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a b s t r a c t

Distributed averaging-based integral (DAI) controllers are becoming increasingly popular in power
system applications. The literature has thus far primarily focused on disturbance rejection, steady-state
optimality and adaption to complex physical system models without considering uncertainties on the
cyber and communication layer nor their effect on robustness and performance. In this paper, we derive
sufficient delay-dependent conditions for robust stability of a secondary-frequency-DAI-controlled power
systemwith respect to heterogeneous communication delays, link failures and packet losses. Our analysis
takes into account both constant as well as fast-varying delays, and it is based on a common strictly
decreasing Lyapunov–Krasovskii functional. The conditions illustrate an inherent trade-off between
robustness and performance of DAI controllers. The effectiveness and tightness of our stability certificates
are illustrated via a numerical example based on Kundur’s four-machine-two-area test system.
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1. Introduction

1.1. Motivation

Power systems worldwide are currently experiencing drastic
changes and challenges. One of themain driving factors for this de-
velopment is the increasing penetration of distributed and volatile
renewable generation interfaced to the network with power elec-
tronics accompanied by a reduction in synchronous generation.
This results in power systemsbeing operated undermore andmore
stressed conditions (Winter, Elkington, Bareux, &Kostevc, 2015). In
order to successfully cope with these changes, the control and op-
eration paradigms of today’s power systems have to be adjusted.
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Thereby, the increasing complexity in terms of network dynamics
and number of active network elements renders centralized and
inflexible approaches inappropriate creating a clear need for ro-
bust and distributed solutionswith plug-and-play capabilities (Str-
bac et al., 2015). The latter approaches require a combination of
advanced control techniques with adequate communication tech-
nologies.

Multi-agent systems (MAS) represent a promising framework
to address these challenges (McArthur et al., 2007). A popular
distributed control strategy for MAS are distributed averaging-
based integral (DAI) algorithms, also known as consensus filters
(Freeman, Yang, & Lynch, 2006; Olfati-Saber, Fax, & Murray, 2007)
that rely on averaging of integral actions through a communication
network. The distributed character of this type of protocol has
the advantage that no central computation unit is needed and
the individual agents, i.e., generation units, only have to exchange
informationwith their neighbors (Bidram, Lewis, &Davoudi, 2014).

One of the most relevant control applications in power systems
is frequency control which is typically divided into three hierarchi-
cal layers: primary, secondary and tertiary control (Kundur, 1994).
In the present paper,we focus on secondary controlwhich is tasked
with the regulation of the frequency to a nominal value in an eco-
nomically efficient way and subject to maintaining the net area
power balance. The literature on secondary DAI frequency con-
trollers addressing these tasks is reviewed in the following.
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1.2. Literature review on DAI frequency control

DAI algorithms have been proposed previously to address the
objectives of secondary frequency control in bulk power sys-
tems (Andreasson, Sandberg, Dimarogonas, & Johansson, 2012;
Monshizadeh & De Persis, 2017; Schiffer & Dörfler, 2016; Trip,
Bürger, & De Persis, 2016) and also in microgrids (i.e., small-
footprint power systems on the low and medium voltage level)
(Anon, 2016; Bidram et al., 2014; Simpson-Porco, Dörfler, & Bullo,
2013). They have been extended to achieve asymptotically opti-
mal injections (Stegink, De Persis, & van der Schaft, 2016a; Zhao,
Mallada, & Dörfler, 2015), and have also been adapted to in-
creasingly complex physical system models (Persis, Monshizadeh,
Schiffer, & Dörfler, 2016; Stegink, De Persis, & van der Schaft,
2016b). The closed-loop DAI-controlled power system is a cy-
ber–physical system whose stability and performance crucially
relies on nearest-neighbor communication. Despite all recent ad-
vances, communication-based controllers (in power systems) are
subject to considerable uncertainties such asmessage delays, mes-
sage losses, and link failures (Strbac et al., 2015; Yang, Barria, &
Green, 2011) that can severely reduce the performance – or even
affect the stability – of the overall cyber–physical system. Such cy-
ber–physical phenomena and uncertainties have not been consid-
ered thus far in DAI-controlled power systems.

For microgrids, the effect of communication delays on sec-
ondary controllers has been considered in Liu, Wang, and Liu
(2015) for the case of a centralized PI controller, in Ahumada,
Crdenas, Sez, and Guerrero (2016) for a centralized PI controller
with a Smith predictor as well as a model predictive controller
and in Coelho et al. (2016) for a DAI-controlled microgrid with
fixed communication topology. In all three papers, a small-signal
(i.e., linearization-based) analysis of a model with constant delays
is performed.

In Lai, Zhou, Lu, and Liu (2016) and Lai, Zhou, Lu, Yu, and Hu
(2016) distributed control schemes for microgrids are proposed,
and conditions for stability under time-varying delays as well as
a dynamic communication topology are derived. However, both
approaches are based on the pinning-based controllers requiring
a master–slave architecture. Compared to the DAI controller in
the present paper, this introduces an additional uncertainty as the
leader may fail (see also Remark 1 in Lai, Zhou, Lu, Yu, & Hu, 2016).
In addition, the analysis in Lai, Zhou, Lu, and Liu (2016) and Lai,
Zhou, Lu, Yu, and Hu (2016) is restricted to the distributed control
scheme on the cyber layer and neglects the physical dynamics.
Moreover, the control in Lai, Zhou, Lu, and Liu (2016) is limited
to power sharing strategies, and secondary frequency regulation
is not considered.

The delay robustness of alternative distributed secondary con-
trol strategies (based on primal–dual decomposition approaches)
has been investigated for constant delays and a linearized power
system model in Zhang, Kang, McCulloch, and Papachristodoulou
(2016) and Zhang and Papachristodoulou (2014).

1.3. Contributions

The present paper addresses both the cyber and the physical
aspects of DAI frequency control by deriving conditions for
robust stability of nonlinear DAI-controlled power systems under
communication uncertainties. With regard to delays, we consider
constant as well as fast-varying delays. The latter are a common
phenomenon in sampled data networked control systems, due
to digital control (Fridman, 2014a,b; Liu & Fridman, 2012) and
as the network access and transmission delays depend on the
actual network conditions, e.g., in terms of congestion and channel
quality (Hespanha, Naghshtabrizi, & Xu, 2007). In addition to
delays, in practical applications the topology of the communication
network can be time-varying due to message losses and link
failures (Lin & Jia, 2008; Olfati-Saber et al., 2007; Olfati-Saber &
Murray, 2004). This can bemodeled by a switching communication
network (Olfati-Saber et al., 2007; Olfati-Saber & Murray, 2004).
Thus, the explicit consideration of communication uncertainties
leads to a switched nonlinear power system model with (time-
varying) delays the stability of which is investigated in this paper.

More precisely, our main contributions are as follows. First,
we derive a strict Lyapunov function for a nominal DAI-controlled
power systemmodelwithout communication uncertainties,which
may also be of independent interest. Second, we extend this
strict Lyapunov function to a common Lyapunov–Krasovskii
functional (LKF) to provide sufficient delay-dependent conditions
for robust stability of a DAI-controlled power systemwith dynamic
communication topology as well as heterogeneous constant and
fast-varying delays. Our stability conditions canbe verifiedwithout
exact knowledge of the operating state and reflect a fundamental
trade-off between robustness and performance of DAI control.
Third and finally, we illustrate the effectiveness of the derived
approach on a numerical benchmark example, namely Kundur’s
four-machine-two-area test system (Kundur, 1994, Example 12.6).

