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Summary

This paper deals with the stability of discrete-time networked systems with mul-
tiple sensor nodes under dynamic scheduling protocols. Access to the commu-
nication medium is orchestrated by a weighted try-once-discard or by an inde-
pendent and identically-distributed stochastic protocol that determines which
sensor node can access the network at each sampling instant and transmit its cor-
responding data. Through a time-delay approach, a unified discrete-time hybrid
system with time-varying delays in the dynamics and in the reset conditions
is formulated under both scheduling protocols. Then, a new stability criterion
for discrete-time systems with time-varying delays is proposed by the discrete
counterpart of the second-order Bessel-Legendre integral inequality. The devel-
oped approach is applied to guarantee the stability of the resulting discrete-time
hybrid system model with respect to the full state under try-once-discard or inde-
pendent and identically-distributed scheduling protocol. The communication
delays can be larger than the sampling intervals. Finally, the efficiency of the
presented approach is illustrated by a cart-pendulum system.
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1 INTRODUCTION

With the development of communication techniques, network topologies, and control methods, networked control sys-
tems (NCSs) have received increasing attention in the past decades due to its widespread applications.1 Meanwhile,
because the network is usually shared by multiple sensor, controller and actuator nodes, these distributed nodes will com-
pete for access to the network as a result of bandwidth limitations and interference channels. There is a need for network
protocols to address communication constraints, which prohibit that sensor, controller, or actuator nodes transmits their
corresponding values simultaneously. In the literature, there are two basic types of scheduling protocols, namely, static
and dynamic protocols.

Static protocols correspond to the situation where the order of the activated nodes is chosen initially and remains fixed
at each transmission instant. The well-known Round-Robin (RR) communication protocol2 is one of the static protocols,
where the nodes take turns transmitting its corresponding data in a predetermined and cyclic manner. Compared to static
protocols, the dynamic protocols,3 such as the often used try-once-discard (TOD) protocol and stochastic protocol, usually
achieve better system performance than the static ones.4 In the TOD protocol, the node, corresponding to the largest error
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between the current value and the last transmitted value, has the highest priority to use the communication medium.
While the stochastic protocol usually determines the transmitted node through a Bernoulli or a Markov chain process.

Both static and dynamic protocols have been widely adopted to communication and signal processing problems in
different frameworks. Stability of NCSs under RR and TOD protocols was studied in the context of hybrid systems in
the works of Nesic and Liberzon2 Heemels et al5 and in the framework of discretization-based systems in the works
of Cloosterman et al6 and Donkers et al.7 It is noted that, in the presence of scheduling protocols, both hybrid sys-
tems and discretization-based systems approaches do not allow large communication delays (that are larger than the
sampling intervals).

To incorporate communication delays larger than the sampling interval without increasing the model complexity, a
time-delay system approach was introduced for the stabilization of continuous-time networked systems with two sensor
nodes under the RR protocol8 and under the TOD protocol.9 The closed-loop system was modeled as a switched system
with multiple and ordered time-varying delays under RR scheduling or as a hybrid system with time-varying delays in
the dynamics and in the reset equations under TOD scheduling. For continuous-time NCSs, the extension to multiple
sensor nodes was presented in the works of Liu et al10,11 in which a hybrid time-delay system model was given under the
TOD/RR protocols and under the stochastic protocol, respectively, for the closed-loop system that contains time-varying
delays in the continuous dynamics and in the reset conditions. Furthermore, from a time-delay system perspective, the
RR protocol was considered in the work of Ugrinovskii and Fridman,12 where distributed estimation with H∞ consensus
was analyzed. Recently, by taking into account TOD/RR protocols, a time-delay system approach was developed in the
work of Freirich and Fridman13 for the decentralized exponential stabilization of large-scale NCSs in the presence of
asynchronous sampling of local networks. Moreover, the stochastic scheduling and RR scheduling protocols were used
in the work of Wen et al14 to achieve master-salve synchronization.

Although the problem of communication constraints has been widely studied, the aforementioned works on schedul-
ing protocols are concerned with continuous-time systems, and the corresponding results for discrete-time systems are
relatively few. In fact, discrete-time systems have already been applied in a wide range of areas, such as time-series anal-
ysis, image processing, quadratic optimization problem, and queuing analysis. Recently, RR and TOD protocols were
utilized to the set-membership filtering problem in the work of Zou et al15 for a class of discrete time-varying system.
A stochastic communication protocol was applied in another work of Zou et al16 to observer-based H∞ control of net-
worked discrete-time systems. However, the communication delays were not considered in these works. The time-delay
approach was extended in the work of Liu and Fridman17 to the stability analysis of discrete-time networked systems with
actuator constraints and two sensor nodes under the TOD scheduling protocol in the presence of large communication
delays. A time-dependent Lyapunov functional was introduced and only partial stability of the resulting hybrid delayed
system was guaranteed. The extension from two to multiple sensor nodes is far from being straightforward. It has the
following challenges.

1. The time-dependent Lyapunov functional of Liu and Fridman17 is not applicable any more.
2. It is important to guarantee stability of the resulting closed-loop system with respect to the full state and not only to

the partial state.

In this paper, we deal with the stability problem of discrete-time networked systems with multiple sensor nodes under
dynamic scheduling protocols, aiming at presenting an improved stability criterion to find the maximum allowable sam-
pling intervals and transmission delays such that the resulting closed-loop system is exponentially stable with respect to
the full state. A unified discrete-time hybrid system model is formulated with time-varying delays in the dynamics and
in the reset equations under both TOD and independent and identically-distributed (iid) scheduling protocols. The main
contributions of this paper are as follows.

1. A new stability criterion for discrete-time systems with time-varying delays is proposed by virtue of the developed
reciprocally convex combination inequality proposed in the work of Zhang et al18 and the discrete counterpart of the
augmented Lyapunov functional provided in the work of Liu et al19 for the stability analysis of continuous-time systems
with time-varying delays.

2. The proposed approach allows obtaining efficient stability criterion for the resulting discrete-time hybrid system model
with respect to the full state under TOD or iid scheduling protocol.

The efficiency of the presented approach is illustrated by a cart-pendulum system. Preliminary results on the stabiliza-
tion of networked discrete-time system with multiple sensor nodes under the TOD protocol have been presented in the
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work of Liu et al,20 where the condition was obtained by the Jensen inequality and the reciprocally convex combination
approach.21

Notation. Throughout the paper, the superscript “T ” stands for matrix transposition. By Rn and Rn×m, we denote the
n dimensional Euclidean space with vector norm | · | and the set of all n × m real matrices, respectively. The set Sn

+
refers to the set of symmetric positive definite matrices. For P ∈ Rn×n, the notation P > 0 means that P is symmetric
and positive definite. The symmetric elements of the symmetric matrix will be denoted by ∗, 𝜆min(P) denotes the
smallest eigenvalue of matrix P. Z, Z+, and N denote the set of integers, nonnegative integers, and positive integers,
respectively. For integers a and b with b > a, the notation Z[a, b] stands for all integers in the interval [a, b].

2 NCS MODEL AND PRELIMINARIES

In this section, we first demonstrate the discrete-time description of the NCS model and then introduce the dynamic
scheduling protocols to be adopted in this paper.

2.1 Description of system data
Consider the networked control scheme shown in Figure 1, where a linear discrete-time plant, N distributed sensors,
a controller node, and an actuator node are all connected via communication networks. The linear time-invariant
discrete-time plant is given by {

x(k + 1) = Ax(k) + Bu(k), k ∈ Z+,

𝑦i(k) = Ci x(k), i = 1, … ,N,
(1)

where x(k) ∈ Rn denotes the state of the plant; u(k) ∈ Rnu the control input; and 𝑦i(k) ∈ Rni (i = 1, … ,N ) the
measurement outputs of the plant; and A,B, and Ci, i = 1, … ,N, are the system matrices with appropriate dimensions.
These matrices can be uncertain with polytopic type uncertainty. The initial condition is given by x(k) = x0. We denote
C = [ CT

1 · · · CT
N ]T , 𝑦(k) = [ 𝑦T

1 (k) · · · 𝑦
T
N(k) ]

T ∈ R
n𝑦 , and

∑N
i=1 ni = n𝑦.

The sequence of sampling instants 0 = s0, s1, s2, … is strictly increasing in the sense that sp + 1 − sp ≤ MATI, where {sp}
is a subsequence of Z+ and MATI denotes the maximum allowable transmission interval. Denote by tp the updating time
instant of the zero-order holder. Suppose that the updating data at the instant tp on the actuator side has experienced an
uncertain transmission delay hp = tp − sp as it is transmitted through the network (both from the sensor to the controller
and from the controller to the actuator). The delays may be either smaller or larger than the sampling interval provided

FIGURE 1 The architecture of networked control systems under dynamic scheduling protocols [Colour figure can be viewed at
wileyonlinelibrary.com]
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that the transmission order of data packets is maintained.22 Assume that the network-induced delay hp is bounded with
the interval [hm, hM], where hm and hM are known nonnegative integers.

