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a b s t r a c t

The paper considers a distributed robust estimation problem over a network with directed topology
involving continuous time observers. While measurements are available to the observers continuously,
the nodes interact according to a Round-Robin rule, at discrete time instances. The results of the paper
are sufficient conditions which guarantee a suboptimal H∞ level of consensus between observers with
sampled interconnections.
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1. Introduction

The problem of distributed estimation is one of very active top-
ics in the modern control theory and signal processing literature.
Interest in this problem is motivated by a growing number of ap-
plications where a decision about the observed process must be
made simultaneously by spatially distributed sensors, each taking
partial measurements of the process.

When the process and measurements are subject to noise and
disturbance, robustness aspects of the problem come into promi-
nence. In the past several years, a number of results have been
presented in the literature which develop the H∞ control and
estimation theory for distributed systems subject to uncertain
perturbations; e.g., see [1–7]. In particular, methodologies of dis-
tributed sampled-data H∞ filtering have been considered, e.g.,
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in [8]. That reference emphasized several distinctive aspects of
realistic sensor networks, among them coupling between sensor
nodes through the information communicated between neigh-
bouring sensor nodes and the sampled nature of that coupling,
which is dictated by the digital communication technology. The
latter feature of sampled data networks is an important consider-
ation in any network design, because the amount of information
that can be transmitted to/received at each node of the network is
constrained, due to data rate limitations of digital communication
channels.

In this paper, we address some of the challenges specific to
Round-Robin type communication protocols. The Round-Robin
protocol is a commonly used protocol for information transmis-
sion in networked control systems. It allows each node to commu-
nicate with its neighbours intermittently, during scheduled time
slots and is known to lead to bandwidth savings. Fromahybrid sys-
tems perspective this protocol has been studied in details in [9,10].
More recently, it has been considered in the context of time-delay
systems in [11], where an analysis of exponential stability and
L2 properties of networked control systems with Round-Robin
scheduling was presented using a delay switching system mod-
elling. In this paper, we further develop this technique in the
context of robust distributed estimation with intermittent com-
munications between sensing nodes. The type of communication
we consider is where the nodes broadcast their information at

http://dx.doi.org/10.1016/j.sysconle.2014.05.001
0167-6911/© 2014 Elsevier B.V. All rights reserved.
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every scheduled time instant to all nodes in their vicinity, but they
listen to only one node within their neighbourhood at a time, ac-
cording to the Round-Robin rule. For instance, this can be achieved
by encoding the transmitted information with a node-specific key.
i.e., when node i receives signals from multiple sources, it extracts
the information sent by node j by utilizing the key of that node, and
continues doing this by rotating the keys.

The objective of this paper is to develop an algorithm for the
synthesis of a Round-Robin type protocol for a network of dis-
tributed observers, to allow this network to track dynamics of a
linear uncertain plant. Unlike many existing approaches to dis-
tributed estimation, the salient feature of our methodology is that
individual estimatorsmay not be able to track the plant, if they rely
solely on their own measurements, because the plant may not be
observable from the node’s measurements. This issue has recently
been emphasized in [5–7] which demonstrated that the consensus
between sensors plays a crucial role in enabling individual sensor
nodes to overcome the lack of detectability and successfully track
the plant. Necessary conditions on the network to ensure the plant
is detectable/observable by the network have recently been pre-
sented in [12,13].

The first contribution of this paper is a version of the proto-
col of [11] to be used with the distributed estimation schemes
proposed [5–7]. We show that instead of continuously exchang-
ing information (the type of networks considered in those refer-
ences), the node observers can achieve the relative H∞ consensus
objective by exchanging information at certain sampling times, by
polling one neighbour at a time. It is assumed that sampling times
are known and agreed upon at each node. Technically, this would
require all nodes to have their clocks synchronized, e.g., by means
of a network time protocol [14].

Our second contribution demonstrates that the Round-Robin
design of [11] can be applied to derive a network of non-switching
observers. Of course, each observer periodically switches between
input channels, but the observer gains remain unchanged. This
is an important feature of our methodology to ensure its scala-
bility. In a large network of distributed estimators, switching of
observer gains typically leads to a combinatorially complex
scheduling problem, and necessitates the development of addi-
tional tools to resolve this complexity; see [7]. We show that these
issues are avoidable in observer networks of the type considered
in this paper.

Our main result is a sufficient condition, expressed in the form
of Linear Matrix Inequalities (LMIs), from which filter and inter-
connection gains for each node estimator can be computed, to
ensure the network of sampled data observers using switching
communications converges to the trajectory of the observed plant
by achieving consensus between the filters at every node. Con-
ditions for consensus of multi-agent systems using sampled data
communications or systems communicating over switching graphs
are well known in the literature [15,16]. This includes an obser-
vation that the sampling period has a significant effect on the
system performance [17]. As the example presented in Section 4
illustrates, our conditions allow to investigate the effects of in-
termittent sampled communications on the system performance
as well. At the same time, our result provides a guarantee of the
network consensus performance in the presence of disturbances.
Since the consensus between observers is essential for the network
to be able to overcome observability/detectability limitations of in-
dividual observers [5,13], consensus performance is seen as an im-
portant design consideration which results in this paper address.

As in [5–7], ourmethodology relies on certain vector dissipativ-
ity properties of the large-scale system comprised of the observers’
error dynamics. However, different from these references, to estab-
lish these vector dissipativity properties, we employ a novel class
of generalized supply rateswhich reflects the sampled-data nature

of interconnections betweenobservers. The general idea behind in-
troducing such generalized supply rates can be traced to [18] (also,
see [6]), but our proposal here makes use of special properties of
sampled signals. In the limit, when the maximum sampling period
approaches zero, these generalized supply rates vanish, and one
recovers the vector dissipativity properties of error dynamics es-
tablished in [5]. Thus, the feasibility of the conditions proposed for
systemswith continuously operating interconnections can be used
as a preliminary (but not conclusive) test for the conditions pro-
posed here. Our numerical example illustrates this point very well,
showing a negligible difference between the disturbance attenu-
ation levels obtained using the benchmark algorithm of [6] and
those obtained using our conditions under a small sampling rate.
At the same time, the feasibility of our conditions makes explicit
the dependence of the proposed algorithm on the sampling period.
Being only sufficient conditions, our conditions are potentially con-
servative, but the fact that the techniques used in the derivation of
these conditions showed substantial reduction of conservatism in
similar problems [11] is encouraging.