The remainder of the paper is structured as follows. In Section 2
we recall some preliminaries on algebraic graph theory and
introduce the power systemmodel employed for the analysis. The
DAI control is motivated and introduced in Section 3, where we
also derive a suitable error system. A strict Lyapunov function
for the closed-loop DAI-controlled power system is derived in
Section 4. Based on this Lyapunov function, we then construct a
common LKF for DAI-controlled power systems with constant and
fast-varying delays in Section 5. A numerical example is provided
in Section 6. The paper is concluded with a brief summary and
outlook on future work in Section 7.
Notation. We define the sets R≥0 := {x ∈ R|x ≥ 0},R>0 :=

{x ∈ R|x > 0} and R<0 := {x ∈ R|x < 0}. For a set V, |V|

denotes its cardinality and [V]
k denotes the set of all subsets of

V that contain k elements. Let x = col(xi) ∈ Rn denote a vector
with entries xi for i ∈ {1, . . . , n}, 0n the zero vector, 1n the vector
with all entries equal to one, In the n × n identity matrix, 0n×n
the n × n matrix with all entries equal to zero and diag(ai) an
n × n diagonal matrix with diagonal entries ai ∈ R. Likewise, A =

blkdiag(Ai) denotes a block-diagonal matrix with block-diagonal
matrix entries Ai. For A ∈ Rn×n, A > 0 means that A is symmetric
positive definite. The elements below the diagonal of a symmetric
matrix are denoted by ∗. We denote by W [−h, 0], h ∈ R>0, the
Banach space of absolutely continuous functions φ : [−h, 0] →

Rn, h ∈ R>0, with φ̇ ∈ L2(−h, 0)n and with the norm ∥φ∥W =

maxθ∈[a,b] |φ(θ)| +

 0
−h φ̇

2dθ
0.5

. Also, ∇f denotes the gradient
of a function f : Rn

→ R.

2. Preliminaries

2.1. Algebraic graph theory

An undirected graph of order n is a tuple G = (N , E), where
N = {1, . . . , n} is the set of nodes and E ⊆ [N ]

2, E =

{e1, . . . , em}, is the set of undirected edges, i.e., the elements of E
are subsets of N that contain two elements. In the context of the
present work, each node in the graph represents a generation unit.
The adjacency matrix A ∈ R|N |×|N | has entries aik = aki = 1
if an edge between i and k exists and aik = 0 otherwise. The
degree of a node i is defined as di =

|N |

k=1 aik. The Laplacian
matrix of an undirected graph is given by L = D − A, where
D = diag(di) ∈ R|N |×|N |. An ordered sequence of nodes such that
any pair of consecutive nodes in the sequence is connected by an
edge is called a path. A graph G is called connected if for all pairs
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{i, k} ∈ [N ]
2 there exists a path from i to k. The LaplacianmatrixL

of an undirected graph is positive semidefinite with a simple zero
eigenvalue if and only if the graph is connected. The corresponding
right eigenvector to this simple zero eigenvalue is1n, i.e.,L1n = 0n
(Godsil & Royle, 2001). We refer the reader to Diestel (2000) and
Godsil and Royle (2001) for further information on graph theory.

2.2. Power network model

We consider a Kron-reduced (Dörfler & Bullo, 2013; Kundur,
1994) power system model composed of n ≥ 1 nodes. The set of
network nodes is denoted by N = {1, . . . , n}. Following standard
practice, wemake the following assumptions: the line admittances
are purely inductive and the voltage amplitudes Vi ∈ R>0 at all
nodes i ∈ N are constant (Kundur, 1994). To each node i ∈ N ,
we associate a phase angle θi : R≥0 → R and denote its time
derivative by ωi = θ̇i, which represents the electrical frequency
at the ith node. Under the made assumptions, two nodes i and k
are connected via a nonzero susceptance Bik ∈ R<0. If there is no
line between i and k, then Bik = 0.We denote by Ni = {k ∈ N |

Bik ≠ 0} the set of neighboring nodes of the ith node. Furthermore,
we assume that for all {i, k} ∈ [N ]

2 there exists an ordered
sequence of nodes from i to k such that any pair of consecutive
nodes in the sequence is connected by a power line represented
by an admittance, i.e., the electrical network is connected.

We consider a heterogeneous generation pool consisting of
rotational synchronous generators (SGs) and inverter-interfaced
units. The former are the standard equipment in conventional
power networks and mostly used to connect fossil-fueled gen-
eration to the network. Compared to this, most renewable and
storage units are connected via inverters, i.e., power electronics
equipment, to the grid. We assume that all inverter-interfaced
units are fittedwith droop control and powermeasurement filters,
see Schiffer (2015) and Zhong and Hornik (2013). This implies that
their dynamics admit a mathematically equivalent representation
to SGs (Schiffer, 2015; Schiffer, Ortega, Astolfi, Raisch, & Sezi, 2014).
Hence, the dynamics of the generation unit at the ith node, i ∈ N ,
considered in this paper is given by

θ̇i = ωi,

Miω̇i = −Di(ωi − ωd)+ Pd
i − GiiV 2

i + ui − Pi,
(1)

whereDi ∈ R>0 is the damping or (inverse) droop coefficient,ωd
∈

R>0 is the nominal frequency, Pd
i ∈ R is the active power setpoint

and GiiV 2
i ,Gii ∈ R≥0, represents the (constant active power) load

at the ith node.1 Furthermore, ui : R≥0 → R is a control input and
Mi ∈ R>0 is the (virtual) inertia coefficient, which in case of an
inverter-interfaced unit is given byMi = τPiDi,where τPi ∈ R>0 is
the low-pass filter time constant of the power measurement filter,
see Schiffer (2015) and Schiffer, Goldin, Raisch, and Sezi (2013).
Following standard practice in power systems, all parameters are
assumed to be given in per unit (Kundur, 1994). The active power
flow Pi : Rn

→ R is given by

Pi =


k∈Ni

|Bik|ViVk sin(θik),

1 For constant voltage amplitudes, any constant power load can equivalently
be represented by a constant impedance load, i.e., to any constant P ∈ R>0 and
constant V ∈ R>0 , there exists a constant G ∈ R>0 , such that P = GV 2 . On
larger time scales, the loads may not be constant but follow regular (e.g., daily)
fluctuations that can be accurately represented by internalmodels in the controllers
(Monshizadeh & De Persis, 2017; Pedersen, Sloth, & Wisniewski, 2016; Trip et al.,
2016). For the time-scales of interest to us, a constant load model suffices and,
accordingly, our controllers contain integrators.
where we have introduced the short-hand θik = θi − θk. For a
detailedmodeling of the system components, the reader is referred
to Schiffer (2015) and Schiffer, Zonetti et al. (2016).

To derive a compactmodel representation of the power system,
it is convenient to introduce the matrices

D = diag(Di) ∈ Rn×n, M = diag(Mi) ∈ Rn×n,

and the vectors

θ = col(θi) ∈ Rn, ω = col(ωi) ∈ Rn,

Pnet
= col(Pd

i − GiiV 2
i ) ∈ Rn, u = col(ui) ∈ Rn.

Also, we introduce the potential function U : Rn
→ R,

U(θ) = −


{i,k}∈[N ]2

|Bik|ViVk cos(θik).

