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SUMMARY

The problem of designing a globally exponentially convergent observer for a class of (linear in transport and
nonlinear in generation) semi-linear parabolic distributed systems is addressed within a matrix inequality
framework, yielding (i) sufficient convergence conditions with physical meaning and (ii) the weight of a
Lyapunov functional as design degree of freedom. The proposed approach is illustrated and tested with a
representative case example in chemical reaction engineering. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is concerned with the design of an infinite-dimensional observer for a class of semi-linear
parabolic systems with linear convective-diffusive transport and nonlinear generation. The system
class includes a diversity of important processes in science and engineering [1–3]. In the literature,
this problem has been addressed, basically, with two approaches: (i) finite-dimensional approxi-
mation of the distributed system followed by finite-dimensional observer design and functioning
assessment (also called early lumping) [4–7] and (ii) direct infinite-dimensional convergent observer
design for the distributed system [8–11] followed by finite-dimensional (numerical package-based
or tailored) implementation [12,13].

In the finite-dimensional approximation approach [4–7], the observation problem is addressed
with the tools available in the more developed field of finite-dimensional systems, and the conver-
gence assessment is with respect to the actual distributed system. The infinite-dimensional designs
have been performed according with inertial manifolds [2], backstepping-like integral transforma-
tions [11], variable structure estimation schemes [9], nonlinear evolution equations [14], open-loop
observers [15], and absolute stability [8].

Motivated by a finite-dimensional nonlinear system observer design [18,19] within an adjustable-
weight Lyapunov function approach, in this paper, the problem of designing an observer for a class
of infinite-dimensional semi-linear-distributed systems with linear diffusion-convection transport,
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nonlinear reaction, and boundary measurements is considered. The problem is addressed within
a weighted Lyapunov function framework, where (i) the weight function is regarded as a design
degree of freedom and (ii) the associated algebraic inequality convergence conditions are handled
with a linear matrix inequality (LMI) procedure. The result is an infinite-dimensional Luenberger-
like observer with (i) a simple structure and construction-tuning procedure, (ii) global convergence
conditions with physical meaning, and (iii) the Lyapunov weight as an effective design degree of
freedom.

The proposed approach is illustrated and tested with a representative tubular reactor case example
with non-monotonic kinetics, which includes an important class of single-state profile chemical, bio-
chemical, and physiological isothermal-distributed systems. Methodologically speaking, the present
study can be seen as an inductive step toward the consideration of isothermal and non-isothermal
single and multi-state transport-reaction systems with boundary and/or domain measurements.

The content of this paper puts together and completes preliminary reported material on the
subject: in [16], the infinite-dimensional observer design problem was addressed with an adjustable-
weight Lyapunov function, and in [17], the related convergence inequalities were handled with an
LMI approach recalled from optimal boundary control design [20].

The paper is organized as follows. The observation problem is stated in Section 2. Space-
dependent LMI conditions for observer exponential convergence are derived in Section 3. The
approach is applied to the tubular reactor example in Section 4. Finally, some conclusions are drawn
in Section 5.

Notation

The space of n-times continuously differentiable functions is denoted by Cn, ´�.�/ (or ´��.�/)
denotes the first (or second) derivative of the function ´.�/ 2 C2, ´min D min�2Œ0,1� ´.�/, and
´max D max�2Œ0,1� ´.�/, and L2.Œ0, 1�/ denotes the space of square Lebesgue integrable functions,
that is, functions with finite norm

jj´.x, t /jj D
�Z 1

0

´2.x, t /dx

�1=2

, (1)

and H 1.Œ0, 1�/ D W 1,2.Œa, b�, R/ is the Sobolev space of absolutely continuous functions h W
Œa, b� ! R with square Lebesgue integrable derivative hx , and norm jjhjj2W 1,2 D R b

a
h2

x.�/d�.
For later use, recall the following Lemma.

Lemma 1 (Wirtinger’s inequality [21])
For h 2 W 1,2.Œa, b�, R/, the following holds:

(a) If h.a/ D 0, the following inequality holds with � D 4Z b

a

h2.�/d� 6 �.b � a/2

�2

Z b

a

h2
� .�/d�. (2)

(b) If h.a/ D h.b/ D 0, inequality (2) holds with � D 1.

2. THE OBSERVATION PROBLEM

In this section, the observation problem for the class of semi-linear parabolic systems is formulated,
and sufficient conditions for well-posedness are presented.

2.1. Problem statement

Consider the class of transport-reaction parabolic semi-linear systems

´t .x, t / D ı.x/´xx.x, t / � �.x/´x.x, t / � �Œx, t , ´.x, t /� C �d .x/ud .x, t / (3)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



MATRIX INEQUALITY-BASED OBSERVER DESIGN

with Danckwerts [3] boundary and initial conditions

ı.0/´x.0, t / D �.0/Œ´.0, t / � u0.t /�

ı.1/´x.1, t / D �1u1.t / (4)

´.x, 0/ D ´0.x/ 2 C1

and two boundary measurements

y.t/ D Œy0.t /, y1.t /�T D Œ´.0, t /, ´.1, t /�T , (5)

where t is the time, x is the dimensionless space in the interval Œ0, 1�, ´ is the state profile at time t ,
´0 is the initial profile, ı 2 C1 (or � 2 C1) is the diffusion (or convection) space-dependent function,
� is a nonlinear source function, ud is the exogenous input function on .0, 1/ with gain function
�d , u0 (or u1) is the exogenous input at the Robin (or Neumann) boundary x D 0 (or x D 1), and y0

(or y1) is the measurement at the boundary x D 0 (or x D 1). Throughout the developments, the
space and time dependencies will be denoted explicitly only when it is required for clarity.

The linear operator ı´xx (or �´x) corresponds to the diffusive (or convective) transport, � is
the nonlinear generation, �d ud 2 C1.Œ0, 1� � RC/ is the linear-distributed domain input, and
.u0, u1/ 2 C2.RC/�C2.RC/ is the linear boundary injection pair. In an important class of practical
situations, the diffusion-convection term (ı, �) is constant, and � depends only on ´. The depen-
dence of .ı, �, �/ on .x, t / in system (3)–(4) is meant for methodological generality purposes, in the
understanding that space-dependent diffusion coefficients can be found in problems for tubes with
diameter varying in space ([22]).

It is assumed that ı.x/ > 0, �.x, t , ´/ 2 C1 with respect to ´ 8 x, t , and 9 sl 2 R such that

�´.x, t , ´/ > sl , 8 x 2 .0, 1/, t > 0, ´ 2 R, (6)

where sl is a lower bound for the slope of the generation function � , with sl > 0 (or < 0) when �

depends monotonically (or non-monotonically) on ´.
The system (3)–(4) has a local unique strong solution for any initial profile ´0.x/ 2 H 1.Œ0, 1�/ that

satisfies the boundary conditions (4), if the given conditions on the exogenous inputs (ud , u0, u1),
the diffusion, convection and drift coefficients (ı, �, and �d , respectively), and the condition (6)
for the nonlinear source � are satisfied. The details of this well-posedness result are presented in
Subsection 2.2.

