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Abstract

Sampled-data H∞ control of linear systems is considered. The measured output is sampled and the only restriction on the sampling is that
the distance between sequel sampling times does not exceed a given bound. A novel performance index is introduced which takes into account
the sampling rates of the measurement and it is thus related to the energy of the measurement noise. Three types of controllers are designed: a
continuous-time controller, a sample and hold controller (synchronized with the sampling of the measurement), and an unsynchronized sampled
and hold controller. A novel structure is adopted for these controllers where the dynamics of the controller is affected by the continuous-time
state vector and the sampled value of this vector. A new approach, which was recently introduced to sampled-data stabilization is developed:
the system is modeled as a continuous-time one, where the measurement output has a piecewise-continuous delay. A simple solution to the H∞
control problem is derived in terms of linear matrix inequalities (LMIs). This solution is based on a new bounded real lemma (BRL) with state and
disturbance delays. The results that are obtained for the output-feedback controller are readily applied to the problem of robust sampled-data H∞
filtering with time-varying uncertain sampling rate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sampled-data H∞ control of systems has been studied in a number of papers (see e.g., Bamieh & Pearson, 1992; Basar & Bernard,
1995; Chen & Francis, 1995; Lall & Dullerod, 2001; Sagfors & Toivonen, 1997; Sivashankar & Khargonekar, 1994 and the references
therein). Two main approaches have been used. The first one is based on the lifting technique (Bamieh & Pearson, 1992; Yamamoto,
1990) in which the problem is transformed to equivalent finite-dimensional discrete H∞ control problem. The second, a more direct
approach, is based on the representation of the system in the form of hybrid discrete/continuous model and the solution is obtained
in terms of differential Riccati equations with jumps (Basar & Bernard, 1995; Sivashankar & Khargonekar, 1994). These approaches
provide necessary and sufficient conditions and lead to equivalent solutions.

The LMI solution to sampled-data output-feedback H∞ control was derived by Lall and Dullerod (2001) for the lifted discrete
system when the sampling and the hold operators are periodic and their rates are commensurable. This solution is computationally
complicated because it includes the evaluation of the matrices of the lifted system.

The hybrid system approach has been applied recently to robust H∞ filtering under sampled-data measurements (Xu & Chen,
2003). Sampling interval-independent LMI conditions have been derived there which are quite restrictive.
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Modeling of continuous-time systems with digital control as continuous systems with delayed control input was introduced by
Mikheev, Sobolev, and Fridman (1988). The digital control law may be represented as delayed control as follows:

u(t) = ud(tk) = ud(t − (t − tk)) = ud(t − �(t)),

tk � t < tk+1, �(t) = t − tk , (1)

where ud is a discrete-time control signal and the time-varying delay �(t) = t − tk is piecewise linear with derivative �̇(t) = 1 for
t �= tk . Moreover, � < tk+1 − tk .

Recently, this approach was applied to robust sampled-data stabilization (Fridman, Seuret, & Richard, 2004) and to H∞ control
(Fridman, Shaked, & Suplin, 2005). In Fridman et al. (2005) a conventional performance index (Sagfors & Toivonen, 1997; Xu
& Chen, 2003) is considered, which has no physical meaning in the case of non-uniform sampling. The solution of the output-
feedback control problem in Fridman et al. (2005) is based on introducing some special filters that precede the sampling of the
measurement and the control input and that recover the filtering property of the sample and hold which filters out the high frequency
part of the sampled signal. In the present paper we introduce a novel performance index, taking into consideration the energy of the
measurement noise. We construct directly the filter by deriving a new BRL for systems with time varying state delay and piecewise
constant disturbances. Moreover, an improved stability and BRL conditions for systems with time-varying delay �, where �̇�1
(for almost all t) are derived. This is achieved by developing the input–output approach (Gu, Kharitonov, & Chen, 2003; Huang &
Zhou, 2000; Zhang, Knopse, & Tsiotras, 2001), where stability of systems with constant or slow-varying delays with �̇�q < 1 was
analyzed, to the BRL and to the fast-varying delay with �̇�1.

Notation: Throughout the paper the superscript ‘T’ stands for matrix transposition, Rn denotes the n dimensional Euclidean space
with vector norm | · |, Rn×m is the set of all n × m real matrices, and the notation P > 0, for P ∈ Rn×n means that P is symmetric
and positive definite. Let L2[0, ∞) be the space of the square integrable functions with the norm ‖ · ‖2. The vector [aT bT]T is
denoted by col{a, b} and diag{A, B} is a block diagonal matrix with A and B on the diagonal.