Denote by �̂�(s𝑝) = [�̂�T
1 (s𝑝) · · · �̂�

T
N(s𝑝)]

T ∈ R
n𝑦 the output information submitted to the dynamic scheduling protocol. At

each sampling instant sp, one of the outputs 𝑦i(s𝑝) ∈ Rni is transmitted over the network, that is, one of the �̂�i(s𝑝) values
is updated with the recent state yi(sp). Let i∗𝑝 ∈ N = {1, … ,N} denote the active output node at the sampling instant sp.
Then,

�̂�i(s𝑝) =

{
𝑦i(s𝑝), i = i∗𝑝,
�̂�i(s𝑝−1), i ≠ i∗𝑝.

(2)

We denote e(k) by the error between the system output y(sp) and the latest available information �̂�(s𝑝−1), ie,

e(k) = col{e1(k), … , eN(k)} ≡ �̂�(s𝑝−1) − 𝑦(s𝑝),
k ∈ [t𝑝, t𝑝+1 − 1], k ∈ Z

+, �̂�(s−1) ≜ 0, e(k) ∈ R
n𝑦 .

(3)

The choice of i∗𝑝 will depend on the transmission error and will be chosen according to the scheduling protocols, which
are defined in the following.

2.2 Dynamic scheduling protocols
2.2.1 TOD protocol
In the TOD protocol, the output node i∗𝑝 ∈ N with the greatest weighted error will be granted the access to the network.

Let Qi > 0, i = 1, … ,N, be some weighting matrices that will be computed in Theorem 2 as follows. At the sampling
instant sp, the weighted TOD protocol is a protocol in which the active output node with the index i∗𝑝 is defined as any
index that satisfies |||√Qi∗

𝑝
ei∗
𝑝
(k)|||2 ≥

|||√Qiei(k)
|||2, k ∈ [t𝑝, t𝑝+1 − 1], i ∈ N ⧵

{
i∗𝑝
}
. (4)

A possible selection of i∗𝑝 is given by

i∗𝑝 = min
{

arg max
i∈{1,… ,N}

|||√Qi
(
�̂�i(s𝑝−1) − 𝑦i(s𝑝)

)|||2
}
.

2.2.2 Iid scheduling
The selection of i∗𝑝 is assumed to be iid with the probabilities given by

Prob
{

i∗𝑝 = i
}
= 𝛽i, i ∈ N , (5)

where 𝛽i ∈ N are nonnegative scalars and
∑N

i=1 𝛽i = 1. Here, 𝛽 j, j = 1, … ,N, are the probabilities of the state xj(sp) to
be transmitted at sp.

Remark 1. The iid protocol, as one of dynamic protocols, is adopted to schedule which sensor node can access to
the communication medium at each sampling instant. It has been applied to describe probabilistic measurements
missing,23 stochastic sampling intervals,24 stochastic interval time-delays,25 and the probability of a switched system
staying in each subsystem.26,27

3 A DISCRETE-TIME HYBRID SYSTEM MODEL

Consider (1) under the static output feedback control. In the following, we propose a hybrid system model for the
closed-loop system of NCS provided earlier.

The controller and the actuator are supposed to be event driven. The most recent output information on the controller
side is denoted by �̂�(s𝑝). Assume that there exists a matrix K = [K1 · · ·KN], Ki ∈ Rnu×ni such that A + BKC is Schur stable.
Consider the static output feedback controller

u(k) = K�̂� (s𝑝), k ∈ [t𝑝, t𝑝+1 − 1], k ∈ Z
+. (6)



LIU ET AL. 4483

From (2), it follows that the controller (6) can be rewritten as

u(k) = Ki∗
𝑝
𝑦i∗

𝑝
(s𝑝) +

N∑
i=1,i≠i∗

𝑝

Ki�̂�i(s𝑝−1), (7)

for k ∈ [tp, tp + 1 − 1], where i∗𝑝 is the index of the active node at sp.
Therefore, from (1), (3), and (7), we obtain the following augmented closed-loop system for k ∈ [t𝑝, t𝑝+1 − 2], k ∈ Z+:

⎧⎪⎨⎪⎩
x (k + 1) = Ax (k) + A1x(s𝑝) +

N∑
i=1,i≠i∗

𝑝

Biei(t𝑝),

e(k + 1) = e(k),

(8)

with the delayed reset system for k = tp + 1 − 1

⎧⎪⎪⎨⎪⎪⎩
x(t𝑝+1) = Ax(t𝑝+1 − 1) + A1x(s𝑝) +

N∑
i=1,i≠i∗

𝑝

Biei(t𝑝),

ei(t𝑝+1) = Ci
[
x(s𝑝) − x(s𝑝+1)

]
, i = i∗𝑝,

ei(t𝑝+1) = ei(t𝑝) + Ci
[
x(s𝑝) − x(s𝑝+1)

]
, i ≠ i∗𝑝,

(9)

where the augmented state is col{x(k), e(k)}, e(k) the error between the system output y(sp) and the latest available
information �̂�(s𝑝−1) is defined in (3), and

A1 = BKC, K = [K1 · · · KN], Bi = BKi, i = 1, … ,N.

For k ∈ [tp, tp + 1 − 1], denote h(k) = k − sp. Then hm ≤ h(k) ≤ MATI + hM − 1 ≜ 𝜏M . Therefore, (8)-(9) can be
considered as a discrete-time hybrid system with a time-varying interval delay.

Remark 2. For continuous-time NCSs, the closed-loop system under RR protocol was presented in the work of
Liu et al10 as a hybrid time-delay system model, which leads to complicated Lyapunov-based analysis. A more accu-
rate model of the closed-loop system under the RR protocol was given in a different work of Liu et al8 in the form of
switched N subsystems with multiple and ordered time-varying delays. In the works of Freirich and Fridman,13,28 the
closed-loop system was simplified to a model with one system instead of N and independent multiple delays in the
continuous and discrete cases, respectively.

The objective of the present paper is to provide improved stability criteria to find MATI and the maximum allowable
transmission delay hM such that the closed-loop system (8)-(9) under dynamic protocol (4) (or (5)) is exponentially stable
(exponentially mean-square stable) with respect to the full state. To do so, in the following, we first establish a new stability
criterion for discrete-time systems with time-varying delays by the discrete counterpart of the augmented Lyapunov func-
tional provided in the work of Liu et al19 for the stability analysis of continuous-time systems with time-varying delays.
Then, the proposed approach is applied to guarantee the stability of the resulting discrete-time hybrid system model with
respect to the full state under TOD and iid scheduling protocols, respectively.

4 PRELIMINARY RESULTS ON DISCRETE-TIME SYSTEMS
WITH TIME-VARYING DELAYS

In this section, we propose a new stability condition for the linear discrete-time system with time-varying delays. This
class of system is governed by

{
x(k + 1) = Ax(k) + A1x(k − h(k)), k ≥ 0, k ∈ Z+,

x(k) = 𝜙(k), k ∈ [−h2, 0] ∩ Z,
(10)
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where x(k) ∈ Rn is the state vector, A ∈ Rn×n, A1 ∈ Rn×n are constant matrices, and 𝜙(k) is an initial condition. The
time-varying delay h(k) is a positive integer satisfying h1 ≤ h(k) ≤ h2, h12

Δ
= h2 − h1, where h1 and h2 are known positive

integers.
This study indeed represents the first stage toward the stability analysis of system (8)-(9) because it could repre-

sent the situation, where e(k) = 0, ∀k ≥ 0, k ∈ Z. This preliminary result will then be extended to address the
objective of the present paper, ie, exponential stability (exponential mean-square stability) of (8)-(9) under dynamic
protocol (4) (or (5)).

Let us first recall the discrete counterpart of the second-order Bessel-Legendre integral inequality 29 (ie, the
Bessel-Legendre inequality with the degree of Legendre polynomials equal to 2). The same inequality was also proposed
in the work of Hien and Trinh.30 In this inequality, an improvement of Abel lemma–based inequality31 or Wirtinger-type
inequality32 has been achieved.

Lemma 1. For a given matrix R ∈ Sn
+, integers a and b with b > a, any vector function x: Z[a, b] → Rn, the inequality

b∑
s=a
𝜔T(s)R𝜔(s) ≥ 1

b − a + 1
ΩTdiag(R, 3R, 5R)Ω (11)

holds, where 𝜔(s) = x(s) − x(s − 1) and

Ω =

⎡⎢⎢⎢⎢⎢⎢⎣

x(b) − x(a − 1)

x(b) + x(a − 1) − 2
b−a+2

b∑
s=a−1

x(s)

x(b) − x(a − 1) − 6
b−a+2

b∑
s=a−1

𝛿a,b(s)x(s)

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝛿a,b(s) =2
( s − a

b − a

)
− 1.