The observation problem consists in exponentially (in the sense of the L2 norm) estimating the
state variable ´.x, t / on the basis of the (Luenberger-like) nonlinear observer

Ó t D ı.x/ Óxx � �.x/ Óx � �.x, t , Ó/ C �d ud � lT
d .x/. Oy � y/

Oy D Œ Ó.0, t /, Ó .1, t /�T , lT
d .x/ D Œld0.x/, ld1.x/�

ı.0/ Óx.0, t / D �.0/Œ Ó.0, t / � u0.t /� � lT
0 . Oy � y/ , l0 D Œl00 , l01�T ,

ı.1/ Óx.1, t / D �1u1.t / � lT
1 . Oy � y/ , l1 D Œl10 , l11�T

Ó.x, 0/ D Ó0.x/

(7)

where Ó.x, t / is the state estimate, Ó0.x/ is its initial estimate, lT
d

. Oy �y/ with domain measurement

injection vector ld .x/ 2 C1.Œ0, 1�/ � C1.Œ0, 1�/, lT
0 . Oy � y/

�
or lT

1 . Oy � y/
�

with constant l0 (or l1) is
the boundary measurement injection at x D 0 (or x D 1). The observer (7) has two Robin bound-
ary conditions and is made by the actual system plus measurement injections. As the injections
vanish, the observer system (7) becomes the actual system (3)–(4) with Neumann–Robin boundary
condition pair. The observer dynamics (7) has a local unique strong solution for any initial func-
tion Ó0.x/ 2 H 1.Œ0, 1�/ satisfying the boundary conditions, if the exogenous inputs (ud , u0, u1),
transport coefficients (ı, �), drift amplitude (�d .x/), nonlinear source (� ), and observer domain
injection gain (ld ) satisfy the conditions stated previously. The details of this well-posedness result
are presented in Subsection 2.2.
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The gain function pair .ld0, ld1/.x/ and the constant gain quartet .l00, l01, l10, l11/ are degrees of
freedom in the estimator design task.

The subtraction of system (3)–(4) from its observer (7) yields the well-posed estimation error
dynamics

et D ıexx � �ex � '.x, t , ´I e/ � lT
d .x/".t/,

ı0ex.0, t / D �0e.0, t / � lT
0 " ,

ı1ex.1, t / D �lT
1 " ,

e.x, 0/ D e0.x/

(8)

with Robin boundary conditions, where

e.x, t / D Ó.x, t / � ´.x, t /, " D Oy � y (9)

'.x, t , ´I e/ WD �.x, t , ´ C e/ � �.x, t , ´/, '.x, t , ´I 0/ D 0, (10)

e.x, t / is the estimation error profile at time t and " is the measurement error that drives the observer
dynamics. By virtue of the mean value theorem for derivatives and the low slope bound expression
(6), ' is bounded as follows

'.x, t , ´I e/e D �´.x, t , ´ C �e/e2 > sl e
2 8 x 2 .0, 1/, t > 0, ´ 2 R, with � 2 .0, 1/. (11)

Given that the system and observer dynamics have a local unique strong solution, the estimation
error dynamics (8) has a local unique strong solution for any initial function e0.x/ 2 H 1.Œ0, 1�/
satisfying the boundary conditions, if the conditions on the exogenous inputs (ud , u0, u1), transport
coefficients (ı, �), drift amplitude (�d .x/), nonlinear source (� ), and observer domain injection gain
(ld ) are satisfied.

Thus, the estimation problem amounts to designing the gain function pair .ld0, ld1/ and the gain
constant quartet .l00, l01, l10, l11/ so that the state estimate Ó.x, t / exponentially converges, in the
sense of the L2 norm (1), to the system state ´.x, t /, or equivalently, there are positive constants
a and 	 so that the solutions e.x, t / of the estimation error dynamics (8) exponentially vanish
according to

8 e0 2 L2.Œ0, 1�, R/ ) jje.�, t /jj 6 a
ˇ̌ˇ̌

e0
ˇ̌ˇ̌

e��t , (12)

where jj � jj is defined in (1).
From an industrial implementation perspective, this design problem in continuous space-time for-

mulation corresponds to a basic feasibility assessment, in the understanding that, in a second stage,
a suitable finite-dimensional approximation scheme [12,13] should be applied in such a way that an
adequate compromise between state reconstruction, robustness, and complexity (in terms of number
of ODEs or difference equations) is obtained.

2.2. Well-posedness

The system dynamics (3)–(4) and the observer dynamics (7) can be written in the generalized form:


t .x, t / D ı.x/
xx.x, t / � �.x/
x.x, t / C f Œx, t , 
.x, t /� (13)

ı.0/
x.0, t / � �0
.0, t / D f0.t /, ı.1/
x.1, t / � �1
.1, t / D f1.t /,


.x, 0/ D 
0.x/ (14)

with


 D ´.or Ó/ , f .x, t , 
/ D �.x, t , 
/ C �d .x/ud .t / C ld .x/Œ Oy.t/ � y.t/�,

�0 D �.0/ � l0, f0.t / D �.0/u0.t / � l0y.t/, �1 D �l1, f1.t / D �1u1.t / � l1y.t/.
(15)

where ld , l0, l1 D 0 in (3)–(4). From the analysis of system (13)–(14), the next result on its
well-posedness follows. Because its rigorous proof goes beyond the scope of the present paper,
in Appendix A is provided a sketch of the proof.
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Lemma 2 (Proof sketch in Appendix A)
Consider the PDE system (13)–(14) with ı.x/ > 0, �.x/ 2 C1.Œ0, 1�/, f 2 C1.Œ0, 1� � RC �
L2.Œ0, 1�//, and f0, f1 2 C2.RC/. Then a unique strong solution exists for (13)–(14) for all initial
conditions 
0.x/ 2 H 1.Œ0, 1�/ satisfying the boundary conditions (14).

The proof of the preceding lemma (see sketch in Appendix A) is based on a state transformation

 ! ! with homogeneous boundary conditions for the transformed variable !. For the homoge-
neous problem, the steps presented in [20] are followed exploiting the fact that the linear differential
operator generates an analytic (smoothening) semi-group and the nonlinear operator is Lipschitz
with respect to all its arguments. The existence of a strong solution is essential for the application
of the Lyapunov approach employed in the next section.