The paper is organized as follows. The problem formulation,
alongwith the graph theory preliminaries is presented in Section 2.
Themain results of the paper are given in Section 3. In Section 4,we
discuss an illustrative example, and Section 5 concludes the paper.
Notation: throughout the paper, Rn denotes a real Euclidean n-
dimensional vector space, with the norm ∥x∥ , (x′x)1/2; here the
symbol ′ denotes the transpose of a matrix or a vector. L2[0, ∞)
will denote the Lebesgue space of Rn-valued vector-functions z(·),
defined on the time interval [0, ∞), with the norm ∥z∥2 , (


∞

0
∥z(t)∥2dt)1/2 and the inner product


∞

0 z1(t)′z2(t)dt .⊗ is the Kro-
necker product of matrices, 1n ∈ Rn is the column-vector of ones.
Also, det X is the determinant of X .

2. The problem formulation

2.1. Graph theory

Consider a filter network with N nodes and a directed graph
topology G = (V , E ); V = {1, 2, . . . ,N}, E ⊂ V × V are the
set of vertices and the set of edges, respectively. The notation (j, i)
will denote the edge of the graph originating at node j and end-
ing at node i. In accordance with a common convention [15], we
consider graphs without self-loops, i.e., (i, i) ∉ E. However, each
node is assumed to have complete information about its filter and
measurements.

For each i ∈ V , we denote Vi = {j : (j, i) ∈ E } to be the ordered
set of nodes supplying information to node i, i.e., the neighbour-
hood of i. Without loss of generality, suppose that the elements of
Vi are ordered in the ascending order. The cardinality of Vi, known
as the in-degree of node i, is denoted by pi; i.e., pi is equal to the
number of incoming edges for node i. Also, the out-degree of node
i (i.e., the number of outgoing edges) is denoted by qi.

Without loss of generality the graph G will be assumed to be
weakly connected, that is, for every two nodes of G there is an
undirected path between these two nodes. The rationale for this
assumption is based on [5, Proposition 1]; according to that propo-
sition H∞ consensus optimization problems over disconnected
graphs are reducible to the corresponding problems over individ-
ual weakly connected components.

Let A = [aij]Ni,j=1 be the adjacency matrix of the digraph G , i.e.,
aij = 1 if (j, i) ∈ E , otherwise aij = 0. Also, let L be the N × N
Laplacian matrix of the graph G , L = diag[p1, . . . , pN ] − A .

In the sequel, a shift permutation operator defined on elements
of the set Vi will be used:

Π{j1, . . . , jpi−1, jpi} = {jpi , j1, . . . , jpi−1}. (1)
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Furthermore, Π k(Vi) will denote the set obtained from Vi using
k consecutive shift permutations (1). In regard to this set, the
following notationwill be used throughout the paper unless stated
otherwise: for ν ∈ {1, . . . , pi}, jν is the ν-th element in the ordered
set Vi. Conversely, ν

k,i
j ∈ {1, . . . , pi} is the index of element j in the

permutation Π k(Vi). We will omit the superscript k,i if this does
not lead to ambiguity.

2.2. Distributed estimation with H∞ consensus

Consider a plant described by the equation

ẋ = Ax + B2w(t). (2)

Here x ∈ Rn is the state of the plant, and w(t) ∈ Rmw is a distur-
bance. We also assume w(t) ∈ L2[0, ∞), so that the L2-integrable
solution of (2) with the initial condition x(0) = x0 exists on any fi-
nite interval [0, T ] [19, p. 125]. Furthermore, it will be convenient
to assume that the plant was at the state x0 for all t ≤ 0.

The distributed filtering problem under consideration is to es-
timate the state of the system (2) using a network of filters con-
nected according to the graph G . Each node takes measurements

yi(t) = Cix(t) + D2iw(t) + D̄2ivi(t); (3)

vi(t) ∈ Rmv is a measurement disturbance. As seen from (3), the
measurements are assumed to be taken continuously. Although
in practice, measurements are usually taken at discrete time in-
stances, we assume that the data rate of the sensors is high enough
to allow for the continuous-time interpretation of the measure-
ment signals yi. This will enable us to focus exclusively on the ef-
fects due to sampling and intermittence of interconnections.

The measurements are processed by a network of observers
connected over the graph G . The key assumption in this paper is to
allow the observers to make use of their local measurements con-
tinuously, however they can only interact with each other at dis-
crete time instances tk, k = 0, 1 . . . , with t0 = 0. For simplicity, we
assume that this schedule of updates is known to all participants in
the network, and therefore all nodes exchange information at the
same time instance tk. However, at every time instance tk only one
neighbour in the set Vi is polled by each node i, according to the
‘Round-Robin’ rule. Formally, this leads us to define the following
observer protocol: for t ∈ [tk, tk+1), k = 0, 1, . . . ,

˙̂xi = Ax̂i(t) + Li(yi(t) − Cix̂i(t))

+ Ki


j∈Πk(Vi)

Hi(x̂j(tk−ν
k,i
j +1) − x̂i(tk−ν

k,i
j +1)), (4)

where x̂i(t) is the estimate of the plant state x(t) calculated at node
i, the matrices Li, Ki are parameters of the filters to be determined,
and Hi is a givenmatrix. All observers are initiated with zero initial
condition, x̂i(t) = 0 for all t ≤ 0 and all i = 1, . . . ,N . In particular,
this ensures that in (4), the terms sampled at times tk−ν

k,i
j +1 < 0

are equal to zero.
From now on, we will omit the time variable when a signal is

considered at time t , and will write, for example, x̂i for x̂i(t).
The last term in (4) reflects the desire of each node observer

to update its estimate of the plant using feedback from the neigh-
bours in its neighbourhood, according to the consensus estimation
paradigm [20,5]. However, unlike these references, under the pro-
posed protocol, only one neighbour is polled at each time tk to pro-
vide a ‘neighbour feedback’, and this sample is stored and used by
the observer until time tk+pi . The feature of the proposed Round-
Robin type protocol is to poll the neighbours one at a time, in a
cyclic manner. Formally, this can be described by first applying the
shift permutation operator Π to the neighbourhood set at every

time instance tk, and then selecting the first element from the re-
sulting permutation Π k(Vi) for feedback.