In the following, based on Lemma 1 together with a newly developed delay-dependent reciprocally convex combination
lemma,18 a novel stability criterion is provided for discrete-time system (10) with time-varying delays. For simplicity of
presentation, in this section, we denote by 𝜚i(i = 1, … , 14) the block row vectors of the identity matrix I14n and use the
following notations:

G1 =
[
𝜚T

1 − 𝜚T
1 + (h1 + 1)𝜚T

5 − 𝜚T
2 − 𝜚T

3 + 𝜚T
7 + 𝜚T

9 − 𝜚T
1 + (h1 + 1)𝜚T

6 ĜT
1
]T
,

Ĝ1 = −(h12 − 1)𝜚2 + (h12 + 1)𝜚3 − 𝜚12 − 𝜚14,

G(h) =
[
0 0 (h − h1)𝜚T

7 + (h2 − h)𝜚T
9 0 Ĝ(h)T]T

,

Ĝ(h) = −2(h2 − h)𝜚3 + (h2 − h)(𝜚11 + 𝜚14) + (h − h1)(𝜚12 − 𝜚13),

G2 =
[
𝜚T

1 − 𝜚T
2 𝜚T

1 + 𝜚T
2 − 2𝜚T

5 𝜚T
1 − 𝜚T

2 − 6𝜚T
6
]T
,

G3 =
[
𝜚T

2 − 𝜚T
3 𝜚T

2 + 𝜚T
3 − 2𝜚T

7 𝜚T
2 − 𝜚T

3 − 6𝜚T
8
]T
,

G4 =
[
𝜚T

3 − 𝜚T
4 𝜚T

3 + 𝜚T
4 − 2𝜚T

9 𝜚T
3 − 𝜚T

4 − 6𝜚T
10
]T
,

Γ =
[
GT

3 GT
4
]T
, Σ = A𝜚1 + A1𝜚3,

G0 =
[
ΣT − 𝜚T

2 + (h1 + 1)𝜚T
5 − 𝜚T

3 − 𝜚T
4 + 𝜚T

7 + 𝜚T
9 ĜT

01 ĜT
02
]T
,

Ĝ01 =
(

1 + 4
h1 − 1

)
𝜚2 −

2(h1 + 1)
h1

𝜚5 + (h1 + 1)𝜚6,

Ĝ02 = (h12 + 3)(𝜚3 + 𝜚4) − 2(𝜚11 + 𝜚13) − (𝜚12 + 𝜚14),

(12)
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and
𝜂0(k) =

[
xT(k) xT(k − h1) xT(k − h(k)) xT(k − h2)

]T
,

𝜂1(k) =
1

h1 + 1

[ k∑
s=k−h1

xT(s)
k∑

s=k−h1

𝛿1(k, s)xT(s)

]T

,

𝜂2(k) =
1

h − h1 + 1

[
k−h1∑

s=k−h
xT(s)

k−h1∑
s=k−h

𝛿2(k, s)xT(s)

]T

,

𝜂3(k) =
1

h2 − h + 1

[ k−h∑
s=k−h2

xT(s)
k−h∑

s=k−h2

𝛿3(k, s)xT(s)

]T

,

𝜂4(k) = (h − h1 + 1)𝜂2(k), 𝜂5(k) = (h2 − h + 1)𝜂3(k),

𝜂6(k) =

[ k−h1∑
s=k−h2

xT(s) h12

k−h1∑
s=k−h2

𝛿4(k, s)xT(s)

]T

,

(13)

and where the functions 𝛿i, for i = 1, … , 4, which refer to the functions 𝛿a,b given in Lemma 1, are given by

𝛿1(k, s) = 2
(

s − k + h1 − 1
h1 − 1

)
− 1, 𝛿2(k, s) = 2

(
s − k + h − 1

h − h1 − 1

)
− 1,

𝛿3(k, s) = 2
(

s − k + h2 − 1
h2 − h − 1

)
− 1, 𝛿4(k, s) = 2

(
s − k + h2 − 1

h12 − 1

)
− 1.

(14)

The following theorem gives sufficient conditions for exponential stability of system (10).

Theorem 1. The system (10) is exponentially stable with the decay rate 𝜆 ∈ (0, 1) for all time-varying delays h(k) ∈
[h1, h2] if there exist matrices P ∈ S

5n
+ , S1, S2,R1,R2 ∈ Sn

+, N1,N2 ∈ R14n×2n, and a matrix X ∈ R3n×3n such that the
matrix inequalities ⎡⎢⎢⎣ Φ̃i

[
(Σ − 𝜚1)TH

0

]
∗ −H

⎤⎥⎥⎦ < 0, i = 1, 2, (15)

hold, where

Φ̃1 =
⎡⎢⎢⎣
Φ0(h1) − 𝜆h2ΓTΨ(h1)Γ GT

3 X
√

1 − 𝜆GT(h)P
∗ −𝜆−h2 R̃2 0
∗ ∗ −P

⎤⎥⎥⎦ ,
Φ̃2 =

⎡⎢⎢⎣
Φ0(h2) − 𝜆h2ΓTΨ(h2)Γ GT

4 XT
√

1 − 𝜆GT(h)P
∗ −𝜆−h2 R̃2 0
∗ ∗ −P

⎤⎥⎥⎦ ,
(16)

and, for any 𝜃 in R,
Φ0(𝜃) =GT

0 PG0 − 𝜆GT
1 PG1 + He

(
GT(h)P (G0 − 𝜆G1)

+N1g1(𝜃) + N2g2(𝜃)) + Ŝ − GT
2 R̃1G2,

Ŝ =diag
(

S1,−𝜆h1(S1 − S2), 0n×n,−𝜆h2 S2, 010n×10n
)
,

R̃i =diag(Ri, 3Ri, 5Ri), i = 1, 2,
H =h2

1R1 + h2
12R2,

(17)

and

Ψ(𝜃) =
[
(2 − (h − h1)∕h12)R̃2 X

XT (1 + (h − h1)∕h12)R̃2

]
,

g1(𝜃) =(𝜃 − h1 + 1)
[
𝜚7
𝜚8

]
−
[
𝜚11
𝜚12

]
, g2(𝜃) = (h2 − 𝜃 + 1)

[
𝜚9
𝜚10

]
−
[
𝜚13
𝜚14

]
.

(18)
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Proof. Consider a Lyapunov functional given by

V(k) =V1(k) + V2(k) + V3(k),

V1(k) = x̃T(k)Px̃(k),

V2(k) =
k−1∑

s=k−h1

𝜆k−s−1|||√S1x(s)|||2 + k−h1−1∑
s=k−h2

𝜆k−s−1|||√S2x(s)|||2,
V3(k) =h1

0∑
𝑗=−h1+1

k∑
s=k+𝑗

𝜆k−s|||√R1𝜂(s)
|||2 + h12

−h1∑
𝑗=−h2+1

k∑
s=k+𝑗

𝜆k−s|||√R2𝜂(s)
|||2,

(19)

where 𝜂(k) = x(k) − x(k − 1) and

x̃(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)
k−1∑

s=k−h1

x(s)

k−h1−1∑
s=k−h2

x(s)

k−1∑
s=k−h1

𝛿1(k, s)x(s)

(h12 − 1)
k−h1−1∑
s=k−h2

𝛿4(k, s)x(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with 𝛿1(k, s) and 𝛿4(k, s) given in (14).
The objective of the next development consists in finding an upper bound of the difference of V(k + 1) − 𝜆V(k)

along the trajectories of system (10) using the augmented vector

𝜁 (k) = col {𝜂0(k), 𝜂1(k), 𝜂2(k), 𝜂3(k), 𝜂4(k), 𝜂5(k)} , (20)

where 𝜂i(k), for i = 0, … , 5, are given in (13).
To expressΔV1(k) = x̃T(k+1)Px̃(k+1)−𝜆x̃T(k)Px̃(k) in terms of the augmented vector 𝜁 (k), we need to express x̃(k+1)

and x̃(k) using 𝜁 (k). On one hand, we note that the first four components of x̃(k) and x̃(k+ 1) can be straightforwardly
expressed as the components of 𝜁 (k). Simple calculations show that

x(k) = 𝜚1𝜁 (k),

k−1∑
s=k−h1

x(s) = −x(k) +
k∑

s=k−h1

x(s) = (−𝜚1 + (h1 + 1)𝜚5) 𝜁 (k),

k−h1−1∑
s=k−h2

x(s) = −x(k − h1) − x(k − h) +
k−h1∑

s=k−h
x(s) +

k−h∑
s=k−h2

x(s)

= (−𝜚2 − 𝜚3 + (h − h1 + 1)𝜚7 + (h2 − h + 1)𝜚9) 𝜁 (k),

k−1∑
s=k−h1

𝛿1(k, s)x(s) = −x(k) +
k∑

s=k−h1

𝛿1(k, s)x(s) = (−𝜚1 + (h1 + 1)𝜚6) 𝜁 (k)
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and

x(k + 1) = Σ𝜁 (k),

k∑
s=k+1−h1

x(s) = − x(k − h1) +
k∑

s=k−h1

x(s) = (−𝜚2 + (h1 + 1)𝜚5)𝜁 (k),

k−h1∑
s=k+1−h2

x(s) = − x(k − h) − x(k − h2) +
k−h1∑

s=k−h
x(s) +

k−h∑
s=k−h2

x(s)

=
(
−𝜚3 − 𝜚4 + (h − h1 + 1)𝜚T

7 + (h2 − h + 1)𝜚T
9
)
𝜁 (k),

k∑
s=k+1−h1

𝛿1(k + 1, s)x(s) =
(

1 + 4
h1 − 1

)
x(k − h1) −

2
h1 − 1

k∑
s=k−h1

x(s) +
k∑

s=k−h1

𝛿1(k, s)x(s)

=
[(

1 + 4
h1 − 1

)
𝜚2 −

2(h1 + 1)
h1 − 1

𝜚5 + (h1 + 1)𝜚6

]
𝜁 (k),

where the matrix Σ is given in (12). The last component of x̃(k) and x̃(k + 1) requires a more dedicated development.
To achieve this goal, we first note that

(h12 − 1)
k−h1−1∑
s=k−h2

𝛿4(k, s)x(s) =(h12 − 1)
k−h1∑

s=k−h
𝛿4(k, s)x(s) + (h12 − 1)

k−h∑
s=k−h2

𝛿4(k, s)x(s) − (h12 − 1)x(k − h1)

− (2(h2 − h − 1) − h12 + 1)x(k − h).