3. CONVERGENCE ASSESSMENT

In this section, the estimation design problem is addressed within a weighted Lyapunov framework,
with the weight function as design degree of freedom. The analysis of the corresponding dissipation
mechanism leads to an LMI convergence condition, which depends on the spatial coordinate, the
observer gains, and the Lyapunov weight function.

Motivated by the idea of setting the Lyapunov energy weight as a design degree of freedom in a
finite-dimensional system observer design [18], let us set the positive-definite weighted candidate
Lyapunov functional for the observation error dynamics (8),

V W L2.Œ0, 1�, R/ ! RC, V.e/ D
Z 1

0

w.x/e2.x, t /dx , (16)

with adjustable weighting function 0 < w.x/ 2 C1.
From the comparison principle [23], the estimation error e.x, t / (8) is exponentially convergent

(12) with amplitude constant

a D
p

wmax=wmin, wmax D max w.x/, wmin D min w.x/. (17)

if, along the trajectories of the estimation error dynamics (8), the dissipation inequality

PV .e/ C 2	V.e/ 6 0 (18)

is met with a positive constant 	 > 0.

3.1. Dissipation inequality

The time derivation of the Lyapunov function (16), along the error dynamics (8), followed by inte-
gration by parts, substitution of the slope lower bound expression (6), and application of Wirtinger’s
inequality (Lemma 1) leads to the linear dissipation inequality (derivation in Appendix A) in the
variables e.x, t / and ".t/ defined in (9)

PV C 2	V 6
Z 1

0

®
‡11.x/e2.x, t / C 2e.x, t /‡12.x/T ".t/ C ".t/T ‡22".t/

¯
dx, (19)

with quadratic integral error dependence, where the scalar function ‡11.x/ is given by

‡11.x/ D . Qıx/2

2 Qı.x/
.x/ � 2�2 Qı.x/ C Q�x.x/ C 2w.x/.	 � sl/, (20)

Qı.x/ D ı.x/w.x/, Q�.x/ D �.x/w.x/, (21)

the 1 � 2 row vector ‡12 is

‡12.x/ D Œ‡12,0, ‡12,1� (22)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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‡12,0.x/ D �w.x/ld ,0.x/ C 2�2 Qı1=2.x/ Qı1=2.0/�Œ0,0.5�.x/

‡12,1.x/ D �w.x/ld ,1.x/ C 2�2 Qı1=2.x/ Qı1=2.1/�Œ0.5,1�.x/,
(23)

where �Œa,b�.x/ is the characteristic function of the interval Œa, b�, that is,

�Œa,b�.x/ D
²

1, if x 2 Œa, b�
0, otherwise.

The constant and symmetric 2 � 2 matrix ‡22 is defined as

‡22 D
�

‡22,0 ‡22,01

‡22,01 ‡22,1

�
(24)

‡22,0 D 2w.0/l00 � Q�.0/ � 2�2 Qı.0/

‡22,01 D w.0/l01 � w.1/l10

‡22,1 D �2w.1/l11 � Q�.1/ � 2�2 Qı.1/.

(25)

In matrix form, inequality (19) is written as follows:

PV C 2	V 6
Z 1

0

�
e.x, t /
".t /

�T
"

‡11.x/ ‡12.x/

‡T
12.x/ ‡22

# �
e.x, t /
".t /

�
dx, (26)

with ‡11, ‡12, and ‡22 given by (20), (22), and (24), respectively. Inequality (26) shows that the
derivative of the Lyapunov functional can be bounded by the space integral of a quadratic form in
the estimation error variables e.x, t / and ".t/, along the space and on the boundaries. This fact is
fundamental for the results of the next subsection.

3.2. Convergence condition

On the basis of the preceding developments, the following theorem, which is the main result of this
paper, provides sufficient LMI-based exponential convergence conditions for observer (7), involving
the parameters of the plant, the output injection gains, and the weight function w.x/ of the candidate
Lyapunov functional (16). To state the theorem, let us introduce the matrix-valued function

‡.x/ D
"

‡11.x/ ‡12.x/

‡T
12.x/ ‡22

#
, x 2 Œ0, 1�, (27)

with the entries ‡11, ‡12, and ‡22 given by (20), (22), and (24), respectively.

Theorem 1 (Proof in Appendix B)
Let w.x/ > 0 be a given C1 weight function. The estimation error e.x, t /, associated with observer
(7), globally exponentially converges to zero with amplitude a D p

wmax=wmin, defined in (17)
according to inequality (12), if there exist a constant 	 > 0, constant vectors l0, l1 2 R2, and a
function ld .x/ D Œld0.x/, ld1.x/�T W Œ0, 1� ! R2 such that the LMI

‡.x/ 6 0 , 8 x 2 Œ0, 1� , (28)

holds with ‡.x/ given in (27). Þ

According to Theorem 3, the observer can be designed as follows: for a given weight function
w.x/, solve the corresponding MI (28) with respect to the set Œ	 , l0 , l1 , ld .x/� (which is linear in
the design parameters).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Because the LMI (28) is parameterized by the space variable x, that is, it consists of an uncount-
able number of LMIs, it is more difficult to solve than the simpler control counterpart drawn
with unit weight [20]. However, as stated in the following corollary, the feasibility of the three-
dimensional LMI (28) is equivalent to the existence of a positive 	 such that the scalar differential
inequality (29) is met (which does not depend on the observer gains Œ l0 , l1 , ld �).

Corollary 1
Let w.x/ > 0 be a given C1 weight function. Suppose there exists a constant 	 > 0 such that

‡11.x/ D . Qıx/2.x/

2 Qı.x/
� 2�2 Qı.x/ C Q�x.x/ C 2w.x/.	 � sl/ 6 0 , 8x 2 Œ0, 1� . (29)

Then, the choice

ld0.x/ D 2�2

w.x/
Qı1=2.0/Qı1=2.x/�Œ0,0.5�.x/ , ld1.x/ D 2�2

w.x/
Qı1=2.1/Qı1=2.x/�Œ0.5,1�.x/,

l00 6 Q�.0/ C 2�2 Qı.0/

2w.0/
D 1

2
Œ�.0/ C 2�2ı.0/�, l11 > � Q�.1/ C 2�2 Qı.1/

2w.1/
D �1

2
Œ�.1/ C 2�2ı.1/�, (30)

l01 D l10 D 0

provides a (particular) solution of (28), so that (7) globally exponentially converges according to the
inequality (12) with amplitude a D p

wmax=wmin, defined in (17). Þ

3.3. Dissipation adjustment

Hitherto, the observer convergence has been ensured for a given Lyapunov weight function w.x/ 2
C2. In principle, the problem of jointly finding the weight function w.x/ and the gains Œld , lo, l1� can
be addressed by maximizing the dissipation bound (i.e., the right-hand side term in inequality (26)).
The consideration of this problem goes beyond the scope of the present study, and here, it suffices to
state that such methodological possibility exists and to circumscribe ourselves to address a simpler
version of the problem.

