapunov function. A Lyapunov redesign approach is used to keep the system
trajectory in predefined vicinity of origin, even subject to approximation errors
and exogenous disturbances. The maximum value of the allowable delays for
the closed-loop stability is found via linear matrix inequalities. Finally, the
effectiveness of the proposed method is verified in the magnetic suspension
system.
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1 INTRODUCTION

The rejection of disturbances and parameter variations is an important task for uncertain systems.1 Lyapunov redesign
(LR) was first illustrated in References 2 and 3 for the stabilization of uncertain systems. LR was recast into a sliding mode
control framework, and the trajectories of the closed-loop system approached the desired vicinity of the sliding manifold.4
The sliding variable was designed based on Lyapunov function ensuring the asymptotic convergence of nominal
closed-loop system. Further, an additional robustifying component was added, which was discontinuous on the manifold
for compensating the matched uncertainties. However, the main disadvantage of LR is that the knowledge of all states of
the system is needed.

The main approaches for state estimation were focused on the observer-based methodologies. Standard techniques
of exact feedback linearization and LR were used in Reference 5, with the speed of the motor estimated via the high
gain observer design. In Reference 6, the output feedback stabilization of an inertia wheel pendulum was studied, which
extended state feedback control design to the output-feedback case by using a high gain observer. Regarding the expensive
implementation of observers, it is desirable to develop static output-feedback LR controllers, which raises two subprob-
lems: (1) how to estimate the unmeasurable states without introducing an extra dynamical structure for observation? and (2)
how to simultaneously attenuate the approximation errors and uncertainty?

Unfortunately, the presence of measurement delays is very common situation in control systems, due to the imper-
fect sensors. The use of observers/differentiors introduced extra dynamical structures in the feedback loops, requir-
ing extensive numerical computation. Therefore, the static output-feedback term may be preferable for the nominal
output-feedback control. In this work, inspired by the recent results,7-16 a static time-delay estimator of a simple imple-
mentation is inserted into the feedback loops, which estimates the unavailable states from analyzing the delayed outputs.
Then, the delay-dependent robust control law composed of a nominal term and a switching term is designed based on
the redesign. For the nominal design, the Lyapunov–Krasovskii functional is used to investigate the admissible mea-
surement delays for the closed-loop stability of uncertain systems. Then, a new delayed sliding variable is proposed
based on nominal Lyapunov Function derivative, and an additional switching control is used for the boundness of sys-
tem trajectories around equilibrium in the presence of matched uncertainties. The main contributions of this paper
are:

• The time-delay state estimator is constructed without preliminary knowledge of open-loop system structure or system
parameters, which is of simple implementation and fast computation;

• The maximum measurement delay allowing the closed-loop stability of LR-based output feedback control is estimated
such that the state estimation and the uncertainty compensation can be investigated in a unified design framework.

1.1 Notation

For a real symmetric matrix P, the notation P≤ 0 (respectively, P< 0) means that P is negative semi-definite (respec-
tively, negative definite). The expression A−B≥ 0 means that A−B is positive semi-definite. The superscripts “−1"
and “T" stand for inverse and transpose, respectively. For a symmetric positive (negative) definite matrix A, 𝜆max(A)
and 𝜆min(A) represent its maximum and the minimum eigenvalue, respectively. Define the signum function as
sign(x)= [sign(x1), … , sign(xn)]. The notations col{⋅} and diag{⋅} represents the column and diagonal block-vectors,
respectively. Define a symmetric matrix as He(M)=M +MT , and the symmetric elements of a symmetric matrix is
represented by ⋆.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminarity for Lyapunov redesign

Consider the following linear time-invariant system with delayed measurements:

ẋn(t) = A1x1(t) + A2x2(t) + … + Anxn(t) + B1(u(t) + 𝛿(t, x)), (1)
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y(t) = x1(t − h), (2)

where xi(t) = x(i−1)
1 (t) ∈ Rk is the ith derivative of x1(t) (i= 2, … , n), y(t) ∈ Rk is the measured output, u(t) ∈ Rm is the

control input, 𝛿(t, x) is the lumped uncertainty due to model simplification and parameter uncertainty, and h is a known
transmission delay. The occurrence of the delay h in the sensor channel is destroying, due to the inaccessibility of the
current measurement x1(t).

To improve the controller performance, an additional buffer is introduced in the feedback loop for the storage of the
delayed measurements:

x̂1(t, ℏ) = col{x1(t − h), x1(t − 2h), … , x1(t − nh)}, (3)

where ℏ = col{h, 2h, … ,nh}.

Remark 1. Model (1) represents the linearized nonlinear system of relative degree n with the matched state dependent
uncertainty, which describes the local behavior of any Lipschitz system linearized in the vicinity of the equilibrium, see
Reference 17.

Assumption 1. The matched uncertainty is bounded, that is,

||𝛿(t, x)|| ≤ 𝜚, (4)

where 𝜚 is a positive bound.

Let x(t)= col{x1(t), x2(t), … , xn(t)}, and the system dimension is then given as n = nk. System (1) with a buffer (3) is
further rewritten as {

ẋ(t) = Ax(t) + B(u(t) + 𝛿(t, x))
y(t) = x̂1(t, ℏ),

(5)

with the initial condition given as x(0)= x0, where x(t) ∈ Ω ⊂ Rn is system state vector (Ω is an neighborhood of the
origin), and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 Ik 0 … 0
0 0 Ik … 0
⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 … Ik

A1 A2 A3 … An

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
⋮

B1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For the region −nh ≤ 𝜙 < 0 that is not defined for system (1), we define

x1(−nh) = … = x1(−(n − 1)h) = … = x1(−2h) = x1(−h) = 0.

Remark 2. The region Ω characterizes where the linearized nonlinear system (5) holds, which is defined as ||x(t)|| ≤
𝜓 .16 The value of 𝜓 is estimated during the linearization in Reference 17, which is assumed to be known for model
(5). Moreover, the estimation of 𝜓 is helpful to establish that the redesigned controller attenuates the effect of the
disturbance.

Definition 1. A solution x(t) of system (5) is said to be globally uniformly ultimately bounded with ultimate bound 𝛾 , if
there exists a positive constant 𝛾 independent of t0 and for every arbitrarily large positive constant c, there is T(c, 𝛾) ≥ 0,
independent of t0, such that

||x(t0)|| ≤ c ⇒ ||x(t)|| ≤ 𝛾, t ≥ t0 + T.
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Since only the delayed measurements in x̂1(t, ℏ) are accessible, it is necessary to consider the output-feedback
LR for system (5). Generally (Reference 18), two types of methods are always used for the output-feedback con-
trol: (1) pure output-feedback control and (2) the use of observers/differentiators for state estimation. The first
one uses the outputs for controlling reduced-order dynamics, which sacrifices certain control specification for
simple control structure. The latter one introduces an additional dynamical structure for state estimation, which
increases system dimension. As a third group of output-feedback control, static output-feedback control via the
time-delay estimation has aroused heated research interests, see References 10-16. This new time-delay estima-
tor is of simple static form and design flexibility, which avoids introducing extra dynamical structure for state
estimation.