2. Problem formulation

Consider the system:

ẋ(t) = A0x(t) + B1w(t) + B2u(t), x(0) = 0,

z(t) = C1x(t) + D12u(t), (2)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rq is the disturbance, u(t) ∈ Rp is the control input and z(t) ∈ Rr is the signal to be
controlled or estimated.

The measurement output yk ∈ Rm is assumed to be available at discrete sampling instants:

0 = �0 < �1 < · · · < �k < · · · , lim
k→∞ �k = ∞

and it may be corrupted by vk = v(�k), where v(t) is a measurement noise signal:

yk = C2x(�k) + D21vk, k = 0, 1, 2, . . . . (3)

We assume that

A1. �k+1 − �k �h1, ∀k�0.

We formulate below three types of output-feedback control problems and two types of estimation problems.

2.1. The control problems

We define the following performance index for a prescribed scalar � > 0:

Jc(w) =
∫ ∞

0
[zT(s)z(s) − �2wT(s)w(s)] ds − �2

∞∑
k=0

(�k+1 − �k)v
T(�k)v(�k) (4)

and we seek the following three types of controllers:
Type 1: The output of this controller is continuous in time. Its dynamics is given by

ẋc(t) = Ac0xc(t) + Ac1xck + Bcyk, xck = xc(�k), xc(0) = 0,

u(t) = Ccxc(t), �k � t < �k+1, (5)
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where xc ∈ Rn. It is required that, for all sampling times satisfying A1 and for a prescribed value of �, this controller will stabilize
the system and will lead to Jc < 0, for all nonzero w ∈ L2[0, ∞) and v(�k) ∈ l2[0, ∞).

Type 2: The output of this controller is a sampled signal applied to a zero-order-hold. The sampling of this signal is synchronized
with the sampling of the measured output y. The corresponding dynamics of this type of controller is given by

ẋc(t) = Ac0xc(t) + Ac1xck + Bcyk, xck = xc(�k), xc(0) = 0,

u(t) = Ccxck, �k � t < �k+1. (6)

Type 3: This controller is characterized by a sampled output (through a zero-order-hold) at sampling instants

0 = �0 < �1 < · · · < �j < · · · , lim
j→∞ �j = ∞.

We assume that:

A2. �j+1 − �j �h2, ∀j �0.

Denoting: h̄ = max(h1, h2), this controller is described by

ẋc(t) = Ac0xc(t) + Ac1xck + Ac2xcj + Bcyk, �k � t < �k+1, �j � t < �j+1,

xck = xc(�k), xcj = xc(�j ), xc(0) = 0,

u(t) = Ccxcj , �j � t < �j+1. (7)

Remark 1. In the definition of Jc the energies of the signals w(t) and v(t) are properly considered. The last summation in this
definition is a rectangular approximation of the energy entailed in the measurement noise. In the past, an attempt has been made
to solve the sampling problem by taking the sum of the squared L2-norm of w(t) and the squared l2-norm of {v(�k)} (Sagfors &
Toivonen, 1997; Xu & Chen, 2003). Unfortunately, the latter summation has a little physical sense since it does not take the sampling
rate into account and, in fact, it puts an increasing weight on the measurement noise the shorter the sampling interval becomes.

Remark 2. The above controllers are a generalization of the standard continuous-time nth order controller. Their dynamics is
affected not only by the continuous control state xc(t) but also by the sampled values of this signal at the sampling instants. The
additional degree of freedom introduced by Ac1 and Ac2 should lead to a lower value of � for which a solution can be found.

2.2. The filtering problems

In the filtering problem we define the cost function

Jf (w) =
∫ ∞

0
[z̃T(s)z̃(s) − �2wT(s)w(s)] ds − �2

∞∑
k=0

(�k+1 − �k)v
T(�k)v(�k),

z̃(t) = C1x(t) − zf (t), (8)

where we assume that u(t) ≡ 0 in (2), and where we consider the following type 1 nth order filter:

ẋf (t) = Af 0xf (t) + Af 1xf k + Bf yk, xf k = xf (�k), xf (0) = 0,

zf (t) = Cf xf (t), �k � t < �k+1. (9)

The latter applies the sampled value of the estimation state vector xf to the dynamics. The more standard full order estimator
(denoted here as the type 2 filter) has the following structure:

ẋf (t) = Af 0xf (t) + Bf yk, xf (0) = 0,

zf (t) = Cf xf (t), �k � t < �k+1. (10)

Both filters should guarantee an estimation error level of �, namely, Jf < 0 for all nonzero w ∈ L2[0, ∞), and v(�k) ∈ l2[0, ∞).
It will be shown below that whereas the type 1 filter can be derived from the results obtained for the type 1 controller, the solution

of the filter of the second type requires some additional manipulations.