For this aim, recall the dissipation inequality (19) and observe that, although the second (‡12)
and third (‡22) coefficient functions of the dissipation bound depend on the observer gains, the first
term (‡11) does not. Consequently, a solution for the Lyapunov weight function !.x/ of inequality
(29) can be found by maximizing the smallest dissipation rate, that is, the right-hand side of the
the inequality

0 < 	 6 1

2w.x/

"
. Qıx/2.x/

2 Qı.x/
� 2�2 Qı.x/ C Q�x.x/ C 2w.x/.	 � sl /

#
(31)

It must be pointed out that, when the weight w.x/ is constant, (i) the feasibility region over
the parameter space of inequality (31) is strongly restricted in comparison to the case when w.x/

is a degree of freedom, and (ii) the amplitude a (17) is equal to one, meaning that the estimator
response (12) does not have overshooting. In other words, the choice of a constant weight w.x/ D 1

restricts the observer design. Thus, finding a suitable weight endows the observer design with an
interesting degree of freedom, at the cost (reasonable as we shall see) of the complexity introduced
by a space-dependent weight function.

3.4. Discussion

The proposed design method is rather simple, as the observer design amounts to calculating the
output injection gains that render feasible the MI (28). It is rather flexible, as semi-linear systems
with constant or varying coefficients, different boundary conditions, and boundary and/or distributed
injection can be used. Point or interval domain measurements (see e.g., [4]), and flux measurements
(´x) can be handled. Even though in Theorem 3, a nonlinear sink � with from below-bounded slope
was assumed, the case with nonlinear source � with from above-bounded slope (Lipschitz constant)
can be addressed with the same approach.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Because the selection of the distributed injection gain ld .x/ is an important design degree of
freedom, different functions have been considered in the literature, among them are eigenfunction
combinations in the linear (or linearized) case (e.g., [24]), particular decaying functions generated
by integral backstepping-like transformations [11], point injections according to further measure-
ments in the domain (e.g., [4]), and interval (step-like) injections (e.g., [6]). The proposed method
does not impose any a priori restriction on ld .x/, so that, in general, different alternatives can
be explored.

4. TUBULAR REACTOR APPLICATION EXAMPLE

In this section, the proposed observer design methodology is illustrated and tested with a repre-
sentative case example of the semi-linear parabolic system class (3): an isothermal tubular reactor
with non-monotonic reaction rate (which underlies an important class of catalytic, bioprocesses,
and physiology reactions [1,3,5,25]). The purpose is threefold: (i) the illustration of the theoretical
developments of the previous section, (ii) the identification of the dependence of the MI (28) on the
Lyapunov weight function w.x/, and (iii) the interpretation with physical meaning of the resulting
solvability conditions.

Consider an isothermal tubular reactor [1] with area A, length L, pure reactant concentration
Cr , and volumetric feed flow q (at 
 D 0) at reactant concentration Ce 6 Cr , where the reac-
tant is converted into product through the reaction with rate function R.C/ along the axial interval
0 6 
 6 L, constant diffusion-convection pair .D, v/, Danckwerts’ boundary conditions [3], and
non-monotonic (Haldane [26] or Langmuir-Hinshelwood [27] type) reaction rate, and actual time
ta. The reactant concentration profile over the axial interval is denoted by C.
, t /. In terms of
dimensionless variables (x, t and c), and Peclet (Pe) and Damköhler (�) numbers,

0 6 x D 
=L 6 1, t D tav=L, v D q=A, 0 6 c D C=Cr 6 1,

Pe D vL=D, � D RrL=v, Rr D R.Cr/
(32)

the reactor dynamics are modeled by the distributed system of the form (3)

ct .x, t / D 1

Pe

cxx.x, t / � cx.x, t / � �r.c.x, t //,

1

Pe

cx.0, t / D c .0, t / � ce.t /,
1

Pe

cx.1, t / D 0 , (33)

y.t/ D Œy0.t /, y1.t /�T D Œc.0, t / , c .1, t /�T

c.x, 0/ D c0.x/ ,

where

r.c/ D R.cCr /=.RrCr/ D .1 C kI /2c

.1 C kI c/2
, � D �k

.1 C kI /2
, �k D kL

v

Cr (or Rr ) is a reference concentration (or reaction) value, r.c/ is the reaction rate with linear mass
action growth .kc) and quadratic inhibition .1 C kI c/2 (k and kI are constant), t is the dimension-
less time with respect to convection characteristic time (tv), c.x, t / is the time-varying concentration
profile, and �k is the Damköhler number associated with the mass action kinetics constant k. The
Peclet (or Damköhler) number Pe (or �) represents the ratio of diffusion tD (or mass action reaction
rate tR)-to-convective tv characteristic time

Pe D tD=tv, � D tR=tv, tD D L2=D, tv D L=v, tR D R�1
r . (34)

As the diffusive transport becomes considerably larger than the convective one, the Peclet vanishes
(Pe ! 0), and the behavior of the tubular reactor approaches the one of a (perfectly mixed) con-
tinuous stirred tank reactor [25], with one or more critical points, depending on .�, kI /. Finally, y0

(or y1) denotes the measurement of the inlet (or exit) concentration.
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The corresponding Luenberger observer (7) for reactor (33) is given by

Oct .x, t / D 1

Pe

Ocxx.x, t / � Ocx.x, t / � �r. Oc.x, t // C ld .x/.t/,

.t/ D Œy0.t / � Oc.0, t /, y1.t / � c.1, t /�T

1

Pe

Ocx.0, t / D Oc.0, t / � ce.t / � l0.t/,

1

Pe

cx.1, t / D �l1.t/

Oc.x, 0/ D Oc0.x/ ,

(35)

where ld .x/ is the distributed injection gain function and l0 (or l1) is the constant vector injection
gain at the left (or right) boundary. To analyze the related convergence sufficient condition inequality
set (29), (30) associated with Corollary 1, let us introduce the family of weight functions

� D ¹w.x/ D e�x , 0 6 x 6 1j� 2 Rº (36)

that includes the unit (wu) and Sturm–Liouville (ws) weight functions,

�u D 0 ) wu.x/ D 1

�s D �Pe ) ws.x/ D e�Pex .
(37)

Observe that, as particular case, the weight ws is the integration factor that makes self-adjoint
the spatial transport operator of the PDE (33). In the absence of convection (Pe D 0), the
Sturm–Liouville weight ws becomes the unit one wu.

