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Sampled-data H__ state-feedback control of systems with state delays

EMILIA FRIDMAN+#f and URI SHAKED+

The finite horizon piecewise-constant state-feedback H_ control of time-invariant linear systems with a finite number of
point and distributed time-delays is considered. For the controller, coupled Riccati type partial differential equations
between sampling and updating the terminal conditions are derived. For small time delays the solutions and the resulting
controllers are approximated by series expansions in powers of the largest delay. Unlike the infinite horizon case, these
approximations possess both regular and boundary layer terms. It is shown that the controller obtained by high-order
approximations improves the performance of the system. The performance of the closed-loop system under the memory-
less zero-approximation controller is analysed. Bounded Real Lemmas for state-delay systems with jumps are obtained.

1. Introduction

Continuous-time H_, control problem of state-delay
systems has been studied by Bensoussan et al. (1992),
van Keulen ez al. (1993), van Keulen (1993), McMillan
and Triggiani (1993), Lee et al. (1994), Ge et al. (1996),
Fridman and Shaked (1998, 2000). Bensoussan et al.
(1992), van Keulen et al. (1993), van Keulen (1993)
and McMillan and Triggiani (1993) have obtained the
controller by solving Riccati operator equations. Lee
et al. (1994) and Ge et al. (1996) have designed a
delay-independent controller. Fridman and Shaked
(1998, 2000) have derived the controller from Riccati
type partial differential equations (RPDEs) or inequal-
ities, and the solution of the RPDEs has been approxi-
mated by expansions in the powers of the delay. In
Shaked er al. (1998) a bounded real lemma has been
obtained in terms of differential linear matrix inequal-
ities.

Sampled-data H_, control of systems without delay
has been studied by Bamieh and Pearson (1992),
Toivonen (1992), Khargonekar et al (1993),
Sivashankar and Khargonekar (1994), Basar and
Bernard (1995), Sagfors and Toivonen (1997). Two
main approaches have been used. The first one is
based on the lifting technique in which the problem is
transformed into equivalent finite-dimensional discrete
H_, problem (Bamieh and Pearson 1992, Toivonen
1992). The second, more direct, approach is based on
the representation of the system in the form of hybrid
discrete/continuous one and the solution is obtained in
terms of Riccati equations with jumps (Khargonekar
et al. 1993, Sivashankar and Khargonekar 1994, Basar
and Bernard 1995, Sagfors and Toivonen 1997).
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In the present paper, we adopt the second approach
to the finite horizon sampled-data state-delay H_-con-
trol problem. Note that in the case of state-delays the
lifting technique leads to complicated discrete system
with infinite-dimensional state variable. We obtain the
piecewise-constant state-feedback controllers by solving
coupled RPDEs between sampling and updating the
terminal conditions at the sampling instants. We derive
an asymptotic approximation to the solution of these
RPDEs by expanding it in the powers of the largest
delay. The resulting approximation is obtained by solv-
ing uncoupled low-order partial differential equations.
The performance of the system with the controller that
has been obtained using the zero approximation (the
one that corresponds to zero delay) is analysed when
the open-loop system possesses a non-zero delay.
Bounded real lemmas for systems with state delays
and jumps are obtained.

2. Problem formulation

Throughout this paper we denote by |-| the
Euclidean norm of a vector or the appropriate norm
of a matrix. Given #, >0, let L,[0,7] be the space of
the square integrable functions with the norm || - ||, and
let Cla,b] be the space of the continuous functions on
[a,b] with the norm |-|. We denote x, = x(t+ ),
y = y(l — 9), 0 €[—h,0] and x(l_) = limg.,_o x(l — s),
and x, = x((t+60)"). Prime denotes the transpose of
a matrix and col {x,y} denotes a column vector with
components x and y.

Consider the system

%(¢) = L(x,(+))+ Bu(t) + Dw(z)
z(¢) = col {Cx(2),u(?)}

where x(7) € R” is the state vector, u(t) € R is the con-
trol signal, w(z) € R? is the exogenous disturbance, and
z(#) € R” is the observation vector, B, C and D are con-
stant matrices of appropriate dimensions. The R"-valued

(1)
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function L(-) which carries R"-valued functions on
[—h,0] into R" is defined as

L(x () = Z; Apxy(—hy)+ jol Ao (n()ds (2)

where —h = —h, < —h,_| < - < —=h; < —hy=0, Ay,A,
...,A, are constant matrices and Ag;(s) is a smooth
enough matrix function.

Consider the ‘structural operator’ F : L,[—h,0] —
Ly[—h,0] given by

Flx,)(€) = z_rleix,(—hi NG
3
+ J_h Ay (P)Xz(P - 5) dp (3)

where ; is the indicator function for the set [—#;,0], i.e.
Xi(g) =1 if £ €[-h;,0] and Xi(g) = 0 otherwise. This
operator was introduced by Delfour (1986) and the
use of this operator in the Lyapunov—Krasovskii func-
tional leads to simplified RPDEs for H, and H_, design
(Delfour 1986; Fridman and Shaked 2000).

Given 7 > 0, and assuming that w € L,[0,7,], we
consider the following performance index

J =21, =1wllz, + E(x,) (4)

where
B,) = ()Px() +25') [ 01(6)F (s, (€)de

[ PO R st (9

—hJ—h

and Py = P{ >0. The form of E(x,) stems from the
form of Lyapunov-Krasovskii functional. We assume
that the matrix-functions ¢y and R, are continuous
and piecewise continuously differentiable functions of
their arguments, that satisfy the relations:

Pr=0;(0), 0s(¢) = Ry(0,¢) (6)

We are looking for the piecewise-constant state-feed-
back controller of the form

lksl<lk+la

k=0,1,- ,K—1 (7)

u(l) = :u’(xtk st axtl ,Xo),

where 0 < #; <--- < tg = t; are the sampling instants.
This type of control is encountered in many practical
problems where a zero-order-hold is used to provide
an analog input signal at the output of a digital con-
troller.

