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a b s t r a c t

This paper is concerned with the stability analysis of networked control systems with dynamic quantiza-
tion, variable sampling intervals and communication delays. A time-triggered zooming algorithm for the
dynamic quantization at the sensor side is proposed that leads to an exponentially stable closed-loop sys-
tem. The algorithm includes proper initialization of the zoomparameter.More precisely, given a bound on
the state initial conditions and the values of the quantizer range and error, we derive conditions for find-
ing the initial value of the zoom parameter, starting fromwhich the exponential stability is guaranteed by
using ‘‘zooming-in’’ only. Polytopic type uncertainties in the system model can be easily included in the
analysis. The efficiency of themethod is illustrated on an example of an uncertain cart–pendulum system.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Quantization always exists in computer-based control systems
and quantization errors may have adverse effects on the system’s
stability and performance. In early 1990s, quantized state feedback
to stabilize an unstable linear system was studied in Delchamps
(1990). The values of the quantizer range and error were assumed
to be fixed in advance and could not be changed by the control de-
signer. Since then there has been research concernedwith how the
choice of quantization parameters affects the behavior of the sys-
tem (Brockett & Liberzon, 2000; Elia &Mitter, 2001;Wong&Brock-
ett, 1999). A more general type of quantizers with quantization
regions having arbitrary shapeswas introduced in Liberzon (2003).
Recently, quantized feedback control of hybrid systems was stud-
ied in Liberzon, Nesic, and Teel (2014).

Networked control systems (NCSs) are systems with spatially
distributed sensor, actuator and controller nodes which exchange
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data over a communication data channel. NCSs have attracted
more and more attention in recent years. Three main approaches
have been used to model NCSs as a discrete-time system (Fujioka,
2009), an impulsive/hybrid system (Naghshtabrizi, Hespanha, &
Teel, 2010; Nesic & Liberzon, 2009) or a time-delay system (Frid-
man, Seuret, & Richard, 2004; Gao, Chen, & Lam, 2008). There have
been a great number of results concerning networked and quan-
tized control systems in the literature. To mention a few, static
quantizer, such as logarithmic quantizerwas addressed inGao et al.
(2008) and Yue, Peng, and Tang (2006), where the quantization
error was treated as uncertainty or nonlinearity and bounded by
using the sector bound approach (Fu & Xie, 2005). Dynamic quan-
tizer was considered in Nesic and Liberzon (2009) for the stabi-
lization of NCSs with scheduling protocols. Small communication
delays (smaller than the sampling intervals) were further included
in Heemels, Nesic, Teel, and van de Wouw (2009). The quantizer
was assumed to take a finite set of values and incorporated an
adjustable zoom variable (Liberzon, 2003, 2006). Recently, linear
matrix inequality (LMI)-based conditions for stabilization with dy-
namic quantization and packet dropout were derived in Niu and
Ho (2014) and Yan, Xia, and Li (2014). However, communication
delays were not taken into account.

In the present paper, we develop a time-delay approach (see
e.g., Chapter 7 of Fridman (2014)) for uncertain linear NCSs
under dynamic quantization, variable sampling intervals and large
communication delays (that may be larger than the sampling
intervals). We follow Liberzon’s framework (Liberzon, 2003) and
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model the closed-loop quantized system as a systemwith bounded
disturbances. Sensor quantization is the focus of our study, cf., Gao
et al. (2008). Communication delays lead to additional challenges:
(1) The initial and level sets are defined in infinite-dimensional
spaces, though saturation condition is given in terms of the delayed
output vector. (2) The closed-loop system and the resulting
solution bounds are formulated in terms of updating time instants
at the actuators, while the zooming algorithm should be given in
terms of sampling instants at the sensors. (3) The solution bounds
include additional bounds on the first time interval of the delay
length (Liu & Fridman, 2014). In this paper, the main contributions
are as follows:

1. We suggest a time-triggered zooming algorithm for uncertain
linear NCSs, which is implemented at the sensors although the
solution bounds of the closed-loop system are given in terms
of the updating time instants at the actuators. The zooming
algorithm is formulated in terms of LMIs.

2. We present a direct Lyapunov approach for initialization of the
zoom variable. More precisely, given a bound on the state initial
conditions and the values of the quantizer range and error,
we derive conditions for finding the initial value of the zoom
variable to guarantee exponential stability of the closed-loop
system.

