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Robust Adaptive Stabilization by Delay Under State Parametric
Uncertainty and Measurement Bias

Jian Wang , Stanislav Aranovskiy , Emilia Fridman , Dmitry Sokolov , Denis Efimov ,
and Alexey A. Bobtsov

Abstract—An output robust adaptive control is designed for a
class of Lipschitz nonlinear systems under assumption that the
measurements are available with a constant bias and the state
equations linearly parameterized by unknown parameters and ex-
ternal disturbances. A dynamic state reconstruction (synthesis of
an observer) is avoided by using delayed values of the output in
the feedback and adaptation laws. The analysis of robust stabil-
ity for the resulted time-delay system is performed by using the
Lyapunov–Krasovskii approach. The control and adaptation gains
can be selected as a solution of the proposed linear matrix inequal-
ities. This research is motivated by a nonlinear pendulum control
problem, and the efficacy of the developed control is demonstrated
on this application through experiments.

Index Terms—Adaptive control, delay systems, robust control.

I. INTRODUCTION

Designs of identification algorithms, estimators, and regulators for
dynamical systems are fundamental and complex problems studied in
the control theory. Since in all engineering applications, the models of
the plants are subjected by uncertainty of different kinds (e.g., exoge-
nous unknown inputs, measurement noises and perturbations, unknown
parameters, or unmodeled dynamics), the design and analysis methods
are classified by their abilities to undertake the plant’s incertitude [1]. In
particular, the group of methods belonging to the adaptive control theory
deals with compensation of influence on estimation and stabilization of
unknown parameters [2].

In many cases, due to information transmission in the input–output
channels, delays appear in the dynamics of the controlled plant [3], [4].
Influence of a delay on the system stability is vital in many cases [5],
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[6], and it usually leads to degradation of the performances of regulation
or estimation [6]. However, in some cases, introduction of a delay may
result in an improvement of the system transients (see [7]–[11] and
the references therein). The idea of these papers is that unmeasured
components of the state can be calculated using delayed values of the
measured variables, which allow a design of observer to be passed by,
but at the price of a more sophisticated stability analysis (that is based
in these works on an appropriate Lyapunov–Krasovskii functional, and
another possible approach is the Lyapunov–Razumikhin method; and
the complexity comes from the fact that the closed-loop system becomes
unstable in the delay-free case).

The goal of this note is to extend the results obtained in [8] and
[9] for linear systems to adaptive stabilization of a class of nonlinear
systems, which include a globally Lipschitz nonlinearity, unknown
parameters, exogenous disturbances, and have a part of the measure-
ments available with a constant bias, which is induced by a sensor
error (a preliminary version of this study appears in [12] without
proofs and additional details). Since for embedded control and es-
timation solutions, the amount of computations needed for realiza-
tion is a critical resource (more important than the used memory in
some scenarios), in this note, we avoid to design an (reduced order)
observer for the state, but introduce delayed measurements in the
feedback and adaptation algorithm. The closed-loop system becomes
time-delayed, then stability analysis of the regulation error is based on
the Lyapunov–Krasovskii functional proposed in [8] and [9], whose
properties can be assessed by investigating linear matrix inequalities
(LMIs).

It is important to note that there exist papers devoted to adaptive
control of time-delay systems as, for example, [13]–[15] (the uncer-
tain parameters appear in the state equation only), or papers dealt
with adaptive/robust control for systems with multiplicative uncer-
tain parameters in the output equation [16], [17] (without presence
of time delays) or [18], but to the best of our knowledge, there
is no theory dealing with time-delay systems subjected to paramet-
ric uncertainty in the state dynamics and the output measurements
simultaneously.

The selected problem statement is not artificial, since it can be moti-
vated by a mechanical balancing system application, e.g., stabilization
of a walking robot, where a constant bias distorts the angular position
measurements. This application is described with more details in [19],
where Aranovskiy et al. proposed a nonlinear bias and velocity estima-
tor proving local asymptotic convergence. In this article, we are solving
the same problem by designing a delay-based adaptive algorithm, which
stabilizes the pendulum in the presence of the measurement bias.1

We also experimentally verify the proposed solution with the inverted
pendulum hardware setup equivalent to the one used in [19].

1The preliminary version of this article [12] does not contain proofs and
experiments, the main assumption is relaxed in this article.
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The outline of this article is as follows. The preliminaries are given
in Section II. The problem statement is introduced in Section III.
The adaptive control design and stability conditions are presented in
Section IV. A nonlinear pendulum application is considered in
Section V. Finally, Section VI concludes this article.

II. PRELIMINARIES

Denote by R the set of real numbers and R+ = {s ∈ R : s ≥ 0}. For
a Lebesgue measurable function of timed : [a, b] → Rm, where−∞ ≤
a < b ≤ +∞, define the norm ‖d‖[a,b) = ess supt∈[a,b)|d(t)|, where
| · | is the standard Euclidean norm in Rm, then ||d||∞ = ‖d‖[0,+∞)

and the space of d with ‖d‖[a,b) < +∞ (||d||∞ < +∞) we further
denote as Lm

[a,b] (Lm
∞ ).