The problem is to find a state-feedback controller of
(7) which ensures that J <0 for all w € L,[0,7,] and
for the zero initial conditions x(T) =0, 7 <0. This
means that the H,-norm of (1), which is defined by

the supremum over w € L,[0,7;] of the ratio between
{||z||§2 + E(x,f)}l/2 and ||w|[, , is not greater than 7.

3. Piecewise-constant controller design

Following Basar and Bernard (1995) and Toivonen
and Sagfors (1997) we denote

_ [4y B] A; 0] Ag; 0

Ay = A= , Agr =
10 0 00 0 0

_ [D C o0

D= — (g)
K 0
(1, 0 0

Ay = , Bqg=
10 0 I

The system of (1) attains then the form
0

() = Z; Aste=n)+ | An(o)5(e+ ) ds+ (s,

—h
z(l) = (,:x_(l),
x(tr) = Agx(t) + Baw (10)
where x(¢) = col {x(¢),u(z)}. Similarly to (3) we denote

FE)(E) = z_rljfiix,(—hi NG

fe <1< tg )

[ -9 )

clearly F(x,)(¢) = col {F(x,)(¢), 0}. The Lyapunov-
Krasovskii functional for the system of (9) is given by
Delfour (1986)

o) = 50 Pt + 2570 || 0. ORt)e)as

N J“ JO F/(8)(5)R(t,5.€)F(8)(€) dsde (12)

—hJ—h

where

[ e8] )

In the latter formulas the zero-blocks stem from the zero
delay in u.
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and where
. [P0 - [o; 0 R 0
Pr=1 v Or = , Re=
| 0 0 0 0 0 0
(15)
Denote
S=~7*pDp', S=~7’DD’

Consider the following RPDEs with respect to the
(n+1) x (n+ [)-matrices P(z),0(z,€) and R(z,¢,s)

Blo)+ AP)+ Ay + Y0 410" )
+2Q@hM+HMHMff
+ Ji; 0(t,0)A4,(0) do

+ JZ A31(0)Q'(1,0)do =0 (16)

%Q'(l,g)-s- 0(1,¢) = — [4o+ PS]|O(1,¢)

73
—ZA R(t,—h;,€)

. jfhgo/l(s)zé(z,s@)ds (17)

B a9 - d -
R(z,g,s)+a—£R(z,g,s) —&-aR(l,g,s)

= —0'(1,9)s0(r.5) (18)

ot

P(t) = 0(t,0), M(t)= N(¢,0)
0(,6) = R(,0.9), R(1.6.5) - <z,s,g>} )
P(y)=Pp, Ulty) =0, M(1)=0 }
N(tr,s) =0, 0(1,6) = 0r(€), R(t,&,5) = Ry(€,9)
(20)

A solution of (16)—(20) on [ZK l,l,] is a triple of
(n+1) x (n+ I)-matrices {P(¢),0(t,£),R(t,¢,5)} t€
ltk_1.17),€ € [=h,0],s €[—h,0], where P( ) Q(l §) and
R_(l,g ,s) are continuous and piecewise continuously dif-
ferentiable functions of their arguments that have a
form of (13), satisfy initial and terminal conditions
(19), (20) for every ¢, £ and s and satisfy partial differ-
ential equations (16)—(18) for almost every ¢, £ and s.

Lemma 1: The supremum value with respect to w of

1

Jk = E(x,)+ Jf 127 =2 w2 de

Iy
for the system of (9) is given by

squKZJEZ V(ZK—I,XzK,,) (21)

where the matrix-functions P, Q and R of the form (13)
satisfy (16)—(20).

The proof of Lemma 1 is given in the Appendix.
Writing (16)—(18) for the various blocks of (13), we
obtain

P(1)+ AgP(1) + P(1) Ay + Z AjQ'(t,—h;)

i=1
+>_0(t,~h;)4;+ P(t)SP
i=1

+ Ji 0(,0)40,(0)do

(n+c'c

+J1 A401(0)Q'(¢,0)do =0 (22)

—[4§+ PS|O(1,€)

—ZAR ~h;,€)
0
— J_; A (s)R(z,5,€)ds  (23)

0
EQ@O+%QOO

%R(z £, s)+§£R(z £, s)+§R(z £,s)
=-0'(1.9)s0(rs) (24)
M(t)+ Ao+ P(t)S]M (1) + P(¢)B

+ JZ A0 (0)N(2,0)do =0 (25)

+ Z AIN(t,~h
i=1

%N(l &)+ iN(l &)= —0'(1,6)[B+SM(1)] (26)

and
U(t)+ B'M(t)+ M'(t)B+ M'(1)SM(t)+ 1, =0 (27)
We obtain the following result.

Theorem 1: Assume that for every k = K,... 1 there
exists a solution to (16)~(19) on [ti_1,t] with the fol-
lowing terminal conditions: (20) for k=K and for
k<K
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P(1,7) = P(ix) — M(6) U™ (a)M (1)
U(t) =0, N(u .6 =0,

0t ™,6) = 0(1x,€) = M(s) U ()N (1)
Rt ,5,€) = R(tx, 5,€)
Then, the controller
()= =07 ) )+ | V)R, 0]

0 (29)

M(4")=0

= N(t,8)U™ ()N (1)

e <t<tp, k=K-1,...

solves the sampled-data state-feedback H . -control
problem.

