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a b s t r a c t

For a class of uncertain systems we analyze passification-based adaptive controller in the presence of
small, unavoidable input and output time-varying delays as may be present in controller implementa-
tion. We derive upper bounds for time delays such that in some domain of initial conditions the states of
the closed-loop system tend to zero, whereas an adaptive controller gain tends to a constant value. The
results are semi-global, that is the domain of initial conditions is bounded but can bemade arbitrary large
by tuning an appropriate controller parameter. For the first time, we apply an adaptive controller to linear
uncertain networked control systems, where sensors, controllers, and actuators exchange their informa-
tion through communication networks. The efficiency of the results is demonstrated by the example of
adaptive network-based control of an aircraft.
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1. Introduction

In this paper we consider passification-based adaptive con-
troller, which proved to be efficient for stabilization of delay-free
systems. As it has been shown in Fradkov (1974), any hyper-
minimum-phase linear time-invariant system can be stabilized by
a static output feedback u(t) = −ky(t) if k is large enough (for
more established description see Andrievskii and Fradkov (2006)).
For the case of uncertain systems an adaptive version of this con-
troller has been derived via the speed gradient method (Fradkov,
1980).

While applying adaptive controller it is important to take into
account unknown unavoidable input/output delays, which is a
challenging problem (Krstic, 2010; Tsykunov, 1984). Most of the
existing works on adaptive control deal only with state delays,
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e.g. (Ben Yamin, Yaesh, & Shaked, 2010; Mirkin & Gutman, 2004,
2010; Zhang, Xu, & Chu, 2010) to name a few. Adaptive controllers
for linear systems with full state measurements and a constant in-
put delay have been proposed and analyzed in Dydek, Annaswamy,
Slotine, and Lavretsky (2013); Toodeshki, Hosseinnia, and Askari
(2011). Passification-based adaptive output-feedback controller
with a constant input delay has been studied in Mizumoto (2013).

Note that for linear time-invariant systems with constant time-
delays there is almost no difference between an input and output
delay, since the transfer function is the same. A more challenging
problem is adaptive stabilization with time-varying delays, where
input and output delays should be treated separately. A possible
way to approach this problem is to assume that the difference
between current and delayed signal is small enough (Balas &
Nelson, 2011; Nelson, Balas, & Erwin, 2013), but this assumption
is restrictive and difficult to verify.

In the present paper we suggest a simple adaptive output-
feedback controller that stabilizes hyper-minimum-phase systems
with input and output time-varying delays. Namely, we derive up-
per bounds on the time-delays such that in a given domain of ini-
tial conditions the states of the closed-loop system tend to zero,
whereas an adaptive controller gain tends to a constant value. By
changing a particular controller parameter the domain of accept-
able initial conditions can be made arbitrary large leading to semi-
global stability (see Remark 2). Moreover, we consider fast-varying
delays (without any constraints on the delay-derivatives). This al-
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lows to apply, for the first time, an adaptive controller to linear
uncertain networked control systems, where variable sampling in-
tervals and communication delays are taken into account (see Sec-
tion 4). Some preliminary results (without input delays) have been
presented in Selivanov, Fridman, and Fradkov (2013).
Notations: Throughout the paper the superscript ‘‘T ’’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm ∥ · ∥, Rn×m is the set of all n × m real
matrices, the notation P > 0 for P ∈ Rn×n means that P is
symmetric and positive definite, λmin(P) and λmax(P) stand for the
minimum andmaximum eigenvalues of thematrix P , respectively.
The symmetric elements of the symmetric matrix will be denoted
by ∗. The set {0, 1, 2, . . .} is denoted by Z+.

2. Preliminaries and problem formulation

2.1. Preliminaries: Passification method

For non-delay linear time-invariant systems passification
method and the corresponding design of an adaptive controller are
based on Passification lemma that we state below.

Definition 1. For given matrices A ∈ Rn×n, B ∈ Rn×1, C ∈

Rl×n, g ∈ Rl×1 a transfer function gTW (s) = gTC(sI − A)−1B
is called hyper-minimum-phase (HMP) if the polynomial ϕ(s) =

gTW (s) det(sI − A) is Hurwitz and gTCB is a positive number.

