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Abstract—This paper is concerned with the rate at which a
discrete-time, deterministic, and possibly large network of non-
linear systems generates information, and so with the minimum
rate of data transfer under which the addressee can maintain the
level of awareness about the current state of the network. While
being aimed at development of tractable techniques for estimation
of this rate, this paper advocates benefits from directly treating
the dynamical system as a set of interacting subsystems. To this
end, a novel estimation method is elaborated that is alike in flavor
to the small gain theorem on input-to-output stability. The utility
of this approach is demonstrated by rigorously justifying an ex-
perimentally discovered phenomenon. The topological entropy of
nonlinear time-delay systems stays bounded as the delay grows
without limits. This is extended on the studied observability rates
and appended by constructive upper bounds independent of the
delay. It is shown that these bounds are asymptotically tight for a
time-delay analog of the bouncing ball dynamics.
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I. INTRODUCTION

A fundamental issue in the area of control of networked systems
is about constraints on communication among the network agents.
Some key aspects of such constraints are captured in the concept
of communication channel with a limited data transmission bit rate,
and lead to inquiry about the minimal rate needed to attain a spe-
cific control objective. Recent extensive studies of this issue (see, e.g.,
[1]–[6] and the literature therein) have shown that this data-rate thresh-
old is alike in spirit to the topological entropy (TE) [7] of the sys-
tem at hand, but is not always identical, and various relevant analogs
of TE were introduced [2], [4], [8]–[17]. In effect, these thresholds
evaluate the complexity of the system’s temporal behavior by assess-
ing the rate at which the system generates new information and so
the minimum rate at which an observer must be supplied with data
in order that its level of awareness about the network state can be
maintained.

Feasible computation or fine estimation of those thresholds is an
intricate matter even for low-dimensional nonlinear systems [18]–[20].
This intricacy rises fast at increase of the system’s dimension, which
typically makes that matter highly complex for even medium-scale
nonlinear networks. Meanwhile, the thresholds proposed in [13] and
[14] were computed in closed form for several classic nonlinear chaotic
systems (the bouncing ball system, Hénon, logistic, and Lozy maps
[13], [21], among others) via the techniques elaborated in [13] and
[22]. They turn off the classic road of the first Lyapunov approach in
study of TE and the likes toward his second method.

The goal of this paper is to develop the approach of Matveev and
Pogromsky in [13] and [14] into tractable techniques of handling net-
works of interconnected nonlinear dynamic agents with inputs and
outputs. This focus is partly motivated by ubiquity of such intercon-
nections, which are therefore a classic subject of study in control the-
ory. The stated goal is to be approached by following the lines of the
famous small-gain theorem on the input-to-output stability of a non-
linear plant (for generalizations concerned with networks, see, e.g.,
[23] and [24]). To this end, we disclose individual input-to-output
characteristics of the agents and relations among them that enable
feasibly estimating the rate at which the entire network generates in-
formation. In this respect, the paper generalizes our preliminary results
from [25].

To illustrate the utility of these developments, we use them to rigor-
ously prove the fact previously discovered via numerical studies of a
few particular chaotic delayed systems: their TE remains bounded as the
delay grows without limits [26], [27]. We show that this phenomenon
is common and extends on the studied observability rate thresholds.
We also offer explicit upper bounds on them that are independent of
the delay, and show that these bounds are asymptotically tight for a
time-delay analog of the bouncing ball dynamics.

The paper is organized as follows. Section II presents background
information. The problem setup and the main result are given in
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Section III. Section IV deals with time-delay systems, its findings are
illustrated in Section V via an example.

The following notations are used throughout this paper:
1) [k1 : k2 ] denotes set of integers j ∈ [k1 , k2 ];
2) � stands for transposition;
3) Im is identity m × m matrix;
4) ‖ · ‖ denotes the Euclidean norm of a vector v ∈ Rl and

the operator norm of a matrix M ∈ Rm ×l , i.e., ‖M‖ :=
maxv∈Rl :‖v ‖=1 ‖Mv‖ = maxv∈Rl :v �=0 ‖Mv‖/‖v‖ is the square
root of the maximal eigenvalue of M �M ; and

(5) stack(pi ) ∈ Rr 1 + ···+ rN is the result of stacking vectors pi ∈
Rr i , i ∈ [1 : N ] on top of one another.

II. OBSERVATION VIA BIT-RATE LIMITED CHANNELS

In this section, we introduce general concepts that are concerned
with observation via finite capacity communication channels and will
be employed in our main results.

A. Observation Problem Setup and TE

This paper is concerned with building, in real time, an effective
estimate of the current state x(t) ∈ Rn of a discrete-time invariant
nonlinear system

x(t + 1) = φ[x(t)], t = 0, 1, . . . , x(0) ∈ K ⊂ Rn . (1)

The compact set K of feasible initial states and the continuous map
φ : Rn → Rn are known to the designer of an estimator. Data on
(perfect) measurements of the state can reach the estimator only through
a finite capacity communication channel. Per unit time, it can transmit
only a finite part of the infinity of bits embodying the full knowledge of
the current state. So at the estimator, the information about the state is
inevitably inexact. Our main interest is in the case where due to unstable
dynamics of the plant, this inaccuracy tends to grow as time passes,
unless extra data arrive in course of time and are used to compensate for
this growth. Success of such a compensation depends on the content of
the messages and the transmission rate, with the latter being the main
subject of our interest.