Proof: We shall apply dynamic programming argu-
ments, by adapting the dynamic programming equa-
tion to the sampling intervals:

t

1
inf sup J = inf sup {J [2]?
u w u w 0

—*|wl*] d

-+ 1nf sup { (x,f)

w

+ 1nf sup {

w

N J:LIHZ'Z _72|W|Z]dz} . }}

We first consider stage K. By Lemma 1 the supremum
value of

1

Jx = E(x,) + Jf [z)?

Ig-1

—|wl*] dt

with respect to w is given by

SI{PJK:JK— (tx— 15Xz, 1)

u'(tg 1)U (tx 1 )u(tg1)
+ 2x"(tx 1 )M (tx 1 )u(tx 1)

= V(tk-1,% )+

c2i) [ Vs (o, (O

where
P (ex) = () PO+ 26 0) | 0l rCe)(e)ae
+ JO Jo F'(x)(s)R(r,s,6)F(x,)(¢) dsde

—hJ—h
and where the matrix-functions P, Q and R of the form
(13) satisfy (16)—(18) and (19).
The unique minimizing u for Jg is given by (29),
where k=K —1, and the corresponding minimum
value of Jg is given by

x'(te_) )M (t_1)

x Ut )M (tx_1)x(tx 1)

inf Jg =V (61,x, ) -

- Jih F'(x,, JON(ti-1,€) €U (1)

+ 2M’(zk_1)x(zk_1)] (30)

where k = K. Therefore at the stage K — 1 we obtain the
performance cost
Tg1
Jx_1 = inf J3 + J [1z)* —72|w|?] de
“ Ig2

By the same arguments and due to (28) for k = K — 1 we
see that inf,Jg_; is given by (30), where k = K — 1.
Similarly it can be shown that (30) holds for all
k=K-1,...,1. Then inf,J <inf,J{ =0 since
X0 = 0. O

4. Asymptotic approximation of the H_, controller

4.1. Asymptotic solutions to the RPDEs

As we have seen the H_, controller has been found
by solving a set of coupled RPDEs. Finding a solution
to the latter is not an easy task and we are, therefore,
looking for a solution to the RPDEs on
[t ,tis1], k=K —1,...,0 in a form of asymptotic
expansion in the powers of the delay %

P(1) = Po(t) + WPy (1) + 1 5(7)]
+ I[Py (1) + Tp(7)] + -+

O(t,h¢) = Qo (1,¢) + MO (1,0) + My g(r.0)]
+ 12[05(2,0) + Tag (7, )] +
R(t,h¢,h0) = Ro(1,C.0)+ H[R(1,¢.0) (31)

+ Ty g(7,¢,0)] + KRy (1,¢,6)
+ Ihr(7,¢,0)] +
t€ltitin], k=K—1,...,0

l"*‘ - 1,0], 0 € [~1,0]

L cel-

Note that we consider the asymptotic expansion of R
instead of R since R is the only non-zero block of R.
The ‘outer expansion’ terms {P; Q; R}, i=0,1,.

constitute the major part of the solutlon that
satisfies (16)~(19) for 7 €[0,t], t # ty+1, 0 € [—1,0],
¢ €[-1,0]. The boundary-layer correction terms
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I1;5, T and IT;z will be chosen such that (31) satisfies
the terminal conditions of (20) and that

Is(7)[4+ sup [Mg(r,Q)l+ sup [Mg(7,¢,0)] — 0
¢e[-10] ¢0€e[—-10]

as T— oo (32)

Since 7 is a stretched-time variable around ¢ = ¢,y , (32)
asserts that I1;5,T1;; and IT;; are essential only around
t = t;+1 and they thus provide a correction to the outer
expansion at the terminal point ¢ = #;, .

In the sampled-data case we approximate the sol-
ution to the RPDEs on each sampling segment:

[tk—1.17],...,[0,71]. We assume that the terminal values
P;,Qr and Ry are approximated as:
_ _ m+l _
Py =Pro+ Y Py
i—1
_ _ m+l _
0/ (hQ) = Qro+>_ 1 05i(¢)
P
. . (33)
0:i(0) = Py
m+l
Ry (h¢,h0) = Pyo+ > W R{C,0)
i—1
R;;(0,0) = 04(0)

where Qj; and Ry; are continuous and piecewise-continu-
ously differentiable functions of ¢ and 6. The remainders
Prygts Q, m+1 and Ry, may depend on h and are
uniformly bounded functions. We realize that, in prac-
tical cases there is a little sense in taking delay-depen-
dent P;. We nevertheless consider the general case of
nonzero Py since this will be required in our analysis
on the sampling segments [t,_;,%], k < K.

For simplicity we assume that 4y; = 0. Note that 4,
appears in the integral terms of RPDEs and the latter
terms are of the order of O(h). That is why in the case of
Ay 7 0 the asymptotic approximation is similar. We
substitute (31) in (16)-(19) and equate, separately,
outer expansion and boundary-layer correction terms
with the same powers of 4. We notice that for
t =ty —hr, £ =h( and s = hf we have

0 h_la o ;0 o ;0

ot or’ o€ o’ Os 09
Thus, for the zero-order terms we obtain from (23), (24)
and (19)

- Py O
Qo(lac) = Aloo/ 0 ) RO(laCae) = PO(Z)
(34)
- Po M()
UM u

Then, from (22), (25) and (27), we obtain the differ-
ential equations

ZA Po(?) ZPO

+Py(1)SPy(t)+ C'C =0 (35)

> A+ Po(1)S
i=0

Uo(t)+ B'My(t) + Mo(t)B+ Mo(£)SMo(t)+ I, = 0

(36)

Mo(t)+ Po(1)B=0

with the terminal conditions

Po(tx) = Pyo
Pyt ") = Po(ty) — Mo(1,) Uy (1) M (1) (37
k=K-1,--,1
My(t,7) =0, U, )=0, k=K,...,1

These equations correspond to the sampled-data H -
control of systems without delay (Basar and Bernard
1995). We make here the following assumption:

Assumption 1: For a specified value of v, the DREs
(35), (36) and (37) possess a bounded solution on [0,1;].