Then, the dynamics (1), ∀i ∈ N , can be compactly written as

θ̇ = ω,

Mω̇ = −D(ω − 1nω
d)+ Pnet

+ u − ∇θU(θ).
(2)

Observe that due to symmetry of the power flows Pi,

1⊤

n ∇θU(θ) = 0. (3)

3. Nominal DAI-controlled power system model with fixed
communication topology and no delays

In this section, the employed secondary control scheme is
motivated and introduced. Subsequently, we derive the considered
resulting nominal closed-loop system, i.e., without delays and
switched topology. For this model, we construct a suitable error
system and a strict Lyapunov function in Section 4, both of which
are instrumental to establish the robust stability results under
communication uncertainties in Section 5.

3.1. Secondary frequency control: Objectives and distributed averag-
ing integral (DAI) control

The whole power system is designed to work at, or at least
very close to, the nominal network frequency ωd (Kundur, 1994).
However, by inspection of a synchronized solution (i.e., a solution
with constant uniform frequencies ω∗

= ωs1n, constant control
input u∗ and constant phase angle differences θ∗

ik) of the system
(2), we have that

0 = 1⊤

n Mω̇ = 1⊤

n (−D1n(ω
s
− ωd)+ Pnet

+ u∗
− ∇θU(θ∗)),

which with (3) implies that

ωs
= ωd

+
1⊤
n (P

net
+ u∗)

1⊤
n D1n

. (4)

Note that the loads GiiV 2
i contained in Pnet are usually unknown.

Hence, in general 1⊤
n P

net
≠ 0 and, thus, ωs

≠ ωd, unless the
additional control signal u∗ accounts for the power imbalance.
Control schemes which yield such u∗ and, consequently, ensure
ωs

= ωd are termed secondary frequency controllers.
Building upon (Schiffer & Dörfler, 2016; Simpson-Porco et al.,

2013; Zhao et al., 2015), we consider the following secondary
frequency control scheme for the system (2)

u = −p,
ṗ = K(ω − 1nω

d)− KALAp. (5)

We refer to the control (5) as distributed averaging integral (DAI)
control law in the sequel. Here, K ∈ Rn×n is a diagonal gain
matrix with positive diagonal entries, L = L⊤

∈ Rn×n is the
Laplacian matrix of the undirected and connected communication
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graphoverwhich the individual generationunits can communicate
with each other, and A is a positive definite diagonal matrix with
the element Aii > 0 being a coefficient accounting for the cost
of secondary control at node i. It has been shown in Schiffer
and Dörfler (2016), Simpson-Porco et al. (2013) and Zhao et al.
(2015) that the control law (5) is a suitable secondary frequency
control scheme for the system (2), i.e., it can achieve ωs

= ωd

despite unknown (constant) loads; seeMonshizadeh and De Persis
(2017) and Trip et al. (2016) for variations of the control (5) for
dynamic load models. In addition to secondary frequency control,
the control law (5) can also ensure that the power injections of all
generation units satisfy the identical marginal cost requirement in
steady-state, i.e.,

Aiiu∗

i = Akku∗

k for all i ∈ N , k ∈ N , (6)

where Aii and Akk are the respective diagonal entries of the matrix
A.

The nominal closed-loop system resulting from combining (2)
with (5) is given by

θ̇ = ω,

Mω̇ = −D(ω − ωd1n)+ Pnet
− ∇θU(θ)− p,

ṗ = K(ω − 1nω
d)− KALAp.

(7)

To formalize our main objective, it is convenient to introduce the
notion below.

Definition 1 (Synchronized Motion). The system (7) admits a syn-
chronized motion if it has a solution for all t ≥ 0 of the form

θ∗(t) = θ∗

0 + ω∗t, ω∗
= ωs1n, p∗

∈ Rn,

where ωs
∈ R and θ∗

0 ∈ Rn such that

|θ∗

0,i − θ∗

0,k| <
π

2
∀i ∈ N , ∀k ∈ Ni.

Note that Schiffer and Dörfler (2016, Lemma 4.2) implies that the
system (7) has at most one synchronized motion col(θ∗, ω∗, p∗)
(modulo 2π ). That motion also satisfies the identical marginal cost
requirement (6) and is characterized by

p∗
= αA−11n, α =

1⊤
n P

net

1⊤
n A−11n

(8)

and, hence, ωs
= ωd, see (4) with u∗

= −p∗.

3.2. A useful coordinate transformation

We introduce a coordinate transformation that is fundamental
to establish our robust stability results. Recall that 1⊤

n L = 0. This
results in an invariant subspace of the p-variables, which makes
the construction of a strict Lyapunov function for the system (7)
difficult. Therefore, we seek to eliminate this invariant subspace
through an appropriate coordinate transformation. To this end and
inspired by Lin and Jia (2008), Olfati-Saber and Murray (2004)
and Wu, Dörfler, and Jovanovic (2016), we introduce the variables
p̄ ∈ R(n−1) and ζ ∈ R via the transformation
p̄
ζ


= W⊤K−

1
2 p, W =


W

1
√
µ
K−

1
2 A−11n


, (9)

where µ = ∥K−
1
2 A−11n∥

2
2 and W ∈ Rn×(n−1) has orthonormal

columns that are all orthogonal toK−
1
2 A−11n, i.e.,W⊤K−

1
2 A−11n =

0(n−1). Hence, the transformation matrix W ∈ Rn×n is orthogonal,
i.e.,

WW⊤
= WW⊤

+
1
µ
K−

1
2 A−11n1⊤

n K
−

1
2 A−1

= In. (10)
Accordingly, p̄ is a projection of p on the subspace orthogonal to
K−

1
2 A−11n scaled by K−

1
2 . Furthermore,

ζ =
1

√
µ
1⊤

n K
−1A−1p (11)

can be interpreted as the scaled average secondary control injec-
tions of the network. Indeed, from (7) together with the fact that
1⊤
n L = 0, we have that

ζ̇ =
1

√
µ
1⊤

n K
−1A−1ṗ =

1
√
µ
1⊤

n A
−1(ω − 1nω

d),

which by integrating with respect to time and recalling (11) yields

ζ =
1

√
µ
1⊤

n A
−1(θ − θ0 − 1nω

dt + K−1p0)

=
1

√
µ
1⊤

n A
−1(θ − 1nω

dt)+ ζ̄0, (12)

where

ζ̄0 =
√
µ

−11⊤

n A
−1(K−1p0 − θ0). (13)

As a consequence, the coordinate ζ can be expressed by means of
θ and the parameter ζ̄0. Hence,

p = K
1
2


Wp̄ +

1
√
µ
K−

1
2 A−11nζ


= K

1
2


Wp̄ +

1
µ
K−

1
2 A−11n(1⊤

n A
−1(θ − 1nω

dt)+ ζ̄0)


. (14)

Accordingly, we define the matrix

L̄ = W⊤K
1
2 ALAK

1
2 W ∈ R(n−1)×(n−1),

that corresponds to the communication Laplacian matrix L after
scaling and projection. Note that L is connected by assumption,
and thus L̄ is positive definite.