Thus, only a finite-bit message e(t) can be sent via the channel at time
t. So, there is a need in a coder that converts sensor readings x(t) into
such messages. Based on prior messages, a decoder at time t produces
an estimate x̂(t) ∈ Rn of the state x(t). The coder and decoder form
an observer and are described by the following respective equations:

e(t) = C[t, x(0), . . . , x(t)|x̂(0), δ], t � 0

x̂(t) = D [t, e(0), . . . , e(t − 1)|x̂(0), δ] , t � 1. (2)

It is assumed here that both coder and decoder have access to a common
initial estimate x̂(0) and its accuracy δ

‖x(0) − x̂(0)‖ < δ. (3)

We borrow the concept of channel capacity from [6, Sec. 3.4] by assum-
ing that no less/more than b−(r)/b+ (r) b of data can be transferred
across the channel within any time interval of duration r, and that
the respective averaged rates are close to a common value c (channel
capacity) for r ≈ ∞

r−1 b−(r) → c and r−1 b+ (r) → c as r → ∞. (4)

As discussed in [6, Sec. 3.4], this model admits unsteady instant rates,
transmission delays, and dropouts.

Definition 2.1 (see [13]): The system (1) is said to be observ-
able via a given communication channel if for any ε > 0, there ex-
ist δ(ε, K) > 0 and an observer (2) that operates via the channel at
hand and ensures ‖x(t) − x̂(t)‖ � ε ∀t � 0 whenever (3) holds with
δ := δ(ε, K), x(0), x̂(0) ∈ K .

The associated demand to the channel capacity is related to the TE
[7], [28] of the system (1) on K

H(φ, K) := lim
ε→0

lim
k→∞

1
k + 1

log2 q(k, ε). (5)

Here, q(k, ε) is the minimal number of elements in a set Q ⊂ R(k+1)n

that fits to approximate, with accuracy ε and for k steps, any trajectory
x(t, a) of (1) outgoing from a ∈ K

min
(x�

0 , . . . ,x�
k

)∈Q
max

t=0 , . . . ,k
‖x(t, a) − x�

t ‖ < ε ∀a ∈ K. (6)

Specifically, the following claim holds.
Theorem 2.2 (see [13]): For observability via a communication

channel, it is necessary that its capacity c � H(φ, K). Conversely,
if K is positively invariant, the system is observable via any channel
with capacity c > H(φ, K).

B. Regular and Fine Observability

Definition 2.1 allows critical regress of the estimation accuracy over
time: ε � δ(ε, K). This is excepted by the next definition: the accuracy
stays proportional to its initial value.

Definition 2.3 (see [13]): The observer (2) is said to regularly ob-
serve the system (1) if there exist δ∗ and G > 0 such that the estima-
tion accuracy ‖x(t) − x̂(t)‖ � Gδ ∀t � 0 whenever x(0), x̂(0) ∈
K and in (3), δ is small enough δ < δ∗.

A stronger property is that the initial accuracy is eventually restored
and then exponentially improved.

Definition 2.4 (see [13]): The observer (2) is said to finely ob-
serve the plant (1) if there are δ∗, G > 0, g ∈ (0, 1) such that ‖x(t) −
x̂(t)‖ � Gδgt ∀t � 0 if x(0), x̂(0) ∈ K, δ < δ∗.

Definition 2.5 (see [13]): The system (1) is said to be regu-
larly/finely observable via a given communication channel if there
exists an observer (2) that regularly/finely observes the system (1) and
operates via the channel at hand.

What channel capacity c is needed for every kind of observability?
Since the larger the capacity the better [13], this question in fact ad-
dresses the infimum R(φ, K) of the needed cs. Here, R is equipped
with the index o, ro, and fo in the cases from Definitions 2.1, 2.3, and 2.4,
respectively, is called the observability rate, and is fully determined by
the system (1).

Lemma 2.6 (see [13]): For any positively invariant φ(K) ⊂ K
compact set K , the following relations hold:

H(φ, K) = Ro(φ, K) � Rro(φ, K) = Rfo(φ, K). (7)

The results of, e.g., [6, Sec. 3.5] imply that for any linear x(t + 1) =
Ax(t) system (1) and K with nonempty interior

Ro(φ, K) = Rro(φ, K) = Rfo(φ, K)

= H(A) :=
n

∑

i=1

log2 max{|λi |; 1} (8)

where λ1 , . . . , λn are the eigenvalues of A. In nonlinear case, compu-
tation or even fine estimation of the TE is an intricate matter [18]–[20]
so that its exact value is unknown even for many prototypical low-
dimensional chaotic systems, such as the Hénon map, Dufing oscillator,
or bouncing ball system.
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Fig. 1. Examples of networks of interconnected dynamical systems
Σi .

Whereas positivity of TE is classically associated with chaotic be-
havior, there is not enough evidence that the positivity of the regular
and fine observability rates can serve as an onset of chaos in general.
Meanwhile, Lemma 2.6 shows that these rates give an upper bound on
TE.

C. Comprehending Complexity of Network Temporal Behavior

This paper is focused on systems (1) that represent networks of
interconnected subsystems. Because of multiplicity and heterogeneity
of aspects and factors that contribute to complexity, there exists a
whole variety of notions of network complexity; see, e.g., [29]. We
are concerned with complexity of the temporal behavior, which is
understood in terms of predictability, chaoticity, etc. Then, the values
of either TE, or observability rates, or their upper estimates can serve
as measures of complexity since they characterize the rate at which the
network generates a new information.