3. The proposed framework can easily incorporate polytopic type
uncertainties in the system model.

The rest of the paper is organized as follows. Section 2 presents
the model of quantized NCSs. In Section 3 an LMI-based zooming
algorithm for the dynamic quantization is proposed that leads
to exponential stability of the resulting closed-loop system. In
Section 4, the efficiency of the presented approach is illustrated by
an uncertain cart–pendulum example. Finally, the conclusions and
the future work are stated in Section 5.

Notations. Throughout the paper, the superscript ‘T ’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm | · |, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n means that P
is symmetric and positive definite. The symmetric elements of a
symmetric matrix will be denoted by ∗. The space of functions φ :

[a, b] → Rn, which are absolutely continuous on [a, b) (meaning
that φ is continuous and its first-order derivative is Lebesgue inte-
grable on [a, b]), have a finite limit limθ→b− φ(θ) and have square
integrable first-order derivatives, is denoted byW [a, b)with norm

∥φ∥W = maxθ∈[a,b] |φ(θ)| +

 b
a |φ̇(s)|2ds

 1
2
. Z, Z+ and N de-

note the set of integers, non-negative integers and positive inte-
gers, respectively. ⌊x⌋ denotes the largest integer k such that k < x,
i.e., ⌊x⌋ = max{k ∈ Z : k < x}.

2. Systemmodel and preliminaries

2.1. Quantized NCSs

Consider the system architecture in Fig. 1 with plant

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control input,
and A and B system matrices with appropriate dimensions. These
matrices can be uncertain with polytopic type uncertainties. The
NCS has N distributed sensors and quantizers, a controller node
and an actuator node, which are all connected via two wireless
networks. The measurements are given by yi(t) = Cix(t) ∈ Rni ,
i = 1, . . . ,N ,

N
i=1 ni = ny. Denote C = [CT

1 · · · CT
N ]

T and
y(t) = [yT1(t) · · · yTN(t)]T ∈ Rny . Following Gao et al. (2008),
Fig. 1. Architecture of networked control systems with quantizers.

in our consideration the quantization is performed at the sensor
side.

Let zi ∈ Rni , i = 1, . . . ,N , be the vectors being quantized. The
quantizers are piecewise constant functions qi:Rni → Di, whereDi
is a finite subset ofRni , i = 1, . . . ,N . Following Liberzon (2003),we
assume that there exist real numbers Mi > ∆i > 0, i = 1, . . . ,N ,
such that the following two conditions hold:
(a) if |zi| ≤ Mi, then |qi(zi) − zi| ≤ ∆i;
(b) if |zi| > Mi, then |qi(zi)| > Mi − ∆i, where ∆i and Mi are the
quantization error bounds and ranges, respectively.

We consider quantized measurements of the form

qiµ(zi) := µqi


zi
µ


, i = 1, . . . ,N, (2)

where µ > 0 is the zoom variable. The range of the quantizer
qiµ, i = 1, . . . ,N , is µMi and the quantization error is µ∆i.
Quantized measurements qiµ(yi) of the output yi, i = 1, . . . ,N ,
are available at the controller. The zoom variable µ will change
dynamically at some discrete-time sampling instants in order to
achieve exponential stability.

Let sk denote the unbounded and monotonously increasing
sequence of sampling instants, i.e.,

0 = s0 < s1 < · · · < sk < · · · , k ∈ Z+,
lim
k→∞

sk = ∞, sk+1 − sk ≤ MATI, (3)

where MATI denotes the maximum allowable transmission in-
terval. At each sampling instant sk, all the outputs yi(t) ∈ Rni ,
i = 1, . . . ,N , are sampled, quantized and transmitted over the
networks. Assume that the data qµ(y(sk)) = [qT1µ(y1(sk)) · · ·

qTNµ(yN(sk))]T , k = 0, 1, . . . . are transmitted in packets. We sup-
pose that there is no data loss but the transmission over the two
networks is subject to a variable delay ηk. Then tk = sk + ηk is
the updating time instant of the zero-order hold (ZOH) device. As
in Liu and Fridman (2012) and Naghshtabrizi et al. (2010), we al-
low the delay to be large provided that the order of transmission of
qµ(y(sk)) ismaintained at the reception. Assume that the network-
induced delay ηk and the time span between the updating instant
tk+1 and the current sampling instant sk are bounded:

tk+1 − tk + ηk ≤ τM , 0 ≤ ηm ≤ ηk ≤ ηM , k ∈ Z+, (4)

where ηm and ηM are known bounds and τM = MATI+ηM .
We suppose that the controller and the actuator are event-

driven. The first updating time t0 corresponds to the time instant
when the first data packet is received by the actuator, whichmeans
that u(t) = 0, t ∈ [0, t0). Then for t ∈ [0, t0), (1) is given by