Lemma 1 (Passification Lemma, Fradkov, 1976). Let thematrices A ∈

Rn×n, B ∈ Rn×1, C ∈ Rl×n, g ∈ Rl×1 be given. Then for existence of
P ∈ Rn×n and k∗ ∈ R such that

P > 0, PA∗ + AT
∗
P < 0, PB = CTg, (1)

where A∗ = A−Bk∗gTC, it is necessary and sufficient that the function
gTW (s) = gTC(sI − A)−1B is HMP.

An appropriate value for k∗ in Lemma1 is any positive number such
that

k∗ > − inf
ω∈R

Re


gTW (iω)
−1


. (2)

See Andrievskii and Fradkov (2006) for more details on Passifica-
tion method.

2.2. Problem formulation

Consider an uncertain linear system

ẋ(t) = Aξ x(t) + Bu(t − r1(t)), x(0) = x0,
y(t) = Cx(t − r2(t)),

(3)

where x ∈ Rn is the state, u ∈ R is the control input, y ∈ Rl is the
measurable output; Aξ is an uncertain matrix that resides in the
polytope

Aξ =

N
i=1

ξiAi, 0 ≤ ξi ≤ 1,
N
i=1

ξi = 1. (4)

The delays r1(t), r2(t) are supposed to be unknown and bounded:

0 ≤ r1(t) ≤ h1, 0 ≤ r2(t) ≤ h2.

We set x(t) = 0 for t < 0. This does not affect the solution x(t)
and implies that y(t) = 0 if t − r2(t) < 0.

Denote

r(t) = r1(t) + r2(t − r1(t)). (5)

The quantity r(t) is the overall delay of the closed-loop system.
Clearly

r(t) ≤ h1 + h2 , h.
Fig. 1. Networked control system.

If t − r(t) < 0 then the system (3) is in the open-loop since it has
not received a signal from the controller. Therefore, a special anal-
ysis is needed on the intervals where t − r(t) < 0. Following (Liu
& Fridman, 2014) we assume

Assumption 1. There exists a unique t∗ > 0 such that
t − r(t) < 0, t < t∗,
t − r(t) ≥ 0, t ≥ t∗.

Assumption 1 has a simple physical meaning: the system (3) starts
to receive signals from the controller at time t∗. It is clear that
t∗ ≤ h. Assumption 1 is always satisfied for slowly-varying delays
with ṙ(t) ≤ 1 (since t − r(t) is increasing) and for networked
control systems as considered in Section 4.

Similar to Andrievskii and Fradkov (2006); Fradkov (1976) we
assume

Assumption 2. There exists a known g ∈ Rl such that gTC(sI −

Aξ )
−1B is HMP for all Aξ from (4).

For a given g satisfying Assumption 2 we consider the adaptive
controller

u(t) = −k(t)gTy(t),
k̇(t) = γ −2 

gTy(t)
2

,
(6)

where k, γ ∈ R, γ > 0.
For r1(t) = r2(t) ≡ 0 under Assumption 2 it has been shown

in Andrievskii and Fradkov (2006) that solutions of the closed-loop
system (3), (6) satisfy the following property: for all k(0) ∈ R

lim
t→∞

∥x(t)∥ = 0, lim
t→∞

k(t) = const. (7)

Our objective is to derive conditions ensuring (7) for non-zero de-
lays and for a certain choice of k(0).

3. Main results

The closed-loop system (3), (6) can be presented in the form

ẋ(t) = Aξ x(t) − k∗BgTCx(t − r(t))

+ (k∗ − k(t − r1(t)))BgTCx(t − r(t)),

k̇(t) = γ −2 
gTCx(t − r2(t))

2 (8)

with k(t) = k(0) for t < 0. Note that here ẋ(0) and ẋ(t∗) denote
right-hand side derivatives.