Meanwhile, large dimensionality of networked systems carries a
good potential to hamper direct application of available techniques
for evaluation of these measures. A way to cope with this trouble is
to disintegrate analysis into tractable portions in accordance with the
network structure.

We focus on the techniques from [13], [22], and [30]–[32] whose
efficacy in the nonnetworked case has been proved by closed-form
computation of the regular and fine observability rates for a number of
prototypical nonlinear chaotic systems, e.g., the bouncing ball system,
logistic map and, under certain circumstances, Hénon system [13],
Lozy and Lorenz maps [33]. To acquire a tractable method of dealing
with networked setting, we carry out the aforementioned disintegrated
analysis along the avenue in [13], [22], and [30]–[32] via the following
steps.
1) The plant is directly treated as an interconnection of subsystems

with inputs and outputs.
2) The individual input-to-output properties of the linearized subsys-

tems are characterized via inequalities on quadratic “storage-” and
“supply-” like functions in a fashion portrayed in, e.g., [34] and
[35].

3) The final data-rate estimate is built on an argument in the spirit of
the celebrated small gain theorem.

III. TE AND OBSERVABILITY RATES OF A NONLINEAR

NETWORKED SYSTEM

A. Problem Statement

From now on, we consider a network of interconnected discrete-
time invariant nonlinear systems Σi , labeled 1 through N ; as shown in
Fig. 1. The ith system is described by the following equation:

xi (t + 1) = φi [xi (t), ui (t)], yi (t) = hi [xi (t)]. (9)

Here, xi ∈ Rn i is the state, ui ∈ Rm i is the system’s input, and yi ∈
Rk i is the output. The interconnection is given by

ui (t) =
N

∑

j=1

Vij yj (t) (10)

where the given mi × kj matrix Vij quantifies the impact of jth sub-
system on the ith one; Vij = 0 in the case of no impact.

The aforementioned model admits “master” systems without an in-
put

xi (t + 1) = φi [xi (t)], yi (t) = hi [xi (t)] (11)

which influence the peers, being unaffected by them, as well as “slave”
systems without an output

xi (t + 1) = φi [xi (t), ui (t)] (12)

which are influenced by the peers with no backward effect on them.
To embed these cases into (9), it suffices to endow the “master” (11)
with a “void” input ui (t) ∈ R with no effect on the dynamics of Σi

and put Vij = 0 ∀j to set ui (t) ≡ 0 for the sake of definiteness.
Similarly, it suffices to endow the “slave” (12) with the “void” output
map hi (x) ≡ 0 ∈ R.

The network at hand can be written in the form (1) with

x := stack(xi ) ∈ Rn , φ(x) = stack (φi [x�
i (x)])

where x�
i (x) :=

[

xi ,

N
∑

j=1

Vij hj (xj )

]

and n :=
N

∑

i=1

ni . (13)

We still consider only the trajectories that start in a given compact set
K ⊂ Rn . So the material of Section II-A and II-B is fully applicable to
this network, which is attributed to the just introduced φ and K from
now on. Our goal is to constructively estimate ℛro/fo(φ, K) in this case.

B. Basic Constructions and Assumptions

These assumptions are distributed into three groups.
1) Assumptions About the Interactions: These are moti-

vated by the fact that direct use of the coupling matrices Vij , which
exhaustively describe the topology and strengths of interactions, may
be troublesome. The reasons combine high dimensionality of the data
represented by the totality of all Vij ’s with problems of their practical
acquisition. So, we admit that Vij ’s may be unavailable and only a less
problematic upper estimate of the summary “strength” of actions on
every subsystem is known.

Assumption 3.1: For any i, a bound Mi is known such that

‖Vi∗‖2 � Mi. (14)

Here, the block matrix Vi∗ := [Vi1 Vi2 . . . ViN ] of dimension mi ×
(k1 + · · · + kN ) sets up actions of the peers on Σi .

There is a way to reduce the dimensions of the matrices whose oper-
ator norm ‖ · ‖ should be computed: it suffices to verify the inequality
∑N

j=1 ‖Vij ‖2 � Mi, which clearly implies (14). Certainly, this injects
more conservatism in general.

Section III-E will discuss replacement of Assumption 3.1 by a less
conservative though more involved requirement.

2) Assumptions About Every Subsystem Σi : These are as
follows.

Assumption 3.2: In (9), the maps φi : Rn i × Rm i → Rn i and hi :
Rn i → Rk i are continuously differentiable for any i.
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In order to proceed, we denote by x(t, a) the trajectory of the system
(9) and (10) that starts with x(0) = a ∈ Rn , and put

X(t) := {x = x(t, a) : a ∈ K}, X∞ :=
∞
⋃

t=0

X(t). (15)

Definition 3.3: A function f (x) mapping Rn to an Euclidean space
is said to be uniformly continuous near a subset X∗ ⊂ Rn if for any
ε > 0, there exists δ > 0 providing the following:

‖f (x) − f (x)‖ < ε ∀x ∈ X∗, x ∈ Rn , such that ‖x − x‖ < δ.

As it is well known, any continuous function is uniformly continuous
near any compact set.