Denote byCn
[a,b], a, b ∈ R the Banach space of continuous functions

φ : [a, b] → Rn with the uniform norm ‖φ‖[a,b] = supa≤s≤b |φ(s)|;
and by W 1,∞

[a,b] the Sobolev space of absolutely continuous functions

φ : [a, b] → Rn with the norm ‖φ‖W = ‖φ‖[a,b) + ||φ̇||[a,b) < +∞,

where φ̇(s) = ∂φ(s)
∂s

is a Lebesgue measurable essentially bounded
function, i.e., φ̇ ∈ Ln

[a,b].
A continuous function σ : R+ → R+ belongs to class K if it is

strictly increasing and σ(0) = 0; it belongs to class K∞ if it is also
radially unbounded. A continuous function β : R+ × R+ → R+ be-
longs to class KL if β(·, r) ∈ K and β(r, ·) is decreasing to zero for
any fixed r > 0.

The symbol 1,m is used to denote a sequence of integers 1, . . .,m.
For a symmetric matrix P ∈ Rn×n, the minimum and the maximum
eigenvalues are denoted as λmin(P ) and λmax(P ), respectively. For
a matrix A ∈ Rn×m, |A| = √

λmax(A�A) is the induced norm. The
identity matrix of dimension n× n is denoted by In.

A. Neutral Time-Delay Systems

Consider an autonomous functional differential equation of neutral
type with inputs [20]

ẋ(t) = f(xt, ẋt, d(t)) (1)

for almost all t ≥ 0, where x(t) ∈ Rn and xt ∈ W 1,∞
[−τ,0] is the state

function, xt(s) = x(t+ s), −τ ≤ s ≤ 0, with ẋt ∈ Ln
[−τ,0]; d(t) ∈

Rm is the external input, d ∈ Lm
∞ ; f : W 1,∞

[−τ,0] × Ln
[−τ,0] × Rm → Rn

is a continuous functional, that is globally Lipschitz in the second
variable with a constant smaller than 1, ensuring forward uniqueness
and existence of the system solutions [20]. We assume f(0, 0, 0) = 0.
For the initial function x0 ∈ W 1,∞

[−τ,0] and disturbance d ∈ Lm
∞ denote a

unique solution of the system (1) by x(t, x0, d), which is an absolutely
continuous function of time defined on some maximal interval [−τ, T )
for T > 0, then xt(x0, d) ∈ W 1,∞

[−τ,0] represents the corresponding state
function with xt(s, x0, d) = x(t+ s, x0, d) for −τ ≤ s ≤ 0.

Given a locally Lipschitz continuous functional V : R × W 1,∞
[−τ,0] ×

Ln
[−τ,0] → R+ define its derivative in Driver’ s form

D+V (t, φ, d) = lim
h→0+

sup
1

h
[V (t+ h, xh(φ, d̃), ẋh(φ, d̃))

−V (t, φ, φ̇)]

where xh(φ, d̃) is a solution of the system (1) for φ ∈ W 1,∞
[−τ,0] and

d̃(t) = d for all t ≥ 0 and some d ∈ Rm.

B. Input-to-State Stability (ISS) of Time-Delay Systems

The ISS property is an extension of the conventional stability
paradigm to the systems with external inputs [21]–[23].

Definition 1 (see [22] and [23]): The system (1) is called practical
ISS, if for all x0 ∈ W 1,∞

[−τ,0] and d ∈ Lm
∞ there exist q ≥ 0, β ∈ KL, and

γ ∈ K such that

|x(t, x0, d)| ≤ β(‖x0‖W , t) + γ(||d||∞) + q ∀t ≥ 0.

If q = 0, then (1) is called ISS.
For establishment of this stability property, the Lyapunov–

Krasovskii theory can be used [10], [22], [23].
Definition 2: A locally Lipschitz continuous functional V :

R+ × W 1,∞
[−τ,0] × Ln

[−τ,0] → R+ (i.e., V (t, φ, φ̇)) is called simple if

D+V (t, φ, d) is independent on φ̈.
For instance, a locally Lipschitz functional V : R+ × W 1,∞

[−τ,0] →
R+ is simple, another example of a simple functional is given in
Theorem 8 below.

Definition 3: A locally Lipschitz continuous functional V : R+ ×
W 1,∞

[−τ,0] × Ln
[−τ,0] → R+ is called practical ISS Lyapunov–Krasovskii

functional for the system (1) if it is simple and there exist r ≥ 0,
α1, α2 ∈ K∞, and α,χ ∈ K such that for all t ∈ R+, φ ∈ W 1,∞

[−τ,0],
and d ∈ Rm

α1(|φ(0)|) ≤ V (t, φ, φ̇) ≤ α2(‖φ‖W )

V (t, φ, φ̇) ≥ max{r, χ(|d|)} =⇒ D+V (t, φ, d) ≤ −α(V (t, φ, φ̇)).

If r = 0, then V is an ISS Lyapunov–Krasovskii functional.
Theorem 4 (see [23]): If there exists an (practical) ISS Lyapunov–

Krasovskii functional for the system (1), then it is (practical) ISS with
γ = α−1

1 ◦ χ.
Converse results for Theorem 4 can be found in [24] and [25].

