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Delay-dependent stability and H_, control: constant and time-varying delays

E. FRIDMAN{* and U. SHAKEDY}

Three main model transformations were used in the past for delay-dependent stability. Recently a new (descriptor) model
transformation has been introduced. In the present paper, we compare methods under different transformations and
show the advantages of the descriptor one. We obtain new delay-dependent stability conditions for systems with time-
varying delays in terms of linear matrix inequalities. We also refine recent results on delay-dependent H  control and
extend them to the case of time-varying delays. Numerical examples illustrate the effectiveness of our method.

1. Introduction

Time-delay often appears in many control systems
(such as aircraft, chemical or process control systems)
and, in many cases, delay is a source of instability (see,
for example, Hale and Lunel 1993). The stability issue of
systems with delay is, therefore, of theoretical and prac-
tical importance. It is well-known (see, for example
Kolmanovskii and Richard 1999) that the choice of an
appropriate Lyapunov—Krasovskii functional is crucial
for deriving stability conditions. The general form of
this functional leads to a complicated system of partial
differential equations (see, for example, Malek-Zavarei
and Jamshidi 1987). Special forms of Lyapunov-
Krasovskii functionals lead to simpler delay-indepen-
dent (Boyd er al. 1994, Verriest and Niculescu 1998,
Kolmanovskii and Richard 1999) and (less conservative)
delay-dependent conditions (Niculescu et al. 1995, Li
and de Souza 1997, Kolmanovskii et al. 1999,
Kolmanovskii and Richard 1999, Park 1999, Lien et al.
2000, Niculescu 2001a). Note that the latter simpler
conditions are appropriate in the case of unknown
delay, either unbounded (delay-independent conditions)
or bounded by a known upper bound (delay-dependent
conditions).

Delay-dependent stability conditions in terms of
linear matrix inequalities (LMIs) have been obtained
for retarded and neutral type systems. These conditions
are based on three main model transformations of the
original system (see Kolmanovskii and Richard 1999).

Recently a new descriptor model transformation was
introduced for delay-dependent stability of neutral
systems (Fridman 2001) and of a more general class of
differential and algebraic (descriptor) system with delay
(Fridman 2002 b). Unlike previous transformations, the
descriptor model leads to a system which is equivalent to
the original one, it does not depend on additional
assumptions for stability of the transformed system
and requires bounding of fewer cross-terms.
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Two main approaches for dealing with the stability
of systems with time-varying delays have been suggested
in the past. The first is based on Lyapunov—Krasovskii
functionals and the second is based on Razumikhin
theory. Two main cases of time-varying delays have
been considered:

(1) differentiable uniformly bounded delays with
delay-derivatives bounded by d < 1; and

(2) continuous uniformly bounded delays.

To the best of our knowledge, the Razumikhin
approach was the only one that was able to cope with
the second case, which allows fast time-varying delays.

In the present paper, we shed more light on the con-
servatism of the various model transformations and
show the advantages of the descriptor one. We improve
the delay-dependent stability conditions of Fridman
(2001), that were based on descriptor model transforma-
tion, by applying tighter bounding of the cross terms
introduced in Park (1999). We extend the results of
Fridman (2001) to the case of systems with polytopic
uncertainties and time-varying delays. We consider
both the above-mentioned cases of time-varying delays.
Our method based on the Lyapunov—Krasovskii func-
tional seems to be the first of this type for the second
case. In the first case our results significantly improve
the existing ones (see Kim 2001 and references therein).
Numerical example shows that our method, even for the
more robust second case, leads to less restrictive results
than those of Kim (2001) which were obtained for the
first case on the basis of the first transformation. The
new conditions are given in terms of LMIs.

A descriptor model transformation has been applied
recently for H_, control problem Fridman and Shaked
(2002 a). We refine the results of Fridman and Shaked
(2002a) and extend them to the time-varying case.
Numerical examples are given which illustrate the
advantages of our method.

Notation: Throughout the paper the superscript ‘T’
stands for matrix transposition, R" denotes the n dimen-
sional Euclidean space with vector norm | - |, R is the
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set of all n x m real matrices, and the notation P > 0, for
P e R™", means that P is symmetric and positive defi-
nite. Let C,[a,b] denote the space of continuous func-
tions ¢: [a,b] — R" with the supremum norm | -|. We
also denote x,(0) = x(¢r + 0) (6 € [—h,0]).

2. On delay-dependent conditions under four model
transformations

In this section we analyse the sources for the conser-
vatism of the delay-dependent methods under different
model transformations, which transform a system with
discrete delays into one with distributed delays. It is
well-known that this conservatism either stems from
additional dynamics in the transformed system, in the
case of transformation I below (Kharitonov and
Melchor-Aguilar 2000, Gu and Niculescu 2000), or
from additional assumptions that are made to guarantee
the stability of the transformed system, in the case of
transformation II below (Niculescu 2001 a). A frequency
domain interpretation of stability conditions under
transformations I and III was given recently in Zhang
et al. (2001).