In the notation of Corollary 1, stated in terms of the semi-linear parabolic system employed in the
derivation of the LMI (28) and inequality (29), the functions ı, �, Qı, Q� of the reactor case example
reactor (33) are given by

ı.x/ D 1

Pe

, �.x/ D 1 , Qı.x/ D 1

Pe

e�x , Q�.x/ D e�x . (38)

The corresponding entries ‡11, ‡12, and ‡22 of matrix ‡ (27), related to the statement of Theorem 1
and Corollary 1, are given by

‡11.x/ D e�x

²
2.	 � sl/ � 2�2

Pe

C �

�
1 C �

2Pe

�³
, sl D ��k=27

‡12.x/ D �e�xlT
d .x/ C 2�2

Pe

e�x=2
h
�Œ0,0.5�.x/ , �Œ0.5,1�.x/e�=2

i

‡22 D
"

2l00 � 1 � 2 �2

Pe
, l01 � 1

Pe
e� l10

l01 � 1
Pe

e� l10

�
�2l11 � 1 � 2 �2

Pe

	
e�

#
.

(39)

where sl is the smallest slope of the reaction rate r over the concentration interval Œ0, 1� [31].
The application of inequality condition (29) and the convergence amplitude formula (17) to the

reactor case yields inequality (40) and equation (41):

‡11.x/ D 2e�x Œ�.Pe, �, �/ � 	� 6 0 (40)

a D ej� j=2 (41)

where

�.Pe, �, �/ D �2

Pe

� �k=27 � �

2

�
1 C �

2Pe

�
> 0, (42)
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	 (or a) is the observer convergence rate (or amplitude). Because Condition (40) ensures the
existence of gains for observer convergence (Corollary 1), let us rewrite inequality (40) in the
following form

	Pe
� .		 C 	�

Pe
/ > 	 > 0

	Pe
D �2

Pe

, 		 D �k=27, 	�
Pe

D �

2

�
1 C �

2Pe

� (43)

where 	 is the observer convergence rate, 	Pe
is the stabilizing contribution of the diffusion-

convection mechanism, and 		 (or 	�
Pe

) is the destabilizing contribution due to the reaction

(or diffusion)-convection, with 	�
Pe

depending quadratically on the weight parameter � . Thus,
Condition (43) and equation (41) display, with physical meaning, the way in which the estimator
functioning is underline by a suitable interplay between the system diffusive-convective transport
and reaction mechanisms (Pe , �), the convergence rate 	 and amplitude a, and the weight function
parameter � .

In principle, the choices of equipment as well as of monitoring and control schemes should be
performed simultaneously [28]. From this perspective, the reactor length (L) and area (A) are design
degrees of freedom that should be decided in the light of Condition (43) for robustly convergent pro-
file estimation. In particular, when the Peclet (Pe) and Damköhler (�) numbers have been specified,
the parameter � of the weight function is a design degree of freedom. According to equations (43)

and (41), (i) the destabilizing term
�
	�

Pe

	
of the convergence rate 	 (43) depends quadratically

on the parameter � of the weight function w.x/ (36), depending on the value .Pe, �/, and (ii) the
convergence amplitude a (41) grows isotonically with � . The value of � that maximizes the upper
bound of the convergence rate 	 (43) is given by

�� WD argmin�

h
	�

Pe
.Pe, �/

i
D �Pe, (44)

implying that the Sturm–Liouville weight ws.x/ (� D �Pe) (37) maximizes the reconstruction rate
(	s) of the concentration profile (43) with the amplitude (41),

	s D �2

Pe

C Pe

4
� �

27
> 0, as D ePe=2. (45)

For comparison purposes, let us write the convergence rate-amplitude pair for the unit-weight case
(� D 0) (37):

	u D �2

Pe

� �

27
D 	s � Pe

4
> 0, au D 1. (46)

For illustration purposes, in Figure 1 are plotted, in the .Pe , �/-parameter space, the values of the
dissipation bounds 	s (� D �Pe), 	u (� D 0) and an intermediate one (� D �3). The dissipation
bound 	s (45) of the Sturm–Liouville weight ws (37) is greater than the one 	u (46) of the unit
weight ws (37), especially at large Pe values. The amplitude of the Sturm–Liouville weight is larger
than the one of the unit weight, with a difference that grows exponentially with Pe. Because large
amplitudes signify large error overshoots in the transient error response, the unit weight yields the
best transient error response.

Thus, depending on the reactor Peclet–Damköhler pair (Pe , �), the intensity of the measurement
noise and the characteristics of the unmodeled parasitic (high-frequency) dynamics, the weight
parameter (� ), and the observer gains (ld , l0, l1) must be chosen such that the observer function-
ing is underline by a suitable compromise between convergence rate (	), transient error overshoot
(proportional to a), and asymptotic offset (inversely proportional to 	).

According to the preceding results, for reactors with low Peclet numbers (Pe < 5 to 6), or
equivalently, with highly dispersive regime, the Sturm–Liouville weight tends to the unit weight,
implying that this weight should be used. This is in agreement with the well-known fact that, as the
Peclet number vanishes, the distributed tubular reactor becomes a perfectly mixed continuous-time
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Figure 1. Graph, in the .Pe , �/ parameter space, of the dissipation bounds 	s of the Sturm–Liouville
weight function ws (37) (continuous line), 	u of the unit weight wu (37) (dashed line), and the one for

the intermediate weight function w.x/ D e�3x (dotted line).

Figure 2. Tubular reactor response for .Pe , �, kI / D .5, 4, 3/ and constant initial concentration profile
c0.x/ D 0.5.

(lumped) reactor with constant spatial profile [25]. Differently, for large Pe numbers, where the
reactor behaves like a plug-flow reactor, the Sturm-Liouville weight is the preferred choice. This is
in agreement with the fact that the observer convergence rate is dominated by the stabilizing con-
vective flow [25]. Intermediate Peclet cases should be analyzed in the light of the particular reaction
intensity (measured by �). In general, monotonic reactions favor the convergence rate.

Observer functioning

In this subsection, numerical simulation results are presented to illustrate the observer functioning
in comparison to its open-loop version (i.e., with gains l0, l1, ld D 0). The numerical simulations
have been performed using the numerical package Octave on the basis of a finite-difference spa-
tial approximation with 10 discretization points and a backward Euler algorithm for solving the
associated system of stiff coupled ODEs in time.