Let ei = x− x̂i be the local estimation error at node i. This error
satisfies the equation:
ėi = (A − LiCi)ei + (B − LiDi)ξi

+ KiHi


j∈Πk(Vi)

(ej(tk−ν
k,i
j +1) − ei(tk−ν

k,i
j +1)). (5)

Here we used the notation ξi to represent the perturbation vector
[w′ v′

i ]
′, and the matrices B,Di are defined as follows: B = [B2 0],

Di = [D2i D̄2i]. Since the plant was at the state x(t) = x0 for all
t ≤ 0, the initial conditions for (5) are ei(t) = x0 ∀t ≤ 0.

Since the error dynamics (5) are governed by L2 integrable dis-
turbance signals ξi, we can only expect the node observers to con-
verge in L2 sense. To quantify the transient consensus performance
of the observer network (4) under disturbances, consider the cost
of disagreement between the observers caused by a particular vec-
tor of disturbance signals ξ(·) = [ξ1(·)

′ . . . ξN(·)′]′,

J(ξ) =
1
N


∞

0

N
i=1


j∈Πk(Vi)

∥x̂j(t) − x̂i(t)∥2dt

=
1
N


∞

0

N
i=1


j∈Πk(Vi)

∥ej(t) − ei(t)∥2dt, (6)

where k is a time-dependent index, k = 0, 1, . . . , defined so that
for every t ∈ [0, ∞), tk ≤ t < tk+1. The functional (6) was origi-
nally introduced in [5] as a measure of consensus performance of a
corresponding continuous-time observer network. It is worth not-
ing that for each t,


j∈Πk(Vi)

∥x̂j(t)− x̂i(t)∥2 is independent of the
order in which node i polls its neighbours, so that
j∈Πk(Vi)

∥x̂j(t) − x̂i(t)∥2
=


j∈Vi

∥x̂j(t) − x̂i(t)∥2.

Therefore, the inner summation in (6) can be replaced with sum-
mation over the neighbourhood set Vi. This observation leads to
the same expression for J(ξ) as in the case of continuous-time net-
works [5],

J(ξ) =
1
N


∞

0

N
i=1


(pi + qi)∥ei(s)∥2

− 2e′

i


j∈Vi

ej(s)


ds. (7)

The following distributed estimation problem is a version of
the distributedH∞ consensus-based estimation problemoriginally
introduced in [5,6], modified to include the Round-Robin type
protocol (4).

Definition 1. The distributed estimation problem under consider-
ation is to determine a collection of observer gains Li and intercon-
nection coupling gains Ki, i = 1, . . . ,N , for the filters (4) which
ensure that the following conditions are satisfied:
(i) in the absence of uncertainty, the interconnection of unper-

turbed systems (5) must be exponentially stable;
(ii) the filter must ensure a specified level of transient consensus

performance, as follows:

sup
x0,ξ≠0

J(ξ)

∥x0∥2
P +

1
N ∥ξ∥

2
2

≤ γ 2. (8)

Here, ∥x0∥2
P = x′

0Px0, P = P ′ > 0 is amatrix to be determined,
and γ > 0 is a given constant.

In [5], the quantity on the left-hand-side of (8) was referred to as
the mean-square L2 disagreement gain of the distributed observer.

Note that unlike [5,6], here we aim to achieve internal stability
andH∞ performance of the observer using a different communica-
tion protocol, which involves sampling of observer inputs accord-
ing to the Round-Robin rule.
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3. The main results

Our approach to solving the problem in Definition 1 will fol-
low the methodology for the analysis of stability and L2-gain for
networked control systems proposed in [11]. In this paper, this
methodology is further extended to derive synthesis conditions for
a network of observers. The methodology in [11] makes use of
the time-delay approach to sampled-data control started in [21].
In [11] the closed-loop system under consideration is presented as
a switched systemwithmultiple and ordered time-varying delays.

As can be seen from (5), if the observer at node i polls a channel
at time tk−pi+1, the next time the same channel will be polled at
time tk+1. The longest time between polls of the same channel at
node i constitutes themaximum delay in communication between
node i and its neighbours, which will be denoted by τi:

τi = max
k

(tk+1 − tk−pi+1).

The largest communication delay in the network is then τ = maxi
τi. It is easy to see from these definitions that τ = maxk(tk+1 −

tk−p̄+1), where p̄ = maxi pi.
Consider the following Lyapunov–Krasovskii candidate for the

system (5):

Vi(ei) = e′

iY
−1
i ei +

 t

t−τi

e−2αi(t−s)ei(s)′Siei(s)ds

+ τi

 t

t−τi

e−2αi(t−s)ėi(s)′(τi + s − t)Riėi(s)ds, (9)

where Yi = Y ′

i > 0, Ri = R′

i ≥ 0, Si = S ′

i ≥ 0 and αi ≥ 0, i =

1, . . . ,N , are matrices and constants to be determined. Vi(ei) is
a standard Lyapunov–Krasovskii functional used in the literature
on exponential stability of systems with time-varying delays; e.g.,
see [11].

Given a matrixWi = Wi > 0, define

Wi(u, z) =
π2

4
(u − z)′Wi(u − z).

Theorem 1. Suppose there exist gains Ki, Li, matrices Wi = W ′

i > 0,
and constants αi > 0, 0 < πi < 2αiq−1

i , i = 1, . . . ,N, such that
the following vector dissipation inequality holds for all i = 1, . . . ,N:
For t ∈ [tk, tk+1),

V̇i(ei) + 2αiVi(ei) −


j∈Vi

πjVj(ej)

+


j:i∈Vj

τ 2
j

 ė′

iWiėi −

j∈Vi

Wj(ej, ej(tk−ν
k,i
j +1))

+
1
γ 2

(pi + qi)∥ei∥2
−

2
γ 2

e′

i


j∈Vi

ej − ∥ξi∥
2

≤ 0, (10)

where ν
k,i
j is the index of j in the ordered permutation set Π k(Vi).