However, the aforehand researches can hardly be applied to system (5), because the current measurement x1(t) is
unavailable. Taking Definition 1 into account, the following problem is addressed:

2.1.1 Static delayed output-feedback LR design problem

Instead of observers/differentiators, design a static time-delay estimator to reconstruct the system state of sys-
tem (5) from a few past measurements, and design a delay-dependent output-feedback robustifying control
law:

u(t, h, y) = un(t, h, y) + us(t, h, y), (6)

such that it guarantees uniform ultimate boundedness of every system response x(t) with an ultimate bound 𝛾 = 𝛾(𝜛),
where 𝜛 consists of all tunable design parameters, un(t, h, y) is used for stabilizing the nominal system (5) (𝛿(t, x) =
0), and us(t, h, y) is used in the nominal stability design by cancelling the effects of the matched system uncertainty
𝛿(t, x).

2.2 Useful preliminaries

Besides, the following three lemmas are necessary for the development of the main results in this work.
An effective method for investigating the stability of a linear system is the Lyapunov–Krasovskii stability

method shown in Lemma 1, where the proposed Lyapunov–Krasovskii functional is a potential measure quanti-
fying the deviation of the state x(t) from the trivial solution 0. Denote by W[− h, 0] the Banach space of abso-
lutely continuous functions 𝜙 ∶ [−h, 0] → Rn with �̇� ∈ 2(−h, 0) (the space of square integrable functions) with the
norm

||𝜙||W = max
s∈[−h,0]

𝜙(s)| + [
∫

0

−h
|𝜙(s)|2ds

]1∕2

.

Lemma 1. (Lyapunov–Krasovskii stability theorem11,12) Consider a retarded differential equation:

ẋ(t) = f (t, xt), (7)

where f ∶ R × C[−h, 0] → Rn maps R× (bounded sets in C[−h, 0]) into bounded sets of Rn, and xt ≜ x(t + 𝜃), 𝜃 ∈ [−h, 0].
Suppose that 𝜇1, 𝜇2, 𝜇3 ∶ R+ → R+ are continuous nondecreasing functions, 𝜇1(s) and 𝜇2(s) are positive for s> 0, and
𝜇1(0) = 𝜇2(0) = 0. The trivial solution of system (7) is uniformly stable if there exists a continuous functional V ∶ R ×
W[−h, 0] × 2(−h, 0) → R+, which is positive definite:

𝜇1(||x||) ≤ V(t, xt, ẋt) ≤ 𝜇2(||xt||W ), (8)

such that its derivative along (7) is nonpositive in the sense that

V̇(t, xt, ẋt) ≤ −𝜇3(||x||). (9)
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If 𝜇3(s) > 0 for s> 0, then system (7) is uniformly asymptotically stable. If, in addition, lim
s→∞

𝜇3(s) = ∞, then it is globally
uniformly asymptotically stable.

Lemma 2. (Jensen’s inequality13) Define G = ∫ b
a f (𝜗)x(𝜗)d𝜗, where a≤ b, f : [a, b]→ [0,∞), x(s) ∈ Rn, and the integration

concerned is well defined. Then, for any n×n matrix R> 0, the following inequality holds:

GTRG ≤ ∫
b

a
f (𝜈)d𝜈 ∫

b

a
f (𝜗)xT(𝜗)Rx(𝜗)d𝜗. (10)

Remark 3. The inequality (10) is used for handling the quadratic terms of remainder in Taylor expansion, which is still
valid in the presence of uncertainty. It directly relates the quadratic form xT(𝜗)Rx(𝜗) inside the integral symbol with the
quadratic form (∫ b

a f (𝜗)x(𝜗)d𝜗)TR(∫ b
a f (𝜗)x(𝜗)d𝜗).

Lemma 3. (Reference 19) For any matrices U,V ∈ Rn×n with V > 0, and any positive scalar 𝜖, we have

UV−1UT ≥ 𝜖He(U) − 𝜖2V .

3 OUTPUT-FEEDBACK LYAPUNOV REDESIGN VIA TIME-DELAY
ESTIMATION

3.1 Time-delay-based estimation

The nominal system corresponding to system (5) with 𝛿(t, x) = 0 is linear time-invariant, which can be stabilized by a
state-feedback control law. In classical LR, the following nominal state-feedback control law is designed:

u∗
n(t, x) = −Kx(t), (11)

which is used as a basis for static output-feedback control design, where K ∈ Rm×n is the controller gain.
Due to the specific system structure in model (5), state x(t) depends on the output and its derivatives. In this sense,

the state feedback control also refers to the derivative-dependent feedback control.10 In the output-feedback sense, the
system state x(t) requires to be estimated for the implementation of (11) by using the delayed measurements:

x̂1(t, ℏ) = col{x1(t − h), x1(t − 2h), … , x1(t − nh)}.

Based on the Taylor series expansion with the integral (Lagrange) form of the remainder, the following relations are used:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1(t − h) = x1(t − h) − 𝜃1x2(t − h) + 𝜃2
1

2!
x3(t − h) + … + (−1)n−1𝜃n−1

1
(n−1)!

xn(t − h) + r1(t)

x1(t − 2h) = x1(t − h) − 𝜃2x2(t − h) + 𝜃2
2

2!
x3(t − h) + … + (−1)n−1𝜃n−1

2
(n−1)!

xn(t − h) + r2(t)

x1(t − 3h) = x1(t − h) − 𝜃3x2(t − h) + 𝜃2
3

2!
x3(t − h) + … + (−1)n−1𝜃n−1

3

(n−1)!
xn(t − h) + r3(t)

… …
x1(t − nh) = x1(t − h) − 𝜃nx2(t − h) + 𝜃2

n
2!

x3(t − h) + … + (−1)n−1𝜃n−1
n

(n−1)!
xn(t − h) + rn(t),

(12)

where

𝜃i = (i − 1)h, ri(t) =
(−1)n

(n − 1)! ∫
t−h

t−ih
(s − t + ih)n−1xn+1(s) ds, i ∈ 1,n.