The idea of passification-based approach is the following. Under
Assumption 2 there exist P > 0, k∗ that satisfy (1). Consider a
Lyapunov-like function

V0(x, k) = xTPx + γ 2(k − k∗)
2.

Its derivative along the trajectories of (8) has the form

V̇0 = 2xT (t)P

Aξ x(t) − k∗BgTCx(t − r(t))


+ 2(k∗ − k(t − r1(t)))xT (t)PBgTCx(t − r(t))

+ 2(k(t) − k∗)

gTCx(t − r2(t))

2
. (9)
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For r1(t) = r2(t) ≡ 0 the last two terms can be canceled because
PB = CTg . Hence, (1) guarantees that V̇0 ≤ −ε∥x∥2 for some ε > 0.
The latter implies (7) (see Andrievskii and Fradkov (2006)).

Remark 1. Note that the above arguments for r1(t) = r2(t) ≡ 0
can be easily extended to systems with state delays. Consider the
system

ẋ(t) = A0x(t) + A1x(t − r(t)) + Bu(t),
y(t) = Cx(t). (10)

Here x, u, y are defined as previously and all matrices are constant
with appropriate dimensions. Calculating V̇0 we obtain:

V̇0 = 2xT (t)P

A0x(t) + A1x(t − r(t))

− k∗BgTCx(t)

+ 2(k∗ − k(t))xT (t)PBgTCx(t)

+ 2(k(t) − k∗)(gTy(t))2.

Since PB = CTg , the last two terms can be canceled and the
Lyapunov-based analysis of (10) is reduced to the standard one for
linear time-delay systems under u(t) = −k∗gTy(t). In the case
of an input/output time-varying delay such a cancelation is not
possible since the controller does not measure the current value of
the state. Therefore, adaptive control of systemswith input/output
delays is much more challenging than the one under state delays.

As already mentioned, if r1(t) ≢ 0 or r2(t) ≢ 0 the cancelation
of the last two terms in (9) is not possible because x and k depend
on different time instants. Note that the right-hand side of (9) can
be considered as a quadratic form in x(t), x(t−r(t)), and x(t−ri(t))
(i = 1, 2), where matrices depend on the following time-varying
parameters:

a = k∗ − k(t),
b = k∗ − k(t − r1(t)),
c = k(t) − k(t − r1(t)).

(11)

Consider the following Lyapunov–Krasovskii functional:

V (xt , ẋt , k) = V0(xt , k) + VS(xt) + VR(ẋt), (12)

where xt(θ) = x(t + θ), θ ∈ [−h, 0], h = h1 + h2, and

VS(xt) =

 0

−h
xTt (s)Sxt(s) ds, S > 0,

VR(ẋt) = h
 0

−h

 0

θ

ẋTt (s)Rẋt(s) ds dθ, R > 0.

Here VS and VR are standard terms for systems with fast-varying
delays (Fridman & Shaked, 2003; He, Wang, Lin, & Wu, 2007). Our
goal is to derive conditions that ensure V̇ ≤ −ε∥x(t)∥2 for some
ε > 0 if

|a| ≤ M∗, |b| ≤ M∗, |c| ≤ M1 (13)

for t ≥ 0, whereM∗ andM1 are some fixed bounds. Further wewill
show that (13) is valid for t ≥ 0 if one choose appropriate values
of k(0) and γ .

We are in a position to formulate our main result.

Theorem 1. Let Assumptions 1 and 2 hold. Given h > 0 and tuning
parameters M∗ > 0, M1 > 0, k∗ > 0, let there exist n × n matrices
P > 0, S > 0, R > 0, G1, G2, G3 such that the following relations hold:

Hi(a, b, c)

a±M∗,b±M∗,c±M1

< 0, i = 1, . . . ,N,

PB = CTg,

R Gj
∗ R


≥ 0 (j = 1, 2, 3),

(14)
where
Hi(a, b, c) =
H i

1 H2(c) 0 H3 H4(a) hAT
i R

∗ −R R H5(a) −hG1 H7(b)
∗ ∗ −(S + R) hG2 hG1 0
∗ ∗ ∗ −h2R H6(a) 0
∗ ∗ ∗ ∗ −h2R 0
∗ ∗ ∗ ∗ ∗ −R

 ,

H i
1 = P[Ai − Bk∗gTC] + [Ai − Bk∗gTC]

TP + S,
H2(c) = cPBgTC,

H3 = k∗hPBgTC,

H4(a) = k∗hPBgTC − ahPBgTC,

H5(a) = ahCTgBTP − hG2,

H6(a) = ah2PBgTC − h2(G3)
T ,

H7(b) = hbCTgBTR − hk∗CTgBTR.