Then the system (5) satisfies conditions (i) and (ii) in Definition 1.

The proof of this theorem and other statements are given in the
Appendix.

Remark 1. Let Vi = {j1, . . . , jpi}, and define

Si(ei, ėi, ej1 , . . . , ejpi , ξi)

=


j:i∈Vj

τ 2
j

 ė′

iWiėi −

j∈Vi

Wj(ej, ej(tk−ν
k,i
j +1))

+
1
γ 2

(pi + qi)∥ei∥2
−

2
γ 2

e′

i


j∈Vi

ej − ∥ξi∥
2.

Then, inequality (10) canbewritten in the standard formof a vector
dissipation inequality [5],

V̇i(ei) + 2αiVi(ei) −


j∈Vi

πjVj(ej) ≤ −Si(ei, ėi, ej1 , . . . , ejpi , ξi).

This prompts for an interpretation of V (e) = [V1(e1), . . . , VN(eN)]′

and [S1, . . . , SN ]
′ as, respectively, a vector storage function and

a vector supply rate for the large scale system comprised of the
error dynamics subsystems (5) [22,5]. Strictly speaking, in our case
such an interpretation is somewhat artificial, since for example, the
derivative signal ėi is not an output of ‘subsystem’ i, and is not used
for feedback by any of the neighbours this node. Nonetheless, in
the proof of Theorem 1 the functions Si will play a role analogous
to that played by generalized supply rates in [18,5,6].

In what follows we derive a sufficient condition for the dissi-
pation inequality (10) to hold. We begin with a technical lemma
which essentially restates the corresponding lemma of [23] in the
form convenient for the subsequent use in the paper. Consider a
vector δ = [δ′

0, . . . , δ
′
pi ]

′, δν ∈ Rn. Also, for given n × n matrices
Ri = R′

i ≥ 0 and Gi, define

Ψi =



Ri
1
2
(Gi + G′

i) · · ·
1
2
(Gi + G′

i)

1
2
(Gi + G′

i) Ri · · ·
1
2
(Gi + G′

i)

...
...

. . .
...

1
2
(Gi + G′

i)
1
2
(Gi + G′

i) · · · Ri


.

Lemma 1. Suppose the matrices Ri = R′

i ≥ 0 and Gi are such that
Ri Gi
G′

i Ri


≥ 0. (11)

Then

τi


1

t − tk
δ′

0Riδ0 +

pi−1
ν=1

1
tk−ν+1 − tk−ν

δ′

νRiδν

+
1

tk−pi+1 − t + τi
δ′

piRiδpi


≥ δ′Ψiδ.

Let ei = [ei(tk)′ . . . ei(tk−pi+2)
′ ei(tk−pi+1)

′
]
′, ēi = [e′

i e
′

i ei(t −

τi)
′
]
′, and Ti ∈ R(pi+1)n×(pi+2)n be the following matrix

Ti =

 1 −1 0 · · · 0 0
0 1 −1 · · · 0 0

. . . · · · · · · · · · . . . · · ·

0 0 0 · · · 1 −1

⊗ I.

Define Ψ̄i = e−2αiτiT ′

i ΨiTi and partition this matrix in accordance
with the partition of ēi:

Ψ̄i = e−2αiτiT ′

i ΨiTi =

Ψ̄i,11 Ψ̄i,12 Ψ̄i,13
Ψ̄ ′

i,12 Ψ̄i,22 Ψ̄i,23

Ψ̄ ′

i,13 Ψ̄ ′

i,23 Ψ̄i,33

 .

Also, let us introduce the correspondingly partitioned matrix

Ψ̃i =

Ψ̃i,11 Ψ̃i,12 Ψ̃i,13

Ψ̃ ′

i,12 Ψ̃i,22 Ψ̃i,23

Ψ̃ ′

i,13 Ψ̃ ′

i,23 Ψ̃i,33

 , (12)

where we let Ψ̃i,11 = Ψ̄i,11 − 2αiY−1
i − Si, Ψ̃i,33 = Ψ̄i,33 + e−2αiτiSi,

and Ψ̃i,µν = Ψ̄i,µν for all other elements of Ψ̃i. Then the following
statement holds.
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Lemma 2. Under the conditions of Lemma 1,

V̇i ≤ −2αiVi(ei) + 2e′

iY
−1
i ėi + τ 2

i ėi(t)
′Riėi(t) − ē′

iΨ̃iēi. (13)

Furthermore, since Rj, Sj ≥ 0, for every j ∈ Vi, we have

− πjVj(ej) ≤ −πje′

jY
−1
j ej. (14)

This leads to the following statement.

Lemma 3.

−


j∈Vi

πjVj(ej) −


j∈Vi

Wj(ej, ej(tk−ν
k,i
j +1))

≤ −


ei,t
ei,s

′ 
Φ̄i,11 Φ̄i,12
Φ̄i,21 Φ̄i,22

 
ei,t
ei,s


, (15)

where

Φ̄i,11 =


πj1Y

−1
j1

+
π2

4
Wj1 · · · 0

...
. . .

...

0 · · · πjpi
Y−1
jpi

+
π2

4
Wjpi

 ,

Φ̄i,22 =



π2

4
Wj1 0 · · · 0

0
π2

4
Wj2 · · · 0

...
...

. . .
...

0 0 · · ·
π2

4
Wjpi


,

Φ̄i,12 = Φ̄i,21 = −Φ̄i,22.