Apparently, 𝜃1 = 0 and r1(t)= 0.
Defining 𝜃 ≜ col{𝜃1, 𝜃2, … , 𝜃n} = col{0, h, … , (n − 1)h}, it is easy to verify that (12) is equivalent to

x̂1(t, ℏ) = M(𝜃)x(t − h) + r(t), (13)
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where

x̂1(t, ℏ) = col{x1(t − h), x1(t − 2h), … , x1(t − nh)}
r(t) = col{r1(t), r2(t), … , rn(t)}

M(𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0k 0k … 0k

Ik −𝜃2Ik
𝜃2

2
2!

Ik … (−1)n−1𝜃n−1
2

(n−1)!
Ik

Ik −𝜃3Ik
𝜃3

3

2!
Ik … (−1)n−1𝜃n−1

3

(n−1)!
Ik

⋮ ⋮ ⋮ ⋮ ⋮

Ik −𝜃nIk
𝜃2

n
2!

Ik … (−1)n−1𝜃n−1
n

(n−1)!
Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

From Reference 10, the matrix M(𝜃) is invertible such that M−1(𝜃) exists, and the remainder r(t) characterizing the
estimation errors satisfies that r(t)=O(hn).

Matrices A, B, and K are correspondingly partitioned as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0k Ik 0k … 0k

0k 0k Ik … 0k

⋮ ⋮ ⋮ ⋮

0k 0k 0k … Ik

A1 A2 A3 … Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≜
[

0(n̄−k)×k In̄−k

Ā1 Ā2

]

B =
[
0k×(n̄−k) BT

1

]T
,K =

[
K1 K2 … Kn−1 Kn

] ≜ [
K̄1 K̄2

]
.

(14)

From Leibniz–Newton formula, we have

x(t − h) = x(t) − 𝜒(t), (15)

where 𝜒(t) = ∫ t
t−h ẋ(s)d. Substituting (15) into (13), we obtain:

x(t) = M−1(𝜃)x̂1(t, ℏ) − M−1(𝜃)r(t) + 𝜒(t), (16)

which constructs the estimation of x(t) as

x(t) ≈ x̂(t) ≜ M−1(𝜃)x̂1(t, ℏ), (17)

by ignoring the approximation errors r(t) and 𝜒(t). With Assumption 2, it is easy to verify that

||𝜒(t)|| ≤ 𝛽𝜒 , 𝛽𝜒 = 𝛼h.

Compared with the time-delay estimator in Reference 10, the bad effects of the delay h in sensor channels is the additional
introduction of the error 𝜒(t), which is O(h).

Remark 4. Since the time delay h is a known parameter, the time delay in (6) and (17) is selected to be same as h.

Remark 5. The nominal control (19) fully starts from t ≥nh, because the estimation of state x(t) is accurate since t ≥nh.

It follows from Assumption 2 that

||r(t)|| ≤ 𝛽r, 𝛽r =
n∑

i=1

𝛼

n!
𝜃i

i . (18)

Remark 6. In Reference 20, the Taylor expansion is directly performed to the nonlinear item for the state estimation, but
the ellipsoid of accuracy can not be determined. In this work, the approximation errors are characterized as the remainder
r(t) for analyzing the closed-loop stability, which is more accurate.
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3.2 Nominal design

Inspired from (11) and (17), the static part of the robust controller (6) is taken as

un(t, h, y) = −KM−1(𝜃)x̂1(t, ℏ), (19)

which coincides with the virtual control law (11) through replacing x(t) by its estimation x̂(t) in (17).
By substituting (19) into (5) together with (17), the following nominal closed-loop system with 𝛿(t, x) = 0 is obtained:

ẋ(t) = Ax(t) − Ar(𝜃)x̂1(t, ℏ), (20)

which is equivalent to

ẋ(t) = Asx(t) + Ad𝜒(t) − Ar(𝜃)r(t), (21)

where As =A−BK, Ad =BK and Ar(𝜃) = BKM−1(𝜃).
System (21) is rewritten in a more compact form:

ẋ(t) = Γ1(𝜃)𝜉(t), (22)

where 𝜉(t) = col{x(t), 𝜒(t), r(t)} and Γ1(𝜃) =
[
As Ad −Ar(𝜃)

]
.

Moreover, we have

xn+1(t) = Apx(t) + Aq𝜒(t) − Am(𝜃)r(t), (23)

where xn+1(t) ≜ ẋn(t), and

⎧⎪⎨⎪⎩
Ap = Ān − B1K, Ān =

[
A1 A2 … An

]
Aq = B1K, Am(𝜃) = B1KM−1(𝜃).

By letting Γ2(𝜃) =
[
Ap Aq −Am(𝜃)

]
, Equation (23) becomes

xn+1(t) = Γ2(𝜃)𝜉(t). (24)

The following theorem investigates the stabilization of the closed-loop system (22) in the presence of the estimation
errors r(t) and 𝜒(t).

Theorem 1. Given the time delay h, the matrix Z ∈ Rn×k, and the positive scalar 𝜖, the nominal system (5) with 𝛿(t, x) = 0
under the static output-feedback control law un(t, h, y) in (19) is uniformly asymptotically stable, if there exists the symmetric
matrices P, Q11, Q22, Q33, S,∈ Rn×n, and Ti ∈ Rk×k, and the general matrices Q12 ∈ Rn×n, and Q13, Q23, L1, L2 ∈ Rn×k,
such that the following LMIs hold:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

He(PA − L1 − L2) + Q11 L1 + L2 + Q12 Λ13 ATPT − LT
1 − LT

2 Λ15

⋆ −S + Q22 Q23M(𝜃) LT
1 + LT

2 LT
1 + LT

2

⋆ ⋆ Λ33 −(LT
1 + LT

2 ) −(LT
1 + LT

2 )
⋆ ⋆ ⋆ −𝜖He(P) + 𝜖2S(h) 0
⋆ ⋆ ⋆ ⋆ Λ55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (25)

P > 0, S > 0, Ti > 0, Q > 0 (26)

where S(h) = hS, T(𝜃) =
∑n

i=1 𝜃
2i
i Ti, D =

[
0 Ik

]T, and
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Λ13 = −(L1 + L2) + Q13M(𝜃), Λ15 = ĀT
n DTPT

o − LT
1 − LT

2

Λ33 = −MT(𝜃)TM(𝜃) + MT(𝜃)Q33M(𝜃), Λ55 = −He(ZDTP) + ZT(𝜃)ZT ,

T = diag{T1, 4T2, … ,n2Tn}, Q =
⎡⎢⎢⎢⎣
Q11 Q12 Q13

⋆ Q22 Q23

⋆ ⋆ Q33

⎤⎥⎥⎥⎦ .
Then, the controller gain K ∈ Rm×n can be computed from the following LMI:[

−𝜇In P2B1K − L1 − L2

⋆ −Ik

]
≤ 0, (27)

where 𝜇 is a given positive scalar characterizing the accuracy of approximation P2B1K ≈L1 +L2, and P2 =PD.