Assumption 1 means that the H_, state-feedback
sampled-data control problem for (1) without delay
has a solution. If this were not the case, even P, the
zero-order term in (31), would not exist.

To determine the first-order terms we start with
[tx_1, lf] and with the equations for Q;:

—Ql(l () = —M'(1)Qy(1) - Q_o(l)

a¢

0,(1,0) = P (1)

:: 2] (38)

M :zr:A-l“v‘S-};o

i=0

Then
01(1,¢) = 01(1,0) = [M'(1)Qo(r) + 0o(1)IC

Substituting this expression into the equation for Py, we
obtain

P+ M P1+P1M+Zg, ;

i=1

Of M+ 0p)

+ Erjgi(M 'O+ 00)4; = 0 ()

i=1

Py (t;)+11,5(0) = P_fla g =hi/h
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It follows from (22) that IT,5(7) =0. Since ITp
vanishes for 7— oo, we have II5(r)=0,7>0.
Hence, P, (lf) = P}-l, and P, is a solution to the linear
differential equation (39) with the latter terminal con-
dition.

For IT,5, Ry and Iz we obtain from (17), (18) and
(34)

9

0
EHIQ_(Ta C) aCHIQ_(Ta C) =0
0:1(t,¢)+ Mg(0,¢) = 051(¢)
H]Q(T,O) = H]]J'(T) = 0
0 0 .
%&O$@+@&O@@=—%@Wﬂﬁ—%@
Rl(Taan) = QI(T’Q)
(40)
and
0 0 0
EHM(T,C,Q) _8_§H1R(T’C’9) _%HIR(TaCae) =0
Rl(lf7<79) + HIR(()aCae) = R}‘](Cae)
HIR(Taoae) = HIQ(T’H)
(41)
where
= Ql 0 o HQI 0
a-[2 7] =[]

Then, for 7 >0 and ¢ € [tx_;,t;], we find succes-
sively

ot = {0170 s
0, if 7> —(C
Ri(2,¢,0) = R{(,6,0)

= —([Po(£)SPo(t)+ Po(2)] + O1(,60 — C),
¢=40

11,£(0,¢,6) = Rp1(¢,0) + C(ProSPro+ Po(tr))

= 0i(t,0 =)
1,2(0,¢+ 7,0+ 7)
o _ if 7<—( 0<¢
HIR(Tacae) - HIR(T’Q’C) HIQ(T+ Cae - C)
if 7> —(,0<¢

Therefore

Ms(r,) =0, 74+¢>0
(7,¢,0) = (T4 ¢,0 —¢) =0
T+60>0,60<(
The first-order and the higher order terms of the

expansions can be similarly found on all sampling seg-
ments.

4.2. Near-optimal piecewise-constant H..-control

For small enough values of /4 the approximations of
the controller contain the outer expansion terms only,
i.e. all the boundary-layer terms IT; vanish. This is due to
the fact that we need an approximation of the solution
to RPDEs only on the left end of the sampling segment.
In the Appendix we prove the following.

Theorem 2: Under Assumption 1 the following holds
for all small enough delays h:

(1) The system of (16)—(20), (22)—(28) has a solution.
This solution is approximated for any integer m by

m

+ r(,¢,0)] + O (™)

tr—t
r=L—. Ce[-1.0], 6 €[-10]

where the boundary-layer terms satisfy
s(r)=0, 7>i—1; Ig(r,()=0, 7+(>i—1
O(1,6,0)=0, 7+0>i—1,0<¢

and |O(K" )| < ch™', where ¢ is a positive
scalar which is independent of h,t, and 6. The
matrices P; and Q_i are taken with bars and have
the structure of (13), where all the components are
taken with index i.

(2) Denote by Y;, i=0,...,m the terms of the
expansions of U “in the powers of h, i.e.

Ciyu@)iziym@+omwm

=l

Yo(r) = U (1)
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Then the controller of (29) is approximated by

u(t) = u, (1) + (")

i=0 j=0

m—i

hlJr/Y lk

« Aqooxoo+;ﬁ4N;m@,><mJ@ﬂds

ZkSl<Zk+17k:K_17"'70

(43)

where N_y =0 and Ny = My. The approximate
controller u,, guarantees an attenuation level of
v+ o).

5. The zero-order controller performance

We study the performance of the system under the
zero-order controller

uo(1) = — Uy (1) M3 (1 )x (1))

which solves the H_ -control problem for (1) without
delay.

5.1. Ljy-gain of state-delay systems with jumps

In order to study the performance under the zero-
order controller in the sampled-data case we note that
the closed-loop system of (1), where u = u(t), has the
form of (9) with the jumps condition

()= Gx(tr), k=1,...,K—1 (44)
where
1 0
45
—Uo_l(lk)Mo/(lk) 0 ( )

We derive first the relevant bounded real lemma for
(9) with (44), for any given A4;, Ay, D, C and Gy of the
appropriate dimensions. Consider

Gk:

J =11, =1wllz, + E(5,) (46)

where E is given by (14), F is defined by (11) and P;,Q;
and R_f are any continuous and piecewise continuously
differentiable functions of their arguments. We then
apply the lemma to the special matrices of (8) and (45).