Next, we apply the descriptor method [24] in order to derive
LMIs for the design of observers’ gains. For t ∈ [tk, tk+1), con-
sider the neighbourhood set Vi and its corresponding permutation
Π k(Vi). Recall that for every j ∈ Vi, ν

k,i
j ∈ {1, . . . , pi} is the index

of node j in the ordered set Π k(Vi). According to this notation,
on the interval [tk, tk+1) the observer at node i utilizes the sam-
ple x̂j(tk−ν

k,i
j +1), and the corresponding error equation is driven by

ej(tk−ν
k,i
j +1). Let us define vectors

ei,t = [ej1(t)
′ . . . ejpi−1(t)

′ ejpi (t)
′
]
′,

ei,s = [ej1(tk−ν
k,i
j1

+1)
′ . . . ejpi (tk−ν

k,i
jpi

+1)
′
]
′,

which consist of the current and sampled error interconnection in-
puts, respectively, ordered in accordance with the ordering of the
set Vi. Note that for arbitrary compatible matrices Xi, Zi and Qi,

(Xiei + Ziėi + (1′

pi ⊗ Qi)ei,s)′ ×

(A − LiCi)ei + (1′

pi ⊗ KiHi)ei,s

− (1′

pi ⊗ KiHi)ei + (B − LiDi)ξi − ėi


= 0. (16)

From (13) and (16) it follows that

V̇i + 2αiVi(ei) ≤ 2e′

iY
−1
i ėi + τ 2

i ė
′

iRiėi − ē′

iΨ̃iēi
+ (Xiei + Ziėi + (1′

pi ⊗ Qi)ei,s)′

×

(A − LiCi)ei + (1′

pi ⊗ KiHi)ei,s
− (1′

pi ⊗ KiHi)ei + (B − LiDi)ξi − ėi

.

Alongwith condition (15) established in Lemma 3, this leads to the
conclusion that

V̇i(ei) + 2αiVi −

j∈Vi

πjVj(ej) +


j: i∈Vj

τ 2
j

 ė′

iWiėi

−


j∈Vi

Wj(ej, ej(tk−ν
k,i
j +1)) +

1
γ 2

(pi + qi)∥ei∥2

−
2
γ 2

e′

i


j∈Vi

ej − ∥ξi∥
2

≤ η′

iΞiηi. (17)

In the above inequality, ηi is the vector ηi = [ė′

i e
′

i e
′

i ei(t − τi)
′ e′

i,t
e′

i,s ξ
′
]
′, and Ξi is the matrix partitioned as follows

Ξi =



Ξaa Ξab Ξac 0 0 Ξaf Ξag

⋆ Ξbb Ξbc −Ψ̃i,13 Ξbe Ξbf Ξbg

⋆ ⋆ −Ψ̃i,22 −Ψ̃i,23 0 Ξcf 0
⋆ ⋆ ⋆ −Ψ̃i,33 0 0 0
⋆ ⋆ ⋆ ⋆ −Φ̄i,11 −Φ̄i,12 0
⋆ ⋆ ⋆ ⋆ ⋆ Ξff Ξfg
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


, (18)

Ξaa = τ 2
i Ri +


j:i∈Vj

τ 2
j

Wi − Zi − Z ′

i ,

Ξab = Y−1
i − Xi + Z ′

i (A − LiCi),

Ξac = −Z ′

i (1
′

pi
⊗ KiHi), Ξaf = 1′

pi
⊗ (−Qi + Z ′

i KiHi),

Ξag = Z ′

i (B − LiDi),

Ξbb =
(pi + qi)

γ 2 I − Ψ̃i,11 + X ′

i (A − LiCi) + (A − LiCi)
′Xi,

Ξbc = −Ψ̃i,12 − (1′

pi
⊗ X ′

i KiHi), Ξbe = −
1
γ 2 (1′

pi
⊗ I),

Ξbf = 1′

pi
⊗ (X ′

i KiHi + (A − LiCi)
′Qi),

Ξbg = X ′

i (B − LiDi), Ξcf = −1pi1
′

pi
⊗ (H ′

iK
′

i Qi),

Ξff = 1pi1
′

pi
⊗ (Q ′

i KiHi + H ′

iK
′

i Qi) − Φ̄i,22,

Ξfg = 1pi ⊗ Q ′

i (B − LiDi).

It is worth noting that the matrix Ξi does not depend on k.
Hence the dissipation inequality follows from the conditionΞi < 0
at any time t . By combining this conclusion with Theorem 1, we
arrive at the following statement.

Theorem 2. Suppose there exist matrices Yi = Y ′

i > 0, Xi, Zi,Qi,Wi
= W ′

i ≥ 0, Si = S ′

i ≥ 0, Ri = R′

i ≥ 0,Gi, constants αi > 0, 0 ≤

πi < 2αiq−1
i , and gain matrices Ki, Li, i = 1, . . . ,N, which satisfy

the LMI (11) and

Ξi < 0. (19)

Then the corresponding observer network (4) solves the problemposed
in Definition 1. The matrix P in condition (8) corresponding to this
solution is P =

1
N

N
i=1(Y

−1
i + Si 1−e−2αiτi

2αi
).

Theorem 2 serves as the basis for the derivation of the main
result of this paper, given below in Theorem 3, which is a sufficient
condition for the synthesis of distributed observer networks of the
form (4). Consider the following matrix

Ξ̄i =



Ξ̄aa Ξ̄ab Ξ̄ac 0 0 Ξ̄af Ξ̄ag

⋆ Ξ̄bb Ξ̄bc −Ψ̃i,13 Ξ̄be Ξ̄bf Ξ̄bg

⋆ ⋆ −Ψ̃i,22 −Ψ̃i,23 0 Ξ̄cf 0
⋆ ⋆ ⋆ −Ψ̃i,33 0 0 0
⋆ ⋆ ⋆ ⋆ −Φ̄i,11 −Φ̄i,12 0
⋆ ⋆ ⋆ ⋆ ⋆ Ξ̄ff Ξ̄fg
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


, (20)
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Ξ̄aa = τ 2
i Ri +


j:i∈Vj

τ 2
j

Wi − ϵiXi − ϵiX ′

i ,

Ξ̄ab = Y−1
i − Xi + ϵi(X ′

i A − UiCi),

Ξ̄ac = −ϵi(1′

pi
⊗ FiHi),

Ξ̄af = 1′

pi
⊗ (−ϵ̄iXi + ϵiFiHi), Ξ̄ag = ϵi(X ′

i B − UiDi),

Ξ̄bb =
(pi + qi)

γ 2 I − Ψ̃i,11 + X ′

i A − UiCi + A′Xi − C ′

iU
′

i ,

Ξ̄bc = −Ψ̃i,12 − 1′

pi
⊗ (FiHi), Ξ̄be = −

1
γ 2 (1′

pi
⊗ I),

Ξ̄bf = 1′

pi
⊗ (FiHi + ϵ̄iAXi − ϵ̄iC ′

iU
′

i ),

Ξ̄bg = X ′

i B − UiDi, Ξ̄cf = −1pi1
′

pi
⊗ (ϵ̄iH ′

i F
′

i ),

Ξ̄ff = ϵ̄i1pi1
′

pi
⊗ (FiHi + H ′

i F
′

i ) − Φ̄i,22,

Ξ̄fg = ϵ̄i1pi ⊗ (X ′

i B − UiDi).