Assumption 3.4: For any subsystem Σi , the following functions
[which are defined by using x�

i (x) from (13)]:

∂φi

∂xi

[x�
i (x)] ,

∂φi

∂ui

[x�
i (x)] ,

∂hi

∂xi

[xi ]

are bounded on X∞ and uniformly continuous near this set.
This does hold if the set X∞ is bounded, in particular, if the given

compact set K of initial states is positively invariant.
Any trajectory of the networked system is associated with a par-

ticular process in every subsystem i, which is described by the time
sequences xi (t), ui (t), yi (t), t = 0, 1, . . .. The further analysis will be
much concerned with the first-order approximation of every subsystem
near a particular trajectory

zi (t + 1) = Ai (t)zi (t) + Bi (t)wi (t)

ζi (t) = Ci (t)zi (t). (16)

Here, zi , wi , and ζi stand for the “increments” of xi , ui , and yi , re-
spectively, and

Ai (t) =
∂φi

∂xi

[xi (t), ui (t)], Bi (t) =
∂φi

∂ui

[xi (t), ui (t)]

Ci (t) =
∂hi

∂xi

[xi (t)]. (17)

A productive approach to characterization of input-to-output prop-
erties of linear systems is by using dissipation inequalities on certain
quadratic “storage” and “supply” functions [34]. We follow these lines
and associate the ith subsystem with a “storage” z�

i Pi zi function and
take the function giving the “supply” rate in the form z�

i [Qi − Pi ]zi −
1
γ i
‖ζi‖2 + γi‖wi‖2 . Description of the input-to-output properties ad-

dresses the incremental values of the input and output of the linearized
system (16), and is stated in the following.

Assumption 3.5: There exist ni × ni matrices Pi = P �
i > 0, Qi =

Q�
i � 0 and a number γi > 0 such that the following inequality is true

along all solutions of the networked systems (9) and (10) starting in
the given compact set K :

[Ai (t)zi + Bi (t)wi ]
� Pi [Ai (t)zi + Bi (t)wi ] � z�

i Qizi

− 1
γi

‖ζi‖2 + γi‖wi‖2 , ζi = Ci (t)zi ∀zi , wi , t. (18)

If Qi � Pi , this implies that γi upper bounds the l2 -gain of the
system (16) from the input wi to output ζi : for z(0) = 0

∑

t

‖ζi (t)‖2 � γ2
i

∑

t

‖wi (t)‖2 .

In this case, Assumption 3.5 gives upper bounds γi on the incremental
l2 -gains of subsystems (9).

For the system (11) (which has no input), (18) shapes into

Ai (t)�PiAi (t) + γ−1
i Ci (t)�Ci (t) � Qi ∀t.

For the system (12) (which has no output), (18) takes the form

[Ai (t)zi + Bi (t)wi ]
� Pi [Ai (t)zi + Bi (t)wi ] �

� z�
i Qizi + γi‖wi‖2 ∀zi , wi , t.

3) Assumption on the Balance Between the Strengths
of Interactions and the Input-to-Output Gains of the Sub-
systems : Whereas these strengths are assessed by the constants Mi

from Assumption 3.1, the concerned “gains” are characterized by γi

from Assumption 3.5. It is worth noting that the “gains” γi from this
assumption are not uniquely determined like classical input–output
gains: indeed, selecting a larger Qi , one can, in turn, choose a smaller
γi . Our last assumption may be viewed as an analog of the classical
“small gain” inequality.

Assumption 3.6: For any i, the following inequality holds:

γi

∑

j :V j i �=0

γj Mj � 1. (19)

It assumes knowledge of the interaction graph illustrated in Fig. 1(c).
If this graph is unknown, the following stronger condition can be veri-
fied since it surely implies Assumption 3.6:

γi

N
∑

j=1

γj Mj � 1 ∀i. (20)

In turns, this holds whenever γi � (M1 + · · · + MN )−1/2 ∀i.

C. Main Result

Let P = P � > 0 and Q = Q� � 0 be square matrices of a common
size. The roots of the algebraic equation

det(Q − λP ) = 0 (21)

are nonnegative (since λ = x�Q x

x�P x
, where x �= 0 is any solution of the

singular linear equation (Q − λP )x = 0) and equal to the eigenvalues
of each of the matrices QP −1 and P −1Q. Let us enumerate these
roots in descending order, repeating any of them in accordance with its
algebraic multiplicity. Partly inspired by (8), we introduce the following
quantity:

HL(P, Q) =
1
2

∑

j

max{0, log2 λj } (22)

where the sum is over all js and log2 0 = −∞.
Now, we are in a position to state the main result.
Theorem 3.7: Suppose that Assumptions 3.1–3.6 hold. Then, the

observability rates of the networked systems (9) and (10) obey the
following inequalities:

H(φ, K) � Rro(φ, K) � Rfo(φ, K) �
N

∑

j=1

HL(Pj , Qj ) (23)

where the matrices Pi and Qi are taken from Assumption 3.5.
The proof of this theorem is given in the Appendix.

D. Examples: Networks With Special Topologies

For networks with special topologies, we now specify Assump-
tion 3.6, which is among the key conditions that imply the conclusion
(23) of Theorem 3.7.

1) Feedback Connection of Two Systems: It is shown in
Fig. 1(a). In this case, u1 = ζ2 ∈ Rk 2 , u2 = ζ1 ∈ Rk 1 and V12 =
Ik 2 , V21 = Ik 1 , V11 = 0, V22 = 0. Thus, M1 = M2 = 1 in (14), and
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Fig. 2. Examples of networks of interconnected dynamical systems
Σi . (a) Ringlike connection. (b) All-to-all connection.

Assumption 3.6 shapes into γ1γ2 � 1. This is close to the key condition
γ1γ2 < 1 from the classic small-gain theorem.