Lemma 2: Assume that for every k =K,... 1 there
exists a solution on [ti_1, 1] to (16)—(19) such that

P()=0(1,0), 0(.6) =R(1,0,5)  (47)

with the following terminal conditions

P(ix) = Pr, Q(tx,6) = 0/(¢), and
R(tk,5,8) = Re(s,6), P(t") = GLP(t)Gi
0(t™,6) = GiO(1,€), and
R(t " ,5,8) = R(t,5,€), k<K

(48)
Then the performance index J of (46) for the system of (9)
with the jumps condition (44) is non-negative for all
w e Lz[o,lf] and X-o =0.

Proof: Similarly to Theorem 1 we use the dynamic
programming argument

t ’
supJ = sup {J [121% —72|w|?] ds
w w 0

=+ sup { -+ sup {E_(x',f)

N J,t;l“ﬂz =7 wl’] dz} . }}

We first consider stage K. By Lemma 1 the supremum
value of

—|wl*] dr

Jx = E(%,)+ th [1712

Ix-1

with respect to w is given by

sup Je =V (tx-1.%, )
= x_(lk—l)/};(lk—l)x_(lk—l) + ZX_/(lk_l)

<[ o9, o

[ A R 9G, Oasas

—hJ—h
(49)

The matrix-functions P, Q and R satisfy (16)—(18) and
(47). Substituting now (44) into (49) we obtain the fol-
lowing performance cost for the stage K — 1

I = 5tk 1) Gk 1 Pt 1) Gr 1 5(tx 1)

() -
+ 25" (tx 1) Gk J-/ Otk EF (X, )(6)dg

] P, R 97, Qe

—hJ—h

Iy
+j (127

Ik

—72|wl*]de

By Lemma 1 this cost has a supremum value given by
(49), where k = K — 1, since the corresponding RPDEs
with terminal conditions (48) have no escape point.
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Similarly it can be shown that (49) holds for all
k=K-1,...,1. Then sup,J =sup,J; <0 due to
X_o =0. O

Note that for # — 0, P — Py and O — Qy (cf. (42)).
Therefore the latter lemma coincides with the corre-
sponding results in Sivashankar and Khargonekar (1994).

5.2. Robustness of the performance under ug

Theorem 3: Under Assumption 1 the controller uy for
all small enough h leads to a performance level of 7.

Proof: Applying uy to (1), we obtain (9) and (44). By
Lemma 2 this closed-loop system has an induced L;-
gain less or equal to 7 if the corresponding RPDEs of
(16)-(19) with the terminal conditions of (48) have a
bounded solution. The existence of a solution to these
RPDEs, approximated by (42) with m =0, can be
proved similarly to (i) of Theorem 2. O

Given 7 > 0 and 4, one should verify that the corre-
sponding RPDEs have a solution in order to make cer-
tain that u, leads to a performance level of 7. This is not
an easy task. That is why one may resort to more con-
servative, but computationally simpler, conditions in
terms of differential linear matrix inequalities (DLMI)
or Riccati differential inequalities (RDI) that were for-
mulated for the case of one delay in Shaked et al. (1998).
Generalization of these lemmas to the case of r delays
and jumps in the system is given below in Lemmas 3
and 4.

5.3. Bounded real lemmas for state-delay systems with
Jjumps using DL M1
Consider (9) with (44), where 4;, D, C and G, are
any given matrices of appropriate dimensions. For sim-
plicity we assume that 4y, = 0. Consider

T =112, =7 Iwllz, + 5" (17) Pri(ey) (50)
where P}- is any matrix.

Lemma 3: The performance index J of (50) for the
system of (9) with the jumps condition of (44) is non-
positive for all w € Ly[0,t7], and xo = 0, if there exist
square integrable matrices Qi(t) = Q[(l), i=1,...r
that are positive definite on [ty —h;,t;) and allow an
absolutely ~continuous solution P(t) = P'(t)>0 on
t € timr,te), k=1,...,K to the following DL MI

?() P(t)4, P()A4, - P(t)4, P(t)D

A{P(t) —-0,(t—h) 0 0 0
j\/’(;): <0

A!P(1) 0 0 -0,(t—h,) 0

D'P(1) 0 [ 0 I

(51)

V() & BU)+ AP+ POA+CCHY0(0)

} e

(7’))5(7') dr

(53)

Using (9), it can be easily established that for ¢ #

with the terminal conditions
P(tx)=P; and
P(ty) = GiP(tt)Gy, k=K —1,...

Proof: We consider the function

03],

>

V(t,x,)

SV (18) = SO0 + AP)+ P Ao+ C'C

+ iQ (0)]%(2) + 2x( PZA,y,
FOECH)+ Y e

2 — hy)yi(1)

+ 25 (1)P()Dw(1) (54)

where y;(f) £ x(t — h;). Denoting ¢ £ [x' y{ -~
it follows from (54) that

yiw'l

dv

— = NE+Y|wl* — |27,

1€ [t trsr) (55)

From (52), (53) and the fact that X(¢) =0, V¢ <0, it is
readily obtained that

1 dV _ _ — _—
J —dr = V(lff'axtf) - V(ZK_] ,X,K71)+ V(ZK—I axtk,l)

dr
— 4 V(17 ,%)
= V(lf’x_tf)

By considering (55), this implies that
r If

J = J: ¢'Nedr —ZJ

i—1 Yt —h;

X'Qixdr <0 Vw e Ly[0,1]

O

Lemma 3 provides a bounded real criterion in terms
of the DLMI of (51). Note that if Q(¢) > 0, t €[0,¢],
we obtain using Schur complements, that (51) is equiva-
lent to the RDI
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P(1)+ AjP(r) + P(1) 4,

Py 205+ 3 407 (¢ - h)dl| P()

+C'C+ iQi(z) <0 (56)
i=1

The result of Lemma 3 is most powerful, in the sense
that it establishes a condition for the performance index
J to be non-positive almost independently of the delay
length. It is thus too conservative. A less conservative
condition which explicitly depends on the length of the
delay is derived in the next lemma.