Theorem 3. Suppose that there exist matrices Yi = Y ′

i > 0, Xi,
det Xi ≠ 0, Fi,Ui, Si = S ′

i ≥ 0, Ri = R′

i ≥ 0,Wi = W ′

i ≥ 0,Gi, and
constants αi > 0, 0 ≤ πi < 2αiq−1

i , ϵi > 0, ϵ̄i > 0, i = 1, . . . ,N,
which satisfy the LMI (11) and

Ξ̄i < 0. (21)

Then the network of observers (4) with

Ki = (X ′

i )
−1Fi, Li = (X ′

i )
−1Ui, (22)

solves the distributed estimation problem posed in Definition 1. The
matrix P in condition (8) corresponding to this solution is P =

1
NN

i=1(Y
−1
i + Si 1−e−2αiτi

2αi
).

Proof. Similar to [25], we observe that LMI (19) follows from (21),
when we let Zi = ϵiXi,Qi = ϵ̄iXi, and take Ki, Li to be matrices
defined in (22). Then the claim of the theorem follows from Theo-
rem 2. �

Remark 2. The proposed LMI conditions involve ‘free’ variables
Xi, Zi and Qi. These variables are to reduce the conservatism of the
proposed LMI conditions. At the same time they add to the number
of unknowns to be used by the LMI solver. In a high-dimensional
problem where this causes an excessive computational burden,
additional constraints on these variables can be introduced to
reduce the number of variables used by the solver, at the expense of
a more conservative design; e.g., Xi can be assumed to be diagonal.

4. Example

Consider a plant of the form (2), with A =


−3.2 10 0
1 −1 1
0 −14.87 0


,

B2 =


−0.1246
−0.4461
0.3350


. This plant was used in the example in [7]. The

nominal part of the plant describes one of the regimes of the so-
called Chua electronic circuit.

To estimate this plant, wewill use the 3-node observer network
shown in Fig. 1.

The measurement matrices are

C1 = [0.0032 − 0.0047 0.0010],
C2 = [−0.8986 0.1312 − 1.9703],
C3 = [1 0 0], and D2i = 0, D̄2i = 0.025.

With these parameters, the pairs (A, C1) and (A, C2) are not de-
tectable, while (A, C3) is observable. Since observer at node 3 does

Fig. 1. An example 3-node network. The filled circles and solid lines represent
nodes and links which are ‘active’ during the time interval [tk, tk+1), when k takes
one of the values shown above the figure.

not receive information from other observers, it acts as a conven-
tional continuous-time H∞ filter, while the observers at nodes 1
and 2 utilize sampled data inputs they receive from their neigh-
bours. This allows them to overcome difficulties due to unstable
unobservable modes of A.

For simplicity we assume a constant sampling period of ∆, so
that tk = k∆. Then τ1 = ∆, τ2 = 2∆ and τ3 = 0. We now ap-
ply Theorem 3 to compute observer and interconnection gains for
this system. To this end, we solved the LMIs (21) numerically, with
αi = 0.1, πi =

2αi
1+qi

, and ϵ̄i = 0; that is, Qi = 0 in this example. In
fact, instead of solving the feasibility problem, we solved the op-
timization problem in which we sought to minimize γ 2 subject to
the LMI constraints (11) and (21).

First, we compared the performance of our method with the
performance guaranteed for estimators employing continuous-
time interconnections by the method in [6]. To this end, we set the
sampling rate to a high value by letting ∆ = 0.0001. With ϵi =

0.01, we obtained the suboptimal γ 2 to be equal 0.2274, which is
approximately equal to the level of H∞ disagreement guaranteed
for the comparison distributed estimator of [6], γ 2

= 0.2299. A
slight discrepancy between the two values is likely due to numer-
ical errors and/or conservative selection of parameters. Remark-
ably, both algorithms assign a high gain to the H∞ filter at node
3 (L3 = 103

× [0.2385 0.4724 3.9685]′ using Theorem 3 versus
L3 = 103

× [0.0819 0.1707 1.5540]′ using the method from [6]).
Next, we set the sampling rate to a larger value. After some ex-

perimenting with the tuning parameters ϵi, we chose ϵi = 0.1.
With ∆ = 0.1, Theorem 3 was found to guarantee the level of
H∞ disagreement γ 2

= 0.5537, and the gain L3 reduced substan-
tially, to the value L3 = [17.9083 13.1006 − 19.6797]′. This gain
is comparable with that obtained for the estimator of [6] with this
value of γ 2. For ∆ = 0.2, the guaranteed level of H∞ disagree-
ment increased substantially, to the value of γ 2

= 39.6506. Fur-
ther increasing the sampling period to ∆ = 0.22 resulted in a
prohibitively large γ 2

= 896.9248.

5. Conclusions

The paper has presented a sufficient LMI condition for the de-
sign of a Round-Robin type interconnection protocol for networks
of distributed observers. We have shown that the proposed pro-
tocol allows one to use sampled-data communications between
the observers in the network, and does not require a combinatorial
gain scheduling. As a result, the node observers are shown to be ca-
pable of achieving theH∞ consensus objective introduced in [5–7].
As our example demonstrates, the proposed Round-Robin protocol
achieves this objective at the expense of moderately deteriorated
performance.
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Appendix

A.1. Proof of Theorem 1

Define the vector function V (e) = [V1(e1), . . . , VN(eN)]′ and
the matrix M = [Mij],Mii = −2αi,Mij = πj if j ∈ Vi, and Mij = 0
if j ∉ Vi and j ≠ i. It follows from (10) that for t ∈ [tk, tk+1),

1′

N(V̇ − MV ) +
1
γ 2

N
i=1


j∈Vi

∥ei − ej∥2

≤

N
i=1

∥ξi∥
2
−

N
i=1


j:i∈Vj

τ 2
j

 ė′

iWiėi

+

N
i=1


j∈Vi

Wj(ej, ej(tk−ν
k,i
j +1)). (23)

By changing the order of summation in the second term,we further
obtain
N
i=1


j:i∈Vj

τ 2
j

 ė′

iWiėi =

N
i=1


j∈Vi

τ 2
i ė

′

jWjėj.