Proof. Choose the following Lyapunov–Krasovskii functional for the nominal design:

V(t, xt, ẋt) = V1(t, xt) + V2(t, xt, ẋt) + V3(t, xt, ẋt), (28)

where

V1(t, xt) = xT(t)Px(t)

V2(t, xt, ẋt) =
n∑

i=1
𝜃i

i ∫
t−h

t−ih
(s − t + ih)ixT

i+1(s)Tixi+1(s) ds

+
n∑

i=1
𝜃2i

i ∫
t

t−h
xT

i+1(s)Tixi+1(s) ds

V3(t, xt, ẋt) = h∫
t

t−h
(s − t + h)ẋT(s)Sẋ(s) ds,

with P> 0, Ti > 0, and S> 0, i = 1,n. The function V 1(t) is of quadratic form, which satisfies

𝜆min(P)||x||2 ≤ V1(t, xt) ≤ 𝜆max(P)||x||2. (29)

Moreover, for fixed i, it can be seen that function f (s)= (s− t + ih)i is increasing over the time interval s∈ (t − ih, t − h)
such that

0 ≤ (s − t + ih)ixT
i+1(s)Tixi+1(s) ≤ 𝜃i

ix
T
i+1(s)Tixi+1(s) ≤ 𝜃i

i𝜆max(Ti)||xi+1(s)||2.
Then, we have

0 ≤ V2(t, xt, ẋt) ≤
n∑

i=1
𝜃2i

i 𝜆max(Ti)∫
t−h

t−ih
||xi+1(s)||2ds +

n∑
i=1
𝜃2i

i 𝜆max(Ti)∫
t

t−h
||xi+1(s)||2ds

≤
n∑

i=1
𝜃2i

i 𝜆max(Ti)∫
t

t−ih
||xi+1(s)||2ds. (30)

It follows from Assumption A1 that inequality (30) becomes

0 ≤ V2(t, xt, ẋt) ≤ 𝛼2
n∑

i=1
𝜆max(Ti)𝜃2i

i (𝜃i + h). (31)
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Similarly, by virtue of 0≤ s− t + h≤ h, we have

0 ≤ V3(t, xt, ẋt) ≤ h2𝜆max(S)∫
t

t−h
||ẋ(s)||2 ds ≤ 𝛼2h3𝜆max(S). (32)

By combing (29), (31), and (32), we obtain:

𝜆min(P)||x||2 ≤ V(t, xt, ẋt) ≤ 𝜆max(P)||x||2 + 𝛼2
n∑

i=1
𝜆max(Ti)𝜃2i

i (𝜃i + h) + 𝛼2h3𝜆max(S), (33)

which indicates that the functional V(t, xt, ẋt) is bounded fitting the requirement in (8).
Corresponding to the partition in (14), matrix P is of the following form:

P =
[

P1 P2

]
,

where P1 ∈ Rn×(n−1)k, P2 ∈ Rn×k, and P2 =PD. We can successively make the approximation errors to be small by properly
designing S and Ti.

Differentiating the first term of (28) with respect to time t yields:

dV1

dt
= xT(t)He(PAs)x(t) + 2xT(t)PAd𝜒(t) − 2xT(t)PAr(𝜃)r(t). (34)

The derivatives of V2(t, xt, ẋt) and V3(t, xt, ẋt) along the trajectory (21) are, respectively, given by

dV2

dt
=

n∑
i=1

{𝜃2i
i xT

i+1(t)Tixi+1(t) − i𝜃i
i ∫

t−h

t−ih
(s − t + ih)i−1xT

i+1(s)Tixi+1(s) ds}, and (35)

dV3

dt
= hẋT(t)Sẋ(t) − h∫

t

t−h
ẋT(s)Sẋ(s) ds. (36)

It follows from Lemma 2 that the following inequalities hold:{
−h ∫ t

t−h ẋT(s)Sẋ(s) ds ≤ −𝜒T(t)S𝜒(t)
− ∫ t−h

t−ih (s − t + ih)i−1ds ∫ t−h
t−ih (s − t + ih)i−1xT

i+1(s)Tixi+1(s) ds ≤ −rT
i (t)Tiri(t),

which is equivalent to {
−h ∫ t

t−h ẋT(s)Sẋ(s) ds ≤ −𝜒T(t)S𝜒(t)

− 𝜃i
i

i
∫ t−h

t−ih (s − t + ih)i−1xT
i+1(s)Tixi+1(s) ds ≤ −rT

i (t)Tiri(t).
(37)

With (37), we have
dV2

dt
≤

n∑
i=1
𝜃2i

i xT
i+1(t)Tixi+1(t) − rT(t)Tr(t)

dV3

dt
≤ hẋT(t)Sẋ(t) − 𝜒T(t)S𝜒(t), (38)

where T = diag{T1, 4T2, … , n2Tn}.
Adding (34) and (38) results in

dV
dt

≤ xT(t)He(PAs)x(t) + 2xT(t)PAd𝜒(t)

− 2xTPAr(𝜃)r(t) − rT(t)Tr(t) − 𝜒T(t)S𝜒(t)

+
n∑

i=1
𝜃2i

i xT
i+1(t)Tixi+1(t) + hẋT(t)Sẋ(t).
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To satisfy (9), we select 𝛾3(t, xt) = 𝜉T(t)Q𝜉(t) by containing both x(t) and xt(𝜗). From (22) and (23), we obtain:

dV
dt

≤ 𝜉T(t)(Θ1 + Θ2 + Q)𝜉(t) ≤ 0, (39)

where

Θ1 =
⎡⎢⎢⎢⎣
He(PAs) PAd −PAr(𝜃)

⋆ −S 0
⋆ ⋆ −T

⎤⎥⎥⎥⎦ , Q =
⎡⎢⎢⎢⎣
Q11 Q12 Q13

⋆ Q22 Q23

⋆ ⋆ Q33

⎤⎥⎥⎥⎦
Θ2 = ΓT

1 S(h)Γ1 + ΓT
2 T(h)Γ2, S(h) = hS, T(𝜃) =

n∑
i=1
𝜃2i

i Ti.

Noting that 𝜇1(t) > 0, 𝜇2(t) > 0, 𝜇3(t) > 0 for t> 0, it follows from Lemma 1 that the closed-loop system (20) is uniformly
asymptotically stable, if conditions (33) and (39) hold.