ẋ(t) = Ax(t), x(0) = x0, t ∈ [0, t0). (5)

We assume that x0 may be unknown, but satisfies the bound |x0| <
X0, where X0 > 0 is known. Note that this assumption is common,
e.g., for interval observer design (Polyakov, Efimov, Perruquetti, &
Richard, 2013).
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2.2. Closed-loop model and solution bounds

Assume that there exists a matrix K = [K1 · · · KN ], Ki ∈ Rm×ni

such that A + BKC is Hurwitz (with the real parts of eigenvalues
strictly negative). Consider the static output feedback controller of
the form

u(t) =

N
i=1

Kiqiµ(yi(tk − ηk)), t ∈ [tk, tk+1),

where ηk is the communication delay. We thus obtain the closed-
loop model as follows:

ẋ(t) = Ax(t) + A1x(tk − ηk) +

N
i=1

Biωi(t), t ∈ [tk, tk+1), (6)

where A1 = BKC, Bi = BKi, i = 1, . . . ,N , and ωi(t) = qiµ(yi(sk))
− yi(sk), i = 1, . . . ,N, represent the quantization errors. If
|yi(sk)| ≤ µMi, then |ωi(t)| ≤ µ∆i, i = 1, . . . ,N , for t ∈ [tk, tk+1).

Applying the time-delay approach to sampled-data control,
denote τ(t) = t − tk + ηk, t ∈ [tk, tk+1). Then τ(t) ∈ [ηm, τM ]

(cf., (4)) and x(tk − ηk) = x(t − τ(t)), t ∈ [tk, tk+1). The initial
conditions for (6) are given by (5).

Consider first static quantizerswith a constant zoomvariableµ.
We apply the following Lyapunov–Krasovskii functional (LKF) for
delay-dependent analysis (Fridman & Dambrine, 2009; Park, Ko, &
Jeong, 2011):

V (t, xt , ẋt) = xT (t)Px(t) +

 t

t−ηm

e2α(s−t)xT (s)S0x(s)ds

+

 t−ηm

t−τM

e2α(s−t)xT (s)S1x(s)ds,

+ ηm

 0

−ηm

 t

t+θ

e2α(s−t)ẋT (s)R0ẋ(s)dsdθ

+ (τM − ηm)


−ηm

−τM

 t

t+θ

e2α(s−t)ẋT (s)R1ẋ(s)dsdθ,

P > 0, Sj > 0, Rj > 0, α > 0,

j = 0, 1, t ∈ [tk, tk+1), k ∈ Z+, (7)

where xt(θ)
∆
= x(t + θ), θ ∈ [−τM , 0] and where (following Liu &

Fridman, 2014)wedefine x(t) = x0, t < 0. Following Fridman and
Dambrine (2009) andusing convex analysis of Park et al. (2011),we
derive the following result (see Appendix A for the proof):

Lemma 1. Given 0 ≤ ηm < τM , α > 0, assume that there exist
positive scalars bi, i = 1, . . . ,N, n × n matrices P > 0, S0 > 0,
R0 > 0, S1 > 0, R1 > 0, S12, such that the following LMIs are feasible:

Φ =


R1 S12
∗ R1


≥ 0, (8)

Ψ =


Σ − F TΦFe−2ατM Ξ TH

∗ − H


< 0, (9)

where

Σ = F T
1 PΞ + Ξ TPF1 + Υ − F T

2 R0F2e−2αηm ,
F1 = [In 0n×(3n+ny)], F2 = [In − In 0n×(2n+ny)],

F =


0n×n In −In 0n×n 0n×ny
0n×n 0n×n In −In 0n×ny


,

H = η2
mR0 + (τM − ηm)2R1,

Ξ = [A 0n×n A1 0n×n B1 · · · BN ],

(10)

and Υ = diag{S0 + 2αP, −(S0 − S1)e−2αηm , 0n×n, −S1e−2ατM , −b1
In1 , . . . ,−bN InN }. Let µ > 0 be constant and |ωi(t)| ≤ µ∆i, i =
1, . . . ,N. Then the solutions of system (6) with the initial conditions
xt0 ∈ W [−τM , 0], satisfy the following inequality for t ≥ t0:

V (t, xt , ẋt) ≤ e−2α(t−t0)V (t0, xt0 , ẋt0) +
µ2

2α

N
i=1

bi∆2
i . (11)

Lemma 1 gives sufficient conditions for input-to-state stability.
It will play a key role in developing the ‘‘zooming-in’’ algorithm
for dynamic quantization. In what follows, based on Lemma 1 we
will present the main results on dynamic quantization of NCSs. By
defining the initial and level sets in Section 3.1, in Section 3.2 we
will find an LMI-based time-triggered zooming algorithm (i.e., the
choice of µ) for the stabilization of the closed-loop system (6). In
Section 3.3, we will develop a novel Lyapunov-based method for
initialization of the zoom parameter.