2) Feedback Connection of N Systems: It is shown in
Fig. 1(b). In this case, m1 = k2 + · · · + kN , m2 = · · · = mN = k1

u1 = stack(y2 , . . . , yN ), ui = y1 ∀i � 2

V1∗ = diag[0, Ik 2 , . . . , IkN
], Vi∗ = [Ik 1 0 . . . 0] ∀i � 2.

So M1 = · · · = MN = 1 in (14) and (19) ⇔ γ1
∑N

j=2 γj � 1.
3) Ringlike Connection: It is illustrated in Fig. 2(a).

In this case, m2 = k1 , V21 = Ik 1 , m3 = k2 , V32 = Ik 2 , . . . , mN =
kN −1 , VN ,N −1 = IkN −1 , m1 = kN , and V1N = IkN

, all other Vij s
are zero, M1 = M2 = · · · = MN = 1 in (14). So, (19) means that
γ1γN � 1 and γj γj+1 � 1 whenever 1 � j � N − 1.

4) All-to-All Connection via Broadcasting Communica-
tion: It is illustrated in Fig. 2(b). Every subsystem i affects its peers
via broadcasting a signal yi (t). Any subsystem Σj averages the in-
coming signals via the classic nearest neighbors rule N−1 ∑

i yi (t) to
form the input to the controller that drives Σj . So, mi = ki =: p ∀i,
Vij = N−1Ip ∀i, j, and hence

Vi∗ = N−1 [Ip Ip . . . Ip ], Mi = ‖Vi∗‖2 = N−1 ∀i

(20) ⇔ γi (γ1 + · · · + γN ) � N ∀i. (24)

E. Relaxation of Assumptions 3.1 and 3.6

Theorem 3.7 remains true if a weaker assumption is put in place of
the aforementioned two ones. The utility of this is somewhat subverted
by more involved verification insomuch as the operator norm of a
potentially much larger matrix is concerned.

To define it, we arrange Vij from (10) into m × k matrix V = (Vij ),
where m := m1 + · · · + mN and k := k1 + · · · + kN , and introduce
the following block-diagonal matrices:

Γw = diag(
√

γ1Im 1 , . . . ,
√

γN Im N
)

Γζ = diag(
√

γ1Ik 1 , . . . ,
√

γN IkN
). (25)

Assumption 3.8: The following inequality holds:

‖Γw V Γζ ‖ � 1. (26)

Lemma 3.9: Theorem 3.7 remains true if Assumptions 3.1 and 3.6
are replaced with Assumption 3.8.

The proofs of this and the following lemma are given in the Ap-
pendix. The following lemma shows that Lemma 3.9 does relax the
assumptions of Theorem 3.7.

Lemma 3.10: Assumptions 3.1 and 3.6 imply Assumption 3.8.

Meanwhile, the converse is not true in general. For example, in the
case from Section III-D-4

Γw = Γζ = diag [
√

γ1Ip ,
√

γ2Ip , . . . ,
√

γN Ip ]

V =
1
N

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ip Ip . . . Ip

Ip Ip . . . Ip

...
...

...
...

Ip Ip . . . Ip

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Γw V Γζ =
1
N

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√
γ1γ1Ip

√
γ1γ2Ip . . .

√
γ1γN Ip

√
γ2γ1Ip

√
γ2γ2Ip . . .

√
γ2γN Ip

...
...

...
...

√
γN γ1Ip

√
γN γ2Ip . . .

√
γN γN Ip

⎞

⎟

⎟

⎟

⎟

⎟

⎠

‖Γw V Γζ ζ‖2 =
1

N 2

∥

∥

∥

∥

∥

N
∑

j=1

√
γj ζj

∥

∥

∥

∥

∥

2 N
∑

j=1

γj

‖Γw V Γζ ‖2 =
1

N 2

N
∑

j=1

γj max
ζ j :

∑

j
‖ζ j ‖2 =1

∥

∥

∥

∥

∥

N
∑

j=1

√
γj ζj

∥

∥

∥

∥

∥

2

=
1

N 2

[

N
∑

j=1

γj

]2

.

So, Assumption 3.8 takes the form 1
N

∑N
j=1 γj � 1 and is much weaker

than the set of inequalities (24) that embodies Assumptions 3.1 and 3.6
in the case at hand.

IV. ENTROPY OF SYSTEMS WITH DELAYS

Now, we turn to delayed discrete-time systems of the form

x(t + 1) = f [x(t), Cx(t − τ )], t = 0, 1, . . . . (27)

Here, τ > 0 is an integer delay x(t) ∈ Rn , the smooth function
f (x, r) ∈ Rn of x ∈ Rn , r ∈ Rd is given, and the d × n matrix C
typically “cuts out” a certain part of the state x. The initial states are
restricted by a given compact set K ⊂ Rn as follows:

x(0) ∈ K, x(−1) ∈ K, . . . , x(−τ ) ∈ K. (28)

The standard state augmentation

x(t) := [x(t), x(t − 1), . . . , x(t − τ )] (29)

shapes this system into (1) with

φ(x) = [f (x0 , Cx−τ ), x0 , . . . , x−τ +1 ] ∀x = [x0 , . . . , x−τ ]

and K := {x : xj ∈ K ∀j}. So, all concepts from Section II are fully
applicable to (27) and (28).