Hence, on the time interval t ∈ [tk, tk+1),

1′

N(V̇ − MV ) +
1
γ 2

N
i=1


j∈Vi

∥ei − ej∥2

≤

N
i=1


∥ξi∥

2
−


j∈Vi


τ 2
i ė

′

jWjėj − Wj(ej, ej(tk−ν
k,i
j +1))


. (24)

Let T > 0 be a time instant, T ∈ [tk̄, tk̄+1). Let us fix i and j ∈ Vi,
and consider the partition of the interval [0, T ] into subintervals
[0, T ] = [0, tk̄−d̄pi−ν̄+1) ∪ [tk̄−ν̄+1, T )

∪


d̄

d=1

[tk̄−dpi−ν̄+1, tk̄−(d−1)pi−ν̄+1)


, (25)

where ν̄ = ν
k̄,i
j is the index of j in the permutation Π k̄(Vi), and d̄ is

the largest integer number such that d̄ ≤
k̄−ν̄+1

pi
. Note that 0 ≤

k̄− d̄pi− ν̄+1, and tk̄−ν̄+1 ≤ T < tk̄−ν̄+pi+1. The significance of this
partition is that on each interval [tk̄−dpi−ν̄+1, tk̄−(d−1)pi−ν̄+1), the
observer at node imakes use of the sample x̂j(tk̄−dpi−ν̄+1). Therefore
the input ej into the error dynamics equation (5) at node i holds
the constant value ej(tk̄−dpi−ν̄+1) over this interval of time, with
ej(tl) = x0 = const for 0 ≤ tl < k̄ − d̄pi − ν̄ + 1. That is, for
t ∈ [tk̄−dpi−ν̄+1, tk̄−(d−1)pi−ν̄+1),
Wj(ej, ej(tk−ν

k,i
j +1)) = Wj(ej, ej(tk̄−dpi−ν̄+1))

where k = k(t) is determined from the condition tk ≤ t < tk+1,
and ν

k,i
j = ν

k(t),i
j is determined accordingly, as an index of j in the

permutation Π k(t)(Vi).
It follows from the above discussion that T

0


τ 2
i ė

′

jWjėj − Wj(ej, ej(tk−ν
k,i
j +1))


dt

=

 tk̄−d̄pi−ν̄+1

0


τ 2
i ė

′

j(t)Wjėj(t) − Wj(ej, ej(0))

dt

+

d̄
d=1

 tk̄−(d−1)pi−ν̄+1

tk̄−dpi−ν̄+1


τ 2
i ė

′

jWjėj − Wj(ej, ej(tk̄−dpi−ν̄+1))

dt

+

 T

tk̄−ν̄+1


τ 2
i ė

′

j(t)Wjėj(t) − Wj(ej, ej(tk̄−ν̄+1))

dt. (26)

Using the Wirtinger’s inequality [27], it follows that tk̄−(d−1)pi−ν̄+1

tk̄−dpi−ν̄+1


τ 2
i ė

′

j(t)Wjėj(t) − Wj(ej, ej(tk̄−dpi−ν̄+1))

dt

≥ (tk̄−(d−1)pi−ν̄+1 − tk̄−dpi−ν̄+1)
2

×

 tk̄−(d−1)pi−ν̄+1

tk̄−dpi−ν̄+1


ė′

j(t)Wjėj(t) − Wj(ej, ej(tk̄−dpi−ν̄+1))

dt

≥ 0. (27)

Similarly, tk̄−d̄pi−ν̄+1

0


τ 2
i ė

′

j(t)Wjėj(t) − Wj(ej, ej(0))

dt ≥ 0, T

tk̄−ν̄+1


τ 2
i ė

′

j(t)Wjėj(t) − Wj(ej, ej(tk̄−ν̄+1))

dt ≥ 0.

(28)

Therefore, we conclude from (26)–(28) that T

0


τ 2
i ė

′

jWjėj − Wj(ej, ej(tk−ν
k,i
j +1))


dt ≥ 0.

Hence, it follows from (24) that T

0


1′

N(V̇ − MV )

dt +

1
γ 2

N
i=1


j∈Vi

 T

0
∥ei − ej∥2dt

≤

N
i=1

 T

0
∥ξi∥

2dt. (29)

The statement of the theorem then follows from (29) using the
same argument as that used in the proof of Theorem 1 in [5].

A.2. Proof of Lemma 2

Consider V̇i:

V̇i = 2e′

iY
−1
i ėi + e′

iSiei − e−2αiτie′

i(t − τi)Siei(t − τi)

+ τi

 t

t−τi


ėi(t)′Riėi(t) − e2αi(t−s)ėi(s)′Riėi(s)


ds

− 2αi

 t

t−τi

e−2αi(t−s)ei(s)′Siei(s)ds

− 2αiτi

 t

t−τi

e−2αi(t−s)ėi(s)′(τ + s − t)Riėi(s)ds.

Since e2αi(t−s)
≥ e−2αiτi for s ∈ [t − τi, t], then

V̇i ≤ −2αiVi(ei) + 2e′

iY
−1
i ėi + e′

i(2αiY−1
i + Si)ei

+ τ 2
i ėi(t)

′Riėi(t) − e−2αiτie′

i(t − τi)Siei(t − τi)

− τie−2αiτi

 t

tk
ėi(s)′Riėi(s)ds +

pi−1
ν=1

 tk−ν+1

tk−ν

ėi(s)′Riėi(s)ds

+

 tk−pi+1

t−τi

ėi(s)′Riėi(s)ds


.