Inequality (39) is further rewritten as

Θ1 +
⎡⎢⎢⎢⎣

AT
s

AT
d

−AT
r (𝜃)

⎤⎥⎥⎥⎦ S(h)
[

As Ad −Ar(𝜃)
]
+
⎡⎢⎢⎢⎣

AT
p

AT
q

−AT
m(𝜃)

⎤⎥⎥⎥⎦T(𝜃)
[

Ap Aq −Am(𝜃)
]
+ Q < 0. (40)

Applying the Schur Complement Lemma to (40) yields the following bilinear matrix inequality:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

He(PAs) + Q11 PAd + Q12 −PAr(𝜃) + Q13 AT
s AT

p

⋆ −S + Q22 Q23 AT
d AT

q

⋆ ⋆ −T + Q33 −AT
r (𝜃) −AT

m(𝜃)
⋆ ⋆ ⋆ −S

−1
(h) 0

⋆ ⋆ ⋆ ⋆ −T
−1
(𝜃)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (41)

with the nonlinear terms in

PAs = PA − PBK = PA − P2B1K
PAd = PBK = P2B1K
PAr(𝜃) = PBKM−1(𝜃) = P2B1KM−1(𝜃).

Define the transformation matrix as
 = diag{I, I,M(𝜃),PT ,PT

2 }.

Premultiplying and postmultiplying (41) by  T and  , respectively, yields:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

He(PAs) + Q11 PAd + Q12 −PAd + Q13M(𝜃) AT
s PT AT

p PT
2

⋆ −S + Q22 Q23M(𝜃) AT
d PT AT

q PT
2

⋆ ⋆ Λ33 −AT
r (𝜃)PT −AT

m(𝜃)PT
2

⋆ ⋆ ⋆ −PS
−1
(h)PT 0

⋆ ⋆ ⋆ ⋆ −P2T
−1
(𝜃)PT

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (42)

where Λ33 = −MT(𝜃)TM(𝜃) + MT(𝜃)TQ33M(𝜃), and

AT
p PT

2 = ĀT
n PT

2 − KTBT
1 PT

2 , AT
q PT

2 = KTBT
1 PT

2 , AT
m(𝜃)PT

2 = M−T(𝜃)KTBT
1 PT

2 .
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The coupling of the Lyapunov matrix P with system matrices Ap, Aq and Am makes (42) a bilinear matrix inequality, which
can hardly be solved by the LMI toolbox in Matlab. To confront this issue, the following approximation is constructed:

P2B1K = L1 + L2, (43)

where L1 ∈ Rn×n, L2 ∈ Rn×n, which can be guaranteed by

||P2B1K − L1 − L2|| ≤ 𝜇, (44)

where 𝜇 is a positive scalar characterizing the approximation accuracy. The equivalent form of inequality (44) is given as
(27).

It is readily verified from Lemma 3 that{
−PS

−1
(h)PT ≤ −𝜖He(P) + 𝜖2S(h)

−(ZT(𝜃) − P2)T−1(𝜃)(T(𝜃)ZT − PT
2 ) ≤ 0,

(45)

where 𝜖 > 0 is prescribed, and Z is a given matrix. By virtue of (43) and (45), the sufficient condition for the establishment
of (42) is given as (27). ▪

After the nominal design, the nominal closed-loop system (21) with 𝛿(t, x) = 0 is stable. Thus, we assume the following:

Assumption 2. State ẋ(t) is bounded over the time interval [t −nh, t]:

||ẋ(s)|| ≤ 𝛼, for all s ∈ [t − nh, t], (46)

where the estimated parameter 𝛼 relates with the nominal design.

Remark 7. The right-hand side of (5), that is, ẋ(t), represents the source of the dynamical behaviors of system (5).
Condition ẋ(t) = 0 holds, when system states reach their equilibrium.

Remark 8. Condition (46) implies a standard assumption in control systems:

||xi(t)|| ≤ 𝛼, i = 2,n + 1. (47)

With the sufficient large control law, the state trajectories of a nonlinear system are assumed to evolve in a compact set
where its linearized model (1) holds.

3.3 Delay-dependent Lyapunov redesign

Inspired from that the ideal state-feedback sliding variable is given as 𝜎∗(t, x) = 2BTPx(t), the following output-feedback
sliding variable is constructed by replacing x(t) with its estimation x̂(t):

�̂�(t, xt, ℏ) = 2BTPx̂(t) = 2BTPM−1(𝜃)x̂1(t, ℏ),

which is equivalent to

�̂�(t, xt, ℏ) = 2BTPx(t) + 2BTPM−1(𝜃)r(t) − 2BTP𝜒(t)
= 𝜎∗(t, x) + 2BTPM−1(𝜃)r(t) − 2BTP𝜒(t).

It is easy to verify that both the sliding surfaces 𝜎∗(t, x) = 0 and �̂�(t, xt, ℏ) = 0 cross the equilibrium x(t)= 0, when the
system uncertainty 𝛿(t, x) is fully compensated. However, due to the estimation errors 𝜒(t) and r(t), there is always dis-
crepancy between the ideal state-feedback sliding motion 𝜎∗(t, x) and its estimation �̂�(t, xt, ℏ). Only for small h, the sliding
motion �̂�(t, xt, ℏ) captures the dominant dynamical behaviors of 𝜎∗(t, x).
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F I G U R E 1 Attractivity of the ideal state-feedback sliding manifold
[Colour figure can be viewed at wileyonlinelibrary.com]

As shown in Figure 1, the system states can approach the vicinity of the output-feedback sliding surface �̂�(t, xt, ℏ) = 0
in a finite time, that is, ||�̂�(t, xt, ℏ)|| ≤ 𝜀(𝜃, 𝛼), where the vicinity size 𝜀(𝜃, 𝛼) is fixed for given h and 𝛼. Once the system
states reach the vicinity {x| ||�̂�(t, xt, ℏ)|| ≤ 𝜀(𝜃, 𝛼)}, they will slide along the surface �̂�(t, xt, ℏ) = 0 toward the terminal
region around the small vicinity of x = 0, that is, ||x(t)|| ≤ 𝛾(𝜛).

Then, the switching control law to cancel the effects of the uncertainty 𝛿(t, x) is given by

us(t, h, y) =

{
−𝜑1sign(�̂�(t, xt, ℏ)) −

𝜑2||�̂�(t,xt ,ℏ)|| sign(�̂�(t, xt, ℏ)), if �̂�(t, xt, ℏ) ≥ 𝜀(𝜃, 𝛼),

−𝜑1sign(�̂�(t, xt, ℏ)), otherwise.
(48)

which yields the following overall control law:

u(t, h, y) = un(t, h, y) + us(t, h, y)

=

{
−KM−1(𝜃)x̂1(t, ℏ) − 𝜑1sign(�̂�(t, xt, ℏ)) −

𝜑2||�̂�(t,xt ,ℏ)|| sign(�̂�(t, xt, ℏ)), if �̂�(t, xt, ℏ) ≥ 𝜀(𝜃, 𝛼)

−KM−1(𝜃)x̂1(t, ℏ) − 𝜑1sign(�̂�(t, xt, ℏ)), otherwise.
(49)

The existence and uniqueness of solutions for the closed-loop system (5) under the SMC control law (49) can still be
guaranteed by means of the method of steps, see, for example, References 21,22.