(21)

We need to find two expressions of 𝛿4(k, s), which depend on 𝛿2(k, s) and 𝛿3(k, s), respectively. Some calculations
show

𝛿4(k, s) =2
(

s − k + h2 − 1
h12 − 1

)
− 1 = 2 (s − k + h − 1) + (h2 − h)

h12 − 1
− (h2 − h) + (h − h1 − 1)

h12 − 1

=2 s − k + h − 1
h − h1 − 1

h − h1 − 1
h12 − 1

− h − h1 − 1
h12 − 1

+ h2 − h
h12 − 1

=h − h1 − 1
h12 − 1

𝛿2(k, s) +
h2 − h
h12 − 1

,

(22)

and, similarly,

𝛿4(k, s) =2 h2 − h − 1
h12 − 1

s − k + h2 − 1
h2 − h − 1

− (h2 − h − 1) + (h − h1)
h12 − 1

=h2 − h − 1
h12 − 1

𝛿3(k, s) −
h − h1

h12 − 1
.

(23)

Reinjecting (22) and (23) into (21) leads to

(h12 − 1)
k−h1−1∑
s=k−h2

𝛿4(k, s)x(s) =(h − h1 − 1)
k−h1∑

s=k−h
𝛿2(k, s)x(s) + (h2 − h)

k−h1∑
s=k−h

x(s)

+ (h2 − h − 1)
k−h∑

s=k−h2

𝛿3(k, s)x(s) − (h − h1)
k−h∑

s=k−h2

x(s) − (h12 − 1)x(k − h1)

− (2(h2 − h − 1) − h12 + 1)x(k − h)
=[0n×4n In](G1 + G(h))𝜁 (k).
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In the same way, the last component of x̃(k + 1) can be presented as

(h12 − 1)
k−h1∑

s=k+1−h2

𝛿4(k + 1, s)x(s) =(h12 − 1)
k−h1∑

s=k+1−h2

𝛿4(k, s)x(s) − 2
k−h1∑

s=k+1−h2

x(s)

=(h12 − 1)
k−h1∑

s=k−h
𝛿4(k, s)x(s) + (h12 − 1)

k−h∑
s=k−h2

𝛿4(k, s)x(s)

− (2(h2 − h − 1) − h12 − 1) x(k − h) + (h12 + 3)x(k − h2) − 2
k−h1∑

s=k−h
x(s) − 2

k−h∑
s=k−h2

x(s)

=(h − h1 − 1)
k−h1∑

s=k−h
𝛿2(k, s)x(s) + (h2 − h − 2)

k−h1∑
s=k−h

x(s) (24)

+ (h2 − h − 1)
k−h∑

s=k−h2

𝛿3(k, s)x(s) − (h − h1 + 2)
k−h∑

s=k−h2

x(s)

− (2(h2 − h − 1) − h12 − 1) x(k − h) + (h12 + 3)x(k − h2)
=[0n×4n In](G0 + G(h))𝜁 (k).

Hence, we finally obtain that x̃(k) = (G1 + G(h))𝜁 (k) and x̃(k + 1) = (G0 + G(h))𝜁 (k). Thus, ΔV1(k) writes

ΔV1(k) =x̃T(k + 1)Px̃(k + 1) − 𝜆x̃T(k)Px̃(k)
=𝜁T(k)

[
GT

0 PG0 − 𝜆GT
1 PG1 + (1 − 𝜆)GT(h)PG(h) + He

(
GT(h)P(G0 − 𝜆G1)

)]
𝜁 (k).

(25)

Moreover, from the definition of the augmented vector 𝜁 (k), one can see that the last four components can be
seen as linear combination of the other components of 𝜁 (k) because the relations 𝜂4(k) = (h − h1 + 1)𝜂2(k) and
𝜂5(k) = (h2 − h + 1)𝜂3(k) hold. Then, for any matrices N1,N2 in R14n×2n, it holds that

2𝜁T(k) (N1g1(h) + N2g2(h)) 𝜁 (k) = 0. (26)

The computation of ΔV2(k) and ΔV3(k) yields

ΔV2(k) ≤ xT(k)S1x(k) − 𝜆h1 xT(k − h1)(S1 − S2)x(k − h1) − 𝜆h2 xT(k − h2)S2x(k − h2)

= 𝜁T(k)Ŝ𝜁 (k)
(27)

and
ΔV3(k) ≤ 𝜂T(k + 1)

(
h2

1R1 + h2
12R2

)
𝜂(k + 1)

− h1𝜆
h1

k∑
s=k−h1+1

|||√R1𝜂(s)
|||2 − 𝜆h2 h12

k−h1∑
s=k−h2+1

|||√R2𝜂(s)
|||2. (28)

Then, by Lemma 1 and the definition of the matrices G2 and R̃1 in (12) and (17), respectively, we arrive to the
following upper bound of the first summation in (28):

−h1𝜆
h1

k∑
s=k−h1+1

|||√R1𝜂(s)
|||2 ≤ −𝜆h1𝜁T(k)GT

2 R̃1G2𝜁 (k). (29)

Applying again Lemma 1 to the last summation term of (28) yields

−𝜆h2 h12

k−h1∑
s=k−h2+1

|||√R2𝜂(s)
|||2 = − 𝜆h2 h12

k−h1∑
s=k−h+1

|||√R2𝜂(s)
|||2 − 𝜆h2 h12

k−h∑
s=k−h2+1

|||√R2𝜂(s)
|||2

≤ − 𝜆h2𝜁T(k)ΓT

[ h12
h−h1

R̃2 0

0 h12
h2−h

R̃2

]
Γ𝜁 (k)

≤ − 𝜁T(k)Φ1(h(k))𝜁 (k),

(30)
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TABLE 1 Example 1: admissible upper bound of h2 for different h1

h1 2 4 6 10 15 20 25 NoVs

Feng et al33 21 21 21 22 24 27 31 9.5n2 + 5.5n
Kwon et al34 22 22 22 23 25 28 32 27n2 + 9n
Hien and Trinh30 26 27 28 31 34 35 36 20n2 + 5n
Theorem 1 27 29 30 33 35 37 38 79.5n2 + 4.5n

where

Φ1(h(k)) =𝜆h2ΓT

([
R̃2 X
XT R̃2

]
+

[ h2−h
h12

T1 0

0 h−h1
h12

T2

])
Γ,

T1 = R̃2 − XR̃−1
2 XT , T2 = R̃2 − XTR̃−1

2 X .

(31)

The latter inequality is guaranteed due to the refined reciprocally convex combination lemma.18

From (25)-(30), it follows that
ΔV(k) ≤ 𝜁T(k)Φ(h)𝜁 (k),

where Φ(h) = Φ0(h) − Φ1(h) + (1 − 𝜆)GT(h)PG(h) + (Σ − 𝜚1)TH(Σ − 𝜚1) with Φ0(h) and Φ1(h) given in (17) and
(31), respectively. By Schur complement, the two matrix inequalities of (15) are equivalent to Φ(hi) ≺ 0, i = 1, 2, and
thus guarantee ΔV(k) < 0, implying exponential stability with the decay rate 𝜆 of system (10) for all time-varying
delays in the interval [h1, h2].

Remark 3. In order to fully benefit from the summation inequality of (11), the augmented term V1 in (19) not only
includes the signals x(k),

∑k−1
s=k−h1

x(s) and
∑k−h1−1

s=k−h2
x(s) that were adopted in the work of Seuret et al32 but also includes

two additional signals
∑k−1

s=k−h1
𝛿1(k, s)x(s) and (h12 − 1)

∑k−h1−1
s=k−h2

𝛿4(k, s)x(s). This state augmentation allows achieving
less conservative stability criteria. More recently, new summation inequalities in double form has been proposed in the
work of Hien and Trinh.30 Therefore, the condition of Theorem 1 could be further improved by employing generalized
summation inequalities and Lyapunov functional with triple summation terms.30

A widely used numerical example is taken from the literature to make a comparison with some results recently reported
in the existing works. Consider the following much-studied system (10) with:

A =
[

0.8 0.0
0.05 0.9

]
, A1 =

[
−0.1 0.0
−0.2 −0.1

]
.