III. ROBUST OUTPUT ADAPTIVE REGULATION WITH

BIASED MEASUREMENTS

Consider a nonlinear system for the time t ≥ 0

ẋ1(t) = x2(t)

ẋ2(t) = A21x1(t) +A22x2(t) +A23x3(t)

+B1(u(t) + Ω(t)θ2) + L1φ(x(t)) + d1(t)

ẋ3(t) = A31x1(t) +A32x2(t) +A33x3(t)

+B2(u(t) + Ω(t)θ2) + L2φ(x(t)) + d2(t)

y1(t) = x1(t) + θ1, y2(t) = x3(t) (2)

where x1(t) ∈ Rn and x2(t) ∈ Rn are the position and ve-
locity, respectively, x3(t) ∈ Rp is an additional state, x(t) =
[x�1 (t) x

�
2 (t) x

�
3 (t)]

� ∈ R2n+p is the total state vector of (2), the
initial conditions x(0) = x0 ∈ R2n+p are unknown; u(t) ∈ Rm is the
control input;y(t) = [y�1 (t) y

�
2 (t)]

� ∈ Rn+p is the output available for
measurements, d(t) = [d�1 (t) d

�
2 (t)]

� ∈ Rn+p is the disturbance with
d ∈ Ln+p

∞ ; θ1 ∈ Rn is the vector of biases in the measurements of the
positionx1(t), θ2 ∈ Rr is the vector of uncertain parameters in the state
dynamics, θ = [θ�1 θ

�
2 ]

� ∈ Rn+r , the regressor Ω : R+ → Rm×r is a
known continuous matrix function; the nonlinearityφ can be partitioned
as

φ(x) =

[
φ1(x)
φ2(x3)

]

where φ1 : R2n+p → Rs1 and φ2 : Rp → Rs2 , then we can decom-
pose L1 = [L11 L12], L2 = [L21 L22], and φ(x) is assumed to be
Lipschitz continuous; all the matrices are constant and known having
the corresponding dimensions.

Therefore, the considered system is subjected by unknown inputs
d(t), it contains unknown parameters θ (part of them corrupt the
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measurements), and the equations of (2) are nonlinear and time-varying
due to the presence of φ and Ω, respectively. Many mechanical systems
(subsystem with coordinates x1 and x2) in connection with a motor,
sensor, or actuator (the variable x3) can be represented in the form (2).

The goal is to design an (dynamical) output control input u(t) =
u(y1(t), y2(t),Ω(t)) ensuring a practical ISS property of the closed-
loop system for all x0 ∈ R2n+p and all d ∈ Ln+p

∞ under the restriction
to minimize the computational complexity of the algorithm (in order to
be able to use the proposed solution as a component of an embedded
system).

Remark 5: Note that a change of variables x̃1(t) = x1(t) + θ1,
x̃i(t) = xi(t) for i = 2, 3 transforms (2) to a dynamics with two purely
measured states

y1(t) = x̃1(t), y2(t) = x̃3(t)

but it makes the equations nonlinearly parameterized by θ1. Extending
this state by x̃4(t) = θ1 poses in question the observability of such an
augmented system with ˙̃x4(t) = 0, which becomes dependent on the
characteristics of φ.

We need the following hypothesis on the properties of (2).
Assumption 1: For the regressor function Ω(t), there is a known

upper bound Ω̄ ≥ 0 such that supt≥0 |Ω(t)| ≤ Ω̄.
The function φ satisfies a sector condition φ�(x)φ(x) ≤ x�Υx for

all x ∈ R2n+p and a symmetric matrix 0 ≤ Υ ∈ R(2n+p)×(2n+p). The
function φ2 : Rp → Rs2 is known.

Under the introduced restriction onφ, the system (2) has well-defined
solutions for all t ≥ 0 for any x0 ∈ R2n+p and any d ∈ Ln+p

∞ [1].
Remark 6: The regressor Ω can be a nonlinear function of any

measured information, e.g., Ω(t) = Ω(t, y1(t), y2(t), u(t)), provided
that it is globally bounded.

IV. MAIN RESULTS

Due to a rather complicated structure of the considered system and
introduced uncertainty, clearly, for realization of a robustly stabilizing
control, it is necessary to use the full state x(t) information. Con-
sequently, it is required to design an estimator for x1(t), which is
measured with an unknown bias θ1, and for its velocity x2(t). Facing
all uncertain terms presented in (2), i.e., θ2 and d(t), such an observa-
tion problem becomes rather intriguing, and a corresponding observer
solving these issues will be also complex and nonlinear. In [7]–[9], an
approach is presented for design of a linear delayed output static control
for a linear system, which avoids a state observer design by introducing
the estimates of x(t) through delayed output y(t) values. Hence, such
a method has a low computational capacity (since for delay operation,
only memory is needed). In this work, we will follow the same approach.

Definingx1(t− h) = x1(0) for t ∈ [0, h], whereh > 0 is the delay,
the control algorithm proposed in this article is

u(t) = −(K1 +K2)y1(t) +K2y1(t− h)

−K3y2(t)−K4φ2(y2(t)) +K1θ̂1(t)− Ω(t)θ̂2(t) (3)

where θ̂1(t) ∈ Rn and θ̂2(t) ∈ Rr are the estimates of θ1 and θ2,
respectively;Ki ∈ Rm×n for i = 1, 2,K3 ∈ Rm×p andK4 ∈ Rm×s2

are the control gains to be derived. Similarly, an adaptive law for θ̂1(t)
can be synthesized

˙̂
θ1(t) = (F1 + F2)y1(t)− F2y1(t− h)

+ F3y2(t) + F4φ2(y2(t))− F1θ̂1(t) (4)

where Fi ∈ Rn×n for i = 1, 2, F3 ∈ Rn×p and F4 ∈ Rn×s2 are the
adaptation gains, which will be defined later. An adaptive law for θ̂2(t)

is more sophisticated, and such a choice of the structure will become
clear from the stability analysis given next

˙̂
θ2(t) = Ω�(t)[(S1 + S2)y1(t)− S2y1(t− h)

+ S3y2(t) + S4φ2(y2(t))− S1θ̂1(t)]− S5θ̂2(t) (5)

where Si ∈ Rm×n for i = 1, 2, S3 ∈ Rm×p, S4 ∈ Rm×s2 , and S5 ∈
Rr×r are also the adaptation gains.