3. The output delay model

We consider the following piecewise-constant measurement:

y(t) = C2x(t − �1(t)) + D21v(t − �1(t)), (11)

�1(t) = t − �k, �k � t < �k+1. (12)

From A1 it follows that 0��1(t) < h1 and it is also found from (11) that (d/dt)�1 = 1 over (�k, �k+1), for all k�0.
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Defining � = col{x, xc} we obtain the following augmented model for the three types of the output-feedback controller.

�̇(t) = Ā0�(t) + Ā1�(t − �1(t)) + Ā2�(t − �2(t)) + B̄w(t) + B̄1v(t − �1(t)), (12a)

�(t) = 0, t ∈ [−h̄ 0], (12b)

z̄(t) = L̄0�(t) + L̄1�(t − �1(t)) + L̄2�(t − �2(t)). (12c)

In the latter the delay �2(t) is the one that describes the sampling and hold of u(t) in the controller of type 3. Namely, it follows
from A2 that 0��2(t) < h2 and that (d/dt)�2 = 1 over (�j , �j+1), for all j �0.

In the controller of type 1 the matrices of the above model are:

Ā0 =
[
A0 B2Cc

0 Ac0

]
, Ā1 =

[
0 0

BcC2 Ac1

]
, Ā2 = 0,

B̄ =
[
B1
0

]
, B̄1 =

[
0

BcD21

]
, L̄0 = [C1 D12Cc], L̄1 = L̄2 = 0. (13)

The type 2 controller is described by

Ā0 =
[
A0 0
0 Ac0

]
, Ā1 =

[
0 B2Cc

BcC2 Ac1

]
, Ā2 = 0,

B̄ =
[
B1
0

]
, B̄1 =

[
0

BcD21

]
, L̄0 = [C1 0], L̄1 = [0 D12Cc], L̄2 = 0, (14)

and, under assumption A2 the controller of type 3 is characterized by the following:

Ā0 =
[
A0 0
0 Ac0

]
, Ā1 =

[
0 0

BcC2 Ac1

]
, Ā2 =

[
0 B2Cc

0 Ac2

]
,

B̄ =
[
B1
0

]
, B̄1 =

[
0

BcD21

]
, L̄0 = [C1 0], L̄1 = 0 and L̄2 = [0 D12Cc]. (15)

4. New BRL for systems with state and disturbance delays

For the system (12) a bounded real lemma (BRL) is required which handles delays in the disturbance and in the objective function
for 0��i (t) < hi, i = 1, 2.

We represent (12) in the following form.

�̇(t) =
(

2∑
i=0

Āi

)
�(t) +

2∑
i=1

Āi

∫ t−�i (t)

t

�̇(s) ds + B̄w(t) + B̄1v(t − �1(t)),

z̄(t) =
(

2∑
i=0

L̄i

)
�(t) +

2∑
i=1

L̄i

∫ t−�i (t)

t

�̇(s) ds. (16)

Applying to (16) the input–output approach to stability (see Gu et al., 2003 and the references therein), we introduce the following
forward system (Fridman & Shaked, 2006)

�̇(t) =
(

2∑
i=0

Āi

)
�(t) + h1Ā1�1(t) + h2Ā2�2(t) + B̄w(t) + B̄1v(t − �1(t)), (17a)

z̄(t) = (L̄0 + L̄1 + L̄2)�(t) + h1L̄1�1(t) + h2L̄2�2(t), (17b)

yi(t) = �̇(t), i = 1, 2 (17c)

with feedback

�i (t) = −1/hi

∫ 0

−�i (t)

yi(t + s) ds. (18)

Assume that �i (t) = 0, t �0. Then the following holds for matrix Ri > 0 (Fridman & Shaked, 2006):∫ ∞

0
�T

i (t)Ri�(t) dt �
∫ ∞

0
yT
i (t)Riyi(t) dt . (19)
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Consider the Lyapunov function V (t) = �T(t)P1�(t), P1 > 0. We are looking for the conditions that guarantee the following
inequality along (17)

W = d

dt
V +

2∑
i=1

hiy
T
i (t)Riyi(t) −

2∑
i=1

hi�
T
i (t)Ri�i (t) + z̄T(t)z̄(t)

− �2(wT(t)w(t) + vT(t − �1(t))v(t − �1(t)) < 0. (20)

Integrating (20) in t from 0 to ∞ and taking into account (19) and the equality v(t − �1(t)) = v(�k), t ∈ [�k, �k+1) we see that (20)
implies Jc < 0.