To illustrate the observer functioning under conditions, which resemble to ones assessed in
previous tubular reactor control studies, let us consider the parameter set

.Pe , �, kI / D .5, 4, 3/ (47)

for a tubular reactor with a balanced reaction-to-convection mechanism, comparable diffusion with
respect to convection, and appreciable reaction inhibition at play.
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In Figure 2 is presented the evolution of the concentration profile when the ‘actual’ reactor is
started at an initial constant profile c0.x/ D 0.5, showing that the reactor has an overall settling time
of about three to four dimensionless time units. In Figure 3 are presented the estimation (a) and error
(b) evolution of the open-loop version (with zero gains) of the proposed observer (35), starting from
a deviated initial profile Oc0.x/ D 1, showing that: (i) as expected, the overall profile error vanishes in
about three to four natural settling times, (ii) due to the convective transport and reaction intensity,
the convergence is faster in the entrance than in the exit, and (iii) due to the intensity of reaction
inhibition after the reactor entrance, the observer exhibits a comparatively slower convergence.

In Figure 4 are presented the estimation (a) and error (b) responses of the observer with boundary
measurements, for the intermediate Peclet weight function and the gains

w.x/ D e�3x , ld0.x/ D 2�2

w.x/

�
w.0/

Pe

�1=2 �
w.x/

Pe

�1=2

�Œ0,0.5�.x/,

ld1.x/ D 2�2

w.x/

�
w.1/

Pe

�1=2 �
w.x/

Pe

�1=2

�Œ0.5,1�.x/, l00 D �15, l11 D 15, l01 D l10 D 0

(48)

chosen according to the LMI condition (30). The related feasibility region is presented in
Figure 1, in the understanding that this choice of weight function and gains corresponds to a suitable
compromise between convergence speed (	) and error overshoot (a).

The comparison of the results of Figure 4 with the ones of Figure 3 evidences that (i) the estimator
convergence is about two times faster than the natural process dynamics, or equivalently, than the

Figure 3. Estimation (a) and estimation error (b) responses without measurement injection for .Pe , �, kI / D
.5, 4, 3/ and initial concentration profile estimation Oc0.x/ D 1.
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Figure 4. Estimation (a) and estimation error (b) responses with measurement injection for .Pe , �, kI / D
.5, 4, 3/, initial concentration profile estimate Oc0.x/ D 1, w.x/ D exp.�3x/, and gains ld , l0, l1 given

in (48).

observer without measurements, (ii) as expected, the convergence in the boundaries is comparatively
faster, and (iii) there is a wave-like information propagation from the reactor boundaries toward the
interior of the reactor.

5. CONCLUSIONS

A globally exponentially convergent observer design for a class of semi-linear parabolic distributed
transport-reaction systems has been developed. In addition to the observer gains, the weight func-
tion of a Lyapunov functional was regarded as a design degree of freedom. The consideration of
the problem within a Lyapunov framework led to a convergence condition in terms of LMIs. The
conditions capture the fundamental interplay between system characteristics, convergence (error
amplitude and state reconstruction rate) features, functional weight, and observer gains in the light
of a specific estimation objective. The proposed approach was illustrated and tested with a repre-
sentative tubular reactor case example. The convergence conditions were interpreted in terms of
dimensionless parameters with physical meaning, which describe the relative importance of the
(linear) transport and (nonlinear) generation mechanisms.

The necessary convergence conditions exhibited the interplay between estimator (rate and ampli-
tude) convergence features, the weight function parameter, and the Peclet–Damköhler dimensionless
number pair associated with the reactor transport and reaction mechanisms. Because these dimen-
sionless numbers depend on the reactor area and length, the observer design can be part of a joint
process-monitoring-control design.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



A. SCHAUM ET AL.

From an industrial implementation viewpoint, the proposed design corresponds to the basic fea-
sibility step and constitutes the point of departure to perform the second implementation stage, by
applying a suitable finite-dimensional approximation scheme ([12, 13]) so that there is an adequate
trade-off between state reconstruction speed and accuracy, robustness, and algorithm complexity in
the light of the specific estimation objective.

In principle, the proposed one-state one-space dimensional observer design for semi-linear
parabolic distributed parameter systems with boundary measurements can be extended to (i) address
the problem of choosing the number of sensors and their locations, (ii) include more general weight
functions with respect to certain estimation objectives, such as inference of states at the effluent
or at the region of maximum reaction rate, (iii) design output feedback controllers on the basis of
existing state feedback-distributed control approaches ([20]), and (iv) address the case of two-state
(concentration–temperature) exothermic tubular reactors with temperature boundary and/or domain
measurements in particular (cf. [10]), or of multi-state transport-reaction systems in general.

APPENDIX A: WELL-POSEDNESS

Introduce the state transformation

w.x, t / D 
.x, t / C ˛.x/f0.t / C ˇ.x/f1.t / (A.1)

with ˛, ˇ 2 C1Œ0, 1� being any function pair satisfying

˛.0/ D 1

�0

, ˛0.0/ D 0, ˛.1/ D ˛0.1/ D 0

ˇ.0/ D ˇ0.0/ D 0, ˇ.1/ D 1

�1

, ˇ0.1/ D 0.
(A.2)

Particular functions satisfying these conditions are sigmoidal increasing (ˇ) and decreasing (˛)
ones. For w given by (A.1), the associated dynamics read

wt .x, t / D ı.x/wxx.x, t / � �.x/wx.x, t / C ˆ.t , x, w.x, t //

ı.0/wx.0, t / � �0w.0, t / D 0, ı.1/wx.1, t / � �1w.1, t / D 0.
(A.3)

where

ˆ.t , x, w.x, t // D f Œx, t , 
.x, t / C ˛.x/f0.t / C ˇ.x/f1.t /� C ˛.x/ Pf0.t / C ˇ.x/ Pf1.t /. (A.4)

In the form of an abstract differential equation, the preceding dynamics is written as

vt .t / � Av.t/ D F Œt , v.t/�, v 2 D.A/ (A.5)

in the Hilbert space L2.Œ0, 1�/ where the operator

A D ı.x/
@2

@x2
� �.x/

@

@x
(A.6)

has the dense domain

D.A/ D ®
v 2 H 2.Œ0, 1�/ jBv D 0

¯
(A.7)

with B being the boundary operator

B D �.x/

�
ı.0/

@

@x
.0/ � �0

�
C .1 � �.x//

�
ı.1/

@

@x
.1/ � �1

�
,

� D
²

1, x D 0
0, x D 1

, x 2 ¹0, 1º.
(A.8)
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Given that ı.x/ > 0, the parabolic operator A is the infinitesimal generator of an analytic semi-group
T .t/. From this fact, followed by the application of Hille–Yosida’s Theorem for C0 semi-groups
[29], the semi-group T .t/ satisfies the following inequality

jjT .t/jj 6 m exp.�	t/ (A.9)

for some positive constants pair .m, 	/, and jjT .t/jj being the norm induced by A [29]. Let H be
a Hilbert space, then the domain D.A/ D A�1H of the operator A forms another Hilbert space
with the graph inner product .x, y/D.A/ D hAx, Ayi , x, y 2 D.A/. The domain D.A/ of A is thus
continuously embedded into H , that is, D.A/ � H , dense in H , and the inequality jxj 6 !jAxj
holds for all x 2 D.A/ and some constant ! > 0.