3. Main results: dynamic quantization of NCSs

3.1. Initial and level sets

First, we define initial and level sets. Given positive scalar σ ,
define the region of initial conditions (initial set)

Wσ = {xt0 ∈ W [−τM , 0] : V (t0, xt0 , ẋt0) < σ,

xT (t)Px(t) < σ, t ∈ [t0 − ηM , t0]}. (12)

Define the level set

Xt∗,ρ = {xt ∈ W [−τM , 0] : V (t, xt , ẋt) < ρ, t ≥ t∗}.

Given positive numbers µ, M0, β < 1 and ν < 1, we derive
conditions to guarantee the following: all solutions of (6) with
xt0 ∈ Wµ2M2

0
will stay inside the region Xt0,(1+βν2)µ2M2

0
for all

t ≥ t0, and will enter a smaller region Xt0+T,ν2µ2M2
0
in a finite time

T (see Appendix B for the proof).

Lemma 2. Given Mj > 0, j = 0, 1, . . . ,N, ∆i > 0, i = 1, . . . ,N,
0 ≤ ηm < τM and tuning parameters α > 0, 0 < ν < 1, assume that
there exist scalars 0 < β < 1, bi, i = 1, . . . ,N, n×nmatrices P > 0,
S0 > 0, R0 > 0, S1 > 0, R1 > 0, S12, such that the LMIs (8)–(9) and

(1 + βν2)M2
0C

T
i Ci < PM2

i , i = 1, . . . ,N, (13)

1
2α

N
i=1

bi∆2
i < βν2M2

0 (14)

hold. Let µ > 0 be constant. Then the solutions of (6) that start in the
region Wµ2M2

0

(i) satisfy |Cix(tk − ηk)| = |yi(tk − ηk)| < µMi, k ∈ Z+, (implying
|ωi(t)| ≤ µ∆i for all t ≥ t0, i = 1, . . . ,N);
(ii) remain in the set Xt0,(1+βν2)µ2M2

0
;

(iii) enter a smaller set Xt0+T,ν2µ2M2
0
in a finite time T, where T is the

solution of

e−2αT
= (1 − β)ν2. (15)

Note that the second inequality in (12) with σ = µ2M2
0 allows us

to guarantee the bounds on y(sk), sk < t0 by verifying (13).
The LMIs of Lemma 2 are feasible for small enough delay

bound τM , large enough quantization rangesM1, . . . ,MN and small
enough quantization errors ∆1, . . . , ∆N . Indeed, the LMIs (8) and
(9) are feasible for τM = 0 (i.e., in the absence of delay) since A +

BKC is Hurwitz. Hence, (8) and (9) are feasible for small enough τM .
The LMIs (13) and (14) are feasible for large enough quantization
ranges and small enough quantization errors.
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Fig. 2. The ‘‘zooming-in’’ algorithm for dynamic quantization.

3.2. Dynamic quantization and zooming algorithm

In this section, we consider dynamic quantizers with the zoom
variable µ. Zooming is performed at the sensor side. Therefore, in
the closed-loop system µ = µ(sk) is constant on [tk, tk+1).

Givenµ0 > 0, letµ = µ0, xt0 ∈ Wµ2M2
0

= Wµ2
0M

2
0
.Wewill show

how to choose µ0 in Theorem 1. Assume that the LMIs of Lemma 2
are feasible. We suggest a ‘‘zooming-in’’ algorithm shown in Fig. 2,
where µ is decreased and, thus, the resulting quantization error
is reduced in such a way as to drive the state of (6) to the origin
exponentially.

Definition 1. The system (6) with |ωi(t)| ≤ µ∆i, i = 1, . . . ,N, is
said to be exponentially stable for some choice of the zoomvariable
µ > 0 if there exist constants b > 0, κ > 0 such that

|x(t)|2 ≤ be−2κ(t−t0)µ2
0M

2
0 , ∀t ≥ t0

for the solutions of the system (6) initialized with xt0 ∈ Wµ2
0M

2
0
.

Proposition 1. Assume that the LMIs of Lemma 2 are feasible. Given
µ0 > 0, let µ = µ0, xt0 ∈ Wµ2

0M
2
0
. Then under the algorithm

in Fig. 2, the system (6) is exponentially stable with a decay rate
κ = −

lnν
T+τM+2ηM−2ηm

.