By Jensen’s inequality,

V̇i ≤ −2αiVi(ei) + 2e′

iY
−1
i ėi + e′

i(2αiY−1
i + Si)ei

+ τ 2
i ėi(t)

′Riėi(t) − e−2αiτie′

i(t − τi)Siei(t − τi)

− τie−2αiτi


1

t − tk
(ei − ei(t − tk))′Ri(ei − ei(t − tk))

+

pi−1
ν=1

1
tk−ν+1 − tk−ν

(ei(tk−ν+1) − e(tk−ν))
′
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× Ri(ei(tk−ν+1) − e(tk−ν))

+
1

tk−pi+1 − t + τi
(ei(tk−pi+1) − e(t − τi))

′

× Ri(ei(tk−pi+1) − e(t − τi))


.

Let δ = [δ′

0, . . . , δ
′
pi ]

′, where

δν = ei(tk−ν+1) − e(tk−ν), ν = 1, . . . , pi − 1,
δ0 = ei(t) − e(tk), δpi = ei(tk−pi+1) − e(t − τi).

Then, δ = Tiēi. Also, δ′Ψiδ = ē′

iT
′

i ΨiTiēi.
Using Lemma 1, we conclude that

V̇i ≤ −2αiVi(ei) + 2e′

iY
−1
i ėi + e′

i(2αiY−1
i + Si)ei

− e−2αiτie′

i(t − τi)Siei(t − τi) + τ 2
i ėi(t)

′Riėi(t)

− ē′

iΨ̄iēi. (30)

Then, the statement of the lemma follows from the definition of
the matrix Ψ̃ and inequality (30).

References

[1] H. Dong, J. Lam, H. Gao, Distributed h∞ filtering for repeated scalar nonlinear
systems with random packet losses in sensor networks, Int. J. Syst. Sci. 42 (9)
(2011) 1507–1519.

[2] Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and
synchronization of complexnetworks: a unified viewpoint, IEEE Trans. Circuits
Syst. I. Regul. Pap. 57 (2010) 213–224.

[3] P. Lin, Y. Jia, L. Li, Distributed robust H∞ consensus control in directed
networks of agents with time-delay, Systems Control Lett. 57 (2008) 643–653.

[4] T.R. Nelson, R.A. Freeman, Decentralized H∞ filtering in a multi-agent system,
in: Proc. American Contr. Conf., St. Louis, MO, 2009, pp. 5755–5760.

[5] V. Ugrinovskii, Distributed robust filtering with H∞ consensus of estimates,
Automatica 47 (1) (2011) 1–13.

[6] V. Ugrinovskii, C. Langbort, Distributed H∞ consensus-based estimation of
uncertain systems via dissipativity theory, IET Control Theory Appl. 5 (12)
(2011) 1458–1469.

[7] V. Ugrinovskii, Distributed robust estimation over randomly switching
networks using H∞ consensus, Automatica 49 (1) (2013) 160–168.

[8] B. Shen, Z. Wang, X. Liu, A stochastic sampled-data approach to distributed
H∞ filtering in sensor networks, IEEE Trans. Circuits Syst. I. Regul. Pap. 58 (9)
(2011) 2237–2246.

[9] D. Nesic, A.R. Teel, Input–output stability properties of networked control
systems, IEEE Trans. Automat. Control 49 (10) (2004) 1650–1667.

[10] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, D. Nesic, Networked control
systems with communication constraints: tradeoffs between transmission
intervals, delays and performance, IEEE Trans. Automat. Control 55 (8) (2010)
1781–1796.

[11] K. Liu, E. Fridman, L. Hetel, Stability and L2-gain analysis of networked control
systems under round-robin scheduling: a time-delay approach, Systems
Control Lett. 61 (5) (2012) 666–675.

[12] V. Ugrinovskii, Conditions for detectability in distributed consensus-based
observer networks, IEEE Trans. Automat. Control 58 (2013) 2659–2664.

[13] D. Zelazo, M. Mesbahi, On the observability properties of homogeneous and
heterogeneous networked dynamic systems, in: Proc. 47th IEEE Conference
on Decision and Control, 2008, pp. 2997–3002.

[14] D.L. Mills, Internet time synchronization: the network time protocol, IEEE
Trans. Commun. 39 (10) (1991) 1482–1493.

[15] R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with
switching topology and time-delays, IEEE Trans. Automat. Control 49 (2004)
1520–1533.

[16] Y. Cao, W. Ren, Sampled-data discrete-time coordination algorithms for
double-integrator dynamics under dynamic directed interaction, Internat. J.
Control 83 (3) (2010) 506–515.

[17] T. Hayakawa, T. Matsuzawa, S. Hara, Formation control ofmulti-agent systems
with sampled information—relationship between information exchange
structure and control performance, in: Proc. 45th IEEE Conference on Decision
and Control, 2006, pp. 4333–4338.

[18] C. Langbort, R.S. Chandra, R. D’Andrea, Distributed control design for systems
interconnected over an arbitrary graph, IEEE Trans. Automat. Control 49 (9)
(2004) 1502–1519.

[19] R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathemat-
ics, Academic Press, London, New York, 1977.

[20] R. Olfati-Saber, Distributed Kalman filtering for sensor networks, in: Proc. 46th
IEEE CDC, 2007, pp. 5492–5498.

[21] E. Fridman, A. Seuret, J.-P. Richard, Robust sampled-data stabilization of linear
systems: an input delay approach, Automatica 40 (8) (2004) 1441–1446.

[22] W.M. Haddad, V. Chellaboina, S.G. Nersesov, Vector dissipativity theory and
stability of feedback interconnections for large-scale non-linear dynamical
systems, Internat. J. Control 77 (10) (2004) 907–919.

[23] P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems
with time-varying delays, Automatica 47 (1) (2011) 235–238.

[24] E. Fridman, New Lyapunov–Krasovskii functionals for stability of linear
retarded and neutral type systems, Systems Control Lett. 43 (4) (2001)
309–319.

[25] V. Suplin, E. Fridman, U. Shaked, Sampled-data H∞ control and filtering:
nonuniform uncertain sampling, Automatica 43 (6) (2007) 1072–1083.

[26] V. Ugrinovskii, E. Fridman, A Round-Robin type protocol for distributed
estimation with H∞ consensus, in: Proc. 52nd IEEE Conference on Decision
and Control, 2013, pp. 2811–2815.

[27] K. Liu, V. Suplin, E. Fridman, Stability of linear systems with general sawtooth
delay, IMA J. Math. Control Inform. 27 (4) (2010) 419–436.