Assume additionally that

h1 ≤
M1λmin(P)

M2
∗
∥gTC∥2

. (15)

Then for any δ > 0 there exists γ > 0 such that for all initial
conditions x0, k(0) subject to

∥x0∥ < δ, k(0) ∈ [k∗ − M∗, k∗], (16)

solutions of the system (3), (6) satisfy the property (7).

Proof. See Appendix A.

Remark 2. Conditions of Theorem 1 ensure semi-global results,
where (7) is guaranteed for any δ > 0 and x0 with ∥x0∥ < δ. It
follows from the proof of Theorem 1 that an appropriate γ can be
chosen from the inequality

δ2
≤ γ 2 min


M2

∗
e−2ΛAt∗

λmin(P)
,
M∗

c1
,
M2

∗
− c2

∗

cx


, (17)

where ΛA = maxi ∥Ai∥ and c1, c∗, cx are given in (A.2), (A.3), (A.6),
correspondingly. If t∗ in (17) is unknown, one should substitute a
known upper bound for t∗.

Remark 3. Under Assumptions 1 and 2 due to Passification lemma
there exist P and k∗ that satisfy (1). With these P and k∗ relations
(14) are feasible for givenM1 > 0 andM∗ > 0 if h is small enough.
Indeed, due to (A.8) H2 → 0 for h → 0. The same is true for
H3, . . . ,H7. Then by Schur complement theorem (Gu, Kharitonov,
& Chen, 2003, p. 318) it can be shown that Hi < 0 for R = I ,
S = hI , Gj = 0 (j = 1, 2, 3). When h → 0 allowable M∗ and
M1 tend to infinity, therefore, our results recover the global results
from Andrievskii and Fradkov (2006) for delay-free case. Relations
(14) give acceptable bounds h1 and h2 such that (7) holds for the
closed-loop time-delay system (3), (6).

Remark 4. There is a trade-off between enlarging of M∗, M1 and
enlarging of the delay bounds h, h1. The smaller h is, the larger M∗

can be taken such that the LMIs (14) are feasible, i.e. a wider choice
of adaptive gain is possible. Furthermore, given M1, k∗ such that
(14) are feasible forM∗ they remain feasiblewith the samedecision
variables for all M ′

∗
< M∗. The latter means that the stability is

guaranteed for the same h but for larger h1 due to (15).

4. Network-based adaptive control

4.1. Case study: adaptive control of networked control systems

In this section we apply passification-based adaptive control to
networked control systems. Consider the uncertain system
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Fig. 2. State norms for 5 different randomly chosen initial conditions.

ẋ(t) = Aξ x(t) + Bu(t),
y(t) = Cx(t) (18)

with several nodes (a sensor, a controller, and an actuator) that
are connected via two communication networks: a sensor network
(from the sensor to the controller) and a control network (from the
controller to the actuator) (see Fig. 1). Let sk be the sequence of
sampling instants:

0 = s0 < s1 < · · · < sk < · · · , k ∈ N, lim
k→∞

sk = ∞.