Applying to (17a) the descriptor model transformation (Fridman, 2001) we have

V̇ (t) = 2�T(t)P1�̇(t) = 2[�T(t) �̇
T
(t)]P T[�̇T

(t) 0]T

= 2[�T(t) �̇
T
(t)]P T

⎡
⎣ �̇(t)(

2∑
i=0

Āi

)
�(t) + h1Ā1�1(t) + h2Ā2�2(t) + B̄w(t) + B̄1v(t − �1(t)) − �̇(t)

⎤
⎦ , (21)

where

P =
[

P1 0
P2 P3

]
. (22)

Substituting (21) into W and applying Schur complements to the term
∑2

i=1hiy
T
i (t)Riyi(t) + z̄T(t)z̄(t) we conclude that (20) is

satisfied if⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2∑
i=0

P T
2 Āi +

2∑
i=0

ĀT
i P2 P1 − P T

2 +
2∑

i=0
ĀT

i P3 h1P
T
2 Ā1 h2P

T
2 Ā2 P T

2 B̄ P T
2 B̄1

2∑
i=0

L̄T
i

∗ −P T
3 − P3 + h1R1 + h2R2 h1P

T
3 Ā1 h2P

T
3 Ā2 P T

3 B̄ P T
3 B̄1 0

∗ ∗ −h1R1 0 0 0 h1L̄
T
1

∗ ∗ ∗ −h2R2 0 0 h2L̄
T
2

∗ ∗ ∗ ∗ −�2I 0 0
∗ ∗ ∗ ∗ ∗ −�2I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (23)

We proved the following BRL:

Lemma 1. Consider (12). For a prescribed � > 0, the cost function (4) achieves Jc(w) < 0 for all nonzero w ∈ L2[0, ∞), v(�k) ∈
l2[0, ∞) and for �1(t) = t − �k < h1, t ∈ [�k, �k+1), �2(t) = t − �j < h2, t ∈ [�j , �j+1), if there exist matrices P1 > 0, P2, P3,
R1 = RT

1 and R2 = RT
2 that satisfy LMI (23).

Remark 3. An equivalent BRL may be derived by direct application of the descriptor Lyapunov–Krasovskii functional (Fridman,
2001).

5. Controller design

5.1. Sampled-data state-feedback H∞ control

The above BRL is required not only for deriving the output-feedback controller but also for obtaining a solution to the sampled
state-feedback control problem where a control law

u(t) = Kx(�k), �k � t < �k+1 (24)

is sought that achieves

Jsf (w) =
∫ ∞

0
[zT(s)z(s) − �2wT(s)w(s)] ds < 0 (25)

for all nonzero w ∈ L2[0, ∞). This problem has been solved in the past by Fridman et al. (2005) assuming that D12 in (2) is zero.
The BRL we obtained in the last section provides a tool by which the case of nonzero weighting on the control effort is considered
in the cost function.
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The state-feedback law of (24) can be written as u(t)=Kx(t − �1(t)) where �1(t)= t −�k, �k � t < �k+1. We consider therefore
the model of (12) with

Ā0 = A, Ā1 = B2K, Ā2 = 0, B̄ = B1, B̄1 = 0, L̄0 = C1 and L̄1 = D12K .

Considering then the LMI of (23) we seek a solution that satisfies P3 = �P2 where � is a nonzero scalar. As such, since P3 + P T
3

appear on the diagonal, the matrix P2 is nonsingular. Denoting Q = P −1
2 we multiply (23), after deleting the columns and rows

that include A2, R2 and B̄1, by diag{QT, QT, QT, I, I } and diag{Q, Q, Q, I, I }, from the left and the right, respectively.
Denoting V = KQ, R̄ = QTR1Q and P̄1 = QTP1Q we obtain the following:

Lemma 2. Given the performance level �and the tuning parameter �.The control law (24) achieves (25) for all nonzerow ∈ L2[0, ∞)

is there exist Q, 0 < P̄1, R̄ ∈ Rn×nand V ∈ Rp×n that satisfy the following LMI:

	̄ =

⎡
⎢⎢⎢⎣

AQ + QTAT + B2V + V TBT
2 P̄1 − Q + �(QTAT + V TBT

2 ) h1B2V B1 QTCT
1 + V TDT

12
∗ −�(QT + Q) + h1R̄ h1�B2V �B1 0
∗ ∗ −h1R̄ 0 h1V

TDT
12

∗ ∗ ∗ −�2I 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎦< 0. (26)

If a solution to the latter LMI exists, the state-feedback gain matrix is given by: K = V Q−1.