Remark 7: There is also an algebraic way to solve the problem
of estimation of unknown values θ1, θ2 and signals x1(t), x2(t) (in
the framework of indirect adaptive control), which is based on some
structural restrictions and auxiliary filtering. Indeed, let p = n and
J1L11 = J2L21 for some matrices J1 and J2, then define ζ(t) =
J1x2(t)− J2x3(t) with

ζ̇(t) = Y1(y1(t)− θ1) + Y2ẏ1(t) + Y3y2(t) + Y4(u(t)

+ Ω(t)θ2) + Y5φ2(y2(t)) + J1d1(t)− J2d2(t)

where

Y1 = J1A21 − J2A31, Y2 = J1A22 − J2A32

Y3 = J1A23 − J2A33

Y4 = J1B1 − J2B2, Y5 = J1L12 − J2L22.

Let also for brevity, d1(t) = 0, d2(t) = 0, Y1 �= 0. Note that by con-
struction, ζ̇(t) = J1ÿ1(t)− J2ẏ2(t), and equating the expressions for
ζ̇(t), we obtain

ζ̃(t) = −Y1θ1 + Y4Ω̃(t)θ2

which is a linear regressor model with respect to unknown parameters
θ1 and θ2 that can be used for their identification, where ζ̃(t) and Ω̃(t)
variables are calculated as

Ω̃(t) =
λ2

(s+ λ)2
Ω(t), ζ̃(t) = J1

λ2s2

(s+ λ)2
y1(t)

− Y2
λ2s

(s+ λ)2
y1(t)− J2

λ2s

(s+ λ)2
y2(t)

− λ2

(s+ λ)2
[Y1y1(t) + Y3y2(t) + Y4u(t) + Y5φ2(y2(t))]

with s being the differentiating operator and λ > 0 is a tuning parameter
of the filters. Inversely, if d1(t) = 0, d2(t) = 0, Y1 = 0, and θ2 = 0,
then

ψ(t) =
1

s+ 1
ζ(t) = J1

s

s+ 1
y1(t)− J2

1

s+ 1
y2(t)

is a variable that we can calculate, and

ψ(t) = ζ(t)− 1

s+ 1
ζ̇(t) = ζ(t)− 1

s+ 1

[Y2ẏ1(t) + Y3y2(t) + Y4u(t) + Y5φ2(y2(t))].

Hence, for a nonsingular J1, we obtain x2(t) = J−1
1 ψ̃(t), where

ψ̃(t) = ψ(t) + Y2
s

s+ 1
y1(t) +

1

s+ 1

[Y3y2(t) + Y4u(t) + Y5φ2(y2(t))] + J2y2(t)

can be calculated using filters. If d1(t) �= 0 and d2(t) �= 0, then these
approaches lead to a reconstruction of unknown parameters and vari-
ables corrupted by noises, and robust estimation tools should be applied.
Next, a control design has to be performed. A drawback of such
solutions is also their computational complexity comparing to (3)–(5),
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where just additional adaptation algorithms (observers or filters) are
introduced to calculate θ̂1(t) and θ̂2(t) in order to compensate the
influence of θ1 and θ2.

It is worth noting that a complexity of (3)–(5) comes from another
side. Initially, the system (2) is delay-free (the state x(t) ∈ R2n+p),
then (3)–(5) introduce the delay h and transforms the system into
the retarded-type time-delay dynamics [6] (the state function is from
C2n+p

[−h,0]), whereas for the stability analysis, we will perform below
an additional transformation of the closed-loop system to the neutral
type (with the state from W 1,∞

[−h,0]). Therefore, (3)–(5) need a rather
sophisticated analysis, but it allows a simple realization.

The restrictions on selection of the control and adaptation gains, and
the conditions to check, are given in the following theorem.

Theorem 8: Let Assumption 1 be satisfied. If for given Ki, Fi with
i = 1, 4 and Si with i = 1, 5, the system of LMIs

Q ≤ 0, P = P� > 0, α > 0, β > 0, δ > 0, η > 0

M�M ≤ ρIs1+s2 , 4
e−�h

h2
In ≥ αB�B

S = G�P + qh2G�Γ�ΓA
S2 = − qh2G�Γ�ΓB, S4 = qh2G�Γ�ΓM

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 N N
N� M − αqI3n+p M
N� M M − βI3n+p

0 0 0
N� M M
0 0 0

0 N 0
0 M 0
0 M 0
Q44 0 −S5

0 M − (η − qh2)I3n+p 0
−S�

5 0 −δIr

⎤
⎥⎥⎥⎥⎥⎥⎦

Q11 = PA+A�P + qh2A�Γ�ΓA+ ρβC�ΥC +�P

Q44 = − 2S5 + (qh2|B1|2Ω̄2 +�)Ir

N = P + qh2A�Γ�Γ, M = qh2Γ�Γ (6)

is feasible with respect to P , α, β, δ, and η for some q > 0, � > 0,
and ρ > 0, where

A =

⎡
⎢⎢⎣

0 In 0 0
A21 −B1K1 A22 − hB1K2 A23 −B1K3 B1K1

A31 −B2K1 A32 − hB2K2 A33 −B2K3 B2K1

F1 hF2 F3 −F1

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0
B1K2

B2K2

−F2

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

0
B1

B2

0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0
In
Ip
0

⎤
⎥⎥⎦

M =

⎡
⎢⎢⎣

0 0
L11 L12 −B1K4

L21 L22 −B2K4

0 F4

⎤
⎥⎥⎦ , C =

⎡
⎣ In 0 0 0

0 In 0 0
0 0 Ip 0

⎤
⎦

S =
[
S1 hS2 S3 −S1

]
, S4 =

[
0 S4

]
Γ =

[
0 In 0 0

]
.