Lemma 4: Assume that h < minkzle(lk — lk_l). The
performance index J of (50) for the system of (9) with
the jumps condition of (44) is nonpositive for all
w € L]0,t] if for every k=K —1,...,0 there exist
constant symmetric positive definite matrices Pi;, P;, P3;

and Py;, i =1,...,r with I — > \_, hiP3; > 0, that allow
a solution P(t) = P'(t) >0, that is absolutely continu-
ous for t#ty, to the following RDI for k=
K—-1,..,1
P(1)+ > AP()+ P()> A
i=0 i=0
+ Zh AgPyidy + (ZA )P2, (Z A',) +C'C
j=1 j=1

+P(t) |7 *D(1

th3l

P(1)<0

+ 30+ A H A+ Pyt xa (1)

1€ ltx k1) (57)

1123
0+ 3 A+ ()Y 4,
i=0 i=0
+ Z hi | APrido + (Z A,’)P2, (Z A',) +C'C
j=1 J=1

+ P(1) |7 —21)( Zh P3,)_1D_’

+ Z[ri +7 2 A:H;A]]| P(t) <0

1€ ltx,tkr1) (58)

with the terminal conditions

P(tx) = P; and
P(tc) = GiP(tx) G+ (I = G{) | Y A PyA; | (I - Gy)
i=1
k=K-1,...,1 (59)
where
Hi(t) £ kDP3'D', T; & hd,(Pi' + P34} (60)

and where xu(t) & xi(t —tx —h), ie. xa(t)=1 if
t € [t tx + ] and x(t) = 0 otherwise.

The proof is given in the Appendix. Using Schur
complements we can rewrite (57) in the form of equiva-
lent DLMI (see (61) below) where

= P(1)+ Z A/P(t)+ P(1) Z 4
i=0 i=0
+ zr: hi | AgPyiAo + (z’: A_j/)PZi (zr: A_/)
i=1 j=1 j=1

The RDI (58) can also be brought into the form of

+C'C

) _ (61), where the rows and the columns containing
and to the following RDI for k=0 Py.i=1,....r should be deleted.
[ @ PD hPA, hPA, hPAD Pxy - hPA, hPA  hPAD Pxx]
D'P YL (I-hPy) 0O 0 0 0 - 0 0 0 0
hy AP 0 Py 0 0 0 -~ 0 0 0 0
AP 0 0  —IyPy 0 0 0 0 0 0
D’ A|P 0 0 0 Py O - 0 0 0 0
P 0 0 0 0  —Py - 0 0 0 0 [<o0 (61)
h, AP 0 0 0 0 0 —h,P,, 0 0 0
h,AP 0 0 0 0 0 0 h, Py, 0 0
h,p' ’A',fP 0 0 0 0 0 0 0  —*hP;y O
L Pxa 0 0 0 0 0 0 0 0 —Py |
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Remark 1: In the case when 4;(I — Gi) = 0 for some
i >0 we set Py; = P! =0 in (57) and (59) and we de-
lete the row and the column containing P4;,i =1,...,r
n (61).

The above result is obtained for any matrices in (9),
(44). In the special case of matrices of the form (8), (45)
we obtain that 4;(I — G;) =0 for all i=1,...,r and
hence for all k = K —1,...,0 we solve the RDI of (58)
with the terminal conditions given by (52). We obtain
the following corollary.

Corollary 1: Assume that for every k=K—1,...,0
there exist constant symmetric positive definite matrices
Pii,Py and Py i=1,...,r with I — Z;:I hiP3; > 0,
that allow a solution P(t) = P'(t) >0, that is absolutely
continuous for t € [ty tis1), to the RDI of (58) (to the
DLMI of (61), where the row and the column containing
Pyii=1,...,r is deleted), with the terminal conditions
of (52), where A;,D,C,Gy are given by (8), (45) and
Pr =0. Then the perfarmance index J of (4) with E =10
for the closed-loop system of (1), where u= uo(x,), is
nonpositive for all w € L1[0,t] and xo = 0.

Remark 2: Note that the case of Ag; 7 0 requires
modification of technique used in lemmas 3 and 4 and
leads to more complicated DLMIs and RDIs.

Example: Consider the system

%(t) = x(t) = x(t —=h)+u+w,

and Py = Qr = R, =0. For 7= 0 this example coin-
cides with the one in Basar and Bernard (1995, p. 135).
We chose t; = 1s, K =2, =0.5sandy = 1. We ver-
ified that (35) (and, hence, linear equations (36)) with
terminal conditions (37) had bounded solutions on [0,1]:

z=col {x,u} (62)

\Aussd P

o o.=2 o.4 o.6 o.8 1
Time t in sec

Figure 1.