Remark 4. Another method for solving (23) is based on the iterative algorithm developed by Gao and Wang (2003). This method
may be preferable in cases of relatively large hi, i = 1, 2, since it can lead to less conservative results. However, the latter requires
longer computer time due to the iterative process.

5.2. Output-feedback H∞ control

In order to obtain a solution to the output-feedback controller we consider (23), with P3 = �P2, where � is a scalar, and similarly
to the method (Scherer, Gahinet, & Chilali, 1997) we denote the partitions:

P T
2 =

[
X M

M̄ U

]
and P −T

2 =
[

Y N

N̄ V̄

]
(27)

and define

J =
[
I Y T

0 NT

]
, J̄ = diag{J, J, J, J, J, J }.

Multiplying (23) by diag{J̄ , I, I, I } from the right and by diag{J̄ T, I, I, I } from the left we obtain the following two inequalities:
For the controllers of type 1 and 2:

	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XA0 + AT
0 XT + SC2 + CT

2 ST Â0 + AT
0 P̄11 − X + �(AT

0 XT + CT
2 ST)

∗ A0Y
T + YAT

0 + B2Z + ZTBT
2 P̄ T

12 − I + �ÂT
0

∗ ∗ −�(X + XT) + h1R̄11
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

P̄12 − T + �AT
0 h1SC2 h1Â1 XB1 SD21 CT

1
P̄13 − Y T + �(YAT

0 + ZTBT
2 ) 0 
1 B1 0 YCT

1 + ZTDT
12

−�(I + T ) + h1R̄12 �h1SC2 �h1Â1 �XB1 �SD21 0
−�(Y + Y T) + h1R̄13 0 �
1 �B1 0 0

∗ −h1R̄11 −h1R̄12 0 0 0
∗ ∗ −h1R̄13 0 0 
2
∗ ∗ ∗ −�2I 0 0
∗ ∗ ∗ ∗ −�2I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (28a)
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where

P̂ =
[

P̄11 P̄12
P̄ T

12 P̄13

]
= J TP1J (28b)

and

R̂1 =
[

R̄11 R̄12
R̄T

12 R̄13

]
= J TR1J (28c)

and where for the controller of type 1

Â0 = XA0Y
T + M(Ac0 + Ac1)N

T + XB2Z + SC2Y
T, (28d)

Â1 = SC2Y
T + MAc1N

T, (28e)

Z = CcN
T, (28f)

S = MBc, (28g)

T = XY T + MNT, (28h)


1 = 0, (28i)

and


2 = 0. (28j)

The corresponding matrices in the solution for type 2 are given by (28d), (28f)–(28h) with

Â1 = SC2Y
T + MAc1N

T + XB2Z, (29a)


1 = h1B2Z (29b)

and


2 = h1Z
TDT

12. (29c)

The controller of the third type is obtained by solving the following inequality:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 h2Â2 0 0
0 h2B2Z 0 0
0 �h2Â2 h2R̄21 h2R̄22
0 �h2B2Z h2R̄

T
22 h2R̄23

	 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 h2D12Z 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̄21 −h2R̄22 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̄23 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̄21 −h2R̄22
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̄23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (30a)

where 	 is defined in (28a), with 
1 = 
2 = 0,

Â0 = XA0Y
T + M(Ac0 + Ac1 + Ac2)N

T + XB2Z + SC2Y
T (30b)

Â1 = SC2Y
T + MAc1N

T (30c)

and

Â2 = XB2Z + MAc2N
T (30d)

and where

R̂2 =
[

R̄21 R̄22
R̄T

22 R̄23

]
= J TR2J . (30e)
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For a given value of � the latter inequalities are linear in the decision variables: X, Y , S, Z, T, Âi , i = 1, . . . , 3, P̂ and R̂i , i = 1, 2.
This leads to the following.