Then, the system (2) with the control (3) and adaptive laws (4), (5) is
practically ISS.

Proof: Following the ideas of Fridman and Shaikhet [8] and [9],
note that y1(t− h) = y1(t)− hẏ1(t) +R(t) for R(t) =

∫ t

t−h
(s−

t+ h)ÿ1(s)ds, which can be easily checked by applying integration
by parts, then the expressions for (3)–(5) can be represented as follows:

u(t) = −K1y1(t)− hK2ẏ1(t) +K2R(t)

−K3y2(t)−K4φ2(y2(t))

+K1θ̂1(t)− Ω(t)θ̂2(t)

= −K1x1(t)− hK2x2(t) +K2R(t)

−K3x3(t)−K4φ2(x3(t))

+K1θ̃1(t)− Ω(t)θ̂2(t)

˙̂
θ1(t) = F1y1(t) + hF2ẏ1(t)− F2R(t)

+ F3y2(t) + F4φ2(y2(t))− F1θ̂1(t)

= F1x1(t) + hF2x2(t)− F2R(t)

+ F3x3(t) + F4φ2(x3(t))− F1θ̃1(t)

˙̂
θ2(t) = Ω�(t)[S1y1(t) + hS2ẏ1(t)− S2R(t)

+ S3y2(t) + S4φ2(y2(t))− S1θ̂1(t)]

− S5θ̂2(t)

= Ω�(t)[S1x1(t) + hS2x2(t)− S2R(t)

+ S3x3(t) + S4φ2(x3(t))− S1θ̃1(t)]

− S5θ̂2(t)

where we substituted the expressions of the outputs y1(t) and y2(t)
(note that ẏ1(t) = x2(t) sinceθ1 is constant), and θ̃1(t) = θ̂1(t)− θ1 is
the adaptation error for θ̂1(t). Similarly, we define θ̃2(t) = θ̂2(t)− θ2
as the adaptation error for θ̂2(t), and for z(t) = [x�(t) θ̃�1 (t)]

�, the
closed-loop dynamics take the form

ż(t) = Az(t) + BR(t)− GΩ(t)θ̃2(t)
+Mφ(Cz(t)) +Dd(t)

˙̃
θ2(t) = Ω�(t)[Sz(t)− S2R(t)

+ S4φ(Cz(t))]− S5θ̃2(t)− S5θ2 (7)

where all matrices are defined in the formulation of the theorem. Obvi-
ously, due to presence ofR(t), which contains the state derivativeΓż(s)
with s ∈ [t− h, t], the system (7) is of neutral type, then zt ∈ W 1,∞

[−h,0]

is the state together with θ̃2(t) ∈ Rr . Then, in order to analyze ISS
property of (7) with respect to the inputs d(t) and θ2, let us consider a
Lyapunov–Krasovskii functional candidate

V (zt, żt, θ̃2(t)) = z�(t)Pz(t) + qW (zt, żt) + θ̃�2 (t)θ̃2(t)

W (zt, żt) =

∫ t

t−h

e�(s−t)(s− t+ h)2ż�(s)Γ�Γż(s)ds

where P = P� > 0 and q > 0 are solutions of (6) and � > 0 (if we
would substitute the expression of Γż(s) from (7), then V will be a
function of the disturbanced, hence, the neutral interpretation of (2)–(5)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on December 04,2021 at 17:05:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 11, NOVEMBER 2021 5463

is obligatory). For W (t) =W (zt, żt), a direct computation gives

Ẇ (t) = −2

∫ t

t−h

e�(s−t)(s− t+ h)ż�(s)Γ�Γż(s)ds

+ h2ż�(t)Γ�Γż(t)−�W (t)

and applying Jensen’s inequality [6], we obtain∫ t

t−h

e�(s−t)(s− t+ h)ż�(s)Γ�Γż(s)ds ≥ 2
e−�h

h2
R�(t)R(t)

then

Ẇ (t) ≤ h2ż�(t)Γ�Γż(t)− 4
e−�h

h2
R�(t)R(t)−�W (t).

The full derivative of V (t) = V (zt, żt, θ̃2(t)) for (7) can now be
estimated as follows:

V̇ (t) ≤ z�(t)P ż(t) + ż�(t)Pz(t) + qh2ż�(t)Γ�Γż(t)

− 4q
e−�h

h2
R�(t)R(t)− q�W (t) + 2θ̃�2 (t)

˙̃
θ2(t)

≤ ξ�(t)Q(t)ξ(t)−�V (t)− qR�(t)
(
4
e−�h

h2
− αB�B

)
R(t)

+ β[φ�(Cz(t))M�Mφ(Cz(t))− ρz�(t)C�ΥCz(t)]

+ ηd�(t)d(t) + δθ�2 θ2

+ 2θ̃�2 (t)Ω
�(t)[(S − G�P − qh2G�Γ�ΓA)z(t)

− (S2 + qh2G�Γ�ΓB)R(t)
+ (S4 − qh2G�Γ�ΓM)φ(Cz(t))]

where

ξ(t) = [z�(t) R�(t)B� φ�(Cz(t))M� θ̃�2 (t) d
�(t)D� θ�2 ]