We study the behavior of the TE H(τ ) and the observability rates
Rro/fo(τ ) of the systems (27) and (28) as τ → ∞. A stimulus for this is
given by the numerical studies in [26] and [27], which have shown that
limτ →∞ H(τ ) < ∞ for particular chaotic systems. Now, we rigorously
prove that this phenomenon is common and extends on Rro/fo(τ ), and
offer explicit upper bounds on Rro/fo(τ ), H(τ ) that are uniform over τ .

We impose the following analog of Assumption 3.4.
Assumption 4.1: There is K∗ ⊂ Rn such that the following state-

ments hold.
i) Irrespective of the delay, any solution of (27) satisfying (28) lies

in K∗, i.e., x(t) ∈ K∗ ∀t � 0.
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ii) The first derivatives of f (·, ·) are bounded on K∗ × CK∗ and are
uniformly continuous near this set.

This is true with K∗ := K if the compact set K is positively invariant
for any τ , and with K∗ := Rn if the derivatives are bounded and
uniformly continuous on the entire Rn × Rd .

For any 
 = (x, r), x ∈ Rn , r ∈ Rd , we put

A(
) :=
∂f

∂x
(
), B(
) :=

∂f

∂r
(
).

The next assumption is inspired by (18) with γi := 1.
Assumption 4.2: There are symmetric n × n matrices P > 0, Q �

0 such that for any 
 ∈ K∗ × CK∗

[A(
)z + B(
)w]�P [A(
)z + B(
)w] � z�Qz

− ζ�ζ + w�w, ζ = Cz, ∀z ∈ Rn , w ∈ Rd . (30)

Thanks to ii) in Assumption 4.1, such matrices do exist: it suffices
to pick P and Q small and large enough, respectively, although a more
refined choice may be also possible.

Theorem 4.3: Let Assumptions 4.1 and 4.2 hold. Then

H(τ ) � Rro(τ ) � Rfo(τ ) � HL (P, Q) ∀τ.

Proof: We represent the system (27) as the interconnection (10) of
the following two subsystems with ui (t) ∈ Rd :

Σ1 :

{

x1 (t + 1) = f [x1 (t), u1 (t)] ∈ Rn

y1 (t) = Cx1 (t) ∈ Rd

Σ2 :

{

x2 (t + 1) = A x2 (t) + B u2 (t) ∈ Rdτ

y2 (t) = C x2 (t) ∈ Rd
.

Here, the second subsystem is a τ -step delay line

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0 0

Id 0 · · · 0 0

0 Id · · · 0 0

...
...

. . . 0 0

0 0 · · · Id 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Id

0

0

...

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

C =
(

0 0 · · · 0 Id

)

.

For Σ1 , Assumption 3.5 holds with P1 := P, Q1 := Q, γ1 := 1 by i)
in Assumptions 4.1 and 4.2. For Σ2 , we have

x2 (t + 1)�x2 (t + 1) = x2 (t)�x2 (t) + u2 (t)�u2 (t) − y2 (t)�y2 (t)

so Assumption 3.5 is true with P2 = Q2 = Idτ , γ2 = 1. Thus, As-
sumption 3.6 holds; Assumption 4.1 implies Assumption 3.4. The proof
is completed by Theorem 3.7 since HL (P2 , Q2 ) = 0. �

The last equation is an epitome of the fact that the delay line
Σ2 does not produce uncertainty. An easily visible sign of this is
that the knowledge X� = [x�

t0
, . . . , x�

t0 −τ ] of the state X (t0 ) :=
[x(t0 ), . . . , x(t0 − τ )] of Σ2 (with u2 (t) ≡ 0 for simplicity) up to the
δ-uncertainty maxt= t0 −τ , . . . , t0 ‖x(t) − x�

t ‖ < δ enables one to predict
the subsequent states with the same accuracy δ (e.g., by running Σ2

from X�). Meanwhile, the delay line is able to affect uncertainty pro-
duction in a feedback interconnection so that the entropy of the overall
system becomes dependent on the delay [26], [27].

V. EXAMPLE

We consider an integer delay τ > 0 and the τ -delayed analog of the
“bouncing-ball dynamics” [13] (which is among the classic examples
of low-dimensional chaotic behavior)

y(t + 1) = (1 + α)y(t) − β cos y(t) − αy(t − τ ) ∈ R. (31)

Here, α and β > 0 are parameters. Since (31) is invariant to the change
y �→ y ± 2π, this equation defines not only a dynamical system in R
(R-system) but also a system in the unit circle S1

0 (S1
0 -system). By

[13, Remark 5], the concepts from Section II are fully applicable to the
S1

0 -system.
Proposition 5.1: For the S1

0 -system (31) with any delay τ

H(τ ) � Rro(τ ) � Rfo(τ ) � L := log2 (1 + 2α + β). (32)

Proof: The R-system (31) has the form (27) and (28) with

x = y ∈ R, C = 1, f (x′, x′′) = (1 + α)x′ − β cos x′ − αx′′

in (27) and K := [−π, π] in (28). Then, Assumption 4.1 holds with
K∗ := R. To check Assumption 4.2, we note that in (30)

A(
)z + B(
)w = (1 + α + β sin y)z − αw ∀
 = (y, y1 ).

Now, P = p ∈ (0,∞), Q = q ∈ [0,∞), and z�Pz = pz2 , z�Qz =
qz2 . So the left-hand side L of (30) is given by

L = p|(1 + α + β sin y)z − αw|2 � p[γ|z| + α|w|]2

where γ := 1 + α + β. Hence, (30) does hold whenever

L1 := (q − 1)|z|2 + |w|2 − p[γ|z| + α|w|]2 � 0.