Theorem 1. For a prescribed � > 0, there exists a controller of the form (5)–(7) that achieves Jc(w, v) < 0 for all nonzero w ∈
L2[0, ∞), v(�k) ∈ l2[0, ∞) and for �1(t) = t − �k < h1, t ∈ [�k, �k+1), and �2(t) = t − �j < h2, t ∈ [�j , �j+1), if there exist

matrices X, Y, S, Z, T P̂ , R̂i , i = 1, 2 and Âi , i = 1, 2, 3, with P̂ > 0, that, for a tuning scalar �, satisfy (28a) with (28i), (28j),
(28a) with (29a)–(29c), or (30a)–(30d), respectively.

If the corresponding LMI has a solution the controller matrices can be readily obtained from (28d)–(28h), (29a) and (30b)–(30d).

Remark 5. The matrices M and N in, say (28d)–(28h), are not decision variables in the condition of Theorem 1. The question arises
how these matrices can be found and whether they are nonsingular. The definition of M and N is given in (27). It follows from this
definition that if we arbitrarily choose N = In and apply the definition of (28h) the following is obtained:

M = T − XY T. (31)

If the resulting M turns out to be singular, a small perturbation added to the matrix T in the (1,4) block in the above LMIs will lead
to an invertible M. The invertibility of X and Y is guaranteed by the fact that X + XT and Y + Y T are blocks on the diagonal of the
above LMIs.

Remark 6. Comparing between the minimum performance level � that is achievable by applying the three types of controllers to the
same system it is clear that the controller of type one should achieve the smallest minimum value since it describes the case where
the output of the controller is continuously fed to the control input of the plant without any sampling. A comparison between the
type 2 and type 3 controllers depends on h2 and h1. When h2>h1 the value of � that is achievable by the controller of the third type
will be close to (though still bigger than) the value achieved by the type 1 controller. This is clearly seen from (30a) when applying
Schur formula. In the limit where h2 tends to zero the condition becomes the one of (28a).

Example 1 (Control). We consider the system:

ẋ(t) =
[

0 1
−16 4.8

]
x(t) +

[
0
16

]
w(t), z(t) =

[
1 0
0 0

]
x(t) +

[
0

0.1

]
u(t). (32)

The system is taken to be unstable because in stable systems, when one applies a too large sampling interval, the solutions for the
output-feedback controllers of Sections 3 and 5 will lead to a minimum value of � which is very close to the H∞ -norm of the
open-loop. This is achieved by deriving a controller with very small gains.

We begin by considering the case where a sampled version

xk = x(�k), �k+1 − �k �h1 = �/25, k = 1, 2, . . .

is available for feedback. Applying Lemma 2 we readily obtain a minimum performance level of �min =24.207, achieved for �=1.1.
The corresponding state-feedback gain matrix is K = [0.8430 − 0.4781].

We next consider the case where the measurement is described by

yk = [1 0]x(�k) + 0.1vk, �k+1 − �k �h1 = �/25, k = 0, 1, . . . .

Applying Theorem 1 to the above system, a type 1 controller is first obtained which achieves a minimum performance value of
�min = 19.99, for � = 1. Note that � achieved by the dynamic output-feedback controller of type 1 is smaller than the one achieved
by the constant delayed state-feedback.

The type 2 controller should achieve a higher � since it applies a sampled and hold input to the plant (synchronized with the
measurements). Indeed, the minimum achievable value of � for this controller is �min = 339.8 which is achieved for � = 1.4.

A controller of type 3 controller is then sought which for unsynchronous sample and hold of the control signal u provides a
minimum bound on �. For sampling rate bound of h2 = 0.01 a minimum value of � = 20.83 is achieved for � = 1. It should be
noted that for smaller sampling rate bound the achievable values of � may become quite large. For, say h2 = h1 = �/25, a minimum
achievable value of � = 339 is obtained, using � = 1.5.

We note that the results obtained by the controller of type 3 tend to coincide with those of type 1 in the limit where h2 tends to zero.
In the limit where h1 tends to zero the result of the controller of type 1 produces the result for the continuous-time output-feedback
controller. A value of � = 0.3237 is then produced for � that tends to zero. A result that may look odd, at least at first sight, is the
fact that the sampled state-feedback achieves a result that is inferior to the one obtained by the type 1 controller. The reason why a
constant feedback gain may be insufficient to obtain the lowest attenuation level may be the high frequency content of the sampling
equivalent disturbance (see the input–output approach to delay (Gu et al., 2003)) that requires a low pass component in the controller.