"1-1)—1

05<¢<1

Po(1) = Up(r)

=tan (1 — 1), My(t) = cos™

Po(t) = tan (0.9721 —¢), 0<1<0.5

Therefore, Assumption 1 holds and
up(t) =0, 0<¢<05; u(r)=—-0.2553x(0.5)
05<r<«1

From (39) and (43) we obtained

P1(0.5) = —1.1955, M,(0.5) = —0.3113

U,(0.5) = —0.1029
u(t)=0, 0<¢<05

)=

u

up(t) — [3 0253x(0.5)

0
—0.2553J x(0.5+hs)ds], 05<t<1
-1

Considering the system of (62), where u = u,, and
applying the RDI of Lemma 3, we were not able to
find a time-invariant Q > 0 for which the RDI of (56)
holds. If there existed such a Q, then u, would lead to a
closed-loop performance level of 7 =1 for all A
Applying therefore Lemma 4 and choosing Py =
le = P31 = P41 = I we find that the RDI of (58) with
terminal condition of (59) has a solution for all
0<h<0.17s. For h = 0.18s the solution of (58), with
the equality sign and (59), has an escape point (see
Figure 1). The control law of u = u, thus guarantees
v =1 for all 0 <h <0.17s, whereas for 7 =0.18 our
theory, which only provides a sufficient condition can-
not guarantee the performance level of v = 1.

< 10'* h—0.18
14 T T

1o .

\Aussd P

o L L L L
o o.=2 o.4 o.6 o.8 1
Time tin sec

The (1,2) component of the solution P to (57) for 7 = 0.17s and & = 0.18s.
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w 1 sin2wt  cos2wt  sindwt  cosdnmt sin6bwt  cos6mt

J —-0.5701 —0.4446 —0.4827 —0.4874 —0.4924 —0.4946 —0.4986

Table 1. The values of J for 7 =0.17s.

The behaviour of (62) for # = 0.17 under the con-
troller u = uy and the disturbances w = 1, w = sin 27mnt,
w = cos2mnt, n=1,2,... (that constitute the orthogo-
nal basis in L,[0,1]) has been simulated. We see from
Table 1 that indeed the resulting J < 0 for all values of w
under consideration.

6. Conclusions

The paper presents a solution to the sampled-data
state-feedback H_, control of linear time-invariant
systems with state time-delays in the finite horizon
case. Similarly to sampled data H_ -control of systems
without delay (Khargonekar et al. 1993, Basar and
Bernard 1995, Sagfors and Toivonen 1997), our
solution includes two steps: one of solving the continu-
ous-time problem between sampling and the second is
an updating the terminal conditions at the sampling
instants. One additional outcome that stems from the
theory of this paper is the derivation of new bounded
real lemmas for invariant-time systems with state-delays
and jumps.

The theory that has been developed here shows
that for small time delays, similarly to the case of
singularly perturbed systems (Pan and Basar 1993,
Fridman, 1996), our controllers are affected by the
boundary-layer phenomenon. This fact requires
evaluation of both, outer expansion and boundary-
layer corrections.

One can adopt the Riccati operator equations
approach of Bensoussan et al. (1992), van Keulen et al.
(1993) and McMillan and Triggiani (1993) to solve
sampled-data state-delay case. This leads to differential
Riccati operator equations with jumps. The perform-
ance that is obtained in this case can be analysed, simi-
larly to Ndiaye and Sorine (2000), only for the zero-
order approximation.

Appendix

Proof of Lemma 1: Let () be a solution of (9). Then,
differentiating ¥ (,,) with respect to ¢ we obtain

d - L
aV(t x;) =2[L(x,("))+ Dw]

8

(63)
where L(x,(-)) is defined by (2) with all matrices taken
with bars. Denote by

v =25 B+ [ Gl orE)e ]

Then, integrating by parts in (63) e.g.

[ cwogrmia=-| dvofsirme)

— /1_01(5)35(1)} d¢
= —0(1,0)[L(%()) = ApX()]
N Z O(r, —hy) Ax(r)

[ 2ot

ﬂl@@%@%%)

where due to (19)
O(1,0)[L(%,(-)) — 4ox(1)] = P(1)[L(¥:(-))

and applying (16)—(19) we get (64)

— AgX(1)]
S = FF() + AP+ Py
r k
+ Z A{Q"(t,—h;) + Z O(t, —h:)A4;
i=1 i=1
o _ 0o _
+ J_; A010'(¢,0)do + J 0(1,0) A0 (0) dO]x(z)

+ 2x"(z)J

0

o -
a—gg(z,g)

A0+ S ARG h6)
i=1

500+

—h

n Ji; A (0)R(1,0.¢) de] F(x)(¢) d¢
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* Jih Jih F_’(x',)(s) [%R-(l’ ’S) i %R_(l’ ’S)

+%R’(z,£,s)] F(x,)(¢) d¢ds

+ 277 w'w* = 2x(1) JO SO(1,6)F(x,)(€)de

[ e case e s

—hJ —h
= —x'/(l)(,:/(,:x_(l) — 72(w — w*)/(w — w*) +72w'w

It follows from (64) that

1

- - f
E(5,) = Vi3, )+ |

Ix1

(12 =2 |wl*] dt

= =7 llw —w'll,,
The latter relation implies (21).