By treating L1 as a quadratic form in |z|, |w| and applying Sylvester’s
criterion, we see that (30) is true whenever

1 − pα2 > 0 and 0 �
∣

∣

∣

∣

q − 1 − pγ2 −pγα
−pγα 1 − pα2

∣

∣

∣

∣

= q(1 − pα2 ) − [1 + p(γ2 − α2 )].

Thus, (30) holds with p ∈ (0, α−2 ) , q := 1+ p (γ 2 −α 2 )
1−pα 2 . We take the

point p = 1
α (γ +α ) ∈ (0, α−2 ), where the root λ = q/p of (21) attains its

maximum (α + γ)2 . Via elementary computation of (22), Theorem 4.3
implies (32) for the R-system.

By (29), its phase space XR is Rτ +1 ; such space of the
S1

0 -system is the multidimensional torus XS 1
0

= {[s0 , . . . , s−τ ] :
s−j ∈ S1

0 ∀j}. The covering projection of [x0 , . . . , x−τ ] ∈ XR into
[eıx 0 , . . . , eıx−τ ] ∈ XS 1

0
clearly maps the next state of the R-system

into the state of the S1
0 -system that is next to the projection of the

current state of the R-system. It remains to note that the change of the
R-system to S1

0 -system does not increase the data rate in (32) by [13,
Lemma 13]. �

For τ = 0, [13, Th. 15] offers an exact formula for Rro/fo(0) and
displays a gap in (32): Rro(0) = Rfo(0) < L. For τ > 0, computation
of Rro/fo(τ ) is not easy. So, we analyze that the gap in the limit as
τ → ∞ via lower estimating the associated limit of Rro(τ ). To this
end, we need the following.

Lemma 5.2: Whenever α > 0 and a > 1 + α, the following
equation:

χn (λ) = λn − aλn−1 + α = 0 (33)

has a root λ ∈ (a(n − 1)/n; a) if the integer n is large enough.
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Proof: It suffices to note that χn (a) = α > 0, whereas

χn [a(n − 1)/n] = α − an

n − 1
[

1 − n−1 ]n n→∞−−−→ −∞.

�
It is easy to see that the eigenvalues of the Jacobian matrix of (31)

at the equilibrium π/2 are the roots of (33) with a := 1 + α + β and
n := τ + 1. One of them converges to a as τ → ∞ by Lemma 5.2,
whereas the others do not lie on S1

0 (since |λ| = 1 ⇒ |λn−1 (a − λ)| �
a − 1 > α). So, the equilibrium is hyperbolic. Then, [13, Th. 9] entails
the following.

Corollary 5.3: The following holds for any α, β > 0:

lim inf
τ →∞

Rro(τ ) � log2 (1 + α + β). (34)

Thus, for α � β, the estimates (32) become tight as τ → ∞. The
smaller the ratio α/(β + 1), the narrower the gap between the up-
per (32) and lower (34) bounds on Rro/fo.

VI. CONCLUSIONS AND FUTURE WORK

For a discrete-time deterministic network of interacting nonlinear
systems, an upper bound on the bit rate at which the network generates
information was given. This bound is based on separate estimates of the
individual contributions of the subsystems and their integration in line
with the network topology. The obtained results were used to show that
the TE of nonlinear delayed systems, as well as the aforementioned rate,
stays bounded as the delay grows without limits. A delay-independent
upper estimate of these quantities was provided; this estimate is shown
to be asymptotically tight for a time-delay analog of the bouncing ball
dynamics.

Future work includes study of decentralized observation schemes
and systems with disturbances.

APPENDIX

PROOFS OF THE RESULTS FROM SECTION III

These proofs use [13, Th. 12], which is reproduced here for the
convenience of the reader.

Theorem A.1 (see [13]): Suppose that for the system (1), the Jaco-
bian matrix A(x) := φ′(x) is bounded on the set X∞ given by (15)
and is uniformly continuous near this set. Let there exist continu-
ous and bounded on X∞ functions vd : Rn → R, constants Λd � 0,
d ∈ [1 : n], and a positive definite n × n matrix P = P � such that for
any d ∈ [1 : n]

vd [φ(x)] − vd [x] +
d

∑

i=1

log2 λi (x) � Λd ∀x ∈ X∞. (A.1)

Here, λ1 (x) � · · · � λn (x) � 0 are the roots of the algebraic equation

det [A(x)�PA(x) − λP ] = 0 (A.2)

are repeated in accordance with their multiplicities. Then

Rfo(φ, K) � Λ� := 2−1 max
d

Λd . (A.3)

We also need the following.
Lemma A.2: If P > 0, Q1 and Q2 are symmetric n × n matrices,

then, HL(P, Q1 ) � HL(P, Q2 ) whenever 0 � Q1 � Q2 .
Proof: We put S := P −1/2 , where P 1/2 is the positively defi-

nite square root of P , and note that (21) means that λ is an eigen-
value det(SQS − λI) = 0 of the symmetric matrix SQS. Meanwhile,
x�SQiSx = (Sx)�Qi (Sx) and so 0 � SQ1S � SQ2S. The proof is

completed by Weyl’s inequality for eigenvalues of symmetric matrices
[36, Cor. 4.3.3]. �

Proof of Lemma 3.10: It is easy to see that

‖ui‖2 (10)
= ‖Vi∗y‖2

(14)
� Mi‖y‖2 = Mi

N
∑

j=1

‖yj ‖2 (A.4)

where u := stack(ui ) and y := stack(yi ). Putting yj := 0 when-
ever Vij = 0 keeps (10) and so (A.4) true. Hence

‖ui‖2
(A .4)
� Mi

∑

j :V i j �=0

‖yj ‖2

×γ i===⇒
N

∑

i=1

γi‖ui‖2 �
N

∑

i=1

γiMi

∑

j :V i j �=0

‖yj ‖2

=
∑

i ,j∈[1 :N ]:V i j �=0

γiMi‖yj ‖2 �
N

∑

j=1

‖yj ‖2
∑

i :V i j �=0

γiMi .