�

Q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 N N
N� M − αqI3n+p M
N� M M − βI3n+p

0 0 0
N� M M
0 0 0

0 N 0
0 M 0
0 M 0

E(t) 0 −S5

0 M − (η − qh2)I3n+p 0
−S�

5 0 −δIr

⎤
⎥⎥⎥⎥⎥⎥⎦

E(t) = − 2S5 + qh2H�(t)H(t) +�Ir, H(t) = ΓGΩ(t)
where the matrices M and N are introduced in the formulation of the
theorem, the parameters α, β, δ, and η come from (6), and the only
inequality used on the last step is

θ̃�2 (t)H
�(t)ΓDd(t) ≤ 0.5θ̃�2 (t)H

�(t)ΓΓ�H(t)θ̃2(t)

+ 0.5d�(t)D�Dd(t)
= 0.5θ̃�2 (t)H

�(t)H(t)θ̃2(t)+0.5d�(t)D�Dd(t).
Due to the equalities imposed in (6), the expression in square brackets,
which is multiplied from the left by θ̃�2 (t)Ω

�(t), equals zero, and the
termR�(t)(αB�B − 4 e−�h

h2 In)R(t) is nonpositive. Note that accord-
ing to Assumption 1, φ�(Cz(t))φ(Cz(t)) ≤ z�(t)C�ΥCz(t), and

from M�M ≤ ρIs1+s2 , we get that

φ�(Cz(t))M�Mφ(Cz(t)) ≤ ρz�(t)C�ΥCz(t).

Therefore, the upper estimate on the derivative of the Lyapunov–
Krasovskii functional can be rewritten as follows:

V̇ (t) ≤ ξ�(t)Qξ(t)−�V (t) + ηd�(t)d(t) + δθ�2 θ2

where we used the fact that |H(t)| ≤ |B1|Ω̄ from Assumption 1, then

E(t) ≤ −2S5 + (qh2|B1|2Ω̄2 +�)Ir.

Finally, since by the conditions of the theorem Q ≤ 0, we obtain

V̇ (t) ≤ −�V (t) + ηd�(t)d(t) + δθ�2 θ2 (8)

which implies that V is an ISS Lyapunov–Krasovskii functional for (7)
and the system possesses ISS property with respect to the inputs d(t)
and θ2 (practical ISS with respect to the input d(t)) due to Theorem 4
provided that there exist α1, α2, α

′
1, α

′
2 ∈ K∞ such that

α1(|z(t)|) + α′
1(|θ̃2(t)|) ≤ V (zt, żt, θ̃2(t))

≤ α2(‖zt‖W ) + α′
2(|θ̃2(t)|)

for all zt ∈ W 1,∞
[−h,0] and θ̃2(t) ∈ Rr . Obviously, α1(s) = λmin(P )s2,

α′
1(s) = α′

2(s) = s2, and in order to evaluate α2, let us consider

W (zt, żt) ≤
∫ t

t−h

(s− t+ h)2ż�(s)Γ�Γż(s)ds

≤ h2

∫ t

t−h

ż�(s)Γ�Γż(s)ds

≤ h3 sup
s∈[t−h,t]

ż�(s)Γ�Γż(s) ≤ h3‖żt‖2 ≤ h3‖zt‖2W

then α2(s) = λmax(P )s2 + qh3s2. �
The conditions of the theorem connect the control parameters to be

tuned (the gains Ki, Fi, Si, and the admissible delay h), the auxiliary
constants (q > 0, � > 0, ρ > 0) and the variables of LMIs (Q ≤ 0,
P > 0, α > 0, β > 0, δ > 0, and η > 0), which are obtained applying
numerical solvers to (6). By arguments of Fridman and Shaikhet [8]
and [9], it can be shown that the inequalities in (6) are always feasible
for a sufficiently small value of h.

Remark 9: As it follows from the proof of Theorem 8 and the
estimate (8) calculated for the derivative of the Lyapunov–Krasovskii
functional V , if there is no disturbance and the parametric uncertainty
is presented by the measurement bias only (i.e., d = 0 and θ2 = 0),
then the studied closed-loop system is globally asymptotically stable.
Therefore, the value of the bias θ1 can be exactly identified by the
adjusted parameter θ̂1(t), and such an achievement is possible without
imposing any excitation requirement since the bias value is contained
in the output y1 directly.

Remark 10: The aforementioned presentation is given by factorizing
the LMIs in the briefest way, which, however, may be more conserva-
tive. For example, taking

ξ(t) = [z�(t) R�(t) φ�(Cz(t)) θ̃�2 (t) d
�(t) θ�2 ]

�

we obtain that if for given Ki, Fi with i = 1, 4 and Si with i = 1, 5,
the system of LMIs

Q ≤ 0, P = P� > 0, α > 0, β > 0, δ > 0, η > 0

S = G�P + qh2G�Γ�ΓA
S2 = − qh2G�Γ�ΓB, S4 = qh2G�Γ�ΓM
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 NB NM
B�N� B�MB − 4q e−�h

h2 In B�MM
M�N� M�MB M�MM− βIs1+s2

0 0 0
D�N� D�MB D�MM

0 0 0

0 ND 0
0 B�MD 0
0 M�MD 0
Q44 0 −S5

0 D�MD − (η − qh2)In+p 0
−S�

5 0 −δIr

⎤
⎥⎥⎥⎥⎥⎥⎦

Q11 = PA+A�P + qh2A�Γ�ΓA+ βC�ΥC +�P (9)

is feasible with respect to P , α, β, δ, and η for some q > 0 and� > 0
(where the meaning of other variables is the same as in the formulation
of Theorem 8), then the system (2) with the control (3) and adaptive
laws (4), (5) is also practically ISS. However, it is worth to stress a more
nonlinear nature of (9) comparing with (6).