Table 1 shows that the maximum allowable delays h2 for several values of h1 obtained by Theorem 1 with 𝜆 = 1 are less
conservative than those obtained by various recent methods from the literature. As usual, the reduction of the conser-
vatism of Theorem 1 over existing results is at the price of additional decision variables, showing again a trade-off between
the improvement and the numerical complexity.19

5 NCSs UNDER TOD SCHEDULING PROTOCOL

Based on the exponential delay-dependent analysis of Theorem 1, in this section, we derive the exponential stability
criteria of (8)-(9) under (4), the definition of which is given as follows.

Definition 1. For any initial condition xt0 ∈ R
n × · · · ×R

n
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜏M+1 times

, if there exist constants b > 0 and 0 < 𝜅 < 1 such that

the solutions of the hybrid system (8)-(9) under (4) satisfy

|x(k)|2 ≤ b𝜅2(k−t0)
{||xt0 ||2c + |e(t0)|2} ,

and {|e(k)|2} ≤ b𝜅2(k−t0)
{||xt0 ||2c + |e(t0)|2} ,

where ||xt0 ||c = supt0−𝜏M≤s≤t0
|x(s)|, then the hybrid system (8)-(9) under (4) is said to be exponentially stable.



4490 LIU ET AL.

We apply the following discrete-time Lyapunov functional to system (8)-(9) under (4) for the exponential stability of
systems with time-varying delays from the maximum delay interval [hm, 𝜏M]:

Ve(k) =Ṽ(k) +
N∑

i=1
eT

i (t𝑝)Qiei(t𝑝),

Ṽ(k) =V(k) + VG(k), k ∈ [t𝑝, t𝑝+1 − 1], k, 𝑝 ∈ Z
+,

(32)

where V(k) is given by (19) with h1, h2, and h12 replaced by hm, 𝜏M, and 𝜏M − hm, respectively, and

VG(k) = (𝜏M − hm)
N∑

i=1

k∑
s=s𝑝

𝜆k−s|||√GiCi𝜂(s)
|||2,

with 𝜂(k) = x(k) − x(k − 1), 0 < 𝜆 < 1, Gi > 0, Qi > 0, i = 1, … ,N.

Remark 4. In order to reduce the numerical complexity of resulting stability conditions, one may follow the work of
Freirich and Fridman13 and include C in the integral terms of Lyapunov functional (32) with reduced-order matrices
Si,Ri, i = 1, 2, which will be the decision variables of the resulting matrix inequalities.

The term VG was introduced in the work of Liu et al10 to deal with the delays in the reset conditions

VG(t𝑝+1) − 𝜆VG(t𝑝+1 − 1) ≤
N∑

i=1

[
(𝜏M − hm)

|||√GiCi𝜂(t𝑝+1)
|||2] − N∑

i=1
𝜆𝜏M |||√GiCi

[
x(s𝑝+1) − x(s𝑝)

]|||2.
To ease the presentation, for i ∈ N , we will use in this section the following notations:

Σ̃i =
[

A − I 0n×n A1 0n×19n F̃i
0

]
,

F̃i
0 =

[
B1 · · · B𝑗 |𝑗≠i· · ·BN

]
,

H̃ =h2
mR0 + (𝜏M − hm)2R1 + (𝜏M − hm)

N∑
l=1

CT
l GlCl.

(33)

Thanks to Theorem 1 for the exponential delay-dependent analysis, we prove the following theorem on the exponential
stability of (8)-(9) under (4).

Theorem 2. For any given scalar 0 < 𝜆 < 1, integers 0 ≤ hm < 𝜏M, and Ki, i = 1, … ,N, assume that there exist
matrices P ∈ S

5n
+ , S1, S2, R1,R2 ∈ Sn

+, Qi, Ui,Gi ∈ S
ni
+ , i = 1, … ,N, N1,N2 ∈ R14n×2n, and a matrix X ∈ R3n×3n such

that the following matrix inequalities are feasible:

Ωi ≜

[
Γi Qi
∗ Qi − 𝜆𝜏M Gi

]
< 0, i = 1, … ,N, (34)

⎡⎢⎢⎣
[
Φ̃𝑗 0
∗ 𝜙i

]
(Σ̃i)TH̃

∗ −H̃

⎤⎥⎥⎦ < 0, 𝑗 = 1, 2, i = 1, … ,N, (35)

with Φ̃𝑗 , j = 1, 2, defined in (16) and

Γi =
−𝜆 − (1 − 𝜆)(𝜏M − hm)

N − 1
Qi +

(
1 + 1

𝜏M − hm

)
Ui,

𝜙i =diag
{

W1, … ,W𝑗 |𝑗≠i, … ,WN

}
,

Wi = − 1
𝜏M − hm

Ui + (1 − 𝜆)Qi,

(36)

and other notations given by (33). Then, we have

(i) Ve(k) satisfies the following inequalities along (8)-(9) for k ∈ [tp, tp + 1 − 2]:

Θ1(k) ≜ Ve(k + 1) − 𝜆Ve(k) −
1

𝜏M − hm

N∑
i=1,i≠i∗

𝑝

|||√Uiei(t𝑝)
|||2 − (1 − 𝜆)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2 ≤ 0; (37)
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(ii) at k = tp + 1 − 1,

Θ2 ≜ Ve(t𝑝+1) − 𝜆Ve(t𝑝+1 − 1) +
N∑

i=1,i≠i∗
𝑝

|||√Uiei(t𝑝)
|||2 + (1 − 𝜆)(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2 ≤ 0; (38)

(iii) the following bounds

𝜆min(P)|x(k)|2 ≤ Ṽ(k) ≤ Ve(k) ≤ 𝜆k−t0 Ve(t0), (39)

and
N∑

i=1

|||√Qiei(k)
|||2 ≤ c̃𝜆k−t0 Ve(t0), k ≥ t0, k ∈ N, (40)

with Ve(t0) = Ṽ(t0) +
∑N

i=1 |√Qiei(t0)|2 and c̃ = 𝜆−(𝜏M−hm), are valid for the solutions of (4), (8), and (9) initialized
by xt0 ∈ R

n × · · · × R
n

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜏M+1 times

, e(t0) ∈ R
n𝑦 .

Moreover, the hybrid system (8)-(9) under (4) is exponentially stable.

Proof. The proof consists in proving each item separately.
Proof of (i). First, from functional (32), it holds that, for k ∈ [tp, tp + 1 − 2],

Θ1(k) ≤ Ṽ(k + 1) − 𝜆Ṽ(k) + (𝜏M − hm)
N∑

i=1
|√GiCi𝜂(k + 1)|2 + N∑

i=1,i≠i∗
𝑝

|√Wiei(t𝑝)|2 ≜ Ψ(k). (41)

Therefore, Θ1(k) ≤ 0 of (37) is satisfied if Ψ(k) ≤ 0 for k ∈ [tp, tp + 1 − 2].
Let i∗𝑝 = i ∈ N and define 𝜉i(k) = [𝜁T(k), 𝜉T

i (k)]
T , where 𝜁 (k) is defined in (20) and 𝜉i(k) =

col{e1(k), … , e𝑗(k)|𝑗≠i, … , eN(k)}, i = 1, … ,N. Following the arguments of Theorem 1 for the exponential
delay-dependent analysis, we arrive at Ψ(k) ≤ 0 for k ∈ [tp, tp + 1 − 2] if (35) is feasible.

This completes the proof of (i).
Proof of (ii). From (32) and (41), we have

Θ2 ≤Ṽ(t𝑝+1) − 𝜆Ṽ(t𝑝+1 − 1) + (𝜏M − hm)
N∑

i=1

|||√GiCi𝜂(t𝑝+1)
|||2

−
N∑

i=1
𝜆𝜏M |||√GiCi

[
x(s𝑝+1) − x(s𝑝)

]|||2 + N∑
i=1

[|||√Qiei(t𝑝+1)
|||2 − 𝜆|||√Qiei(t𝑝)

|||2]
+

N∑
i=1,i≠i∗

𝑝

|||√Uiei(t𝑝)
|||2 + (1 − 𝜆)(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2
≤Ψ(t𝑝+1 − 1) + 1

𝜏M − hm

N∑
i=1,i≠i∗

𝑝

|||√Uiei(t𝑝)
|||2 − (1 − 𝜆)

N∑
i=1,i≠i∗

𝑝

|||√Qiei(t𝑝)
|||2

−
N∑

i=1
𝜆𝜏M |||√GiCi

[
x(s𝑝+1) − x(s𝑝)

]|||2 + N∑
i=1

[|||√Qiei(t𝑝+1)
|||2 − 𝜆|||√Qiei(t𝑝)

|||2]
+

N∑
i=1,i≠i∗

𝑝

|||√Uiei(t𝑝)
|||2 + (1 − 𝜆)(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2.
Note that, under the TOD protocol,