Apart from this, the square root
p

A of the operator A is rigorously introduced on D.A/ as a
positive-definite solution X of the algebraic operator equation X2 D A. By continuity, this operator
is well-posed on the domain

D.
p

A/ D ®
v 2 H 1.Œ0, 1�/jBv D 0

¯
(A.10)

and continuously embedded into H , whereas D.A/ is continuously embedded into D.
p

A/. Hence,
it holds that D.A/ � D.

p
A/ � H , and the following inequalities apply for the operator pair

.A,
p

A/

j´j 6 !jpA´j 8 ´ 2 D.
p

A/, jpA´j 6 !jAxj, 8 ´ 2 D.A/

with a generic constant ! > 0.
Given that f0, f1 2 C2.RC/, �d ud 2 C1.Œ0, 1� � RC/, and ld are Lipschitz continuous, the non-

linear function ˆ (A.4) defines a nonlinear operator F W R � L2.Œ0, 1�/ ! L2.Œ0, 1�/ that satisfies
the following inequality

jjF.t1, ´1/ � F.t2, ´2/jj 6 L
�
jt1 � t2j C jjpA.´1 � ´2/jjL2

	
(A.11)

with some constant L.
In consequence, Theorem 3.3.3 of [30] implies the (local) existence of a unique strong solution

of (A.5) with initial condition v0 2 D.
p

A/ (A.10) and thus for a local strong solution of (A.3) for
any w0.x/ 2 D.

p
A/ (A.10). This implies the existence of a unique strong solution ´.x, t / of (13)

for any initial condition ´0.x/ 2 H 1.Œ0, 1�/ satisfying the boundary conditions (14). QED.

APPENDIX B: LYAPUNOV DISSIPATION INEQUALITY (28)

The time-derivation of (16) along (8) yields

PV C 2	V D 2

Z 1

0

�
weet C 	we2

�
dx

D 2

Z 1

0

�
wıeexx � w�eex � we' .x, t , ´I e/ � welT

d .x/".t/ C 	we2
�
dx

6 2

Z 1

0

h Qıeexx � Q�eex � welT
d .x/".t/ C w.	 � sl/e

2
i
dx ,

(D)

where the last inequality follows from (11), with Qı D ıw and Q� D �w (20). After integration by
parts, one obtains

� 2

Z 1

0

Q�eexdx D �
Z 1

0

Q� d.e2/

dx
dx D � Q�e2

ˇ̌1

0
C

Z 1

0

Q�xe2dx (B.1)

2

Z 1

0

Qıeexxdx D 2 Qıeex

ˇ̌̌1

0
� 2

Z 1

0

� Qıe
	

x
exdx . (B.2)
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On the other hand, the substitution of the equation

� Qıe
	

x
ex D

� Qıxe C Qıex

	
ex D

²��Qı1=2
	2

�
x

e C Qıex

³
ex D

h
2 Qı1=2

� Qı1=2
	

x
e C Qıex

i
ex

D
h�Qı1=2

	
x

e C Qı1=2ex

i2 �
h� Qı1=2

	
x

e
i2 D

h�Qı1=2e
	

x

i2 �
h� Qı1=2

	
x

e
i2

D
h�Qı1=2e

	
x

i2 �
" Qıx

2 Qı1=2

#2

e2 D
h� Qı1=2e

	
x

i2 �
� Qıx

	2

4 Qı e2

into equation (B.2) yields

2

Z 1

0

Qıeexxdx D 2 Qıeex

ˇ̌̌1

0
� 2

Z 1

0

h� Qı1=2e
	

x

i2

dx C
Z 1

0

� Qıx

	2

2 Qı e2dx.

By virtue of Wirtinger’s inequality (Lemma 1 (a)), we have that

�2

Z 1

0

h�Qı1=2e
	

x

i2

dx D �2

Z 0.5

0

h� Qı1=2e
	

x

i2

dx � 2

Z 1

0.5

h� Qı1=2e
	

x

i2

dx

6 � 2�2

Z 0.5

0

h Qı1=2.x/e.x, t / � Qı1=2.0/e.0, t /
i2

dx

� 2�2

Z 1

0.5

h Qı1=2.x/e.x, t / � Qı1=2.1/e.1, t /
i2

dx

D � 2�2

Z 1

0

Qı.x/e2.x, t /dx � 2�2
h Qı.0/e2.0, t / C Qı.1/e2.1, t /

i

C 4�2

Z 1

0

Qı1=2.x/e.x, t /
h Qı1=2.0/e.0, t /�Œ0,0.5�.x/ C Qı1=2.1/e.1, t /�Œ0.5,1�.x/

i
dx.

The substitution of this inequality into the dissipation inequality (D) yields

PV C 2	V 6
�
2 Qıeex � Q�e2

	 ˇ̌̌1

0
� 2�2

Z 1

0

Qı.x/e2.x, t /dx � 2�2
h Qı.0/e2.0, t / C Qı.1/e2.1, t /

i

C 4�2

Z 1

0

Qı1=2.x/e.x, t /
h Qı1=2.0/e.0, t /�Œ0,0.5�.x/ C Qı1=2.1/e.1, t /�Œ0.5,1�.x/

i
dx

C
Z 1

0

8̂<
:̂

2
64

� Qıx

	2

2 Qı C Q�x C 2w.	 � sl /

3
75 e2 � 2welT

d .x/".t/

9>=
>;dx . (E)
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From the substitution of the boundary conditions (8), in the first term of the right side of the
preceding inequality, we have that�

2 Qıeex � Q�e2
	 ˇ̌̌1

0
D 2 Qı.1/e.1, t /ex.1, t / � Q�.1/e2.1, t / � 2 Qı.0/e.0, t /ex.0, t / C Q�.0/e2.0, t /

D 2 Qı.1/e.1, t /

�
� 1

ı.1/
Œl10e.0, t / C l11e.1, t /�

�
� Q�.1/e2.1, t /

� 2 Qı.0/e.0, t /

�
�.0/

ı.0/
e.0, t / � 1

ı.0/
Œl00e.0, t / C l01e.1, t /�

�
C Q�.0/e2.0, t /

D
"

2
Qı.0/

ı.0/
.l00 � �.0// C Q�.0/

#
e2.0, t / C 2

" Qı.0/

ı.0/
l01 �

Qı.1/

ı.1/
l10

#
e.0, t /e.1, t /

C
"

�2
Qı.1/

ı.1/
l11 � Q�.1/

#
e2.1, t /

D Œ2w.0/l00 � Q�.0//�e2.0, t / C 2Œw.0/l01 � w.1/l10�e.0, t /e.1, t /

C Œ�2w.1/l11 � Q�.1/�e2.1, t /

The substitution of this equation in (E) followed by rearrangement yields the dissipation LMI

PV C 2	V 6
Z 1

0

Œe.x, t / , ".t/�‡.x/Œe.x, t / , ".t/�T dx 6 0

with ‡.x/ (27) satisfying (28). Finally, from the application of the comparison lemma, it follows
that

wmin jjejj2 6 V.e/ 6 V.e0/e�2�t 6 wmax jje0jj2 e�2�t

or equivalently, that (12) is proven. QED.