Theorem 2. For given h and 𝛼, the matrices P, S and Ti (i = 1,n), Q obtained from Theorem 1, the trajectories of the
closed-loop system (5) under the control law in (48) converge to the neighborhood of the sliding surface ||�̂�(t, xt, ℏ)|| ≤ 𝜀(𝜃, 𝛼),
if the delayed switching gains 𝜑1 and 𝜑2 satisfying{

𝜑1 ≥ 𝜚

𝜑2 ≥ 𝜀(𝜃,𝛼)⋅(𝜑1+𝜚)||�̂�(t,xt ,ℏ)||+𝜀(𝜃,𝛼)⋅𝜆max(Π(𝜃,h))𝜚2||�̂�(t,xt ,ℏ)||||�̂�(t,xt ,ℏ)||−𝜀(𝜃,𝛼) ,
(50)

where 𝜃 = col{𝜃1, 𝜃2, … , 𝜃n}, 𝜃i = (i − 1)h, and

Π(𝜃, h) = hS +
n∑

i=1
(𝜃i)2iTi, 𝜀(𝜃, 𝛼) = 2(𝛽r||M−T(𝜃)PB|| + 𝛽𝜒 ||PB||).

Moreover, the solution of the closed-loop system of (5) under the control law in (49) has the predefined ultimate bound:

{x| ||x(t)|| ≤ 𝛾(𝜛)}, 𝛾(𝜛) ≥ 𝜀(𝜃, 𝛼),

where 𝜛 = {𝜃, 𝜑1, 𝜑2}, and

𝛾(𝜛) =

√
𝜆max(P)

𝜆min(P)𝜆min(Q)
⋅
√

d(𝜛)

d(𝜛) = (𝜑2 − 𝜀(𝜃, 𝛼) ⋅ (𝜑1 + 𝜚) − 𝜆max(Π(𝜃, h))𝜚2) + q𝜀(𝜃, 𝛼) ⋅ (𝜑1 − 𝜚)
+ 𝜆min(Q)𝛽2

r + 𝜆min(Q)𝛽2
𝜒 .

http://wileyonlinelibrary.com
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Proof. When taking the term 𝛿(t, x) into consideration, we have

dV
dt

≤ g(t, xt, ẋt) + 2xT(t)PB(us(t, h, y) + 𝛿(t, x)) + 𝛿T(t, x)Π(𝜃, h)𝛿(t, x) (51)

where Π(𝜃, h) = hS +
∑n

i=1 (𝜃i)2iTi, and

g(t, xt, ẋt) = xT(t)He(PAs)x(t) + 2xT(t)PAd𝜒(t) − 2xT(t)PAr(𝜃)r(t)

+
n∑

i=1
{(𝜃i)2ixT

i+1(t)Tixi+1(t) − i(𝜃i)i ∫
t−h

t−ih
(s − t + ih)i−1xT

i+1(s)Tixi+1(s) ds}

+ hẋT(t)Sẋ(t) − h∫
t

t−h
ẋT(s)Sẋ(s) ds.

The item g(t, xt, ẋt) in (51) comes from the nominal design in Theorem 1, which is obtained by adding (34),(35),(36). By
virtue of (22) and (23), g(t, xt, ẋt) is converted into

g(t, xt, ẋt) = xT(t)He(PAs)x(t) + 2xT(t)PAd𝜒(t) − 2xT(t)PAr(𝜃)r(t)

+ 𝜉T(t)ΓT
2 (𝜃)T(𝜃)Γ2(𝜃)𝜉(t) −

n∑
i=1

i(𝜃i)i ∫
t−h

t−ih
(s − t + ih)i−1xT

i+1(s)Tixi+1(s) ds

+ h𝜉T(t)ΓT
1 (𝜃)SΓ1(𝜃)𝜉(t) − h∫

t

t−h
ẋT(s)Sẋ(s) ds, (52)

where T(𝜃) =
∑n

i=1 (𝜃i)2iTi. It follows from Lemma 2 and Remark 3 that inequality (38) still holds, even in the presence of
uncertainty. Thus, (52) represents the derivative of V(t, xt, ẋt) with 𝛿(t, x) = 0, which has been investigated in the nominal
design.

It follows thereby from (39) that the inequality below holds:

g(t, xt, ẋt) ≤ −𝜉T(t)Q𝜉(t) ≤ −𝜆min(Q)||𝜉||2,
where the locations of eigenvalues of the matrix Q can be used for estimating the stability margin.

The uncertainty 𝛿(t, x) appears on the right-hand side of (51) at the same time, when the delayed switching control
us(t, h, y) occurs. From (48), it is shown that

dV
dt

≤ −𝜆min(Q)||𝜉||2 + (𝜎∗(t, x))T ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)||sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]

+ 𝛿T(t, x,u)Π(𝜃, h)𝛿(t, x)

≤ −𝜆min(Q)||𝜉||2 + (�̂�(t, xt, ℏ))T ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)|| sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]

− 2rT(t)M−T(𝜃)PB ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)|| sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]

+ 2𝜒T(t)PB ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)|| sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]

+ 𝛿T(t, x,u)Π(𝜃, h)𝛿(t, x). (53)

The following relation holds

(�̂�(t, xt, ℏ))T ⋅ sign(�̂�(t, xt, ℏ)) = |�̂�(t, xt, ℏ)|, ||�̂�(t, xt, ℏ)|| ≤ |�̂�(t, xt, ℏ)| (54)

which yields an equivalent form of (53):

dV
dt

≤ −𝜆min(Q)||𝜉||2 − 𝜑1|�̂�(t, xt, ℏ)| + (�̂�(t, xt, ℏ))T ⋅ 𝛿(t, x)

− 2rT(t)M−T(𝜃)PB ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)|| sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]
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+ 2𝜒T(t)PB ⋅ [−𝜑1sign(�̂�(t, xt, ℏ)) −
𝜑2||�̂�(t, xt, ℏ)|| sign(�̂�(t, xt, ℏ)) + 𝛿(t, x)]

− 𝜑2
|�̂�(t, xt, ℏ)|||�̂�(t, xt, ℏ)|| + 𝛿T(t, x)Π(𝜃, h)𝛿(t, x)

≤ −𝜆min(Q)||𝜉||2 − 𝜑1|�̂�(t, xt, ℏ)| + 𝜚||�̂�(t, xt, ℏ)||
+ 𝜀(𝜃, 𝛼) ⋅ [𝜑1 +

𝜑2||�̂�(t, xt, ℏ)|| + 𝜚] − 𝜑2 + 𝜆max(Π(𝜃, h))𝜚2

≤ −𝜆min(Q)||𝜉||2 − |�̂�(t, xt, ℏ)| ⋅ (𝜑1 − 𝜚)

−
(

1 − 𝜀(𝜃, 𝛼)||�̂�(t, xt, ℏ)||
)
𝜑2 + 𝜀(𝜃, 𝛼) ⋅ (𝜑1 + 𝜚) + 𝜆max(Π(𝜃, h))𝜚2 (55)

where 𝜀(𝜃, 𝛼) = 2(𝛽r||M−T(𝜃)PB|| + 𝛽𝜒 ||PB||).
1. Vicinity of sliding surface ||�̂�(t, xt, ℏ)|| = 0.
If 1 − 𝜀(𝜃,𝛼)||�̂�(t,xt ,ℏ)|| ≥ 0, or equivalently ||�̂�(t, xt, ℏ)|| ≥ 𝜀(𝜃, 𝛼), system trajectories are attracted to approach the sliding

surface �̂�(t, xt, ℏ) = 0 under the switching gains 𝜑1 and 𝜑2:{
𝜑1 ≥ 𝜚

𝜑2 ≥ 𝜀(𝜃,𝛼)⋅(𝜑1+𝜚)+𝜆max(Π(𝜃,h))𝜚2

1− 𝜀(𝜃,𝛼)||�̂�(t,xt ,ℏ)||
.

Otherwise, the finite-time reachability property is destroying, because the constraint 1 − 𝜀(𝜃,𝛼)||�̂�(t,xt ,ℏ)|| ≥ 0 hardly holds. To
sum up, the system trajectories can reach the vicinity of the sliding surface �̂�(t, xt, ℏ) = 0 under the switching gains
satisfying (50).

2. Estimation of the boundary of x-vicinity.
Considering (55) together with 1 − 𝜀(𝜃,𝛼)||�̂�(t,xt ,ℏ)|| ≥ 0, we have

dV
dt

≤ −𝜆min(Q)||𝜉||2 − |�̂�(t, xt, ℏ)| ⋅ (𝜑1 − 𝜚)

−
(

1 − 𝜀(𝜃, 𝛼)||�̂�(t, xt, ℏ)||
)
𝜑2 + 𝜀(𝜃, 𝛼) ⋅ (𝜑1 + 𝜚) + 𝜆max(Π(𝜃, h))𝜚2

≤ −𝜆min(Q)||x||2 − 𝜆min(Q)𝛽2
r − 𝜆min(Q)𝛽2

𝜒 − 𝜀(𝜃, 𝛼) ⋅ (𝜑1 − 𝜚)
− (𝜑2 − 𝜀(𝜃, 𝛼) ⋅ (𝜑1 + 𝜚) − 𝜆max(Π(𝜃, h))𝜚2)

≤ 0. (56)

For the case 1 − 𝜀(𝜃,𝛼)||�̂�(t,xt ,ℏ)|| < 0, the attractivity of the sliding surface fails such that only the convergence of system states to
the vicinity of the equilibrium is ensured.

It thereby follows from (56) that ||x(t) ||≤c(𝜛), where 𝜛 = {𝜃, 𝜑1, 𝜑2}, and

c(𝜛) =

√
d(𝜛)
𝜆min(Q)

d(𝜛) = (𝜑2 − 𝜀(𝜃, 𝛼) ⋅ (𝜑1 + 𝜚) − 𝜆max(Π(𝜃, h))𝜚2) + 𝜀(𝜃, 𝛼) ⋅ (𝜑1 − 𝜚)
+ 𝜆min(Q)𝛽2

r + 𝜆min(Q)𝛽2
𝜒 .

Apparently, another constraint on ||x(t)|| is given by

𝜆min(P)||x(t)||2 ≤ V1(t, xt) ≤ 𝜆max(P)||x(t)||2. (57)

By combing (57) with ||x(t) ||≤c(𝜛), we obtain: ||x(t)|| ≤ 𝛾(𝜛),

where 𝛾(𝜛) =
√

𝜆max(P)
𝜆min(P)𝜆min(Q)

⋅
√

d(𝜛). This completes the proof. ▪
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T A B L E 1 System parameters

Physical notations l r J Agap R g

Value 0.15 m 0.01 m 0.0967 kg ⋅ m2 101.69 mm2 1.6 Ω 9.8 m ⋅ s−2

3.3.1 Design steps

The model (5) is derived based on the linearization of any Lipschitz nonlinear system around the equilibrium. Then, the
matrices A1, A2, … , An and B1 are obtained, where the domain for model (5) is defined as ||x(t)|| ≤ 𝜓 . Here, 𝜓 and 𝜚 are
known scalars. With Assumptions A1, we will follow

(1) For given h, if the solutions L1, L2, P, Q, S, Ti, to the LMIs (25),(26),(27) exists;
(2) Compute the static controller gain K by investigating the LMI (27);
(3) Select the value 𝛼 satisfying that 𝛼 ≥ ||As||𝜓 + ||Ad||𝛽𝜒 + ||Ar(𝜃)||𝛽r;
(4) With P, Q, S, Ti, h, 𝛼 obtained in Step (1)–(3), the switching gains 𝜑1 and 𝜑2 are chosen satisfying the constraint (57);
(5) Formulate the overall control law in (49) by using P, K, h, 𝜑1 and 𝜑2.

4 SIMULATION EXAMPLE: AN ACTIVE MAGNETIC BEARING SYSTEM
WITH VOLTAGE CONTROL

In this section, the effectiveness of the output-feedback LR is verified in an active magnetic bearing system with voltage
control. The nonlinear dynamic model of an active magnetic bearing system is represented as

⎧⎪⎨⎪⎩
�̇�(t) = (U − iR)
F(t) = cp2

1(t)𝜙
2(t), c = 0.75∕𝜇0Agap, p1(t) = 1∕(ay(t) + b)

J�̈�(t) = lF(t) − Mgr,

(58)

where J is the beam polar moment of inertia, Agap is the pole face area, M is the mass of beam, g is the gravitational
acceleration, l is the distance from pivot to actuator center, r is the displacement of the center of mass to the pivot, U is
the voltage supplied across the coils, i is the current flowing through the coils, and R is the electrical resistance. Here, a
and b are constants determined from the fit in the experiments. From Reference 23, the system parameters are shown in
Table 1.