−
||||√Qi∗

𝑝
ei∗
𝑝
(t𝑝)

||||2 ≤ − 1
N − 1

N∑
i=1,i≠i∗

𝑝

|||√Qiei(t𝑝)
|||2.
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From (41) and (34), we haveΨ(tp + 1 − 1) ≤ 0 and 𝜆𝜏M Gi∗
𝑝
−Qi∗

𝑝
Ci∗

𝑝
> 0, respectively. Denote ςi = col{ei(tp),Ci[x(sp + 1) −

x(sp)]}. Then, employing (9), we arrive at

Θ2 ≤ Ψ(t𝑝+1 − 1) −
||||√𝜆𝜏M Gi∗

𝑝
− Qi∗

𝑝
Ci∗

𝑝

[
x(s𝑝+1) − x(s𝑝)

]||||2 +
N∑

i=1,i≠i∗
𝑝

ςT
i Ωiςi ≤ 0,

which yields (38). This completes the proof of (ii).
Proof of (iii). The next step is to prove (39) and (40). By the comparison principle, for k ∈ [tp, tp + 1 − 1],

the inequality (37) implies

Ve(k) ≤ 𝜆k−t𝑝Ve(t𝑝) +
N∑

i=1,i≠i∗
𝑝

{|||√Uiei(t𝑝)
|||2} + (1 − 𝜆)(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2. (42)

Note that (34) guarantees 0 < (1 − 𝜆)(𝜏M − hm) < 𝜆 < 1 and Ui < (1 + 1
𝜏M−hm

)Ui <
𝜆−(1−𝜆)(𝜏M−hm)

N−1
Qi < Qi,

i = 1, … ,N. Hence,
Ṽ(k) ≤ 𝜆k−t𝑝Ve(t𝑝), k ∈ [t𝑝, t𝑝+1 − 1]. (43)

On the other hand, the inequalities (38) and (42) with k = tp + 1 − 1 imply

Ve(t𝑝+1) ≤𝜆Ve(t𝑝+1 − 1) −
N∑

i=1,i≠i∗
𝑝

|||√Uiei(t𝑝)
|||2 − (1 − 𝜆)(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2

≤𝜆t𝑝+1−t𝑝Ve(t𝑝) − (1 − 𝜆)
N∑

i=1,i≠i∗
𝑝

|||√Uiei(t𝑝)
|||2 − (1 − 𝜆)2(𝜏M − hm)

||||√Qi∗
𝑝
ei∗
𝑝
(t𝑝)

||||2
≤𝜆t𝑝+1−t𝑝Ve(t𝑝).

Then, a recursive argument allows us to conclude that, for all 𝑝 ∈ Z, we have

Ve(t𝑝+1) ≤ 𝜆t𝑝+1−t𝑝−1 Ve(t𝑝−1) ≤ 𝜆t𝑝+1−t0 Ve(t0). (44)

Substituting in (44) p + 1 for p and taking into account (43), we arrive at (39), which yields exponential stability
of (8)-(9) under (4) because 𝜆min(P)|x(k)|2 ≤ Ṽ(k), V(t0) ≤ 𝛿||xt0 ||2c for some scalar 𝛿 > 0. Moreover, (44) with
p + 1 replaced by p implies (40) because 𝜆t𝑝−t0 = 𝜆k−t0𝜆t𝑝−k ≤ c̃𝜆k−t0 for k ∈ [tp, tp + 1 − 1]. This completes the
proof of (iii).

Remark 5. The exponential stability of system (8)-(9) under (4) can be alternatively analyzed via the Lyapunov
functional Ṽe(k) = Ve(k) + VW (k), where Ve(k) is given by (32) and

VW (k) = (1 − 𝜆)(t𝑝 − k)
||||√Qi∗

𝑝
ei∗
𝑝
(t𝑝)

||||2 + t𝑝 − k
t𝑝+1 − t𝑝

N∑
i=1,i≠i∗

𝑝

|||√Uiei(t𝑝)
|||2, k ∈ [t𝑝, t𝑝+1 − 1].

The negative term VW(k) is a discrete-time counterpart of piecewise continuous in time term that was recently
employed in the work of Freirich and Fridman13 to simplify the exponential stability analysis of the hybrid system.
Under the conditions (34) and (35), it holds that Ṽe(k) is positive for k ≥ t0,k ∈ Z+, ie, Ṽe(k) ≥ 𝜌(|x(k)|2 + |e(k)|2)
with some 𝜌 > 0, and that Ṽe(k + 1) − 𝜆Ṽe(k) ≤ 0, k ∈ [tp, tp + 1 − 1]. These two inequalities imply the exponential
stability of system (8)-(9) under (4).

Remark 6. For discrete-time NCSs under TOD scheduling protocol, lemma 2 of the work of Liu and Fridman17 guar-
antees only partial stability of the closed-loop system with N = 2 sensor nodes, whereas Theorem 2 in this paper
guarantees that (39) gives a bound not only on x(k) but also on ei(k), i = 1, … ,N. That is why Theorem 2 assesses
stability of system (8)-(9) under (4) with respect to the full state col{x(k), e(k)}.
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6 NCSs UNDER IID SCHEDULING PROTOCOL

In this section, we first reformulate system (8) and (9) under iid scheduling protocol (5) as a stochastic impulsive sys-
tem with the system matrices having stochastic parameters with Bernoulli distributions and then derive exponential
mean-square stability criteria by virtue of Theorem 1.

6.1 Stochastic hybrid time-delay model with Bernoulli distributed parameters
Following the work of Yue et al,25 we introduce the indicator functions

𝜋{𝜎∗
𝑝
=i} =

{
1, 𝜎∗𝑝 = i
0, 𝜎∗𝑝 ≠ i, i ∈ N , 𝑝 ∈ Z

+.

Thus, from (5), it follows that

E{𝜋{𝜎∗
𝑝
=i}} = E

{
[𝜋{𝜎∗

𝑝
=i}]2

}
= Prob

{
𝜎∗𝑝 = i

}
= 𝛽i,

E

{
[𝜋{𝜎∗

𝑝
=i} − 𝛽i]

[
𝜋{𝜎∗

𝑝
=𝑗} − 𝛽𝑗

]}
=

{
−𝛽i𝛽𝑗, i ≠ 𝑗,

𝛽i(1 − 𝛽i), i = 𝑗.

Therefore, the stochastic impulsive system model (8)-(9) under (5) can be rewritten as⎧⎪⎨⎪⎩
x(k + 1) = Ax(k) + A1x(s𝑝) +

N∑
i=1

(1 − 𝜋{𝜎∗
𝑝
=i})Biei(t𝑝),

e(k + 1) = e(k), k ∈ [t𝑝, t𝑝+1 − 2], k ∈ Z+,

(45)

with the delayed reset system for k = tp + 1 − 1⎧⎪⎨⎪⎩
x(t𝑝+1) = Ax(t𝑝+1 − 1) + A1x(s𝑝) +

N∑
i=1

(1 − 𝜋{𝜎∗
𝑝
=i})Biei(t𝑝),

ei(t𝑝+1) = (1 − 𝜋{𝜎∗
𝑝
=i})ei(t𝑝) + Ci

[
x(s𝑝) − x(s𝑝+1)

]
, i = 1, … ,N.

(46)

Definition 2. The hybrid system (45)-(46) is said to be exponentially mean-square stable if there exist constants b > 0
and 0 < 𝜅 < 1 such that, for initial condition xt0 ∈ R

n × · · · ×R
n

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜏M+1 times

, the solutions of the hybrid system (45)-(46) satisfy

E
{|x(k)|2} ≤ b𝜅2(k−t0)E

{||xt0 ||2c + |e(t0)|2} , k ≥ t0,

and
E
{|e(k)|2} ≤ b𝜅2(k−t0)E

{||xt0 ||2c + |e(t0)|2} , k ≥ t0.

The objective of this section is to derive condition for exponential mean-square stability of the hybrid system (45)-(46).

6.2 Exponential mean-square stability of NCSs under iid scheduling protocol
The stability analysis of (45)-(46) will be based on discrete-time Lyapunov functional (32).

The term VG satisfies for k = tp + 1 − 1

E
{

VG(t𝑝+1) − 𝜆VG(t𝑝+1 − 1)
}
≤ (𝜏M − hm)

N∑
i=1

E

{|||√GiCi𝜂(t𝑝+1)
|||2} −

N∑
i=1
𝜆𝜏ME

{|||√GiCi
[
x(s𝑝+1) − x(s𝑝)

]|||2} .
Following the arguments for network-based stabilization under TOD scheduling protocol, we arrive at the following.