Remark 11: If appearance of an additional noise v ∈ Ln+p
∞ in the

output measurements of (2) is assumed

y1(t) = x1(t) + θ1 + v1(t), y2(t) = x3(t) + v2(t)

with v(t) = [v�1 (t) v
�
2 (t)]

� ∈ Rn+p, then it results in a linear pertur-
bation of the control (3) (except for the nonlinearity φ2(y2(t)), but
since it is supposed to be Lipschitz, the treatment of this term will
not change the conclusion), whose influence can be masked by d.
The adaptation algorithms (4) and (5) contain already the negative
robustifying feedback proportional to θ̂1(t) and θ̂2(t), respectively
(they are included to counteract the disturbance d). Hence, an additive
measurement noise v will not impact stability, and the ISS property
can be proven for the closed-loop system with respect to both, the state
perturbation d and the measurement noise v, by applying the same
arguments.

In Theorem 8, it is assumed that the control and adaptation gainsKi,
Fi, and Si are already given. A way to obtain them consists in solution
of the stabilization problem under assumption that the state is measured,
and next to look for the delay h that verifies the aforementioned
restrictions. However, by introducing additional mild restrictions, we
can reformulate the conditions of Theorem 8 by considering the control
and adaptation gains Ki, Fi, and Si as solutions of LMIs.

Corollary 12: Let Assumption 1 be satisfied forΥ > 0, if the system
of LMIs

Q̃ ≤ 0, P−1 = P−� ≥ 0, α > 0, β > 0, δ > 0, η > 0

[
ρIs1+s2 M�

M I3n+p

]
≥ 0,

[
I3n+p P

−1C�

CP−1 1
ρ
Υ−1

]
≥ 0

[
2P−1 − α

4
e�hΔ−1 U�G� −W�I�

GU − IW I3n+p

]
≥ 0

Δ = c diag[In, c
−1In, Ip, In]

Σ = G� + qh2B�
1 (ΓA0P

−1 −B1U)
Σ2 = − qh2B�

1B1U2,
[
0 S4

]
= qh2B�

1

[
L11 L12 −B1K4

]

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃11 I3n+p I3n+p 0
I3n+p −αqI3n+p 0 0
I3n+p 0 −βI3n+p 0
0 0 0 Q44

I3n+p 0 0 0
0 0 0 −S�

5

Q̃�
17 −Γ −Γ 0

I3n+p 0 Q̃17

0 0 −Γ�

0 0 −Γ�

0 −S5 0
−(η − qh2)I3n+p 0 −Γ�

0 −δIr 0
−Γ 0 − 1

qh2 In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q̃11 = A0P
−1 + P−1A�

0 − GU − U�G�

+ IW +W�I� + βI3n+p +�P−1

Q̃17 = − P−1A�
0Γ

� + U�B�
1 , Q44 = −2S5 + (qh2|B1|2Ω̄2 +�)Ir

(10)

is feasible with respect to P−1, U , W , Σ, K4, F4, S4, S5, α, β, η, and
δ for some given q > 0, c > 0, � > 0, μ > 0, and ρ > 0, where

A0 =

⎡
⎢⎢⎣

0 In 0 0
A21 A22 A23 0
A31 A32 A33 0
0 0 0 0

⎤
⎥⎥⎦ , I =

⎡
⎢⎢⎣

0
0
0
In

⎤
⎥⎥⎦

and the matrices B, G, D, M,C, and Γ are defined in Theorem 8. Then,
for

[
K1 hK2 K3 K5

]
= UP[

F1 hF2 F3 F5

]
= WP[

S1 hS2 S3 S6

]
= ΣP

the system (2) with the control and adaptive laws

u(t) = −(K1 +K2)y1(t) +K2y1(t− h)

−K3y2(t)−K4φ2(y2(t))−K5θ̂1(t)− Ω(t)θ̂2(t) (11)

˙̂
θ1(t) = (F1 + F2)y1(t)− F2y1(t− h)

+ F3y2(t) + F4φ2(y2(t)) + F5θ̂1(t) (12)

˙̂
θ2(t) = Ω�(t)[(S1 + S2)y1(t)− S2y1(t− h)

+ S3y2(t) + S4φ2(y2(t)) + S6θ̂1(t)]− S5θ̂2(t) (13)

is practically ISS.
Proof: Note that

A = A0 − GK + IF

where K = [K1 hK2 K3 K5 ] and F = [F1 hF2 F3 F5 ] con-
tain the searched gains. Then, with these designations, by
applying Schur complement to the matrix Q, by multiply-
ing it from the left and right by a positive definite matrix
diag{P−1, I3n+p, I3n+p, I3n+p, I3n+p, I3n+p, In}, using the identity

AP−1 = A0P
−1 − GU + IW
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where W = FP−1 and U = K P−1 are decision variables, and intro-
ducing an auxiliary restriction

[
I3n+p P

−1C�

CP−1 1
ρ
Υ−1

]
≥ 0

we obtain Q̃ ≤ 0, where we used the facts that ΓI = 0 and ΓG = B1.
Two equalities given in (6) take the form

Σ = G� + qh2B�
1 (ΓA0P

−1 −B1U)

and Σ2 = −qh2B�
1B1U2 from [ 0 S2 0 0 ]P−1 = −qh2B�

1B1

[ 0 K2 0 0 ]P−1, where Σ = SP−1 with S = [S1 hS2 S3 S6 ] as
before. Using Schur complement, the inequality M�M ≤ ρIs1+s2

can be represented as

[
ρIs1+s2 M�

M I3n+p

]
≥ 0.