Now, we put yj := γ
1/2
j ζj here, denote wi := γ

1/2
i ui and invoke (19)

to see that

N
∑

i=1

‖wi‖2 �
N

∑

j=1

‖ζj ‖2 γj

∑

i :V i j �=0

γiMi

︸ ︷︷ ︸

�1due to(19)

�
N

∑

j=1

‖ζj ‖2 .

If w ∈ Rm , ζ ∈ Rk , and w = Γw V Γζ ζ , the vectors u = Γ−1
w w and

y = Γζ ζ are related by u = V y, which is equivalent to (10). So,
‖Γw V Γζ ζ‖2 � ‖ζ‖2 ∀ζ ∈ Rk ⇒ (26). �

Proof of Theorem 3.7 and Lemma 3.9: The first two inequalities in
(23) are borrowed from [13, Th. 8] and [13, Formula (7)]. So, it remains
to prove the third inequality. In the view of Lemma 3.10, it suffices to
prove Lemma 3.9.

Assumption 3.4 and (13) guarantee that A(x) := φ′(x) is bounded
on X∞ from (15) and is uniformly continuous near this set, as is
required by Theorem A.1. Also, (13) yields that

A(x)z = stack [Ai (x)zi + Bi (x)wi ] ∀z := stack (zi )

where wi =
N

∑

j=1

Vij ζj , ζj = Cj (x)zj , and

(A.5)

Ai (x) :=
∂φi

∂xi

[x�
i (x)], Bi (x) :=

∂φi

∂ui

[x�
i (x)]

Ci (x) =
∂hi

∂xi

[xi ].

Now, we introduce the following positively and nonnegatively definite
block-diagonal n × n matrices, respectively

P = diag(P1 , . . . , PN ), Q = diag(Q1 , . . . , QN ). (A.6)

For any x ∈ X∞, the vector x�
i (x) has the form [xi (t), ui (t)] for

some t � 0 and some trajectory of the networked system that starts in
K . Hence, Ai (x), Bi (x) and Ci (x) coincide with matrices (17) that
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satisfy inequality (18), and so

z�A(x)�PA(x)z

=
N

∑

j=1

[Ai (t)zi + Bi (t)wi ]�Pi [Ai (t)zi + Bi (t)wi ]

(18)
�

N
∑

j=1

[

z�
i Qizi − 1

γi

‖ζi‖2 + γi‖wi‖2
]

(25)= z�Qz − ∥

∥Γ−1
ζ ζ

∥

∥

2 + ‖Γw w‖2 .

Here, ζ := stack(ζi ) and w := stack(wi ) are related by w = V ζ
due to the first relation in (A.5). Whence

z�A(x)�PA(x)z � z�Qz − ∥

∥Γ−1
ζ ζ

∥

∥

2 +
∥

∥Γw V Γζ Γ−1
ζ ζ

∥

∥

2

� z�Qz − [

1 − ‖Γw V Γζ ‖2 ]
∥

∥Γ−1
ζ ζ

∥

∥

2 Ass. 3.8
� z�Qz ∀z.

So, by Lemma A.2, HL[PA(x)�PA(x)] � HL(P, Q) ∀x ∈ X∞.
So, (A.1) holds with vd (·) ≡ 0 and Λd := 2HL(P, Q) ∀d, whence
Rfo(φ, K) � HL(P, Q) by Theorem A.1. Meanwhile, (A.6) implies
that the roots of equation (21) are formed via the union of the sets of
the roots of all equations det(Qj − λPj ), j ∈ [1 : N ]. So, HL(P, Q) =
∑N

j=1 HL(Pj , Qj ) by (22), which completes the proof of the third
inequality in (23). �
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stability analysis of systems with saturation in feedback,” in Proc. IEEE
Conf. Decis. Control, 2013, pp. 5903–5908.

[31] A. Pogromsky and A. Matveev, “A non-quadratic criterion for stability of
forced oscillations,” Syst. Control Lett., vol. 62, no. 5, pp. 408–412, 2013.

[32] A. Y. Pogromsky and A. Matveev, “Stability analysis via averaging func-
tions,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1081–1086, Apr.
2016.

[33] A. Pogromsky and A. Matveev, “Data rate limitations for observability
of nonlinear systems,” IFAC-PapersOnLine, vol. 49, no. 14, pp. 119–124,
2016.

[34] J. Willems, “Dissipative dynamical systems – Part I: General theory; Part
II: Linear systems with quadratic supply rates,” Arch. Rational Mech.
Anal., vol. 45, no. 5, pp. 321–393, 1972.

[35] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Trans. Autom. Control, vol. 42, no. 6, pp. 819–830,
Jun. 1997.

[36] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1990.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