Theorem 3. For any given scalar 0 < 𝜆 < 1, integers 0 ≤ hm < 𝜏M, and Ki, i = 1, … ,N, assume that there exist
matrices P ∈ S

5n
+ , S1, S2,R1,R2 ∈ Sn

+, Qi,Ui,Gi ∈ S
ni
+ , i = 1, … ,N,N1,N2 ∈ R14n×2n, and a matrix X ∈ R3n×3n such that

the following matrix inequalities are feasible for k ∈ [tp, tp + 1 − 1]:

Ω̂i ≜

[
Γ̂i (1 − 𝛽i)Qi
∗ Qi − 𝜆𝜏M Gi

]
< 0, i = 1, … ,N, (47)
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⎡⎢⎢⎢⎣
[
Φ̃𝑗 0
∗ −𝜓

]
ΞTH̃ Ξ̂TH̃

∗ −H̃ 0
∗ ∗ −𝛽H̃

⎤⎥⎥⎥⎦ < 0, 𝑗 = 1, 2, (48)

are feasible, where

Γ̂i = − 𝜆Qi + (1 − 𝛽i)Qi +
(

1 + 1
𝜏M − hm

)
Ui.

Ξ = [A − I 0n×n A1 0n×19n Ξ0] , Ξ0 = [(1 − 𝛽1)B1 · · · (1 − 𝛽N)BN] ,
Ξ1 =

[
0n×22n − B1 0n×(n𝑦−n1)

]
, Ξ2 =

[
0n×(22n+n1) − B2 0n×(n𝑦−n1−n2)

]
, … ,

ΞN =
[
0n×(22n+n𝑦−nN ) − BN

]
, Ξ𝑗 ∈ R

n×(22n+n𝑦), Ξ̂ =
[
ΞT

1 · · · ΞT
N
]T
,

𝛽 = diag
{
𝛽−1

1 , … , 𝛽−1
N
}
, 𝜓 = 1

𝜏M − hm
diag{U1, … ,UN},

(49)

with the notations Φ̃𝑗 , j = 1, 2, and H̃ given by (16) and (33), respectively. Then, we have the following.

(i) For k ∈ [tp, tp + 1 − 2], Ve(k) satisfies the following inequalities along (45)-(46):

Θ̂1(k) ≜ E

{
Ve(k + 1) − 𝜆Ve(k) −

1
𝜏M − hm

N∑
i=1

|||√Uiei(t𝑝)
|||2
}

≤ 0. (50)

(ii) At k = tp + 1 − 1,

Θ̂2 ≜ E

{
Ve(t𝑝+1) − 𝜆Ve(t𝑝+1 − 1) +

N∑
i=1

|||√Uiei(t𝑝)
|||2
}

≤ 0. (51)

(iii) For the solutions of (45)-(46) initialized by xt0 ∈ R
n × · · · × R

n
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜏M+1 times

, e(t0) ∈ R
n𝑦 , the following bounds

E{Ṽ(k)} ≤ E{Ve(k)} ≤ 𝜆k−t0E{Ve(t0)}, k ≥ t0, k ∈ N (52)

and
N∑

i=1
E

{|||√Qiei(k)
|||2} ≤ c̃𝜆k−t0E{Ve(t0)} (53)

hold with Ve(t0) = Ṽ(t0) +
N∑

i=1
|√Qiei(t0)|2 and c̃ = 𝜆−(𝜏M−hm).

Consequently, the exponential mean-square stability of (45)-(46) is guaranteed.

Proof. Proof of (i). First, for k ∈ [tp, tp + 1 − 2], it holds that, from Ve(k) of (32),

Θ̂1(k) ≤ E

{
Ṽ(k + 1) − 𝜆Ṽ(k) + (𝜏M − hm)

N∑
i=1

|||√GiCi𝜂(k + 1)|||2 − 1
𝜏M − hm

N∑
i=1

|||√Uiei(t𝑝)
|||2
}

Δ
= Ψ̂(k). (54)

Therefore, Θ̂1(k) ≤ 0 (ie, (50)) holds if Ψ̂(k) ≤ 0 is satisfied.
Consider k ∈ [t𝑝, t𝑝+1 − 1], 𝑝 ∈ Z+, and define 𝜉(k) = [𝜁T(k), 01×8n, eT

1 (k), … , eT
N(k)]

T . It can be shown from (45)
that

𝜂(k + 1) =Ξ𝜉(k) +
N∑

i=1

[
𝜋{𝜎∗

𝑝
=i} − 𝛽i

]
Ξi𝜉(k),

||||√H̃𝜂(k + 1)
||||2 =

||||√H̃Ξ𝜉(k)
||||2 + 2

N∑
i=1

[
𝜋{𝜎∗

𝑝
=i} − 𝛽i

]
𝜉T(k)ΞTH̃Ξi𝜉(k)

+
N∑

i,𝑗=1,i≠𝑗

[
𝜋{𝜎∗

𝑝
=i} − 𝛽i

] [
𝜋{𝜎∗

𝑝
=𝑗} − 𝛽𝑗

]
𝜉T(k)ΞT

i H̃Ξ𝑗𝜉(k) +
N∑

i=1

[
𝜋{𝜎∗

𝑝
=i} − 𝛽i

]2||||√H̃Ξi𝜉(k)
||||2,

(55)

with Ξ and Ξi, i = 1, … ,N given by (49).
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Following the proof of Theorem 2, calculating the difference Ṽ(k + 1) − 𝜆Ṽ(k) of along (45) and taking the math-
ematical expectation, we have E{Ψ̂(k)} ≤ 0 for k ∈ [tp, tp + 1 − 2] if the matrix inequalities (48) with j = 1, 2 hold.
This completes the proof of (i).

Proof of (ii). From Ve(k) of (32) and (54), it follows that

Θ̂2 ≤E

{
V(t𝑝+1) − 𝜆V(t𝑝+1 − 1) + (𝜏M − hm)

N∑
i=1

|||√GiCi𝜂(t𝑝+1)
|||2 − N∑

i=1
𝜆𝜏M |||√GiCi

[
x(s𝑝+1) − x(s𝑝)

]|||2
+

N∑
i=1

[|||√Qiei(t𝑝+1)
|||2 − 𝜆|||√Qiei(t𝑝)

|||2] + N∑
i=1

|||√Uiei(t𝑝)
|||2
}

=Ψ̂(t𝑝+1 − 1) + E

{
1

𝜏M − hm

N∑
i=1

|||√Uiei(t𝑝)
|||2 − N∑

i=1
𝜆𝜏M |||√GiCi

[
x(s𝑝+1) − x(s𝑝)

]|||2
+

N∑
i=1

[|||√Qiei(t𝑝+1)
|||2 − 𝜆|||√Qiei(t𝑝)

|||2] + N∑
i=1

|||√Uiei(t𝑝)
|||2
}
.

Note that Ψ̂(t𝑝+1 − 1) ≤ 0 and

E
{

eT
i (t𝑝+1)Qiei(t𝑝+1)

}
=E

{||||√Qi

[(
1 − 𝜋{𝜎∗

𝑝
=i}

)
ei(t𝑝) + Cix(s𝑝) − Cix(s𝑝+1)

]||||2
}

=E
{
(1 − 𝛽i)eT

i (t𝑝)Qiei(t𝑝) + 2(1 − 𝛽i)eT
i (t𝑝)QiCi

[
x(s𝑝) − x(s𝑝+1)

]
+|||√QiCi

[
x(s𝑝) − x(s𝑝+1)

]|||2} , i = 1, … ,N.

Denote ς̂i = col{ei(t𝑝),Ci[x(s𝑝) − x(s𝑝+1)]}. Then, employing (46), we arrive at

Θ̂2 ≤ Ψ̂(t𝑝+1 − 1) +
N∑

i=1
E

{
ς̂T

i Ω̂iς̂i

}
≤ 0,

which yields (51). This completes the proof of (ii).
Proof of (iii). The objective of the next step is to prove (52) and (53). By the comparison principle, for k ∈ [tp, tp+1−1],

the inequality (50) implies

E{Ve(k) ≤ 𝜆k−t𝑝E{Ve(t𝑝) +
N∑

i=1
E

{|||√Uiei(t𝑝)
|||2} . (56)

Note that (47) yields

Ui < (1 + 1
𝜏M − hm

)Ui

< [𝜆 − (1 − 𝛽i)]Qi < Qi, i = 1, … ,N.

Hence, for k ∈ [tp, tp + 1 − 1], it holds that

E
{

Ṽ(k)
}
≤ 𝜆k−t𝑝E

{
Ve(t𝑝)

}
. (57)

On the other hand, inequalities (51) and (56) with k = tp + 1 − 1 imply

E
{

Ve(t𝑝+1)
}
≤𝜆E

{
Ve(t𝑝+1 − 1)

}
−

N∑
i=1

E

{|||√Uiei(t𝑝)
|||2}

≤𝜆t𝑝+1−t𝑝E
{

Ve(t𝑝)
}
− (1 − 𝜆)

N∑
i=1

E

{|||√Uiei(t𝑝)
|||2}

≤𝜆t𝑝+1−t𝑝E
{

Ve(t𝑝)
}
.
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Then, we have
E
{

Ve(t𝑝+1)
}
≤𝜆t𝑝+1−t𝑝−1E

{
Ve(t𝑝−1)

}
≤𝜆t𝑝+1−t0E {Ve(t0)} .