At each sampling instant sk the output y(t) is sampled and trans-
mitted via the network to the controller with a variable delay τ sc

k .
Therefore, the updating instant time of the controller is σk = sk +

τ sc
k . For simplicity, we assume that σk < σk+1, that is the old sam-
ple cannot get to the destination after the most recent one. Then
the controller has the form

u(t) = −k(t)gTy(σk − τ sc
k ),

k̇(t) = γ −2gTy(σk − τ sc
k )

2
,

t ∈ [σk, σk+1). (19)

At the sampling instants σk the control signal is sampled and trans-
mitted through the network to the Zero-Order Hold (ZOH) with a
variable delay τ ca

k . Therefore, the updating instant time of the ZOH
is tk = sk+τ sc

k +τ ca
k .We assume that tk < tk+1 and there is a known

MAD (maximum allowable delay) such that τ sc
k + τ ca

k ≤ MAD.
Following the time-delay approach to sampled-data control

(Fridman, 2014; Fridman, Seuret, & Richard, 2004), the resulting
closed-loop system can be presented in the form

ẋ(t) = Aξ x(t) + Bk(t − r1(t))gTCx(t − r(t)),
k̇(t) = γ −2gTCx(t − r2(t))

2
,

(20)

where

r1(t) = t − tk + τ ca
k , t ∈ [tk, tk+1),

r2(t) = t − σk + τ sc
k , t ∈ [σk, σk+1),

r(t) = t − tk + τ sc
k + τ ca

k , t ∈ [tk, tk+1).

(21)

Here r(t) = r1(t) + r2(t − r1(t)). Note that r(t) satisfies
Assumption 1 with

t∗ = t0 = τ sc
0 + τ ca

0 ≤ MAD.

Assume that

tk+1 − tk + τ ca
k ≤ h1,

tk+1 − tk + τ ca
k + τ sc

k ≤ h,
∀k ∈ Z+. (22)

Since (20) coincides with (8), the results of Theorem 1 provide
bounds for the sampling intervals and network-induced delays.
Fig. 3. Evolution of adaptive gains for 5 different randomly chosen initial
conditions (solid lines); the value of k∗ = 4.61 (dashed line).

We illustrate this below by an example of network-based adaptive
control of an aircraft.

4.2. Example: yaw angle control

As an example we apply our results to the following model of a
lateral motion of an aircraft (Fradkov & Andrievsky, 2011):

ẋ1(t) = a1x1(t) + x2(t) + b1u(t − r1(t)),
ẋ2(t) = a2x1(t) + a3x2(t) + b2u(t − r1(t)),
ẋ3(t) = x2(t),
y1(t) = x2(t − r2(t)),
y2(t) = x3(t − r2(t)),

where x3 and x2 are the yaw angle and the yaw rate, respectively,
and x1 denotes the sideslip angle; u is the rudder angle; yi are
measurable outputs; ai and bi denote the aircraft model param-
eters. We suppose that the aircraft is controlled through a net-
work, that is the closed-loop system has the form (20) with r1(t),
r2(t) given by (21). Then Assumption 1 is satisfied with t∗ ≤ MAD.
Following (Fradkov & Andrievsky, 2011) we take a3 = 1.3, b1 =

19/15, b2 = 19 and suppose that a1 ∈ [0.1, 1.5], a2 ∈ [27, 52]
are uncertain system parameters. Then for g = (1, 1)T the transfer
function

gTW (s) =
b2s2 + (b1a2 − b2a1 + b2)s + b1a2 − b2a1

s(s2 − (a1 + a3)s + a1a3 − a2)

is HMP, since for all a1, a2 from the given sets its numerator is a
stable polynomial and b2 > 0. Therefore, Assumption 2 is true. For
M∗ = 5, M1 = 0.4, k∗ = 4.61 conditions of Theorem 1 are satis-
fied with h1 = 4 × 10−4, h = 10−3, γ = 25, δ = 20. To illustrate
Remark 4 we take M ′

∗
= 4 < M∗ with the same M1, k∗. This leads

to the same h but larger h1 = 6.4 × 10−4.
In Figs. 2 and 3 one can see the results of numerical simulations

for a1 = 0.75, a2 = 33 and five different randomly chosen initial
conditions such that ∥x(0)∥ ≤ δ = 20. We took tk+1 − tk = 2 ×

10−4, τ sc
k = (1.5+0.5(−1)k)10−4 and τ sc

k = (5.5+0.5(−1)k)10−4

with MAD = 8 × 10−4. As it follows from Theorem 1, x(t) → 0
and k(t) tend to constant values.