1080 V. Suplin et al. / Automatica 43 (2007) 1072–1083

6. Filtering design

The above results have been obtained for the control problem. The solution to the type 1 filtering problem is derived from the
result that has been obtained above for the controller of type 1 as follows. Substituting in (28a) B2 = 0 and D12 = −Ir we obtain the
following result for the sampled data H∞ filter.

Theorem 2. For a prescribed � > 0, there exits a filter of the form (9) that achieves Jf (w, v) < 0 for all nonzero w ∈ L2[0, ∞),

v(�k) ∈ l2[0, ∞) and for �1(t) = t − �k < h1, t ∈ [�k, �k+1), if there exist matrices X, Y, S, Z, T P̂ , R̂1 and Âi , i = 1, 2, with
P̂ > 0, that, for a tuning scalar �, satisfy (28a) for B2 = 0, D12 = −Ir , 
1 = 0 and 
2 = 0.

If the LMI has a solution, the filter matrices are obtained by

Af 0 = (T − XY T)−1[Â0 − XA0Y
T − Â1], (33a)

Af 1 = (T − XY T)−1[Â1 − SC2Y
T], (33b)

Bf = (T − XY T)−1S, (33c)

and

Cf = Z. (33d)

In the filter of type 2, a zero Af 1 is applied. If we again rely on (28a) with B2 = 0 and D12 = −In, we find from (28e) that the
choice of Af 1 = Ac1 = 0 implies that the decision variable Â1 is rank deficient. Replacing then Â1 in (28a) with MBf C2Y

T the
resulting inequality is no longer linear. This inequality can, however, be linearized as follows.

Denoting Ȳ = Y−1 we substitute: B2 = 0, D12 = −In and Â1 = MBf C2Y
T in (28a) (with 
1 = 
2 = 0). We then multiply

the second, fourth, sixth and eighth rows of the resulting inequality by Ȳ and the corresponding columns by Ȳ T. Denoting: P̃12 =
P̄12Ȳ

T, P̃12 = Ȳ P13Ȳ
T, R̃12 = R̄12Ȳ

T, R̃13 = Ȳ R̄13Ȳ
Twe obtain the following:

Corollary 1. For a prescribed � > 0, there exits a filter of the form (10) that achieves Jf (w, v) < 0 for all nonzero w ∈ L2[0, ∞),

v(�k) ∈ l2[0, ∞) and for �1(t) = t − �k < h1, t ∈ [�k, �k+1), if there exist matrices X, Ȳ , S, Z̃, T̃ , 0 < P̄11, P̃12, P̃13, R̄11, R̃12,
R̃13 and Ã0, that, for a tuning scalar �, satisfy the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XA0 + AT
0 XT + SC2 + CT

2 ST Ã0 + AT
0 Ȳ T P̄11 − X + �(AT

0 XT + CT
2 ST) P̃12 − T̃ + �AT

0 Ȳ T

∗ ȲA0 + A0Ȳ
T P̃ T

12 − Ȳ + �ÃT
0 P̃13 − Ȳ + �AT

0 Ȳ T

∗ ∗ −�(X + XT) + h1R̃11 −�(Ȳ T + T̃ ) + h1R̃12
∗ ∗ ∗ −�(Ȳ T + Ȳ ) + h1R̃13
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

h1SC2 h1SC2 XB1 SD21 CT
1

0 0 ȲB1 0 CT
1 − Z̃T

�h1SC2 �h1SC2 �XB1 �SD21 0
0 0 �ȲB1 0 0

−h1R̄11 −h1R̃12 0 0 0
∗ −h1R̃13 0 0 0
∗ ∗ −�2I 0 0
∗ ∗ ∗ −�2I 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (34a)

where:

Ã0 = XA0 + SC2 + MAf 0N
TȲ T, (34b)



V. Suplin et al. / Automatica 43 (2007) 1072–1083 1081

Z̃ = Cf NTȲ T, (34c)

S = MBf , (34d)

T̃ = X + MNTȲ T. (34e)

If a solution to the latter LMI exists then the transfer function matrix of the filter is given by:

T (s) = Z̃Y TN−T(sI − M−1(Ã0 − XA0 − SC2)Y
TN−T)−1M−1S = Z̃((T̃ − X)s − (Ã0 − XA0 − SC2))

−1S. (35)

Remark 7. The above results for the two types of filter have been derived for the nominal case where the matrices of the state-space
model of the process to be controlled or estimated are all known. However, the LMI in Corollary 1 is affine in these matrices.
Thus, a robust type 2 filter can be obtained that satisfies the prescribed performance level, determined by �, for systems with matrix
parameters that lie in a given polytope if (34) is satisfied at all the vertices of this uncertainty polytope.