(58)

Replacing in (58) p + 1 by p and using (57), we arrive at (52), which yields the exponential mean-square stability
of (45)-(46) because the inequalities

𝜆min(P)E
{|x(k)|2} ≤ E

{
Ṽ(k)

}
, E {V(t0)} ≤ 𝛿E

{||xt0 ||2c}
hold for some scalar 𝛿 > 0. Moreover, (58) with p + 1 replaced by p implies (53) because 𝜆t𝑝−t0 = 𝜆k−t0𝜆t𝑝−k ≤ c̃𝜆k−t0

for k ∈ [tp, tp + 1 − 1]. This completes the proof of (iii).

Remark 7. To simplify the exponential mean-square stability analysis of the hybrid system (45)-(46), we can follow
Remark 5 and adopt Lyapunov functionals of the form V̂e(k) = Ve(k) + VU(k), where Ve(k) is shown in (32) and the
term VU(k) is negative and is given by

VU(k) =
t𝑝 − k

t𝑝+1 − t𝑝

N∑
i=1

|||√Uiei(t𝑝)
|||2, k ∈

[
t𝑝, t𝑝+1 − 1

]
.

Then, the same conditions (47) and (48) guarantee that V̂e(k) is positive for k ≥ t0, k ∈ Z, ie,E{V̂e(k)} ≥ �̂� E{|x(k)|2+|e(k)|2} with some �̂� > 0 and that E{V̂e(k+1)−𝜆V̂e(k)} ≤ 0, k ∈ [tp, tp + 1 − 1], which can substitute for the conditions
(i) and (ii) of Theorem 3.

Remark 8. To enlarge MATI and the maximum allowable delay hM, one can resort to Markovian scheduling (see, eg,
the works of Donkers et al3 and Liu et al11) instead of iid scheduling. In this protocol, the value of 𝜎∗𝑝 is determined
through a Markov Chain and the closed-loop system can be modeled as a stochastic Markovian jump discrete-time
impulsive system.

Remark 9. The modeling and stability analysis of discrete-time networked systems with multiple sensor nodes under
TOD and iid protocols follows exactly the discrete-time counterpart of the results obtained in the works of Liu et al10,11

for TOD and iid protocols, respectively. Note that the conditions in the aforementioned works10,11 were derived by
Jensen inequality and the reciprocally convex combination approach,21 whereas Theorems 2 and 3 were obtained by
the virtue of the developed reciprocally convex combination inequality proposed in the work of Zhang et al18 and the
discrete counterpart of the augmented Lyapunov functional provided in the work of Liu et al19 for the stability analysis
of continuous-time systems with time-varying delays.

Moreover, the stability analysis of discrete-time system (8)-(9) with time-varying interval delays under scheduling
protocols can be alternatively analyzed by substituting the switched system transformation approach for the Lyapunov
method. More details can be found in the work of Hetel et al.35

Remark 10. The conditions of Theorems 2 and 3 are easily adapted to the decentralized networked control of
large-scale interconnected systems with local independent networks,13 where every plant is controlled under TOD or
under iid stochastic scheduling protocol.

7 ILLUSTRATIVE EXAMPLE

In this section, we will verify the efficiency of the derived conditions in Theorems 2 and 3 through the widely used inverted
pendulum system. Denote the cart position coordinate and the pendulum angle from vertical by x and 𝜃, respectively.
Then, the dynamics of the inverted pendulum on a cart shown in Figure 2 can be described in the following as in, eg, the
work of Zhang et al36:

⎡⎢⎢⎢⎣
ẋ
ẍ
�̇�
�̈�

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

0 1 0 0
0 − (a+ml2)b

a(M+m)+Mml2
m2gl2

a(M+m)+Mml2 0
0 0 0 1
0 − mlb

a(M+m)+Mml2
mgl(M+m)

a(M+m)+Mml2 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x
ẋ
𝜃
�̇�

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

0
a+ml2

a(M+m)+Mml2

0
ml

a(M+m)+Mml2

⎤⎥⎥⎥⎥⎦
u, (59)
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l

F
M

,m a

x

FIGURE 2 Geometry of the inverted pendulum system [Colour figure can be viewed at wileyonlinelibrary.com]

where the parameters a and b represent the friction of the cart and inertia of the pendulum, respectively, and are chosen as
a = 0.0034 kg·m2 and b = 0.1 N/m/sec; the mass of the cart M and the mass of the pendulum m are given by M = 1.096
kg and m = 0.109 kg, respectively; and the length of the pendulum l is chosen as 0.25 m, and g = 9.8 m/s2 is the gravity
acceleration.

We discretize system (59) with a time Ts = 0.01 s and obtain the following discrete-time system model:

x(k + 1) =
⎡⎢⎢⎢⎣

1 0.01 0 0
0 0.9991 0.0063 0
0 0 1.0014 0.01
0 −0.0024 0.2784 1.0014

⎤⎥⎥⎥⎦ x(k) +
⎡⎢⎢⎢⎣

0
0.0088
0.0001
0.0236

⎤⎥⎥⎥⎦u(k), k ∈ Z
+. (60)

The pendulum can be stabilized by a state feedback u(k) = Kx(k) with the gain K = [K1 K2]

K = [K1 K2], K1 =
[

7.7606 14.6847
]
,K2 =

[
−86.7306 −26.3029

]
, (61)

which leads to the closed-loop system having eigenvalues {0.5374, 0.9860 + 0.0177i, 0.9860 − 0.0177i, 0.9924}. Suppose
that the spatially distributed components of the state variables of system (60) are not accessible simultaneously. We start
with the case of N = 2 and consider two measurements yi(k) = Cix(k), k ∈ Z+, where

C1 =
[

1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 1 0
0 0 0 1

]
.

For the values of hm given in Table 2, we apply Theorems 2 and 3 with 𝜆 = 1 and find the maximum allowable values
of 𝜏M = MATI + hM that preserve the stability of the hybrid time-delay system (8)-(9). From Table 2, it is observed
that, under the TOD protocol, the conditions of Theorem 2 stabilize the system for larger 𝜏M than the results in the
works of Liu et al.17,20 Note that the suggested time-dependent Lyapunov approach in the work of Liu and Fridman17

only guaranteed partial stability of the resulting hybrid delayed system. Moreover, it was restricted to N = 2 sensors and
cannot be extended to the general case of N ≥ 2. The condition of Liu et al20 was obtained by Jensen inequality and the
reciprocally convex combination approach.21 The improvement of Theorem 2 compared to the works of Liu et al17,20 is
achieved due to the application of both Lemma 1 and the developed reciprocally convex combination inequality proposed
in the work of Zhang et al.18 Compared to the TOD protocol in the work of Liu and Fridman17 and Theorem 2, the iid

TABLE 2 Example (N = 2): maximum value of 𝜏M = MATI + hM for different hm

𝜏M ⧵ hm 0 2 5 10 15

TOD by Liu and Fridman17 19 20 23 27 30
TOD by Liu et al20 17 19 22 25 28
Theorem 3 (iid, 𝛽1 = 0.3) 18 20 23 26 29
TOD by Theorem 2 21 23 25 29 32

Abbreviations: iid, independent and identically-distributed; TOD, try-once-discard.
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TABLE 3 Example (N = 4): max. value of 𝜏M = MATI + hM for different hm

𝜏M ⧵ hm 0 1 2 4 8 10

TOD by Liu et al20 1 2 3 5 9 –
Theorem 3 (iid) 2 3 4 6 10 11
TOD by Theorem 2 3 4 6 8 12 13

Abbreviations: iid, independent and identically-distributed; TOD, try-once-discard.

protocol of Theorem 3 with 𝛽1 = 0.3 leads to conservative results but can easily include data packet dropouts or collisions
in the presence of large communication delays.11

We proceed next with the case of N = 4, where C1, … ,C4 are the rows of I4 and K1, … ,K4 are the entries of K given by
(61). In this case, the conditions of the work of Liu and Fridman17 are not applicable any more. By applying Theorems 2
and 3 with 𝛽 i = 0.25, i = 1, … , 4, Table 3 shows the maximum value of 𝜏M = MATI + hM that preserves the exponential
stability of the hybrid system (8)-(9). Furthermore, here, Theorem 2 achieves the least conservative results. Moreover,
when hm >

𝜏M
2
(hm = 8, 10), the proposed method is still feasible, representing the case where communication delays can

be larger than the sampling intervals.

8 CONCLUSIONS

This paper has addressed the stability problem of discrete-time NCSs under dynamic scheduling protocols in which the
components communicate through a shared communication medium that introduces large but bounded time-varying
transmission delays. The closed-loop system was modeled as a discrete-time hybrid system with time-varying delays
in the dynamics and in the reset conditions. By a newly constructed augmented Lyapunov functional and the discrete
counterpart of the second-order Bessel-Legendre integral inequality, an improved stability criterion to find the maxi-
mum allowable sampling intervals and transmission delays was derived such that the resulting closed-loop system is
exponentially stable with respect to the full state. Numerical example illustrates the efficiency of our method.
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