Finally, for the inequality 4 e−�h

h2 In ≥ αB�B, note that B =
h−1(GK − IF)Γ�, and this inequality takes the form 4

α
e−�hIn ≥

Γ(GK − IF)�(GK − IF)Γ�, which follows from

4

α
e−�hΔ ≥ (GK − IF)�(GK − IF).

Multiplying the latter by P−1 from the left and the right, we get

4

α
e−�hP−1ΔP−1 ≥ (GU − IW)�(GU − IW)

and using again Schur complement, it can be transformed to

[
4
α
e−�hP−1ΔP−1 U�G� −W�I�

GU − IW I3n+p

]
≥ 0.

As in [26], applying the inequality P−1 4
α
e−�hΔP−1 ≥ 2P−1 −

α
4
e�hΔ−1, the latter inequality is satisfied provided that

[
2P−1 − α

4
e�hΔ−1 U�G� −W�I�

GU − IW I3n+p

]
≥ 0

which is necessary to prove. �
The last important observation is that for the algorithms (3)–(5),

the variables K , F , and S have an additional linear constraint (i.e.,
K1 = −K5, F1 = −F5, and S1 = −S6), which is hard to formulate
in terms of an LMI since K = UP , W = FP , and S = ΣP , then a
possible solution is to assume that the variable θ̂1(t) in the algorithms
(11)–(13) enters with an independent gain.

Let us consider some results of application of the proposed robust
adaptive output control.

V. APPLICATION TO A NONLINEAR PENDULUM

To illustrate the proposed approach, we consider an inverted pen-
dulum stabilization problem, where the hardware setup used for ex-
periments in this section has been previously reported in [19]. The
equipment and corresponding notation are shown in Fig. 1.

Define the state variable vector x :=
[
θ θ̇ θ̇r

]�
, where θ is the

angle between the pendulum and the vertical, and θr is the angle of
the reaction wheel with respect to the pendulum. Note that the reaction
wheel velocity θ̇r is assumed to be available due to the equipment
specifics. Derivations of the system dynamics and values of physical
parameters can be found [19] and are omitted here; the resulting model

Fig. 1. Inverted pendulum hardware and corresponding notations
(see [19]).

Fig. 2. Experimental stabilization of the inverted pendulum. (a) Cor-
rected pendulum position y1 − θ̂1. (b) Bias estimate θ̂1 and the true bias
value θ1.

Fig. 3. Experimental stabilization of the inverted pendulum: the reac-
tion wheel velocity y2.

is given by

ẋ1 = x2

ẋ2 = a1 sin(x1)− b1u

ẋ3 = −a1 sin(x1) + b2u (14)

where a1 = 49.9, b1 = 1.4, b2 = 30.9, and u is the motor current
considered as the control input. Due to physical reasons, the angle
θ (the state x1) is bounded as |x1| ≤ π

2
. The measurements are given

by y1 = x1 + θ1 and y2 = x3, where θ1 is the unknown constant bias
of the pendulum position sensor. It is straightforward to verify that
the model (14) can be written in the form (2) with Ω(t) ≡ 0. The
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control goal is to drive the system to the origin and to estimate the
bias θ1. In [19], a nonlinear velocity observer for the state x2 has been
proposed and combined with the state-feedback control law; however,
only local convergence has been shown. In this section, we apply the
control law (3), (4). Assumption 1 is satisfied withΥ = diag[0.25, 0, 0].
The LMI (9) is feasible with h = 0.01 andK1 = −102,K2 = −1698,
K3 = −0.25,F1 = 1,F3 = 1.5 · 10−4, andK4 = F2 = F4 = 0, thus
the conditions of Remark 10 are verified.

Some simulation results for this setup were presented in the prelim-
inary work [12]. In the experiment, the bias is θ1 = 0.125 ≈ 7◦. The
results of the experimental pendulum stabilization and θ1 estimation
with the control law (3), (4) are depicted in Fig. 2 for the estimated
pendulum position y1 − θ̂1 and the bias estimation θ̂1. The experimen-
tal results for the reaction wheel velocity y2 are depicted in Fig. 3, where
the steady-state low-magnitude oscillations are attributed to the friction
in the reaction wheel drive and compensation of external disturbances.
The experimental results illustrate that the proposed delay-based control
law stabilizes the system and allows for the bias estimation. The video
of the experiment can be found2

VI. CONCLUSION

Considering a Lipschitz nonlinear system, whose model contains
external perturbation and uncertain parameters, whereas the measure-
ments are available with a constant bias, the problem of robust output
adaptive stabilization has been solved. Due to a severe uncertainty of the
plant, the state reconstruction has been avoided by introducing artificial
delays of the output in the feedback and adaptation algorithms. Ap-
plying the Lyapunov–Krasovskii approach, the conditions of practical
ISS have been established, which are based on LMIs. The efficacy of
the proposed approach is demonstrated in experiments for an inertia
wheel nonlinear pendulum. Extension of the proposed method to a
more general class of systems is a direction of future research.
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