It is easy to prove that k∗ is an appropriate gain for the static
controller u(t) = −k∗gTy(t) that stabilizes entire class of uncer-
tain systems. As one can see in Fig. 3, the limit value of k(t) is
smaller than k∗ = 4.61, which shows an advantage of the adap-
tive control over the static one.

5. Conclusion

For a class of uncertain hyper-minimum-phase systems we an-
alyzed passification-based adaptive controller in the presence of
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unknown time-varying delays in the measurements and control
input. If a delay-free system under the controller is such that the
state tends to zero, whereas the adaptive controller gain tends to a
constant value, then our results give an acceptable bound for time-
delay such that this property is preserved within a given domain
of initial conditions. This domain of stability can be made arbitrary
large by changing an appropriate parameter in the adaptation law.
The results are applicable to networked control systems and pro-
vide acceptable bounds for transmission intervals and network-
induced delays. This important application was demonstrated by
an example of an aircraft that is adaptively controlled through a
network. One of the directions for the future research is extension
of the obtained results to the adaptive control of networks.

Appendix. Proof of Theorem 1

We analyze the dynamics of (8) separately for t ∈ [0, t∗]
Appendix A.1 and t ∈ [t∗, ∞) Appendix A.2.

A.1. State bound for t ∈ [0, t∗]

Assumption 1 implies t − r(t) < 0, therefore ẋ(t) = Aξ x(t).
Thus,

∥x(t)∥ ≤ eΛAt∥x0∥, (A.1)

where ΛA = maxξ ∥Aξ∥. Note that

∥Aξ∥ ≤


i

ξi∥Ai∥ ≤ max
i

∥Ai∥

and for appropriate ξ , ∥Aξ∥ = maxi ∥Ai∥. Therefore,

max
ξ

∥Aξ∥ = max
i

∥Ai∥.

Note that (A.1) is preserved for t < 0, hence ∥x(t − r2(t))∥ ≤

eΛA(t−r2(t))∥x0∥ ≤ eΛAt∥x0∥. As a result, we have

k(t) − k(0) = γ −2
 t

0


gTCx(s − r2(s))

2
ds

≤
c1∥x0∥2

γ 2
,

where

c1 =
Λ2

C

2ΛA


e2ΛAt∗ − 1


, (A.2)

with ΛC = ∥gTC∥. By conditions of the theorem k(0) ≤ k∗,
therefore k(t) − k∗ ≤ k(t) − k(0) ≤ c1γ −2

∥x0∥2. Eq. (8) implies
k(t) ≥ k(0), thus k∗ − k(t) ≤ k∗ − k(0). Finally, for t ∈ [0, t∗) we
have

|k(t) − k∗| ≤ c∗ = max

k∗ − k(0), c1γ −2δ2 , (A.3)

where the inequality ∥x(0)∥ ≤ δ was used. Since the right-hand
side of (8) is piecewise continuous, functions x(t) and k(t) are
continuous for t > 0, therefore, (A.1) and (A.3) are valid for t = t∗.

A.2. The bound on V̇ for t ∈ [t∗, ∞) under (13)

Assumption 1 implies t − r(t) ≥ 0, therefore, ẋ(t) and k̇(t) do
not depend on x(t)with t < 0. Thus, we set x(t) = x0 for t < 0 and
consider V given by (12) (see Liu and Fridman (2014) for details).