We show below that the additional terms in the deri-
vative of Lyapunov—Krasovskii functional, which have
to be treated as in the delay-independent case, lead to
overdesign in the case of transformation III. Moreover,
in all the model transformations the results are restric-
tive due to the bounding of cross terms. A minimum
number of such terms and tighter bounding of them
should certainly lead to better results. We also discuss
the case of time-varying delays. For simplicity we con-
sider a retarded linear system with a single delay

(1) = Agx(t) + A, x(t — h) (1)
where x(1) € R", h >0, Ay, A, € R"™".

2.1. On the conservatism of delay-dependent conditions

I. The first transformation

t

» [Aox(s) + A1x(s — h)]ds
(2)

It is well-known (see, for example Kharitonov and
Melchor-Aguilar 2000, Gu and Niculescu 2000) that
(2) is not equivalent to the original one and has addi-
tional dynamics. By choosing a Lyapunov—Krasovskii
functional of the form (see, for example Kolmanovskii
et al. 1999)

3(1) = [Ao + ALJx(1) — A, j

V()2 x" (P x(t) + Vo + Vs, P =P >0 (3)

with

V, = JO JI xT(s)Ryx(s)ds do

—h Jt+0

—h gt
Vs J J xT(s)Ryx(s)dsdf, Ry >0, R, >0

—2n Jivo
(4a,b)
it is found that
V=x"[(dg+ A1) P, + P\ (Ag + A)]x +ny +mp
+V,+ V5

where

(>

() —ZJ[ <T(0)P Ay Agx(s)ds,

t—h

!
m(t) & — 2J th(t)PAlAlx(s — h)ds
"

Two cross terms n; and 7, should then be bounded. In

the case of m delays, 2m cross terms have to be bounded.

Note that the terms V7, and V3 correspond to delay-

dependent conditions and they compensate the terms

that emerge when bounding the cross terms 7; and 7).
In the case of a system with time-varying delay

X(t) = Aox(t) + A x(t — 7(1))

0<7<h 7(t)<d<l (5)

the Lyapunov—Krasovskii functional has the form of (3)
with 7, given by (4a) and V5 of the form (Kim 2001)

-7 t
V= J J xT(s)Ryx(s)ds df
—7—h Jt+6

Differentiation of V5 leads to additional terms due to the
fact that the limits of the integral (—7 and —7 —h)

depend on ¢.

II. The second (neutral type) transformation brings (1)
to the equivalent system

t

% {x(l) + 4, J[_h x(s)ds} = (Ao + A4;)x(1)

A Lyapunov—Krasovskii functional for this case has the
form (see e.g. Niculescu 2001)

V() 2D (x)P\D(x;) + Vs,  Py=P] >0
where V, is given by (4 a)
t
D(x;) = x(t) + 4, J x(s)ds
t—h

Under an additional assumption on the stability of D
(i.e. asymptotic stability of the equation D(x,) = 0) the
system is asymptotically stable if V' (¢) < 0. This assump-
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tion is difficult to verify. Sufficient condition for the
stability of D is that h|4,| < 1, where | - | is any matrix
norm, but the latter may lead to conservative results (see
Example 2 in Fridman 2001).

In the case of transformation II

V= x"(0)[(Ag + A1) Py + Pi(Ag + A)X(0) +my + Vs

where

t
nm = ZJ xT(1)(Ag + A1) PA;x(s)ds
t—h

The number of cross terms that have to be bounded in
this case is thus half of those obtained by applying the
first transformation.

Transformation II is not appropriate for the case of
time-varying delay.
1. The third transformation leads to the system

t

X(1) = (o + A)x(1) —Alj

which is equivalent to the original system (for absolutely
continuous initial functions). Here the Lyapunov—
Krasovskii functional has the form (Kolmanovskii and
Richard 1999, Park 1999)

V()2 x"(O)Pix(1) + Vo + Vs, P =P >0
where

0 t
7, = J J %7 (s)AT RA, x(s)dsdd
—h Jt+6

t
Vi = J xT(5)Sx(s)ds
t—h
Note that term V3 corresponds to delay-independent
stability. It is found that
V=x"[(dg+ A)) Py + P (Ag + A)]x + 1,

+ hx" (1) AT RA, x(1)

0
_ J $T(0+ 0)ATRA (1 + 0)d0 + Vs
—h

where

t
xT (1) Py A, x(s)ds
t—h

min 2 -2

The additional positive term hx"(1)A] RA,x(1) in the
expression for V is treated then as

hx"(0) AT RA x(1) = h(Ayx (1)
+ Ay x(1 — h) AT RA, (Agx(1)

+ Ax(t — h))

The vectors x(¢) and x(¢ — h) are considered further to
be independent and they are treated as in the delay-
independent case. This leads to an additional conserva-
tism.