ACKNOWLEDGEMENTS

This study took place as part of the PhD program at UNAM-Instituto de Ingeniería and a postdoctoral stay
(UNAM, and Departamento de Procesos e Hidráulica, UAM-Iztapalapa) in Mexico City of A. Schaum. The
authors gratefully acknowledge the financial support from Programa de Apoyo a Proyectos de Investigación
e Innovación Tecnológica (PAPIIT), UNAM, grant IN111012, and Fondo de Colaboración del II-FI, UNAM,
IISGBAS-165-2011. This work was partially supported by Israel Science Foundation (grant No 754/10).

REFERENCES

1. Aris R. Introduction to the Analysis of Chemical Reactors. Prentice-Hall: Englewood, 1969.
2. Christofides PD. Nonlinear and Robust Control of PDE Systems – Methods and Applications to Transport-Reaction

Processes, Systems & Control: Foundations & Applications. Birkhäuser: Boston, 2001.
3. Danckwerts PV. Continuous flow systems: distribution of residence times. Chemical Engineering Science 1953;

2:2–3.
4. Alvarez J, Stephanopoulos G. An estimator for a class of non-linear distributed systems. International Journal of

Control 1982; 5(36):787–802.
5. Dochain D. State observers for tubular reactors with unknown kinetics. Journal of Process Control 2000; 10:259–268.
6. Hagen G, Mezic I. Spillover stabilization in finite-dimensional control and observer design for dissipative evolution

equations. SIAM Journal on Control and Optimization 2003; 2(42):746–768.
7. Vande Wouver A, Zeitz M. State estimation in distributed parameter systems. Encyclopedia of Life Support Systems

(EOLSS), 2002. (Available from: http:\www.eolss.net/e6-43-toc.aspx).
8. Curtain RF, Demetriou MA, Ito K. Adaptive compensators for perturbed positive real infinite dimensional systems.

International Journal of Applied Mathematics and Computer Science 2003; 4(13):441–452.
9. Ksouri M, Boubaker O, Babary J-P. Variable structure estimation and control of nonlinear distributed parameter

bioreactors. In IEEE International Conference on Systems, Man, and Cybernetics 1998, San Diego, CA, 1998;
3770–3774.

10. Orlov Y, Dochain D. Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional
systems with application to chemical tubular reactor. IEEE Transactions on Automatic Control 2002; 47:1293–1304.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



A. SCHAUM ET AL.

11. Smyshlyaev A, Krstic M. Backstepping observers for a class of parabolic pdes. Systems & Control Letters 2005;
54:613–625.

12. Baker J, Christofides PD. Finite-dimensional approximation and control of nonlinear parabolic PDE systems.
International Journal of Control 2000; 73:439–456.

13. Christofides PD, Daoutidis P. Finite-dimensional control of parabolic PDE systems using approximate inertial
manifolds. Journal of Mathematical Analysis and Applications 1997; 216:398–420.

14. Ligarius P, Couchouron JF. Asymptotic observers for a class of evolution operators. A nonlinear approach. Comptes
Rendus de l’Academie des Sciences, Series I Mathematics 1997; 324(3):355–360.

15. Dochain D. State observation and adaptive linearizing control for distributed parameter (bio)chemical reactors.
International Journal of Adaptive Control and Signal Processing 2001; 15:633–653.

16. Schaum A, Moreno JA, Alvarez J. Dissipativity-based globally convergent observer design for a class of tubular
reactors. In 47th IFAC Conference, Seoul, South Korea, 2008; 4554–4559.

17. Schaum A, Moreno JA, Fridman E, Alvarez J. Observer design for a class of transport-reaction systems: a direct
Lyapunov approach. In IFAC International Symposium on Robust Control Design 2009, Haifa, Israel, 2009; 284–289.

18. Moreno JA. Approximate observer error linearization by dissipativity methods. In Control and Observer Design for
Nonlinear Finite and Infinite Dimensional Systems, LNCIS, Springer: Berlin Heidelberg, 2005; 35–51.

19. Rocha-Cózatl E, Moreno JA. Dissipative design of unknown input nonlinear observers using LMIs and sector
conditions. International Journal of Robust and Nonlinear Control 2011; 21:1623–1644.

20. Fridman E, Orlov Y. An LMI approach to H1 boundary control of semilinear parabolic and hyperbolic systems.
Automatica 2009; 45(9):2060–2066.

21. Hardy GH, Littlewood JE, Pólya G. Inequalities. Cambridge Mathematical Library: Cambridge, 1988.
22. Berezhkovskii AM, Pustovoit MA, Bezrukov SM. Diffusion in a tube of varying cross section: numerical study

of reduction to effective one-dimensional description. Journal of Chemical Physics 2007; 126:134706. DOI:
10.1063/1.2719193.

23. Khalil H. Nonlinear Systems, 3rd edition, Prentice-Hall: Upper Saddle River, 2002.
24. Curtain R. Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary

input. IEEE Transactions on Automatic Control 1982; 1(27):98–104.
25. Varma A, Aris R. Chemical Reactor Theory – A Review, Chapter 2. Stirred Pots and Empty Tubes. Prentice Hall:

Upper Saddle River, 1977; 79–155.
26. Bastin G, Dochain D. On-Line Estimation and Adaptive Control of Bioreactors. Elsevier: Amsterdam, 1990.
27. Elnashaie S, Abashar M. The implication of non-monotonic kinetics on the design of catalytic reactors. Chemical

Engineering Science 1990; 9(45):2964–2967.
28. Alvarez J, Zaldo F, Oaxaca G. Towards a joint process and control design framework for batch processes: applica-

tion to semibatch polymer reactors. In The Integration of Process Design Control, Seferlis P, Georgiadis MC (eds).
Elsevier: Amsterdam, The Netherlands, 2004.

29. Curtain RF, Zwart H. An Introduction to Infinite-Dimensional Linear Systems. Springer-Verlag: New-York, 1995.
30. Henry D. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag: New-York.
31. Schaum A, Moreno JA, Alvarez J, Diaz-Salgado J. Dissipativity-based observer and feedback control design for a

class of chemical reactors. Journal of Process Control 2008; 18(9):896–905.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc


