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Sliding mode control of systems with time-varying delays via

descriptor approach

E. FRIDMANy, F. GOUAISBAUTz, M. DAMBRINEz and J.-P. RICHARDz

A descriptor approach to stability and control of linear systems with time-varying
delays, which is based on the Lyapunov–Krasovskii techniques, are combined with a
recent result on the sliding mode control of such systems. The systems under considera-
tion have norm-bounded uncertainties and uncertain bounded delays. The solution is
given in terms of linear matrix inequalities and improves the previous results based
on other Lyapunov techniques. A numerical example illustrates the advantages of the
new method.

1. Introduction

During the last decade a rich literature has been dedi-
cated to robust control of time-delay systems (e.g. Boyd
et al. 1994, Dugard and Verriest 1998, Fridman 2001,
2002, Fridman and Shaked, 2002a, b, 2003, Fu et al.
1997, Gouaisbaut et al. 2002, Ivanescu 2000,
Kolmanovskii and Richard 1999, Kolmanovskii et al.
1999, Kolmanovskii and Myshkis 1999, Li and de
Souza 1997, Mahmoud 2000, Moon et al. 2001,
Niculescu 2001 and references therein). Many existing
results concern systems with unknown but constant
delays. However, in some applications, such as net-
worked control or teleoperated systems, the assumption
of a constant delay is too restrictive; this can lead to bad
performances or, even worse, to unstable behaviours.

This paper combines two previous results to obtain a
more efficient sliding mode controller for uncertain
systems with time-varying delays and norm-bounded
uncertainties. Other results (Gouaisbaut et al. 2002) con-
cern varying delays but may lead to strong conditions
which reduce the dynamic performances.

The first of these results is the sliding mode design
(Gouaisbaut et al. 2002), which copes with stabilization
of systems with time-varying delays. The approach
relies on the construction of a Lyapunov-Razumikhin
function that allows fast variations of the delay but

leads to some conservatism on the upper bound of the
time-delay.
The second result given in Fridman (2001) concerns

the construction of a new class of Lyapunov–
Krasovskii functionals using a descriptor model trans-
formation. Unlike previous transformations, the
descriptor model leads to a system that is equivalent
to the original one (from the point of view of stability)
and requires bounding of fewer cross-terms.
Furthermore, following this approach, stability criteria
have been given in Fridman and Shaked (2003) for sys-
tems with time-varying delays without any assumption
on their derivatives (which was the case with the usual
Lyapunov–Krasovskii functionals).
The paper is organized as follows. Section 2 develops

a Lyapunov–Krasovskii approach on a descriptor repre-
sentation for an uncertain, linear, time-delay system.
This provides a stability condition expressed in term of
feasibility of a linear matrix inequality (LMI) (Boyd
et al. 1994). Then the design of a stabilizing memoryless
state feedback is derived. Section 3 deals with the design
of a sliding mode controller. This is achieved through
the resolution of a generalized eigenvalue problem that
can be solved efficiently using semidefinite programming
tools. Section 4 solves an illustrative example using
the present approach and compares it with previous
results.

Throughout, the superscript T stands for matrix
transposition, Rn denotes the n dimensional Euclidean
space, and Rn�m is the set of all n�m real matrices.
The notation P>0 for P 2 Rn�n means that P is
symmetric and positive definite. In represents the n� n
identity matrix.
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2. Stabilization of linear systems with norm-bounded

uncertainties by delayed feedback

This section considers the following uncertain linear
system with a time-varying delay:

_xxðtÞ ¼ ðA0 þH�ðtÞE0ÞxðtÞ þ ðA1 þH�ðtÞE1Þxðt� �ðtÞÞ

þ ðB0 þH�ðtÞE2ÞuðtÞ þ B1uðt� �ðtÞÞ,

xðtÞ ¼ �ðtÞ, t 2 ½�h, 0�, ð1Þ

where xðtÞ 2 Rn is the system state, uðtÞ 2 Rm is the
control input, h is an upper-bound on the time-delay
function (0 � �ðtÞ � h, 8t � 0Þ. The matrix �ðtÞ 2
Rp�q is a matrix of time-varying, uncertain parameters
satisfying

�TðtÞ�ðtÞ � Iq 8 t: ð2Þ

For simplicity, we consider only one delay, but the
results here may be easily generalized to the case of
multiple delays.

We seek a control law

uðtÞ ¼ KxðtÞ ð3Þ

that will asymptotically stabilize the system.

2.1. Stability issue

This subsection considers the following equation:

_xxðtÞ ¼ ð �AA0 þH�ðtÞ �EE0ÞxðtÞ þ ð �AA1 þH�ðtÞ �EE1Þxðt� �ðtÞÞ:

ð4Þ

Representing (1) in an equivalent descriptor form
(Fridman 2001):

_xxðtÞ ¼ yðtÞ,

0 ¼ �yðtÞ þ ð �AAT þH� �EETÞxðtÞ

� ð �AA1 þH� �EE1Þ

Z t

t��ðtÞ

yðsÞds

or

E _�xx�xxðtÞ ¼
0 In

�AAT þH� �EET �In

" #
�xxðtÞ

�
0

�AA1 þH� �EE1

" #Z t

t��ðtÞ

yðsÞds, ð5Þ

with

�xxðtÞ ¼ col fxðtÞ, yðtÞg, E ¼ diagfIn, 0g,

�AAT ¼ �AA0 þ �AA1, �EET ¼ �EE0 þ �EE1,

the following Lyapunov–Krasovskii functional is
applied:

VðtÞ ¼ �xxTðtÞEP �xxðtÞ þ V2ðtÞ, ð6Þ

where

P ¼
P1 0

P2 P3

" #
, P1 > 0, EP ¼ PTE � 0,

V2ðtÞ ¼

Z 0

�h

Z t

tþ�

yTðsÞ½Rþ �2 �EET
1
�EE1�yðsÞ ds d�:

ð7a--dÞ

The following result is obtained:

Lemma 1: The system (4) is asymptotically stable if
there exist n� n matrices 0<P1, P2, P3, R > 0 and
positive numbers �1, �2 that satisfy the following LMI:

� ¼

� hPT
0

�AA1

" #
PT

0

H

" #
hPT

0

H

" #

� �hR 0 0

� � ��1Ip 0

� � � ��2hIp

2
66666666664

3
77777777775

< 0 ð8Þ

where

� ¼ �0 þ
�1 �EET

T
�EET 0

0 hðRþ �2 �EET
1
�EE1Þ

" #
,

�0 ¼ PT
0 In
�AAT �In

" #
þ

0 In

�AAT �In

" #T

P,

and � denotes symmetrical entries.

Proof: Note that

�xxTðtÞEP �xxðtÞ ¼ xTðtÞP1xðtÞ

and, hence, differentiating the first term of (6) with
respect to t gives:

d

dt
f �xxTðtÞEP �xxðtÞg ¼ 2xTðtÞP1 _xxðtÞ ¼ 2 �xxTðtÞPT

_xxðtÞ

0

" #
: ð9Þ
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Replacing
�
_xxðtÞ

0

�
by the right side of (5) we obtain:

dVðtÞ

dt
¼ �xxTðtÞ�0 �xxðtÞ þ �0 þ �1 þ �2

þ hyTðtÞ Rþ �2 �EE
T
1
�EE1

� �
yðtÞ

�

Z t

t�h

yTðsÞ Rþ �2 �EET
1
�EE1

� �
yðsÞ ds, ð10Þ

where

�0ðtÞ ¼
�
�2

Z t

t��ðtÞ

�xxTðtÞPT 0

�AA1

� �
yðsÞ ds,

�1ðtÞ ¼
�
2 �xxTðtÞPT 0

H

� �
�ð �EE0 þ �EE1ÞxðtÞ,

�2ðtÞ ¼
�
�2

Z t

t��ðtÞ

�xxTðtÞPT
0

H

� �
� �EE1yðsÞ ds:

Applying the standard bounding

aTb � aTRaþ bTR�1b, 8a, b 2 Rn, 8R 2 Rn�n : R > 0,

and using the fact that �ðtÞ � h, we have

�0ðtÞ�� �xxTðtÞPT
0

�AA1

" #
R�1½0 �AAT

1 �P �xxðtÞþ

Z t

t��ðtÞ

yTðsÞRyðsÞds

�h �xxTðtÞPT
0

�AA1

" #
R�1½0 �AAT

1 �P �xxðtÞþ

Z t

t�h

yTðsÞRyðsÞds:

ð11Þ

Similarly

�1 � ��1
1 �xxTðtÞPT

0

H

" #
½0 HT�P �xxðtÞ þ �1x

TðtÞ �EE T
T
�EETxðtÞ,

�2 � h��1
2 �xxTðtÞPT

0

H

" #
½0 HT�P �xxðtÞ

þ �2

Z t

t�h

yTðsÞ �EET
1
�EE1yðsÞ ds:

Substituting the right sides of the latter inequalities
into (10), we obtain

dVðtÞ

dt
� �xxTðtÞ ��� �xxðtÞ ð12Þ

where

��� ¼ �þ hPT 0

�AA1

� �
R�1½0 �AAT

1 �P

þ ð��1
1 þ h��1

2 Þ � PT
0

H

� �
½0 HT�P:

Therefore, LMI (8) yields by Schur complements that
��� < 0 and hence _VV < 0, while V � 0, and thus (4) is
asymptotically stable (Kolmanovskii and Myshkis
1999, Fridman 2002). œ

2.2. State-feedback stabilization

The results of Lemma 1 can also be used to verify the
stability of the closed-loop obtained by applying (3) to
the system (1) if we set in (8)

�AAi ¼ Ai þ BiK , i ¼ 0, 1, �EE0 ¼ E0 þ E2K ð13Þ

and verify that the resulting LMI is feasible. The
problem with (8) is that it is linear in its variables
only when the state-feedback gain K is given. To find
K , we apply again the Schur formula to ���, the � term
being expanded. We thus obtain the following matrix
inequality:

�0 hPT
0

�AA1R
�1

" #
0

hIn

" #
�EET
T

0

" #

� �hR�1 0 0

� � �hR�1 0

� � � ���1
1 Iq

� � � �

� � � �

� � � �

2
6666666666666664

h
0

�EET
1

" #
��1
1 PT

0

H

" #
��1
2 hPT

0

H

" #

0 0 0

0 0 0

0 0 0

���1
2 hIq 0 0

� ���1
1 Ip 0

� � ���1
2 hIp

3
7777777777777777775

< 0: ð14Þ
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Consider the inverse of P. It is obvious from the require-
ment P1 > 0, and the fact that in (8) �ðP3 þ PT

3 Þmust be
negative definite, that P is non-singular. Defining

P�1 ¼ Q ¼
Q1 0

Q2 Q3

" #
and M ¼ diagfQ, I2ðnþpþqÞg

ð15a, bÞ

we multiply (14) by MT and M, on the left and on the
right, respectively. Choosing

R�1 ¼ Q1",

where " is a positive number, and introducing ���1 ¼ ��1
1

and ���2 ¼ ��1
2 , we obtain the LMI

� h
0

�AA1Q1"

" #
QT

0

hI

" #
QT

�EET
T

0

" #

� �hQ1" 0 0

� � �hQ1" 0

� � � � ���1Iq

� � � �

� � � �

� � � �

2
66666666666666666664

hQT
0

�EET
1

" #
���1

0

H

" #
h ���2

0

H

" #

0 0 0

0 0 0

0 0 0

�h ���2Iq 0 0

� � ���1Ip 0

� � � ���2hIp

3
7777777777777775

< 0, ð16Þ

where

� ¼
0 In

�AAT �In

" #
QþQT

0 In

�AAT �In

" #T

:

Substituting (13) into (16) and denoting Y ¼ KQ1,
BT ¼ B0 þ B1, we obtain the following.

Theorem 1: The control law of (3) asymptotically
stabilizes (1) if, for some positive number ", there exist
scalars ���1 > 0, ���2 > 0 and matrices 0 < Q1, Q2, Q3,
2 Rn�n Y 2 Rm�n that satisfy the following LMI:

Q2þQT
2 Q1A

T
TþYTBT

T�QT
2 þQ3 0 hQT

2

� �Q3�QT
3 h"ðA1Q1þB1YÞ hQT

3

� � �h"Q1 0

� � � �hQ1"

� � � �

� � � �

� � � �

� � � �

2
66666666666664

Q1E
T
T þ YTET

2 hQT
2E

T
1 0 0

0 hQT
3E

T
1

���1H h ���2H

0 0 0 0

0 0 0 0

� ���1Iq 0 0 0

� �h ���2Iq 0 0

� � � ���1Ip 0

� � � � ���2hIp

3
777777777777777775

< 0

ð17Þ

The state-feedback gain is then given by

K ¼ YQ�1
1 : ð18Þ

3. Sliding mode controller

This section focuses on time-delay systems that can be
represented, possibly, after a change of state coordinates
and input, in the following regular form (Gouaisbaut
et al. 2002, Perruquetti and Barbot 2002):

dz1ðtÞ

dt
¼ ðA11 þH�ðtÞE0Þz1ðtÞ þ ðAd11 þH�ðtÞE1Þ

� z1ðt� �ðtÞÞ þ ðA12 þH�ðtÞE2Þz2ðtÞ

þ Ad12z2ðt� �ðtÞÞ

dz2ðtÞ

dt
¼

X2
i¼1

ðA2iziðtÞ þ Ad2iziðt� �ÞÞ þDuðtÞ þ f ðt, ztÞ,

zðtÞ ¼ �ðtÞ for t 2 �h, 0½ �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð19Þ
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where zðtÞ ¼ ðz1, z2Þ
T, z1 2 Rn�m, z2 2 Rm, Aij , Adij,

i ¼ 1, 2, j ¼ 1, 2, Ek, k¼ 0, 1, 2,H are constant matrices
of appropriate dimensions, D is a regular m�m
matrix, the matrix �ðtÞ is a time-varying matrix of
uncertain parameters, u 2 Rm is the input vector, � is a
time-varying delay satisfying 0 � �ðtÞ � h, 8t � 0, ztð�Þ
is the function associated with z and defined on �h, 0½ �

by ztð�Þ ¼ zðtþ �Þ, � is the initial piecewise
continuous function defined on �h, 0½ �.

We will assume that:

(A1) ðA11 þ Ad11,A12 þ Ad12Þ is controllable.

(A2) f is Lipschitz continuous and satisfies the
inequality

f ðt, ztÞ
�� �� < FMðt, ztÞ, 8t � 0,

where FMðt, ztÞ is a continuous functional
assumed to be known a priori,

(A3) �ðtÞ is a time-varying matrix of uncertain param-
eters satisfying �TðtÞ�ðtÞ � I 8 t:

Consider the following switching function:

sðzÞ ¼ z2 � Kz1, ð20Þ

with K 2 Rm�ðn�mÞ: Let �, � be the linear functions
defined by

�ðzðtÞÞ ¼
X2
i¼1

ðA2i � KA1iÞziðtÞ,

�ðzðtÞÞ ¼ E0z1ðtÞ þ E2z2ðtÞ

ð21Þ

and let DM be the following functional:

DMðztÞ ¼ Ad21�KAd11k kþ KHk k E1k kð Þ sup
�h���0

z1ðtþ �Þ
�� ��

þ Ad22�KAd12k k sup
�h���0

z2ðtþ �Þ
�� ��: ð22Þ

Following Gouaisbaut et al. (2002) and using the
results of Section 2, we designed a sliding mode control-
ler that will stabilize system (19) under less conservative
assumptions on the delay law.

Theorem 2: Assume A1–A3. If, for some positive
number ", there exist positive numbers ���1, ���2 and matrices

0 < Q1, Q2, Q3 2Rðn�mÞ�ðn�mÞ, Y 2Rm�ðn�mÞ that satisfy
the following LMI:

Q2 þQT
2 X12 0 hQT

2

� �Q3 �QT
3 h"ðAd11Q1 þ Ad12YÞ hQT

3

� � �h"Q1 0

� � � �h"Q1

� � � �

� � � �

� � � �

� � � �

2
66666666666664

Q1E
T
T þ YTET

2 hQT
2E

T
1 0 0

0 hQT
3E

T
1

���1H h ���2H

0 0 0 0

0 0 0 0

� ���1I 0 0 0

� �h ���2I 0 0

� � � ���1I 0

� � � � ���2hI

3
777777777777775

<0, ð23Þ

where

X12 ¼ Q1ðA
T
11 þ AT

d11Þ þ YTðAT
12 þ AT

d12Þ �QT
2 þQ3,

then the sliding mode control law

uðtÞ ¼ �D�1

�
�ðzðtÞÞ þ ðFMðt, ztÞ þDMðztÞ

þ KHk k �ðzðtÞÞ
�� ��þMÞ

sðzðtÞÞ

sðzðtÞÞ
�� ��

�
, ð24Þ

where K ¼ YQ�1
1 , M > 0 and s,�,�,DM are defined in

(20–22), asymptotically stabilizes system (19) for any
delay function �ðtÞ � h.

Proof: The proof is divided into two parts. The first is
dedicated to the proof of the existence of an ideal sliding
motion on the surface sðzÞ ¼ 0; the second is dedicated
to the proof of the stability of the reduced system.

Attractivity of the manifold:

Consider the Lyapunov–Krasovskii functional:

VðtÞ ¼ sTðzðtÞÞsðzðtÞÞ ¼ sðzðtÞÞ
�� ��2: ð25Þ
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Differentiating (25) on the trajectories of the closed-
loop system gives:

_VVðtÞ ¼ 2sTðtÞð�ðzðtÞÞ þ
X2
i¼1

½Ad2i �KAd1i� ziðt� �Þ þDuðtÞ

þ f ðt, ztÞ �KH�ðtÞ½�ðzðtÞÞ þE1z1ðt� �ðtÞÞ�Þ:

Using the expression of the control law (24), we get

_VVðtÞ ¼ 2sTðtÞ

�X2
i¼1

ðAd2i �KAd1iÞziðt� �Þþ f ðt,ztÞ

�KH�ðtÞ½�ðzðtÞÞþE1z1ðt� �ðtÞÞ�

� ½FMðt,ztÞþDMðztÞþ KHk k �ðzðtÞÞ
�� ��þM�

s

sk k

�
,

then we derive that:

_VV � �2M sðzðtÞ
�� �� ¼ �2MVðtÞ1=2:

This last inequality is known to prove the finite-time
convergence of the system (19) into the surface s ¼ 0
(Perruquetti and Barbot 2002).

Stability of the reduced system:

On the sliding manifold sðzÞ ¼ 0, the system is driven
by the following reduced system:

dz1ðtÞ

dt
¼ ðA11 þ A12K þH�ðtÞðE0 þ E2KÞÞz1ðtÞ

þ ðAd11 þ Ad12K þH�ðtÞE1Þz1ðt� �ðtÞÞ ð26Þ

According to Theorem 1, this system is asymptotically
stable for any delay law �ðtÞ � h if, for some positive
number ", there exist positive numbers ���1, ���2 and
matrices 0 < Q1, Q2, Q3, Y 2 Rm�ðn�mÞ that satisfy
the LMI (24). œ

Remark 1: Note that the explicit knowledge of the
time-dependance of the delay is not required in the
expression of the control law uðtÞ, all is needed is
the knowledge of an upper bound h.

4. Example

We demonstrate the applicability of the above theory
by solving the example from (Gouaisbaut et al. 2002) for
a system without uncertainty. Consider system

_xxðtÞ ¼ AxðtÞ þ Adxðt� �Þ þ B½uðtÞ þ f ðx, tÞ�, ð27Þ

with a time-varying delay, where

A ¼
2 0

1:75 0:25

� �
, Ad ¼

�1 0

�0:1 �0:25

� �
, B ¼

1

1

� �
:

ð28Þ

By an appropriate change of variables, this system is
equivalent to:

_zzðtÞ ¼ ~AAzðtÞ þ ~AAdzðt� �Þ þ ~BB½uðtÞ þ f ðx, tÞ�,

where

~AA ¼
0:25 0

1:75 2

� �
, ~AAd ¼

�0:9 �0:65

�0:1 �0:35

� �
, ~BB ¼

0
1

� �
:

ð29Þ

As the pair ð ~AA11, ~AA12Þ is not controllable, the system
cannot be stabilized independently of the delay.
For this system, previous published works give the

following results:

. In the case of a constant delay and f ¼ 0, the system
may be stabilized using a linear memoryless control-
ler uðtÞ ¼ KxðtÞ for the following maximum values of
h: h ¼ 0:51 by Li and de Souza (1997), h ¼ 0:984 by
Fu et al. (1997) and h ¼ 1:46 by Ivanescu (2000). By
sliding mode control for the case of constant delay
and f 6¼ 0 the maximum value found for h is 1.65.

. Applying Theorem 2 in the case of a time-varying
delay and f 6¼ 0, the corresponding value of
h ¼ 3:999 is achieved.

This is summarized in table 1.

5. Conclusions

The problem of finding a sliding mode controller that
asymptotically stabilizes a system with time-varying
delay and norm-bounded uncertainty has been solved.
A delay-dependent solution has been derived using a
special Lyapunov–Krasovskii functional. The result is
based on a sufficient condition and it thus entails an
overdesign. This overdesign is considerably reduced
due to the fact that the method is based on the descrip-
tor representation. As a byproduct, for the first time on
the basis of the descriptor model transformation, the
solution to the stabilization problem by the feedback,

Table 1. Comparison of results for example (26–27).

Delay upper

bound

Type of

delay

Theorem 2 3.999 time-varying

Gouaisbaut et al. (2002) 1.650 constant

Ivanescu (2000) 1.460 constant

Fu et al. (1997) 0.984 constant

Li and de Souza (1997) 0.510 constant
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which depends on both non-delayed and delayed state,
is solved. Finally, a numerical example shows the effec-
tiveness of the combined method: sliding mode and
descriptor representation.
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