Now we calculate the derivative of V along the trajectories of
(8) for t ∈ [t∗, ∞). Denote

µ(t) =
1
h

 t−r2(t)

t−r(t)
ẋ(s) ds, ν(t) =

1
h

 t

t−r2(t)
ẋ(s) ds.
Then

V̇0 = xT (t)[PA∗ + AT
∗
P]x(t)

+ 2x(t)Tk∗PBgTCh(µ(t) + ν(t))
+ 2


k∗ − k(t)


xT (t − r2(t))PBgTCx(t − r2(t))

− 2(k∗ − k(t))xT (t − r2(t))PBgTChµ(t)
+ 2(k∗ − k(t))hνT (t)PBgTCx(t − r(t))
+ 2


k(t) − k(t − r1(t))


xT (t)PBgTCx(t − r(t))

+ 2

k(t) − k∗


gTCx(t − r2(t))

2
,

where A∗ = Aξ −k∗BgTC . Using the relation PB = CTg we find that

V̇0 = xT (t)[PA∗ + AT
∗
P]x(t)

+ 2xT (t)k∗hPBgTC(µ(t) + ν(t))
− 2(k∗ − k(t))hxT (t − r2(t))PBgTCµ(t)
+ 2(k∗ − k(t))hνT (t)PBgTCx(t − r(t))
+ 2


k(t) − k(t − r1(t))


xT (t)PBgTCx(t − r(t)).

Further

V̇S = xT (t)Sx(t) − xT (t − h)Sx(t − h),

V̇R = h2ẋT (t)Rẋ(t) − h
 t

t−h
ẋT (s)Rẋ(s) ds.

Denote

α1 =
h − r(t)

h
, α2 =

r(t) − r2(t)
h

, α3 =
r2(t)
h

,

f1(t) =

 t−r(t)

t−h
ẋT (s) ds R

 t−r(t)

t−h
ẋ(s) ds,

f2(t) = h2µT (t)Rµ(t), f3(t) = h2νT (t)Rν(t).

Using Jensen inequality (Gu et al., 2003, p. 322) we have

−h
 t

t−h
ẋT (s)Rẋ(s) ds = −h

 t−r(t)

t−h
ẋT (s)Rẋ(s) ds

−h
 t−r2(t)

t−r(t)
ẋT (s)Rẋ(s) ds − h

 t

t−r2(t)
ẋT (s)Rẋ(s) ds

≤ −


1
α1

f1(t) +
1
α2

f2(t) +
1
α3

f3(t)


.

Since Gj (j = 1, 2, 3) are such that
R Gj

∗ R


≥ 0

it follows from Park’s theorem (Park, Ko, & Jeong, 2011, Theorem
1) that

−


1
α1

f1(t) +
1
α2

f2(t) +
1
α3

f3(t)


≤ − [f1(t) + f2(t) + f3(t) + 2g1(t) + 2g2(t) + 2g3(t)] ,

where

g1(t) = h
 t−r(t)

t−h
ẋT (s) ds G1µ(t),

g2(t) = h
 t−r(t)

t−h
ẋT (s) ds G2ν(t),

g3(t) = h2µT (t)G3ν(t).

Using representation x(t − r2(t)) = x(t) − hν(t) we finally arrive
at

V̇ ≤ ηT (t)Wη(t) + h2ẋT (t)Rẋ(t), (A.4)
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where

η(t) = (xT (t), xT (t − r(t)), xT (t − h)T , νT (t), µT (t))T ,

W =


H1 H2(c) 0 H3 H4(a)
∗ −R R H5(a) −hG1
∗ ∗ −(S + R) hG2 hG1

∗ ∗ ∗ −h2R H6(a)
∗ ∗ ∗ ∗ −h2R

 ,

with a = k∗ −k(t), c = k(t)−k(t− r1(t)),H1 = P[Aξ −Bk∗gTC]+

[Aξ − Bk∗gTC]
TP + S. Substituting right-hand side of (8) instead of

ẋ(t) into (A.4) and applying Schur complement theorem (Gu et al.,
2003, p. 318) we find that, if for i = 1, . . . ,M

Hi

a, b, c


< 0, (A.5)

with a, b, c given by (11), then ∃ ε > 0 : V̇ (t) ≤ −ε∥η(t)∥2, where
V (t) = V (xt , ẋt , k(t)).