The same holds true for the filter of type 1. If we repeat the procedure that led to (34), this time with a nonzero A1f , we obtain the

LMI (34), with the exception that now SC2 is replaced in the (1,6) and the (3,6) blocks by SC2 + ˆ̂
A1 where ˆ̂

A1 =MAf 1N
TȲ T. Also

the resulting inequality is affine in the matrices of the state-space model of the process and thus a robust solution can be obtained
also for the filter of type 1.

Remark 8. The filters that are derived above are of full order. Filters of reduced order can be obtained by imposing structural
constrains on the decision variables in, say, (34). These constrains should lead to uncontrollable filters with the required number of
controllable modes.

Example 2 (filtering). (i) Estimation for nominal systems: We consider here the process of Sagfors and Toivonen (1997). Given the
system:

ẋ(t) =
[

0 1
−16 −4.8

]
x(t) +

[
0
16

]
w(t), (36a)

z(t) = [1 0]x(t), (36b)

yk = [1 0]x(�k) + 0.1vk, k = 0, 1, . . . (36c)

with h1 = �/4. We seek an estimator of type 1 in the form of (9) that obtains a continuous estimate of z(t) with an estimation error
level of �. We apply Theorem 2 and find a minimum achievable � = 1.0418 for � = 0.01. For h1 = �/25 we get a better estimation.
For � = 0.18 we obtain � = 0.4647.

The corresponding results that are obtained for the filter of type 2 (applying the LMI of Corollary 1) are � = 1.043 (for � = 0.01)
and � = 0.4876 (for � = 0.14), respectively. The slight improvement that is achieved by the filter of type 1 is due to the additional
degree of freedom Af 1 that was introduced in (10).

(ii) Robust estimation:
We consider the system of (36a), (36c) where the (2, 2) element in the dynamic matrix A is uncertain and instead of being −4.8 in

the latter solution it is now known to reside in the interval [−3.80 − 5.8]. The uncertainty polytope is in the present case an interval
with two vertices. Applying the arguments of Corollary 1 we solve the LMI of (34a) at the two vertices and obtain for h1 = �/4
a minimum value of � = 1.239 for � that tends to zero. For the smaller delay of h1 = �/25 the corresponding result is � = 0.5794
achieved for � = 0.13.

7. Conclusions

A comprehensive H∞ control and filtering design approach is presented for linear systems with sampled measurements. The
sampling rate may be unknown but bounded by a known value h and it may vary in time. A new performance index is introduced
which takes into account sampling rates and corresponds to the energy of the measurement noise. On the basis of h, design schemes
are proposed for deriving various types of controllers. These stem from a new bounded real lemma that is developed in this paper
to accommodate for delays in the disturbances and in the objective.

A state-feedback controller is first derived which in comparison to previous methods allow for weighting of the control effort
in the performance index. When access (a delayed one) to the system states is unavailable, three types of controllers are derived
which, under their special control set-up, achieve a minimum bound on the disturbance rejection level. These controllers cover the
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three cases where the controller applies either a continuous-time control signal, or a sample and hold control (synchronized with
the sampling of the measurement), or an unsynchronized sampled and hold control input. All the three types of the controllers
are characterized by the fact that their (continuous-time) dynamics is affected not only by the current value of the controller state
but also by its constant value at the last sampling instant. This additional degree of freedom should help in reducing the achieved
performance level. Additional degrees of freedom may be introduced by considering also the value of the controller state in previous
sampling instants. This should further reduce the value of the performance index but will significantly complicate the derivation of
the corresponding controllers.

The theory developed is also applied to the case of H∞ filtering that is based on uncertain time-varying sampling of the noisy
measurements. A need for such a type of filter is encountered in many areas of modern communication and network control. A
filtering scheme is introduced which produces a continuous-time estimate of the system state vector. Also this filter possesses the
non conventional structure that includes the additional term of the sampled value of the estimate in the continuous time description of
the estimator dynamics. The estimate is obtained by solving a linear matrix inequality that is affine in the parameters of the process
to be estimated. It can be therefore used to obtain a robust estimation scheme for systems with polytopic type uncertainty in their
parameters.
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