The derivatives of F and p1(t) with respect to time t are, respectively, given as

Ḟ(t) = 2cp2
1(t)𝜙(t)�̇�(t) + 2c𝜙2(t)p1(t)ṗ1(t)

ṗ1(t) = −p2
1ẏ(t). (59)

With (60), differentiating �̈�(t) along the state trajectory of (58) yields

…
𝜃 (t) =

2lcp1(t)
JN

√
F
c
(U − iR) − 2lFp1(t)aẏ(t). (60)

The control input voltage can be specified as

U = JN
2lcp1

√
F∕c

V(t) + iR +
NFaẏ(t)
c
√

F∕c

where V is a virtual control input to be designed based on the delayed LR, and 𝛿(t, x) is the lumped distur-
bance in the actuator channel. Then, the nonlinear system (58) is transformed into the following triple integrator
model:
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…
𝜃 (t) = V(t) + 𝛿(t, x), (61)

which can be rewritten as (5), with

A =
⎡⎢⎢⎢⎣
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎦ .
In the simulation setup, only 𝜃(t − h) is measurable in system (61). The disturbance is chosen as 𝛿(t, x) = 2 sin(50t), and
the matching condition is given as

||𝛿(t, x)|| ≤ 𝜚, 𝜚 = 2. (62)

In light of Theorem 1 with h= 0.25, the following feasible solutions are obtained:

P =
⎡⎢⎢⎢⎣
0.0173 0.0942 3.2808
⋆ 27.9793 60.4991
⋆ ⋆ 73.3582

⎤⎥⎥⎥⎦ , L1 =
⎡⎢⎢⎢⎣
45.5522 −144.4984 27.9799
⋆ 1.8128 −1.9019
⋆ ⋆ 3.8832

⎤⎥⎥⎥⎦
L2 =

⎡⎢⎢⎢⎣
12.5346 143.1508 −27.9598
⋆ −1.6853 1.8992
⋆ ⋆ −3.8827

⎤⎥⎥⎥⎦ .
Then, the static output-feedback controller gain is obtained as

K =
[
0.003 0.0600 0.5420

]
,

and system (58) is stabilized for given h= 0.25. Hence, ℏ = {h, 2h, 3h}. The sliding manifold is chosen as �̂�(t, ℏ) = 0,
and

�̂�(t, ℏ) = PbM−1(h)x̂1(t, ℏ).

where x̂1(t, ℏ) = col{x1(t − h), x1(t − 2h), x1(t − 3h)}, and

Pb =
[
6.5616 120.9982 146.7164

]
M(h) =

⎡⎢⎢⎢⎣
1 0 0
1 −h 0.5h2

1 −2h 2h2

⎤⎥⎥⎥⎦ .
Then, the switching gain in (49) is specified as constant for attenuating the bounded disturbance 𝛿(t, x):

𝜑1 = 2, 𝜑2 = 2.5.

To this end, the output-feedback delayed controller via LR is formulated as

u(t) = −
[
0.003 0.0600 0.5420

]
x̂1(t, ℏ) − 2sign(�̂�(t, ℏ)) − 2||�̂�(t, ℏ)|| sign(�̂�(t, ℏ)). (63)

For comparison, two different types of state-feedback controller including the delayed controller and the delayed
controller via LR are, respectively, formulated as
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(A)

(C)

(B)

F I G U R E 2 Simulated and system responses to the distance input 𝛿(t,u, x) = 2 sin(t). (A) The state trajectory of 𝜃(t); (B) The state
trajectory of �̇�(t); (C) The state trajectory of �̈�(t) [Colour figure can be viewed at wileyonlinelibrary.com]

us(t) = −
[
1.1002 −2.1 1

]
x(t)

uslr(t) = −
[
0.003 0.0600 0.5420

]
x(t) − 1.2 𝜎∗(t, x)||𝜎∗(t, x)||

where 𝜎∗(t, x) = Ksbx(t), and

Ksb =
[
8.6618 150.9982 546.7244

]
.

Figure 2 reveals the states of system (58) under the state-feedback control law us(t), the robust state-feedback control law
uslr(t) via LR and the proposed output-feedback robust control law u(t) designed in this work, respectively. The green
lines in Figure 2 reveals the effectiveness of state-feedback control us(t) based on the nominal design, which has worse
disturbance attenuation capability than the robust law uslr(t) and u(t) in (63). It can be seen that the output-feedback
controller (63) introduces the stabilizing delays h, 2h and 3h in the closed loop for attenuating the oscillations in the
system trajectories, which can achieve similar robust performance to us(t) with full state information. It has been shown in
Figure 3 that the sliding motion �̂�(t, ℏ) converges to the vicinity of the sliding surface �̂�(t, ℏ) = 0, and eventually converges
to the vicinity of origin, that is, {x| ||x||≤0.28} in the presence of matched uncertainty. Moreover, from the average theory,
the delayed sliding motion �̂�(t, ℏ) has better filtering property of the state trajectories, when comparing with 𝜎∗(t, x).

In Figure 4, different delays are used to show the sensitivity of system trajectories to the changes in h. For fixed Ko
and 𝜑1, 𝜑2, the asymptotical stability can be ensured for the delays below their maximum value h* = 0.25. Figure 5 shows
that the use of h= 0.04 will be more efficient for smoothing the fluctuations in state �̈�(t) than h= 0.02, and thus the better
chattering attenuation is achieved with larger h.

To sum up, the delayed output-feedback controller has the following specific features: (1) the time-delay estima-
tor is of static form, which avoids introducing extra dynamical structure for state estimation and (2) the use of delayed

http://wileyonlinelibrary.com
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F I G U R E 3 Sliding motions [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

F I G U R E 4 Simulation results for different delays. (A) h= 0.13; (B) h= 0.55 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 The performance of system trajectories under
different time delays. [Colour figure can be viewed at
wileyonlinelibrary.com]

output-feedback control via LR can reduce the chattering effects in system trajectories, when compared with the
state-feedback case. Moreover, it is of design flexibility for the proper choice of h. Generally, there is a trade-off for appro-
priately selecting delays in the controller design: the bigger value of h results in a better reduction of chattering, and the
smaller value of h leads to a better state estimation accuracy.

5 CONCLUSION

A new approach to output feedback LR is proposed for uncertain system with measurement delays. The output-feedback
robust controller has specific useful properties comparing with pure static/obeserver-based output-feedback controller,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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which is of simple structure and less real-time computation cost. The upper bound of measurement delay keeping a
stability of system is estimated. The efficiency and merits of the proposed design procedure are validated through the
simulations of behavior an active magnetic bearing system driven by static output feedback control based on delayed
measurements.
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