Proof of Theorem 2: The proof of (i) is similar to
Fridman and Shaked (1998). Equation (43) follows
from (42). We prove only that u, leads to an attenua-
tion level of v+ O(h””rl). We apply u and u,, on (9)
and (10). We obtain correspondingly x and x, that
satisfy (9) and the jump conditions

x_(lk) = ka_tkfa Xmy, — [Wk + O(herl)]xmzkf

where

Wy, = col {x(z) —U(g) [M’(zk)x(z)

[ VRt s}

—h

Thus, y, = x; — x,,, satisfies
r 0
) =3 Apli — ) +j RACHEDEE
i=0 —h
(1) = Cx(1),
(1) = Wiy + O™ "), (66)
We find that

2 2 2
llzm =211z, < collyy, I+ 2" x, [7)

e <t <ty (65)

17
+j0 eillyaP -+ 52 de

2 T
< co(lyy e+ 1" x,, 1)

+erlllpllg, + "], @ >0 (67)

where |[x;/l,. = [ maxge; o) x,(6)l],.. Evidently, [lx(1)ll,, <
[Ixall,-

Let X(¢) be a transition matrix for (9), X(0) = I and
X(l) =0 for # < 0. Denote T(Z)Xo = X;. By the vari-
ation of constants formula (Hale 1977)

t
5= T (- )W, + J T (0 = $)XoDw(s) ds

I

o <t<ty (68)

From the latter equation and the condition xy =0 we
have [x; [, < ¢1|jwl[;,. By induction it is easy to obtain
from (68) that

Xl < clwll,, k=1,....K,¢">0 (69)

Then from (68) and (69) we derive

K

-2 AR SN 2 2
I, =30 | s < e D01 B,
k=0

k=0 7

2
< clwllz,

Similarly to the latter inequality, one can derive ||xm,||%2 <

Wl and Iy, < eh™ L] < A" il . The

lattgr inequalities, tggether witlé (67),2 imp%y lzmllz, =
1 . :

||z||L22+ O(iz;ler )HWHLﬁ] Smcez||z||L2 <7 ||w||Jerl, Vzve deglve
lzl2, < B2+ OB, = b+ 0™ P w2,
]

Proof of Lemma 4: Since x(r) =0 and w(¢) =0 for
t <0 and hy = 0 we find that for ¢ € [t,, 1 + /;)

t t
dr + J Dwdr

I

Er) Api(r = Iy)

J=0

%(t) = (1) + J

I

and

I

Xt ) =%t —hi)+ J

t—h

i Apx(r — h_,»)] dr

J=0

i

1y _
+ J Dwdr

t—h;

i

Summing the latter two equations and using (44) we
obtain that for all 7 € [0, ]

Xt —hy) = X(1) - J

Er) Api(r — h_/)] dr

t
t—h; |7

- JI Dwdr+ (I — G )X (15 )xuc (1)

t—h;

i

Thus, for ¢ € [0, 1]
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r

> Api(r - h_,»)] dr

=i

—ZADJ wdT+Dw()

1

+ ; A1 = G )Xt )xi(2)

Defining the function V(z,%(r)) & x'(¢)P(£)x(t), we
obtain that for almost all #

PO+ S AP0+ PO)S A‘,»]

Jj=0 J=0

—2(m+m+m —na)

where

w2 S| SO ar

w2 Y, FOP0| S At )|

w) & 3 FOPDAD) 4 =2 (P5w()
e & F0OP() SIA = G 0)

i=1

Since for any z, y; € R", i=1,...,r and for any sym-
metric positive definite matrices X; € R™”

-2 zr:yi/z < zr:yi/Xi_lyi + zr: Z/XiZ
i=1 =1 p

we find that for any (n+ ) x (n+ [) constant symmetric
matrices Py; > 0,Py; > 0,P3;,P4;, i=0,...,r, and for
any ¢ X g symmetric constant matrix Ps > 0

—2m <Y hiX'PA Py Al PX
=1

r t
- ZJI ) X' AjPy;Agx dr

—2my <Y hiX'PA Py Al P
=1

x'(r - h_/')A__/]

roopt
[ 1>
i=1 J 1= j=1

Zr: Api(r - h_/)] dr

XPzi

—2n3 < 72 J w'Pywdr
l‘z:: t—h;
72 Z X'PAH A Px+7*w'Psw
i=1
+~72x'PDPs'D'Px

Z P4z lk
Z A_i/P4iA_iXik (l)]

1)x(1)

2my < X'(

+ X' (t)(I — G})

x (I — G)x(tr)

i=1
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where H; is defined in (60). Since
4 d _ K—-1
J (o) dr= B(i,) = Y[V (0,5,) V(5.5
0 df k=1
we find, using (70)—(71), that
fr d
J=J oy dz+2[ (tx,%,)
- V(z,:,x',;)] IR, — 2w,
K-1
< Z x'/(lk)P(lk)x(lk)
k=1
— ¥'(6)P(t5 )X (1 )+ X' (6 )(I — Gr)
[Swain - o) |
=
If _ _ ) If
+ | X'Si()xde+ J w'(Ps — Iwdt
Jo 0

i T t _ _
+ ZJ {x”Ao’P”on'
0 =1 Jt—h

+ ZX_/(T —

Li=1
X Py; ZA/XT— +7%w P31W}d7'dl
Jj=1
where
Si(t) £ P+ AP+ Py 4
i=0 i=0
+ P Z(ri+7_21€{iHi1{{i) + ZPZZIXZIC(Z)
i=1 =1
+v72DP5'D'| P+ C'C

(72)

(73)
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and where I'; is defined in (60). Due to (44) and (59) the
term in the second line of (72) vanishes. Then from the
inequality

J : U :—h,- ¢'(r)é(r)dr

t
ar<h | eWea,
0
Vel €(t)=0,¥V1<0
and xy = 0 and wy = 0, and from (72) and (59) it follows
that

tf tf r
J < J x"S(l)x'dH—J Vzw’(z hiP3;+ Ps — I)wdt
0 i=1

(74)

AoPy Ay + (Z A__/'/)PZi (Z A_/)]
=1 =1

If S(£)<0and Ps=1—3hPy, due to (74) J <0
for all w € L,[0,7/]. Finally we note that, in view of
(74) the conditions of (74) are equivalent to the RDI
(57). ]

r

S()=Si(r)+ > by

i=1
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