A.3. Proof of (13) for t ≥ 0

Now we show that |a| ≤ M∗, |b| ≤ M∗, and |c| ≤ M1, what will
guarantee negative definiteness of V̇ . Using estimates for |k∗−k(t)|
and ∥x(t)∥ on t ∈ [0, t∗], we calculate

V (t∗) ≤ cx∥x0∥2
+ γ 2c2

∗
,

where c∗ is from (A.3) and

cx = ∥P∥e2ΛAt∗ + ∥S∥

h − t∗ +

1
2ΛA


e2ΛAt∗ − 1


+

hΛARA

2ΛA


e2ΛAt∗ t∗ +

1
2ΛA


1 − e2ΛAt∗


+ (h − t∗)


e2ΛAt∗ − 1


, (A.6)

ΛARA = max
ξ

∥AT
ξRAξ∥.

By conditions of the theorem |k∗ −k(0)| < M∗. If γ is large enough
then

∥x0∥2 <
γ 2M∗

c1
.

Hence, c∗ < M∗. By increasing γ one can ensure that

∥x0∥2 < γ 2(M2
∗

− c2
∗
)c−1

x ,

what will guarantee

V (t∗) < γ 2M2
∗
.

Nowwe show that V (t) < γ 2M2
∗
for t ∈ [t∗, ∞). Let t1 = min{t ∈

[t∗, ∞)|V (t) = γ 2M2
∗
}. Then for s ∈ [t∗, t1] we have

V (s) ≤ γ 2M2
∗

⇒


|k∗ − k(s)| ≤ M∗,

∥x(s)∥2
≤ γ 2M2

∗
λ−1
min(P).

(A.7)

Since c∗ < M∗, (A.3) implies |k∗−k(t)| ≤ M∗ for t ≤ t1.We require
γ to be large enough to ensure

∥x0∥2
≤ γ 2M2

∗
e−2ΛAt∗λ−1

min(P).

In this case (A.1) and (A.7) guarantee that ∥x(t)∥2
≤ γ 2M2

∗
λ−1
min(P)

for t ≤ t1. Thus, for t ≤ t1
|c| = |k(t − r1(t)) − k(t)|

≤

 t

t−r1(t)
γ −2(gTCx(s − r1(s)))2 ds ≤ h1

M2
∗
Λ2

C

λmin(P)
. (A.8)

As a result, for t ≤ t1 we have:

|k∗ − k(t)| ≤ M∗,
|k∗ − k(t − r1(t))| ≤ M∗,
|k(t − r1(t)) − k(t)| ≤ M1.

(A.9)
In this case conditions of the theorem guarantee (A.5) for t ≤ t1.
Therefore ∃ ε > 0 : V̇ (t) ≤ −ε∥η(t)∥2. Since V (t1) = V (t∗) + t1
t∗

V̇ (s) ds, we have V (t1) ≤ V (t∗) < γ 2M2
∗
. The latter contradicts

to V (t1) = γ 2M2
∗
, that is t1 does not exist and, therefore, V (t) <

γ 2M2
∗
for t ∈ [t∗, ∞) and (A.9) are valid for t ≥ 0.

A.4. Proof of (7)

We have proved that ∃ ε > 0 : V̇ (t) ≤ −ε∥η(t)∥2 for t ≥ t∗.
Since V (t) is a nonnegative decreasing function, it has a finite limit:
limt→∞ V (t) < ∞. Thus,

lim
t→∞

V (t) = V (t∗) +


∞

t∗
V̇ (s) ds

≤ V (t∗) − ε


∞

t∗
∥η(s)∥2 ds.

Therefore, ε


∞

t∗
∥η(s)∥2 ds < ∞, i.e.


∞

t∗
∥x(s)∥2 ds < ∞.

Boundedness of V implies boundedness of x(t) and k(t). Therefore,
ẋ(t) given by (8) is bounded and x(t) is uniformly continuous.
Then from Barbalat’s lemma (Khalil, 2002, Lemma 8.2) we have
∥x(t)∥ −−−→

t→∞
0. Moreover,


∞

t∗
∥η(s)∥2 ds < ∞ implies that there

exists a finite limit

lim
t→∞

k(t) = k(t∗) + γ −2


∞

t∗


gTCx(s − r2(s))

2
ds,

that is k(t) tends to a constant value.
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