Transformation III may be adapted to treat the first
case of time-varying delays.

IV. The fourth (descriptor) transformation was intro-
duced in Fridman (2001)

X(0) =y(0), (1) = Aox(t) + Ayx(t —h)  (6)

The latter can be represented in the form of a descriptor
system with distributed delay in the ‘fast variable’ y for
t>h

H(0) = (0, 9(0) = (Ag+ Ay)x(r) — 4, j

Conversely, every solution of (7) satisfies (1) for ¢ > h.
Hence, the linear systems (7) and (1) are equivalent from
the point of view of stability, i.e. stable or unstable
simultaneously.

The Lyapunov—Krasovskii functional for the latter
system has the form:

T T x(1)
V(t)=I[x (1) y ()]EP + Vs (8)
»(1)
where
I 0 P 0
E= ], P= ], P =P >0 9)
0 0 Py, Py

0t
V, = J J yT(s)Ry(s)dsds, R>0 (10)
—h Ji+0

In this case
V=Wt + 1,
where £ = col{x, y}

T 0 1 0 (Ao+Ap)"
pLp +
Ay +4, -1 I .y
! T T T 0
mi) & — 2j WO TP | p(s)ds
t—h Al

It will be shown in the next section that the same
results remain true in the case of continuous and
bounded delay 7 < A.

The delay-dependent results are conservative under
all transformations due to the bounding of the cross
terms. In this sense transformations II-IV lead to less
restrictive methods having fewer cross terms. In the case
of multiple delays or when additional terms appear in
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the right-hand side of (1) the difference between the
number of the cross terms in transformations I and
those in II-1V increases. While transformation I leads
to a system that is not equivalent to the original one,
transformation II requires an additional restrictive
assumption, transformation III introduces additional
terms in V, that increases the overdesign, and transfor-
mation IV does not require additional assumptions or
terms and is, therefore, the least conservative.

2.2. Parametrized model transformation

All the tranformations presented above are fixed
model transformations (Niculescu 2001 b), that rewrite
the delayed term A4;x(z — h) via integration.

A different idea is the application of a parmetrized
model transformation with a new matrix parameter C

(1) = (Ao + C)x(1) + (4, — C)x(t — h) + Cx(t — h)
(11)

The term (A4; — C)x(¢ — h) is then treated as in the
delay-independent case, while the term Cx(z—h) is
rewritten via a fixed model transformation. The combi-
nation of the parametrized transformation with trans-
formation I was used by Zhang et al. (2002) and the
combination with transformation II appears in Han
(2002).

In the present paper we concentrate on applying the
descriptor model transformation together with the
bounding method of Park (1999). We found that the
parametrized model transformation does not lead to
less conservative results.

2.3. Park’s inequality for bounding of cross terms

In the delay-dependent case the following inequality
was used for bounding the cross terms: given a,b € R"

2a"h<a"Ra+b"R'p, ReR"™, R>0 (12

This bound was significantly improved in Park (1999)
and applied to delay-dependent stability results that
were based on transformation III.
Park introduced a free matrix M € R™" and
obtained the new inequality
a
] (13)

bl |[M'R T ||b

for acR'beR'", RER™, R>0. Here T=
(M'"R+ )R '(RM +1I). Note that (12) is obtained
from (13) for M = 0.

The delay-independent result that was obtained in
the past stems from the delay-dependent method under
transformation 11T and (13) by taking R = —M ' = —¢J
with e — 0% and @ = 4,x(s), b = Px(t). The following
LMI is obtained

T

a R RM

—24"b <

PiAy+ AJP,+S P A,
I'+0(e) <0, r=

AT P, -S

The well-known delay-independent condition I' <0
thus follows. Unlike methods based on the restrictive
bounding (12), Park’s condition generalizes the delay-
independent condition I' < 0 and the delay-dependent
condition of Kolmanovskii and Richard (1999), based
on transformation III and (12). It has been shown
recently, using the frequency domain approach (Zhang
et al. 2001), that the condition of Park (1999) generalizes
also the delay-dependent condition of Li and de Souza
(1997), which is based on transformation I. An example
where Park’s condition holds for all /4, whereas the con-
ditions that are based on (12) are feasible only for small
h >0, is given in Zhang et al. (2001).

3. Stability of neutral systems under descriptor model
transformation with Park’s bounding: time-varying
delays

Application of the less conservative model transfor-
mation with tighter bounding of the cross terms leads to
efficient sufficient conditions. Consider the following
system with time-varying delays

2 2

x(1) — ZFifC(Z — &)= ZAix(f —7i(1))

i=0

=1 (14)

x(t) = ¢(t), te€][—h0]

where g; >0, i = 1,2 and x(¢) € R", 70 =0, 4; and F;
are constant n X n-matrices, ¢ is a continuously differ-
entiable initial function. We consider two different cases:

Al: 7,(1) are differentiable functions, satisfying for all
t>0

0 <7(1) < hy,

7(1) <d;, i=1.2 (15)

or

A2: 7;(t) are continuous functions, satisfying for all
IZ 0, 0 S Tj(t) S hi7 i= 1,2

Taking in (14) h = max{hy,h,,g1,8>}, we are look-
ing for stability criteria, delay-independent with respect
to g; and dependent on /; and d;. We consider, for sim-
plicity, two delays g, g, and 7, 7, but all the results
are casily generalized for the case of any finite number of
delays. Representing (14) in the descriptor form

2

:[ZA,-]x(l)—ZAiJ[ Ws)ds  (16)
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and denoting

x(1) = colf{x(z), y(1)}
consider the following Lyapunov—Krasovskii functional

V(t)=X"()EPX(t) + Vo + V5 + V4 (17)

where

2 0t

V=Y J ¥ (8)A4] R;A4;y(s)dsdo
i—1 J—hi Jt+0
2

Vs=>_ | ' (s)Up(s)ds
i=1 J1=gi
2

V,= Z x1(5)S;x(s)ds
i=1 J1=7(1)

l

The new term V3 that appears in (17) (comparatively to
(8)) is due to the neutral type system. The term ¥V, is
used in order to apply Park’s inequality. The following
result is based on (13).

Theorem 1: Under Al the neutral system (14) is stable
if there exist n x n matrices 0 < Py, P, P3, S; = S,-T,
U =Ul, Wy, Wn and R; =R}, i=1,2 that satisfy
the LMI:

[# vy Mm@y ey —Wh4, —Wh4,  PIF, PIR]
Wy by iy —WhA, —Whdy, PiF; PP
x ok =R 0 0 0 0 0
* ok * —h R, 0 0 0 0
<0
* ok * * -Si(1—4d) 0 0 0
* * * * —-S,(1—dy) 0 0
* * * * * * -U, 0
| * * * * * * * -U, 1
(18)
where
2 2
T T
W=D Al | P+ P> 4
i=0 i=0
2 2
T T
+ Z(WilAi +A4; Wi) + Z Si
i=1 i=1
(19)

2 2
¥y, = P — Py + <ZA,~T>P3 +Y AWy
i=0 i=1

2
Wy=—Py= Py +) (Ui+ Al RiA))
i=1

Gy = (Wi +P), ®p=[Wh+Ps], i=1,2

Proof: Since
(1) EPx(1) = x" (1) Pyx(r)

differentiating the first term of (17) with respect to ¢ we
have:

d _ x(t
a)’cT(t)EPfc(z) = 2x" (1) Py x(1) = 2x" (1) P" l é)]
(20)
Substituting (16) into (20) we obtain
0 0
y PT P!
dv(x £ 13 2
d( ) <" an
t * 7U1 O i=1
* * —U2
2
- Z[(l —dp)x"(t = 1) Spx(t — 7))
=1
+y1 (= g) U1 - 27)]
2 ot
=] AR () ds (1)
i—1 Jt=h;
where g = COI{X(I) ay(l - gl)a y(l - g2)}
0 1 2
0> 4f
p & pl 2 + i=0 P
> 4| -1
i=0 1 -1
2
> 0
i1
+
2
0 (U;+ AT RA;)
i=1
i 0
w2 =2 SO apeds =12
=7 n
(22)

~

Applying (13), where R = R;, M = M;, a(s) = A4,;y(s
and b = [P, P3]x(t), and denoting W; = [W;; W]
R;M;[P, P;], we obtain fori=1,2

(1) < X" () (W + [Py P3]") R (W, + [Py P3))x(1)

2T (1) = X" (= 7)) AT Wi (1)

t
+j Y (5) AT R Ay(s)ds (23)
—h;
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Substituting .(23) into (21) and using Schur comple-
ments we find V' < 0. Note that (18) implies the feasi-
bility of the LMI

) , ]
—P}—Py+> U P4, Pi4,
i=1

<0
x —U, 0

* *

L -U, |
and thus also the delay-independent stability of the dif-
ference operator Dx, = x(1) — Fix(t — g,) — Fox(t — g»)
(Fridman 2002 b). Therefore, equation (14) is asympto-
tically stable. OJ

Corollary 1: Assume A2. The neutral system (14) is
stable if there exist n X n matrices 0 < Py, P, Ps,
U;=U! and R; = R, i = 1,2 that satisfy the following
LMI

(¥, ¥, P; P; PIF, PiF|
« ¥y Pl P, PIF, PiF,
ES * _thl 0 0 0
<0
* * * —hyR, 0 0
* * * * U, 0
| * * * * * -U,
(24)

where Wy = Wy =0, S;=0, i=1,2.

Proof: The proof follows from the proof of Theorem
1 by choosing M =0 in (13). LMI (24) is similar to
Fridman (2001). O

Remark 1: Note that in Fridman and Shaked
(2002a), Park’s inequality was used with
a(s) =col{0, A;y(s)} and b= Px(r), that lead to
2n x 2n matrices R; and W; = R;M;P. As a result, a
more complicated form of LMI was derived. The latter
LMI led to conservative conditions in the case of
state-feedback controller design, where it was assumed
that W, = eiPei €R.

For Wiy =—Py, Wp=—P3, Ry=cl,/h;, i=1,2,
LMI (18) implies for ¢ — 0" the delay-independent/
delay-derivative-dependent LMI

0 0 0 0717
o P PT PT P!
<0
* * -S,(1—d>) 0 0
* * * -U, 0
| * * * * -U, |
(25)
where
0 I 0o 1 717
o =P + P
Al _Inl Al _Inl
2 [S; 0
+
i=1 0 U,'

If LMI (25) is feasible then (18) is feasible for a small
enough £ >0 and for R, and W; given above. Thus,
Theorem 1 implies the following delay-independent/
delay-derivative-dependent conditions.

Corollary 2: Under Al the system of (14) is asymptoti-
cally stable for all h; >0, g; >0, i = 1,2 if there exist
0< Py :PT, Py, P3, U= UIT and S,':S;r, i=1,2
that satisfy (25).

Similar to the case of Park (1999), the conditions of
Theorem 1 are feasible for all /s; > 0 if (25) holds.
Corollary 2 and the existing delay-independent con-
ditions (Verriest and Niculescu 1998) lead to comple-
mentary results: in Fridman (2002 b) two examples are
given, for one of them the conditions of Verriest and
Niculescu (1998) are feasible whereas those of
Corollary 2 are not. In the second example, the opposite
situation occurs.

3.1. Stability in the case of polytopic uncertainty

The LMI of (18) is affine in the system matrices,
therefore Theorem 1 can be used to derive a criterion
that will guarantee the stability in the case where the
system matrices are not exactly known and they reside
within a given polytope.

Denoting

Q=[A4; F, i=12 A]

we assume that Q € Co{Q;, j =1,..., N}, namely
N N
Q=) fQ forsome 0<f<1, > fi=1
=1 =

where the N vertices of the polytope are described by
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We readily obtain the following.

Corollary 3: Assume Al. Consider the system of (14),
where the system matrices reside within the polytope Q.
This system is asymptotically stable for all positive de-
lays g1,g2 if there exist n x n-matrices 0 < P%),
j=1,...,N, Wa, W, Po, Ps, —and R;, U,
SV i=1,2, j=1,....N that satisfy (18) for
j=1,...,N, where the matrices
A()?AivFiaPIaUhSi? l:172

are taken with the superscript j.

Corollary 1 can be similarly generalized to the case
of polytopic uncertainty.

Corollary 4:  Assume A2. Consider the system of (14),
where the system matrices reside within the polytope Q.
This system is asymptotically stable for all positive de-
lays g1,82 if there exist n X n-matrices 0 < P<1"),
j=1,...,N, Py, Py, and R, U i=1,2,j=1,...,N
that satisfy (24) for j=1,..., N, where the matrices

AOa Aia Ea P17Ui 1:172

are taken with the superscript j.

3.2. Examples

Example 1a (Li and de Souza 1997): Consider the
system with constant delay

X(t) = Aox(t) + Ay x(r — h) (26)

-2 0 -1 0
) A] =
0 -09 -1 -1
In Park (1999) (transformation III) it was found that the

system is asymptotically stable for 4 < 4.36 and this
bound is less conservative than the bound /4 < 0.99

where

D]:07 AO:

that follows from the conditions of Li and de Souza
(1997) (transformation I) and Niculescu (2001 a) (trans-
formation II), and slightly better than the bound
h <4.35 that follows from the conditions of Zhang
et al. (2002) (transformation I with parametrizing one
and Park’s inequality) and of Han (2002) (transforma-
tion II with parametrizing one). By Theorem 1 we
obtain the less restrictive bound / < 4.47.

The exact upper bound /*, such that for 4 > h* the
system is unstable, is found by Nyquist criterion to be
h* = 6.1726. Note that the descritized Lyapunov func-
tional technique of Gu (1999) leads to less conservative
results than the model tranformation methods. However,
it is computationally more complicated and it is not
appropriate for the case of time-varying delay A2.

Example 1b: By changing the coefficient —0.9 in A4, to
0.9 we obtain the following results: # < 0.05 by Li and
de Souza (1997), h < 0.22 by Park (1999), & < 0.23 by
Zhang (2002) and 4 < 0.99 by Niculescu (2001 a), and
Han (2002). By Theorem 1 we obtain an improvement:
h < 1.025. In this case h* = 1.21.

The results of Examples la and 1b are summarized
in tables 1 and 2, respectively. We see that in both ex-
amples the most conservative condition was obtained
via transformation I and the least conservative was
achieved via transformation IV. The results via transfor-
mations II and IIT (with Park’s inequality) do not show
a consistent advantage of one of these transformations
over the other. Note that transformation II with para-
metrizing one (Han, 2002) leads to less conservative
results than transformation IIT (with Park’s inequality)
results, but one has to choose appropriately C in (11)
and then to use the conditions of Han (2002), otherwise
these conditions are non-linear matrix inequalities. The
results via transformation I with parametrizing transfor-
mation and via transformation III (with Park’s inequal-
ity) are approximately the same.

Example 2 (Kim 2001): We consider

Transformation 1 11 111 I+ param. I+ param. v Nyquist

Max h 0.99 0.99 4.36 4.35 4.35 4.47 6.17
Table 1. Example 1la.

Transformation I II 111 I+ param. 11+ param. v Nyquist

Max h 0.05 0.99 0.22 0.23 0.99 1.025 1.21
Table 2. Example 1b.
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Figure 1. Stability bounds of the time-delay / as a function

of d.
—246 0
x(t) = x(1)
0 —1+6,
—1 -+ Y1 0
+ x(t —7(1))
—1 -1 + Y2
|61 < 1.6, [6:] <0.05, [n]<0.1, [3n<03
In Kim (2001), where the case Al (with

0<7<h 7<d< 1) was treated via transformation
I, the maximum values of /& for which stability is secured
was found as a function of the bound d on the delay rate
of change. For d = 0 the maximum value of & = 0.2412
was reported and compared with previous results in the
literature. Applying the method of Corollary 3 we
obtained for d =0 that the system is asymptotically
stable for the maximum value of # = 1. Our results are
favourably compared to those in Kim (2001) also for
d # 0. In figure 1 we depict the maximum achievable /
as a function of d. There, we bring the results that stem
from Corollary 3 (the rate dependent case Al) and the
extension of Corollary 1 to the rate independent poly-
topic uncertainty case A2 with 0 < 7 < h. These results
are compared to those reported in Kim (2001). We see
that our results even in the case A2 are significantly
better than those of Kim (2001).

Remark 2: The results under transformation IV,
being the least conservative, have relatively compli-
cated form. In the case when sufficient conditions are
sought for robust stability with respect to small
delays (without maximizing the size of the delay), one
can use the simplest transformation which is appro-
priate for the problem. Thus, in Fridman (2002a)
sufficient conditions for robustness of stability of

singularly perturbed system with respect to small
values of delay and of the singular perturbation para-
meter were derived via transformation I.

4. H ., control of systems with time-varying state
delays

In this section we improve results of Fridman and
Shaked (2001, 2002 a), based on transformation IV, and
extend them to the case of time-varying delay. To the
best of our knowledge, H,, control was treated in the
past only via transformation I in the case of constant
delays (see, for example, de Souza and Li 1999). In the
case where the time-delay appears only in the input and
it is constant, the solution of the H,,control problem
was obtained in Tadmor (2000). In the case of constant
known delay in the state the H,, control problem was
solved in Fridman and Shaked (1998) via general
Lyapunov—Krasovskii functional.

4.1. Delay-dependent bounded real lemma (BRL)
Given the system
2

2
x(1) — ZEX(Z —g) = ZAix(f —7i(1)) + Byw(t)
i=0

i=1

x(1)=0, <0
z(t) = Cx(1)
(27)
where x(7) € R" is the system state vector,

w(t) € £3]0, oo] is the exogenous disturbance signal
and z(7) € R’ is the state combination (objective func-
tion signal) to be attenuated. The time delays are defined
in § 3. The matrices 4;, i =0,...,2, F;, i=1,2, By and
C are constant matrices of appropriate dimensions. For
a prescribed scalar v > 0, we define the performance
index

J(w) = J (z'z — y*wlw)ds (28)
0
Using the argument of the previous section we obtain
the following BRL.

Lemma 1: Consider the system of (27). Assume Al.
For a prescribed v > 0, the cost function (28) achieves
J(w) < 0 for all non-zero w € L3[0, oo) and for all posi-
tive delays g1, g», if there exist P of (9)

wW. =

1

(29)

Wi Wi

and n x n-matrices S; =S, U, = U}, R, =R that
satisfy the LMI: (see (30) at bottom of next page)
where for i=1,2
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0 Z(Ui + I Af RiA;)
i=1

>
+ W;
=110 0

2
+y wi
i=1

@ =10 L][W;+ P]

A4, 0

Similarly to Corollary 1, the rate-independent result
is obtained by choosing M; = 0 and thus W;; = W, = 0.

Corollary 5:  Assume A2. For a prescribed v > 0, the
cost function (28) achieves J(w) <0 for all non-zero
w € L3]0, o) and for all positive delays g1,g>, if there
exist P of (9), and n x n-matrices U; = U}, R; = RT
that satisfy the LMI:

where ®; = [P, P3]T, i=1,2 and
0 I 2
YH
=P (2 + = P
> A
i=0

0 0

+ 2
0 > (Ui+ hA] RiA;)

i=1

4.2. State-feedback H., control.
Given the system

2(1) = col{Cx(1), Dypu(1)}
x(1)=0vt<0 (32)

where u € R’ is the control input, Fy, F>, Ay, 4, 45, By,
B, are constant matrices of appropriate dimension, z is

o0 o] 0 | 0 '] the objective vector, C € R”*" and D;, € R"™‘. We look
v P W@, o, P P . . ; .
) F, F 0 for a state-feedback gain matrix K which, via the control
) law
* -1 0 0 0 0 0
. . “mR, 0 0 0 0 u(t) = Kx(1) (33)
X “ «  —hR 0 0 0 <0 achieves J(w) < 0 for all non-zero w € £3[0, o).
Substituting (33) into (32), we obtain the structure of
o * y - 0 0 (14) with
~U, 0 - -
7 T ' Ag=Ag+ BK, Ai=A4, i=1,2
| * * * * * * 711, ]
(31) c'c=C'"C+K'DLDHK (34)
B 0 0 0 0 0 cT |
gy pt o,  hhd, —Wi w3l Pt Pt
B, A A4, Fy P 0
* = 0 0 0 0 0 0 0
* x —mR, 0 0 0 0 0 0
* * * —hR 0 0 0 0 0
e <0 (30)
* * * * —(1=d))S, 0 0 0 0
* * * * * —(1—d)S, 0 0 0
* * * * * * U, 0 0
* * * * * * * -U, 0
| * * * * * * * * -1, |
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Applying the BRL of §4.1 to the above matrices, a non-
linear matrix inequality is obtained due to the terms
PiIB,K and PB,K

In order to obtain a LMI we restrict ourselves to the
case of

W; = diag {-1,, ¢} P, i=1,2
where ¢; € R"*" is a diagonal matrix. Such a choice for
W; is less conservative than the one in Fridman and
Shaked (2002a), where W; =¢;P for a scalar ¢;. For
= —1, (30) yields the delay-independent condition.

It is obvious from the requirement of 0 < P;, and the
fact that in (30) —(P5 4+ P3) must be negative definite,
that P is non-singular. Defining

. o 0 .

P =0= and A =diag{Q, I}
0 0

(35a-b)

we multiply (30) by AT and A, on the left and on the
right, respectively. Applying Schur formula to the quad-
ratic term in Q, and denoting S; = S;', U, = U;! and
R, = R;', i=1,2 we obtain, similarly to Fridman and
Shaked (2002 d), the following.

Theorem 2: Assume Al. Consider the system of (32)
and the cost function of (28). For a prescribed 0 < 7,
the state-feedback law of (33) achieves J(w) < 0 for all
non-zero w € L£3[0, o) if for some diagonal matrices
€1, €2 € R™" there exist Q1 >0, S1, S», Uy, U, 05,
03, R, Ry € R™" and Y € R™™ that satisfy the LMI
given in (36) (see bottom of page), where

2 2
E=0,-05+0 (ZA,T + ZA?&> +Y'B;
i=0 i=1
The state-feedback gain is then given by

K =YyQ;' (37)

Choosing ¢; = 0, we obtain the counterpart of the
Theorem 2 for the case A2

Corollary 6: Assume A2. Consider the system of (32)
and the cost function of (28). For a prescribed 0 < 7,
the state-feedback law of (33) achieves J(w) < 0 for all
non-zero w € L]0, 0o) if there exist O >0, Uy, U,
0>, 03, R|, Ry € R™" and Y € R™™ that satisfy the
LMI given in (38) (see bottom of next page)

0,+07 = 0 0 0 0 0
* -0;—01 B (e +L)R h(ea+L)R 14,8 24,8,
* * -1, 0 0 0 0
* * * —I R, 0 0 0
* * * * ~R, 0 0
* * * * * 0 0
* * * * * (1-d))S, 0
* * * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * % *
* * * * * *
* * * * * *
* * * * * *

01 0 oC YD, 0 QF 0 0 mOIAl hQid]]
0 0 0 0 FU 0 KU, QF hOidl moid]
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0 0

- <0

* =Sy 0 0 0 0 0 0 0 0

* * -1 0 0 0 0 0 0 0

* * * -1 0 0 0 0 0 0
ok * x  =U 0 0 0 0 0
ok * * « =0, 0 0 0 0
ok * « o+ O, 0 0 0
PR * * * * x =0, 0 0

* * * * * * * * —h R, 0

* * * * * * * * * —hR,

© (36)
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where
2
E=0,-05+0 (ZA?) +Y'B;
i=0

The state-feedback gain is then given by (37).

Remark 3: The conditions of Corollaries 5 and 6 in
the case of F; = F, = 0 and constant delays are similar
to those of Fridman and Shaked (2001).

The results of this section may be adapted to the case
of systems with polytopic uncertainties similarly to § 3.2.

The case of output-feedback H,,control for systems
with time-varying delays can be treated similarly to
Fridman and Shaked (2002 a) with corresponding mod-
ification of the first phase (state-feedback) as above.

Example 3: Li and de Souza (1997). We consider the
system

x(t) = Apx(t) + A1 x(t — 7) + Byw(t) + Byu(t)

E. Fridman and U. Shaked

Applying the method of Li and de Souza (1997) based
on transformation I (Corollary 3.2 there) it was found
that, for 7 = 0, the system is stabilizable for all 7 < 1.
For, say, 7 =0.999 a minimum value of v = 1.8822
results for K = —[0.10452 749 058]. Using the method
of Fridman and Shaked (2001) (transformation IV with
(12)) for 7 =0, a minimum value of v = 0.22844 was
obtained for the same value of 7 with a state-feedback
gain of K = [0 — 182 194]. By Corollary 6, the same ~
and K are achieved in the case A2 of time-varying delay
7(1) < 0.999.

Consider now the case Al with 0<7<h,
7<d<1. Applying, for 7=0 and e¢=—0.3, the
method of Fridman and Shaked (2002 a) (Theorem 3.1
there), a maximum value of 4 = 1.28 was obtained for
which a state-feedback controller stabilizes the system.
The corresponding feedback gain was
K = [0 —1.2091 x 10°]. Using Theorem 2 of the present
paper we obtain for d =0 a maximum value of
h = 1.408 for which there exists a state-feedback gain

- (39) that stabilizes the system. The maximum values of &
z(t) = col{Cx(t), Dpu(t)} that still allow stabilizabilty via state-feedback are
depicted in figure 2 as a function of d. In figure 3 we
where describe the minimum achievable value of + as a func-
0 0 1 —1 tion of d for h = 1.38 and for ¢, = —0.29 and ¢, = —1.
Ay = 7 A, = The latter value of 4 is quite close to the maximum
0o 1 0 —09 achievable value of & = 1.408.
1 0
B, = l ] B, = l ] (40) 5. Conclusions
1 1 Sources for the conservatism of delay-dependent
_ stability methods have been revealed, and the advan-
c=1[0 1], Dy =0.1 tages of the one under descriptor transformation have
(0,+0] = 0 0 0 oC" YD, 0 0 0 0} mOIA] hOiAl]
* ~0;-0;7 B hMRy R, 0 0 FU 07 FU 05 hoid] h0id;
* * 'L, 0 0 0 0 0 0 0 0 0 0
% % x  —mR, 0 0 0 0 0 0 0 0 0
* * * * — R, 0 0 0 0 0 0 0 0
* * * * * —I 0 0 0 0 0 0 0
* * * * * * -1 0 0 0 0 0 0 <0 (38)
* * * * * * * —Ul 0 0 0 0 0
* * * * * * * * -U 1 0 0 0
* * * * * * * * * _UZ 0 0 0
* * * * * * * * * * -U, 0 0
* * * * * * * * * * * —I R, 0
i * * * * * * * * * * * * —hR, |
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The Stabilizability Region for h As a Function of d
T T T T

05 q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2. The stabilizability bounds for the time-delay /4 as a
function of d.

The Minimum Achievable Attenuation Level As a Function of the Delay Rate Bound
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Figure 3. The minimum achievable attenuation level as a
function of d for h = 1.38.

been demonstrated. A delay-dependent LMI solution is
proposed for the problems of stability and H, control of
linear systems with time-varying delays. This solution is
based on the descriptor model transformation and
Park’s inequality for bounding of cross terms. Two
types of results for systems with time-varying delays
have been derived: delay-dependent/rate-dependent
and delay-dependent/rate-independent. In both cases,
the new stability results are less restrictive than the exist-
ing results (Kim 2001), obtained for the first (less robust)
case via transformation I. Our results for the second
case, which includes fast-varying delays, seem to be
the first results that are based on Lyapunov—
Krasovskii functionals. The conditions that we have

obtained for H_ control of systems with constant delays
are less conservative than those of Fridman and Shaked
(2002 a).

Recently an improved inequality for bounding of
cross terms has been suggested in Moon et al. (2001).
This new inequality introduces additional degrees of
freedom in the solution which may be used to improve
the synthesis part of § 4 (Fridman and Shaked 2002 b).
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