In the reduced coordinates, the dynamics (7) become

θ̇ = ω,

Mω̇ = −D(ω − ωd1n)+ Pnet
− ∇θU(θ)

− K
1
2


Wp̄ +

1
µ
K−

1
2 A−11n(1⊤

n A
−1(θ − 1nω

dt)+ ζ̄0)


,

˙̄p = W⊤K−
1
2 ṗ

= W⊤K
1
2 (ω − 1nω

d)− L̄p̄,

(15)

where we have used (14) and the fact that L1n = 0n. Note that
the transformation (9) removes the invariant subspace span(1n)
of a synchronized motion of (7) in the θ-variables and shifts it to
the invariant subspace span(K−

1
2 A−1), where it is factored out in

the orthogonal reduced-order p̄-variables.

3.3. Error states

For the subsequent analysis, we make the following standard
assumption (Schiffer & Dörfler, 2016; Schiffer et al., 2014).

Assumption 2 (Existence of Synchronized Motion). The closed-loop
system (15) possesses a synchronized motion. �

With initial time t0 = 0, as well as

p̄∗
= W⊤K−

1
2 p∗,

see (9), we introduce the error coordinates

ω̃ = ω − 1nω
d, p̃ = p̄ − p̄∗,
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θ̃ = θ − θ∗
= θ0 − θ∗

0 +

 t

0
ω̃(s)ds,

x = col

θ̃ , ω̃, p̃


.

Then the dynamics (15) become

˙̃
θ = ω̃,

M ˙̃ω = −Dω̃ − ∇θ̃U(θ̃ + θ∗)+ ∇θ̃U(θ
∗)

− K
1
2 Wp̃ −

1
µ
A−11n1⊤

n A
−1θ̃ ,

˙̃p = W⊤K
1
2 ω̃ − L̄p̃

(16)

and x∗
= 0(3n−1) is an equilibrium point of (16). Furthermore, in

error coordinates the potential function U : Rn
→ R reads

U(θ̃ + θ∗) = −


{i,k}∈[N ]2

|Bik|ViVk cos(θ̃ik + θ∗

ik)

with

∇θ̃U(θ̃ + θ∗) =
∂U(θ̃ + θ∗)

∂θ̃
, ∇θ̃U(θ

∗) =
∂U(θ̃ + θ∗)

∂θ̃


θ̃=0n

.

Recall fromSection 3.1 that any synchronizedmotion of the system
(7) satisfies ωs

= ωd and that p∗ is uniquely given by (8). Thus,
for a fixed value of ζ̄0 it follows from (13) together with (14) that
asymptotic stability of x∗ implies convergence of the solutions
col(θ, ω, p) of the original system (7) with initial conditions that
satisfy

ζ̄0 =
√
µ

−11⊤

n A
−1(K−1p0 − θ0)

to a synchronized motion col(θ∗, ω∗, p∗), the initial angles θ∗

0 of
which satisfy

ζ̄0 =
√
µ

−11⊤

n A
−1(K−1p∗

− θ∗

0 ).

As this holds true for any value of ζ̄0 and the dynamics (16) are
independent of ζ̄0, asymptotic stability of x∗ implies convergence
of all solutions of the original system (7) to a synchronizedmotion.

4. Stability analysis of the nominal closed-loop system with a
strict Lyapunov function

Topave the path for the analysis in Section 5,we start by investi-
gating stability of an equilibrium x∗ of the nominal (without delays
and with constant communication topology) closed-loop system
(16).

The proposition below provides a stability proof for an equilib-
riumof the system (16) by employing the following strict Lyapunov
function candidate

V = U(θ̃ + θ∗)− θ̃⊤
∇θ̃U(θ

∗)+
1
2
ω̃⊤Mω̃

+
1
2µ
(1⊤

n A
−1θ̃ )2 +

1
2
p̃⊤p̃

+ ϵω̃⊤AM(∇θ̃U(θ̃ + θ∗)− ∇θ̃U(θ
∗)), (17)

where ϵ > 0 is a positive real and sufficiently small parameter.
The Lyapunov function (17) is based on the classic kinetic and po-
tential energy terms ω⊤Mω and U(θ) (Pai, 1989) written in error
coordinates, a Bregman construction to center the Lyapunov func-
tion as inMonshizadeh andDe Persis (2017) and Trip et al. (2016), a
Chetaev-type cross term between the (incremental) potential and
kinetic energies (Bullo & Lewis, 2004), and a quadratic term for the
secondary control inputs (also in error coordinates). We have the
following result.
Proposition 3 (Stability of the Nominal System). Consider the
system (16) with Assumption 2. The function V in (17) is a strict
Lyapunov function for the system (16). Furthermore, x∗

= 0(3n−1)
is locally asymptotically stable. �

Proof. We first show that the function V in (17) is locally positive
definite. It is easily verified that

∇V

x∗ = 0(3n−1).

Moreover, the Hessian of V evaluated at x∗ is given by

∇V 2

x∗ =

∇
2
θ̃
U|x∗ +

1
µ
A−11n1⊤

n A
−1 ϵ

2
E12 0

∗ M 0
∗ ∗ I(n−1)

 ,
where

E12 = AM∇
2
θ̃
U|x∗ + ∇

2
θ̃
U|x∗MA

and 0 denotes a zero matrix of appropriate dimension. Under the
standing assumptions, ∇

2
θ̃
U|x∗ is a Laplacian matrix of an undi-

rected connected graph. Hence, ∇
2
θ̃
U|x∗ is positive semidefinite

with ker(∇2
θ̃
U|x∗) = span(1n). Furthermore, A−11n1⊤

n A
−1 is posi-

tive semidefinite and ker(A−11n1⊤
n A

−1)∩ker(∇2
θ̃
U|x∗) = 0n. In ad-

dition,M is a diagonal matrix with positive diagonal entries. Thus,
all block-diagonal entries of ∇V 2


x∗ are positive definite. This im-

plies that there is a sufficiently small ϵ∗ > 0 such that for all
ϵ ∈]0, ϵ∗

] we have that ∇V 2

x∗ > 0. We choose such ϵ. Therefore,

x∗ is a strict minimum of V .
The time derivative of V along solutions of (16) is given by

V̇ = −ξ⊤

ϵA 0.5ϵAD 0.5ϵAK
1
2 W

∗ D − 0.5ϵE22 0n×(n−1)
∗ ∗ L̄

 ξ, (18)

where we have used the property that

(∇θ̃U(θ̃ + θ∗)− ∇θ̃U(θ
∗))⊤1n = 0

and defined the shorthand

E22 = (AM∇
2
θ̃
U(θ̃ + θ∗)+ ∇

2
θ̃
U(θ̃ + θ∗)AM), (19)

as well as

ξ = col

∇θ̃U(θ̃ + θ∗)− ∇θ̃U(θ

∗), ω̃, p̃

.

Note that the matrix E22 only depends on the cosines of the angles
θ̃ . Hence, there is a positive real constant γ , such that E22 ≤ γ In
for all θ̃ ∈ Rn. Furthermore, A,D and L̄ are positive definite
matrices. Thus, Lemma 11 in Appendix A implies that there is a
sufficiently small ϵ∗∗

∈ (0, ϵ∗
] such that for any ϵ ∈ (0, ϵ∗∗

] the
matrix on the right-hand side of (18) is positive definite and, thus,
V̇ < 0 for all ξ ≠ 0(3n−1). Consequently, by choosing such ϵ, V is
a strict Lyapunov function for the system (16) and, by Lyapunov’s
theorem (Khalil, 2002), x∗ is asymptotically stable, completing the
proof. �

5. Stability of the closed-loop system with dynamic communi-
cation topology and delays

This section is dedicated to the analysis of cyber–physical
aspects in the form of communication uncertainties on the
performance of the DAI-controlled power system model (16).

5.1. Modeling and problem formulation

Recall from Section 1 that the most relevant practical commu-
nication uncertainties in the context of DAI control are message
delays, message losses and link failures. We follow the approaches
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in Fridman (2014a,b), Lin and Jia (2008), Olfati-Saber et al. (2007)
and Olfati-Saber and Murray (2004) to model these phenomena.

Thus, link failures and packet losses are modeled by a dynamic
communication network with switched communication topology
Gσ(t), where σ : R≥0 → M is a switching signal and M =

{1, 2, . . . , ν}, ν ∈ R>0, is an index set. The finite set of all possible
network topologies amongst |N | = n nodes is denoted by Γ =

{G1,G2, . . .Gν}. The Laplacian matrix corresponding to the index
ℓ = σ(t) ∈ M is denoted by Lℓ = L⊤

ℓ = L(Gℓ) ∈ Rn×n. We
employ the following standard assumption on Gσ(t) (Olfati-Saber
et al., 2007; Olfati-Saber & Murray, 2004).

Assumption 4 (Uniformly Connected Communication Topologies).
The communication topologyGσ(t) is undirected and connected for
all t ∈ R≥0. �

With regard to communication delays, we suppose that a message
sent by generation unit k ∈ N to the generation unit i ∈ N
over the communication channel (i.e., edge) {i, k} is affected by a
fast-varying delay τik : R≥0 → [0, h], h ∈ R≥0, where the qualifier
‘‘fast-varying’’ means that there are no restrictions imposed on the
existence, continuity, or boundedness of τ̇ik(t) (Fridman, 2014a,b).
The resulting control error eik is then computed as

eik(t) = Aiipi(t − τik(t))− Akkpk(t − τik(t)),

i.e., the protocol is only executed after the message from node
k arrives at node i. Note that we allow for asymmetric delays,
i.e., τik(t) ≠ τki(t). Furthermore, as standard in sampled-data net-
worked control systems (Fridman, 2014a,b), the delay τik(t) may
be piecewise-continuous in t . Also, we assume that the switches in
topology do not modify the delays between two connected nodes.

In order to write the resulting closed-loop system compactly,
we introduce the matrices Tℓ,m ∈ Rn×n,m = 1, . . . , 2|Eℓ|, where
|Eℓ| is the number of edges of the undirected graph with index
ℓ = σ(t) ∈ M of the dynamic communication network of the
DAI control (5), m denotes the information flow from node i to k
over the edge {i, k}with delay τm = τik and all elements of Tℓ,m are
zero besides the entries

tℓ,m,ii = 1, tℓ,m,ik = −1. (20)

As we allow for τik ≠ τki, we require 2|Eℓ| matrices Tℓ,m in or-
der to distinguish between the delayed information flow from k
to i (with delay τik) and that from k to i (with delay τki). Note that
by summing over all Tℓ,m we recover the full Laplacian matrix of
the communication network corresponding to the topology index
ℓ = σ(t) ∈ M, i.e.,

Lℓ =

2|Eℓ|
m=1

Tℓ,m.

With the above considerations, the closed-loop system (7) be-
comes the switched nonlinear delay-differential system

θ̇ = ω,

Mω̇ = −D(ω − ωd1n)+ Pnet
− ∇θU(θ)− p,

ṗ = K(ω − 1nω
d)− KA


2|Eℓ|
m=1

Tℓ,mAp(t − τm)


,

(21)

where τm(t) ∈ [0, hm],m = 1, . . . , 2|Eℓ| are fast-varying delays
and Tℓ,m corresponds to the mth delayed (directed) channel of the
ℓth communication topology corresponding to the topology index
ℓ = σ(t) ∈ M of the dynamic communication network of the DAI
control (5).

We are interested in the following problem.
Problem 5 (Conditions for Robust Stability). Consider the system
(21). Given hm ∈ R≥0,m = 1, . . . , 2Ē, Ē = maxℓ∈M|Eℓ|, derive
conditions under which the solutions of the system (21) converge
asymptotically to a synchronized motion. �

As in the nominal scenario, we make the assumption below.

Assumption 6 (Existence of Synchronized Motion). The closed-loop
system (21) possesses a synchronized motion. �

From (14) it follows that for anym = 1, . . . , 2Ē,

p(t − τm) = K
1
2


Wp̄(t − τm)+

1
√
µ
K−

1
2 A−11nζ (t − τm)


,

which together with the fact that by construction, see (20),
Tℓ,m1n = 0n implies that

Tℓ,mAp(t − τm) = Tℓ,mAK
1
2 Wp̄(t − τm).

Hence, with Assumption 6 and by following the steps in Section 3,
we represent the system (21) in reduced-order error coordinates
as, cf., (16),

˙̃
θ = ω̃,

M ˙̃ω = −Dω̃ − ∇θ̃U(θ̃ + θ∗)+ ∇θ̃U(θ
∗)

− K
1
2 Wp̃ −

1
µ
A−11n1⊤

n A
−1θ̃ ,

˙̃p = W⊤K
1
2 ω̃ −

2|E |
m=1

Tℓ,mp̃(t − τm),

(22)

where we defined, analogous to L̄,

Tℓ,m = W⊤K
1
2 ATℓ,mAK

1
2 W ∈ R(n−1)×(n−1), (23)

which satisfies

2|Eℓ|
m=1

Tℓ,m = W⊤K
1
2 ALℓAK

1
2 W =: L̄ℓ. (24)

Note that, by assumption, the graph associated to Lℓ is connected
and thus L̄ℓ is positive definite for any ℓ ∈ M.

By construction, the system (22) has an equilibrium point z∗
=

col(θ̃ , ω̃, p̃) = 0(3n−1). Furthermore, by the same arguments as
in Section 3.1, asymptotic stability of z∗ implies convergence of
the solutions of the system (21) to a synchronized motion. As a
consequence of this fact, we provide a solution to Problem 5 by
studying stability of z∗.

5.2. Stability of the closed-loop system with dynamic communication
topology and delays

We analyze stability of equilibria of the system (22) with
dynamic communication topology and time delays. The result is
formulated for fast-varying piecewise-continuous bounded delays
τm(t) ∈ [0, hm] with hm ∈ R≥0,m = 1, . . . , 2Ē . For the case of
constant delays, stability can be verified via the same conditions.

To streamline our main result, we recall from Section 3 that the
matrix A can be used to achieve the objective of identical marginal
costs. As a consequence, the choice of A influences the correspond-
ing equilibria of the system (22), see (8). But the equilibria are in-
dependent of the integral control gain matrix K . Hence, we may
chose K as a free tuning parameter to ensure stability of the closed-
loop system (22). The proof of the proposition below is given in
Appendix B.
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Proposition 7 (Robust Stability). Consider the system (22) with As-
sumptions 4 and 6. Fix A and D as well as some hm ∈ R≥0,m =

1, . . . , 2Ē . Select K such that for all Tℓ,m and L̄ℓ defined in (23), re-
spectively (24), ℓ = 1, . . . , |M|, there exist matrices Sm > 0 ∈

R(n−1)×(n−1), Rm > 0 ∈ R(n−1)×(n−1) and S12,m ∈ R(n−1)×(n−1) satis-
fying

Ψ =

Ψ11 Ψ12 0 Ψ14
∗ Ψ22 Ψ23 Ψ24
∗ ∗ R + S S12 + S
∗ ∗ ∗ R + S + Ψ̄44

 > 0, (25)

where

R = blockdiag(Rm), S = blockdiag(Sm),

S12 = blockdiag(S12,m), R̄ =

2Ē
j=1

h2
j Rj,

Ψ11 = D − K
1
2 WR̄W⊤K

1
2 , Ψ22 = L̄ℓ − L̄ℓR̄L̄ℓ,

Ψ̄44 = blockdiag

−T ⊤

ℓ,mR̄Tℓ,m

,

Ψ12 = K
1
2 WR̄L̄ℓ, Ψ23 = −


S1 . . . S2Ē


,

Ψ14 =

Ψ̄14,1 . . . Ψ̄14,2Ē


, Ψ24 =


Ψ̄24,1 . . . Ψ̄24,2Ē


,

Ψ̄14,m = −K
1
2 WR̄Tℓ,m,

Ψ̄24,m = L̄ℓR̄Tℓ,m − Sm − 0.5Tℓ,m,

(26)

0 denotes a zero matrix of appropriate dimensions and
R S12
∗ R


≥ 0. (27)

Then the equilibrium z∗
= 0(3n−1) is locally uniformly asymptotically

stable for all fast-varying delays τm(t) ∈ [0, hm]. �

The stability certificate (25), (27) is based on a LKF derived from
the Lyapunov function (17), and it is fairly tight (see Section 6).
Note that the evaluation of the certificate (25), (27) and the
corresponding controller tuning inherently is centralized and
requires complete system information. However, the stability
certificate (25), (27) can be also made wieldy for a practical
plug-and-play control implementation by trading off controller
performance for robust stability. The following corollary makes
this idea precise for the case of uniform delays, i.e., τm(t) = τ(t) ∈

[0, h], hm = h, h ∈ R≥0,m = 1, . . . , 2Ē .

Corollary 8 (Performance-robustness-trade-off). Consider the sys-
tem (22) with Assumptions 4 and 6. Fix A and D as well as some
h ∈ R≥0. Suppose that τm(t) = τ(t) ∈ [0, h] and that (27) is sat-
isfied with strict inequality. Set K = κK , where κ ∈ R≥0 and K ∈

Rn×n
>0 is a diagonal matrix with positive diagonal entries. Then there

is κ > 0 sufficiently small, such that the equilibrium z∗
= 0(3n−1)

is locally uniformly asymptotically stable for all fast-varying delays
τ(t) ∈ [0, h].

Proof. With K = κK , we have that

Tℓ,m = κ T̂ℓ,m, L̄ℓ = κL̂ℓ = κ

2Ē
m=1

T̂ℓ,m,

with Tℓ,m and L̄ℓ defined in (23), respectively (24). Furthermore,
we write the free parameter matrix S as S = κS, S > 0.
Consequently, the matrices in (26) also become κ-dependent.
Then, for τm(t) = τ(t) ≤ h the matrix Ψ in (25) can be written
as

Ψ =

D 0 0 0
∗ 0 0 0
∗ ∗ R S12
∗ ∗ ∗ R

+ κ

Φ11 Φ12 0 Φ14
∗ Φ22 −S Φ24
∗ ∗ S S
∗ ∗ ∗ Φ44

 , (28)
where

Φ11 = −h2K
1
2 WRW⊤K

1
2 , Φ12 = h2κ

1
2 K

1
2 WRL̂ℓ,

Φ22 = L̂ℓ − h2κL̂ℓRL̂ℓ, Φ44 = S − h2κL̄ℓRL̄ℓ,

Φ14 = −h2κ
1
2 K

1
2 WRL̂ℓ, Φ24 = h2κL̂ℓRL̂ℓ − S − 0.5L̂ℓ.

(29)

Note thatΦ22 can be written as

L̂ℓ


L̂−1
ℓ − h2κR


L̂ℓ. (30)

Hence, by continuity, for any given L̂ℓ > 0 and R > 0 we can
find a small enough κ , such that Φ22 > 0. In addition, D > 0 and
(27) is satisfiedwith strict inequality by assumption. Therefore, the
matrixΨ in (28) is a parameter-dependent compositematrix of the
form stated in Lemma11. Consequently, Lemma 11 implies that for
given h, A,D and Lℓ, ℓ = 1, . . . , ν, there is always a sufficiently
small gain κ such that there exist matrices S, R and S12 satisfying
conditions (25), (27). �

The claim in Corollary 8 is in a very similar spirit to the result ob-
tained in Olfati-Saber et al. (2007) and Olfati-Saber and Murray
(2004) for the standard linear consensus protocol with delays. In
essence, Corollary 8 shows that there is a trade-off between delay-
robustness, i.e., feasibility of conditions (25), (27) and a high gain
matrix K for the DAI controller (5). Aside from displaying an in-
herent performance-robustness trade-off, Corollary 8 allows us to
certify robust stability (for any switched communication topology)
based merely on sufficiently small control gains and without eval-
uating a linear matrix inequality in a centralized fashion.

We remark that it is also possible to obtain a completely decen-
tralized (though in general more conservative) tuning criterion by
further bounding the matrices in (28), respectively (25).

Remark 9. Conditions (25), (27) are linear matrix inequalities that
can be efficiently solved via standard numerical tools, e.g., Löfberg
(2004). Furthermore, instead of checking (25), (27) for all L̄ℓ

it also suffices to do so for their convex hull (Wang, 1991). In
addition, checking the convex hull gives a robustness criterion for
all unknown topology configurations within the chosen convex
hull. Compared to the related results on stability of delayed port-
Hamiltonian systems with application to microgrids with delays
(Schiffer, Fridman, & Ortega, 2015; Schiffer, Fridman, Ortega, &
Raisch, 2016), the conditions (25), (27) are independent of the
specific equilibrium point z∗. �

Remark 10. Note that L̂−1
ℓ ≥ 1/λmax(L̂ℓ)I(n−1), where λmax(L̂ℓ)

denotes the maximum eigenvalue of the matrix L̂ℓ, ℓ = 1, . . . , ν.
Hence, (30) shows that the admissible largest gain κ in order for
Φ22 (defined in (29)) to be positive definite is constrained by the
maximum eigenvalue of all matrices L̂ℓ. This fact is confirmed
by the numerical experiments in Section 6. Similar observations
have also been made numerically for consensus systems (Lin & Jia,
2008). �

6. Numerical example

We illustrate the effectiveness of the proposed approach on
Kundur’s four-machine-two-area test system (Kundur, 1994, Ex-
ample 12.6). The considered test system is shown in Fig. 1. The
employed parameters are as given in Kundur (1994, Example 12.6)
with the only difference that we set the damping constants to
Di = 1/(0.05 · 2π · 60) pu (with respect to the machine load-
ing SSG = [700, 700, 719, 700] MVA). The system base power is
SB = 900 MVA, the base voltage is VB = 230 kV and the base fre-
quency is ωB = 1 rad/s.

For the tests, we consider the four different communication
network topologies shown in Fig. 1. Topology G1 is the nominal
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Table 1
Values of phase angles at considered equilibria z∗,1 to z∗,3..

θ∗,1
[rad] [0.224, 0.117,−0.076,−0.189] · π/2

θ∗,2
[rad] [0.3,−0.4,−0.5, 0.4] · 3π/8

θ∗,3
[rad] [0.3,−0.4,−0.5, 0.4] · π/2

topology, representing a ring graph. In topology G2, respectively
G3 and G4, one of the links is broken. Note that each of the con-
figurations is connected and, hence, the dynamic communication
network given by the topologies Γ = {G1,G2,G3,G4} satisfies
Assumption 4. Furthermore,we setA = diag(SSG/SB) andK = κK ,
where K = 0.05A−1 and κ is a free tuning parameter.

We consider an exemplary scenario with fast-varying delays
τm ∈ [0, hm] s, hm = 2 s, m = 1, . . . , 2Ē . With the
chosen parameters, we check conditions (25), (27). The numerical
implementation is done in Yalmip (Löfberg, 2004). In order to
identify the maximum admissible gain κ , we select an initial value
for κ of κinit = 2.0 and iteratively decrease the value of κ until
conditions (25), (27) are satisfied. The obtained feasible gain is
κfeas = 1.544.

The simulation results shown in Fig. 2 confirm the fact that
the systems’ trajectories converge to a synchronized motion if
κfeas = 1.544. Following standard practice in sampled-data
networked control systems (Fridman, 2014a,b), the time-varying
delays are implemented as piecewise-continuous signals. For the
present simulations, we have used the rate transition and variable
time delay blocks in Matlab/Simulink with a sampling time Ts =

2 ms to generate the fast-varying delays. During the simulation,
the communication topology switches randomly every 0.5 s.
Variations in the switching interval did not lead to meaningful
changes in the system’s behavior. This shows that the DAI
control is very robust to dynamic changes in the communication
topology. Furthermore, our experiments confirm the observation
in Remark 10 and Lin and Jia (2008) that for a given upper bound on
the delay the feasibility of conditions (25), (27) is highly dependent
on the largest eigenvalue of the Laplacian matrices.

We verify the conservativeness of the sufficient conditions (25),
(27) in simulation. Recall that the conditions are equilibrium-
independent. Hence, if feasible they guarantee (local) stability of
any equilibrium point satisfying the standard requirement of the
equilibrium angle differences being contained in an arc of length
π/2, cf. Assumption 6. Therefore, we consider three different
operating conditions: at first, the nominal equilibrium point z∗,1

reported in Kundur (1994, Example 12.6) and subsequently two
operating points z∗,2 and z∗,3 under more stressed conditions,
i.e., with some angle differences being closer to the ends of the
π/2-arc. The angles for all three scenarios are given in Table 1.

For the nominal operating point z∗,1 themaximum feasible gain
obtained for fast-varying delays with hm = 2 s via simulation
experiments is κfeas,sim = 6.330. For higher values of κ , the system
exhibits limit cycling behavior. The value of κfeas,sim = 6.330 is
about 4.1 times larger than the value of κfeas = 1.544 obtained
via Proposition 7. In the case of z∗,2 and with the same delays
the maximum feasible gain identified via simulation is κfeas,sim =

2.856,which is about 1.85 times larger as the value of κfeas = 1.544
obtained from conditions (25), (27). The maximum feasible gain
is further reduced in the last operating scenario with equilibrium
z∗,3, where we obtain κfeas,sim = 1.698. This value is only 1.1
times larger than the value of κfeas = 1.544 obtained from
conditions (25), (27). We observe a very similar behavior in the
case of constant delays. This shows that – for the investigated
scenarios – our (equilibrium-independent) conditions are fairly
conservative at equilibria corresponding to less stressed operating
conditions, while they are almost exact under highly stressed
operating conditions.
Fig. 1. Kundur’s two-area-four-machine test system taken from Kundur (1994, Ex-
ample 12.6) and below the four different topologies of the switched communication
network.

Fig. 2. Simulation example for κ = 1.544, hm = 2s, m = 1, . . . , 4 and arbitrary
initial conditions in a neighborhood of z∗,1 . The lines correspond to the following
units: G1 ‘–’, G2 ‘- -’, G3 ‘+-’ and G4 ‘* -’.

7. Conclusions

We have considered the problem of robust stability of a
DAI-controlled power system with respect to cyber–physical un-
certainties in the formof constant and fast-varying communication
delays as well as link failures and packet losses. The phenomena
of link failures and packet losses lead to a time-varying communi-
cation topology with arbitrary switching. For this setup, we have
derived sufficient delay-dependent stability conditions by con-
structing a suitable common LKF. The stability conditions can be
verified without knowledge of the operating point and reflect a
performance and robustness trade-off, which is in a very similar
manner to that of the standard linear consensus protocol with de-
lays investigated in Olfati-Saber et al. (2007) and Olfati-Saber and
Murray (2004).

In addition, the approach has been applied to Kundur’s two-
area-four-machine test system. The numerical experiments show
that our sufficient equilibrium-independent conditions are very
tight for stressed operating points, i.e., with (some) stationary
angle differences close to ±π/2, while they are more conservative
for less stressed operating points.

In future research we will seek to relax some of the modeling
assumptions made in the paper, e.g., on constant voltage ampli-
tudes, constant loadmodels, and investigate further applications of
DAI and related distributed control methods to power systems and
microgrids. Another interesting, yet technically challenging, open
question is toweaken the connectivity assumption imposed on the
DAI communication network, e.g., by using the notion of joint con-
nectivity (Jadbabaie, Lin, & Morse, 2003).
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Appendix A. A matrix regularization lemma

Lemma 11 (Matrix Regularization). Consider the two symmetric real
block matrices

A =


0p×p 0p×q
∗ A22


and B =


B11 B12
∗ B22


,

with A22 ∈ Rq×q, B11 ∈ Rp×p, B22 ∈ Rq×q, B12 ∈ Rp×q. Suppose
that A22 and B11 are positive definite. Then there exists a (sufficiently
small) positive real ϵ such that the composite matrix Cϵ = A + ϵB is
positive definite.

Proof. The composite matrix reads as

Cϵ =


ϵB11 ϵB12
∗ A22 + ϵB22


.

As B11 is positive definite by assumption, ϵB11 > 0 for any ϵ > 0.
Furthermore, by applying the Schur complement to Cϵ we obtain

A22 + ϵ

B22 − B⊤

12B
−1
11 B12


,

which, as A22 > 0 by assumption, is positive definite for small
enough ϵ. The latter together with ϵB11 > 0 implies that Cϵ > 0
for small enough ϵ, completing the proof. �

Appendix B. Proof of Proposition 7

We give the proof of Proposition 7. The proof is inspired by
Fridman (2014a), Lin and Jia (2008), Schiffer et al. (2015), Schiffer,
Fridman et al. (2016) and established by constructing a common
LKF for the system (22). Consider the LKF withm = 1, . . . , 2Ē,

V = V +

2Ē
m=1

V1,m +

2Ē
m=1

V2,m,

V1,m =

 t

t−hm
p̃(s)⊤Smp̃(s)ds,

V2,m = hm

 t

t−hm
(hm + s − t) ˙̃p(s)⊤Rm

˙̃p(s)ds.

(B.1)

where V is defined in (17) and Sm ∈ R(n−1)×(n−1) as well as Rm ∈

R(n−1)×(n−1) are positive definite matrices.
Recall that the proof of Proposition 3 implies that with Assump-

tion 2 there is a sufficiently small ϵ > 0, such that V is locally posi-
tive definite with respect to z∗. Accordingly, for this value of ϵ > 0
also V is positive definite with respect to z∗, since V1,m is positive
definite and so is V2,m, which can be seen in the following refor-
mulation

V2,m = hm

 0

−hm

 t

t+φ


˙̃p(s)⊤Rm

˙̃p(s)

dsdφ.

Next, we inspect the time derivative of V along solutions of the
system (22). To this end, we at first assume ϵ = 0. For that case by
recalling (18) together with the fact that

p̃(t − τm) = p̃(t)−

 t

t−τm

˙̃p(s)ds, (B.2)

we have that

V̇ = −ω̃(t)⊤Dω̃(t)− p̃(t)⊤
2|Eℓ|
m=1

Tℓ,mp̃(t − τm)

= −ω̃(t)⊤Dω̃(t)− p̃(t)⊤
2|Eℓ|
m=1

Tℓ,mp̃(t)
+ p̃(t)⊤
2|Eℓ|
m=1

Tℓ,m

 t

t−τm

˙̃p(s)ds

= −ω̃(t)⊤Dω̃(t)− p̃(t)⊤L̄ℓp̃(t)

+ p̃(t)⊤
2|Eℓ|
m=1

Tℓ,m

 t

t−τm

˙̃p(s)ds, (B.3)

where we have used (24) to obtain the last equality and recall that,
for any ℓ ∈ M, L̄ℓ > 0. Furthermore,

V̇1,m = p̃(t)⊤Smp̃(t)− p̃(t − hm)
⊤Smp̃(t − hm). (B.4)

By using

p̃(t − hm) = p̃(t)−

 t−τm

t−hm
ṗ(s)ds −

 t

t−τm
ṗ(s)ds,

and defining

η̄m = col

p̃(t),

 t−τm

t−hm

˙̃p(s)ds,
 t

t−τm

˙̃p(s)ds

,

(B.4) is equivalent to

V̇1,m = −η̄⊤

m


0 −Sm −Sm
∗ Sm Sm
∗ ∗ Sm


η̄m. (B.5)

Also, by differentiating V2,m we obtain

V̇2,m = −hm

 t

t−hm

˙̃p(s)⊤Rm
˙̃p(s)ds + h2

m
˙̃p(t)⊤Rm

˙̃p(t). (B.6)

By following Fridman (2014a,b), we reformulate the first term on
the right-hand side of (B.6) as

− hm

 t

t−hm

˙̃p(s)⊤Rm
˙̃p(s)ds

= −hm

 t−τm

t−hm

˙̃p(s)⊤Rm
˙̃p(s)ds − hm

 t

t−τm

˙̃p(s)⊤Rm
˙̃p(s)ds. (B.7)

Condition (27) is feasible by assumption. Thus, applying Jensen’s
inequality together with Lemma 1 in Fridman (2014a), see also
Park, Ko, and Jeong (2011), to both right-hand side terms in (B.7)
yields the following estimate for the first term on the right-hand
side of (B.6)

− hm

 t

t−hm

˙̃p(s)⊤Rm
˙̃p(s)ds

≤ −


 t−τm

t−hm

˙̃p(s)ds t

t−τm

˙̃p(s)ds


⊤ 

Rm S12,m
∗ Rm


 t−τm

t−hm

˙̃p(s)ds t

t−τm

˙̃p(s)ds

 . (B.8)

In order to rewrite the second term on the right-hand side of (B.6),
i.e., h2

m
˙̃p(t)⊤Rm

˙̃p(t), at first we replace ˙̃p by its explicit vector field
in (22). This yields

˙̃p(t)⊤Rm
˙̃p(t) =


ω̃
ψ

⊤

K

1
2 WRmW⊤K

1
2 −K

1
2 WRm

−RmW⊤K
1
2 Rm


ω̃
ψ


, (B.9)

whereψ =
2|E |

j=1 Tℓ,jp̃(t − τj). Next, we apply the identity (B.2) to
obtain

ψ =

2|E |
j=1

Tℓ,jp̃(t − τj) =

2|Eℓ|
j=1

Tℓ,j


p̃(t)−

 t

t−τj

˙̃p(s)ds


.
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Furthermore, we recall the fact (24) which implies that
2|Eℓ|
j=1

Tℓ,jp̃(t) = L̄ℓp̃(t).

Then, by introducing the short-hand vector

η̂ = col


ω̃, p̃(t),

2|Eℓ|
j=1

Tℓ,j

 t

t−τj

˙̃p(s)ds


,

(B.9) is equivalent to

˙̃p(t)⊤Rm
˙̃p(t)

= η̂⊤

K
1
2 WRmW⊤K

1
2 −K

1
2 WRmL̄ℓ K

1
2 WRm

∗ L̄ℓRmL̄ℓ −L̄ℓRm
∗ ∗ Rm

 η̂. (B.10)

Finally, by collecting the terms (B.3), (B.5), (B.8) and (B.10), V̇ can
be upper-bounded by

V̇ ≤ −η⊤Ψ η, (B.11)

where η ∈ R(n+(1+4Ē)(n−1)),

η = col

ω̃(t), p̃(t), η1, η2


,

η1 = col

 t−τ1

t−h1

˙̃p(s)ds, . . . ,
 t−τ2Ē

t−h2Ē

˙̃p(s)ds


,

η2 = col

 t

t−τ1

˙̃p(s)ds, . . . ,
 t

t−τ2Ē

˙̃p(s)ds

 (B.12)

and Ψ is defined in (25). Therefore, if conditions (25), (27) are sat-
isfied, then V̇ ≤ 0.

As of now, ϵ = 0 and V̇ is not strict, i.e., not negative definite
in all state variables. Yet, as the system (22) is non-autonomous,
we need a strict common LKF in order to establish the asymptotic
stability claim. Bymaking use of Proposition 3, this can be achieved
without major difficulties as follows. From (18) in the proof of
Proposition 3 together with (B.11), we have that for ϵ ≠ 0,

V̇ ≤ −ξ̄⊤


0n×n 0n×(n+(1+4Ē)(n−1))

∗ Ψ


+ ϵΞ


ξ̄ , (B.13)

where

ξ̄ = col

∇θ̃U(θ̃(t)+ θ∗)− ∇θ̃U(θ

∗), ω̃(t), p̃(t), η1, η2

,

Ξ =


A 0.5AD 0.5AK

1
2 W 0 0

∗ −0.5E22 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

 ,
E22 is defined in (19) and 0 denotes a zero matrix of appropriate
dimensions. Recall that if conditions (25), (27) are satisfied, then
Ψ > 0 for all L̄ℓ, ℓ ∈ M. Thus, following the proof of
Proposition 3, Lemma 11 in Appendix A implies that there is a
sufficiently small ϵ > 0 such that the matrix sum on the right-
hand side of (B.13) is positive definite and, at the same time, V
is locally positive definite. Consequently, there exists a real γ >

0 such that V̇(t) ≤ −γ ∥z(t)∥2, z(t) = col(θ̃(t), ω̃(t), p̃(t)).
Local uniform asymptotic stability of z∗ follows by invoking the
standard Lyapunov–Krasovskii theorem (Fridman, 2014a,b) and
arguments from Fridman, Seuret, and Richard (2004) for systems
withpiecewise-continuous delays. By direct inspection, if (25), (27)
are satisfied for some hm ∈ R≥0, then they are also satisfied for any
τm(t) ∈ [0, hm), which in particular includes the case of constant
delays, i.e., τ̇m = 0. This completes the proof.
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