Proof. Set r = 0. Since

tk1 − ηM = sk1 + ηk1 − ηM ≥ t0 + T + ηk1 − ηm ≥ t0 + T,

application of Lemma 2 with µ = µ0 leads to

xT (t)Px(t) ≤ V (t, xt , ẋt) < ν2µ2
0M

2
0 , ∀t ≥ tk1 − ηM .

Set r = 1. After zooming-in at sk1 , the resulting closed-loop system
has initial conditions

xtk1 ∈ W [−τM , 0] : V (tk1 , xtk1 , ẋtk1 ) < ν2µ2
0M

2
0 . (16)

Then Lemma 2 is applied with µ = µ0ν, where t0 and η0 are
changed by tk1 and ηk1 , respectively. Thus, the solutions of (6)
initiated by (16) remain in a regionXtk1 ,(1+βν2)ν2µ2

0M
2
0
for all t ≥ tk1 .

Since sk1 = tk1 − ηk1 ≥ tk1 − ηM , from (13) it follows that

xT (sk)CT
i Cix(sk) <

xT (sk)Px(sk) · ν2µ2
0M

2
i

(1 + βν2)ν2µ2
0M

2
0

< ν2µ2
0M

2
i ,

i = 1, . . . ,N, ∀k ≥ k1,
and thus,

|ωi(t)| ≤ νµ0∆i, i = 1, . . . ,N, t ≥ tk1 = sk1 + ηk1 .

Therefore, for t ≥ tk2 − ηM ≥ tk1 + T,

V (t, xt , ẋt) ≤ e−2α(t−sk1−ηk1 )V (t, xt , ẋt)|t=sk1+ηk1

+
ν2µ2

0

2α

N
i=1

bi∆2
i

≤e−2αTV (t, xt , ẋt)|t=sk1+ηk1
+

ν2µ2
0

2α

N
i=1

bi∆2
i

< (1 − β)ν2
· ν2µ2

0M
2
0 + βν2µ2

0M
2
0 · ν2

= ν4µ2
0M

2
0 .

Similarly, for r = 2, 3, . . . we have V (t, xt , ẋt) < ν2rµ2
0M

2
0 for all

t ∈ [tkr − ηM , tkr+1 − ηM). Noting that

rT + (r − 1)(2ηM − ηm) + t0 ≤ tkr − ηM ≤ t
≤ tkr+1 − ηM < (r + 1)(T + τM + 2ηM − 2ηm) + t0,

we obtain

V (t, xt , ẋt) < ν2rµ2
0M

2
0 < ν

2[ t−t0
T+τM+2ηM−2ηm

−1]
µ2

0M
2
0

= ν−2e
2lnν

T+τM+2ηM−2ηm
·(t−t0)µ2

0M
2
0 ,

t ∈ [tkr − ηM , tkr+1 − ηM), r ∈ N.

Then the following holds for t ≥ t0

|x(t)|2 ≤ ν−2
[λmin(P)]−1e

2lnν
T+τM+2ηM−2ηm

·(t−t0)µ2
0M

2
0 . �

For the implementation of the ‘‘zooming-in’’ algorithm, we set a
counter θ(t) at the sensor in terms of sampling instants sk. The
counter triggers the zooming in whenever θ(sk) ≥ T + 2ηM − ηm.
At the triggering times (t = skr ), it is reset to zero.

Remark 1. In the above reasoning, we assumed that packet loss
does not occur. However, if the number of successive packet
dropouts is upper bounded by d̄, we could accommodate for packet
dropouts by modeling them as prolongations of the transmission
interval and replace T by T + 2d̄ · MATI in the algorithm.

3.3. Initialization of the zoom variable

The algorithm of the previous section is given in terms of
the initial set Wµ2

0M
2
0
that involves the bound on V (t0, xt0 , ẋt0).

In this section, we find the ball of initial conditions x(0) = x0,
starting from which the solutions of (5)–(6) remain in the initial
set Wµ2

0M
2
0
. Following Liu and Fridman (2014), we derive a bound

on V (t0, xt0 , ẋt0) in terms of x0 in the next lemma:

Lemma 3 (Liu & Fridman, 2014). Consider LKF V̄ (t) = V (t, xt , ẋt)
given by (7) and denote V0(t) = xT (t)Px(t). Under the constant initial
condition x(t) = x0, t < 0, let there exist α > 0 and δ > 0 such
that the following inequalities

V̇0(t) − 2δV0(t) ≤ 0, (17a)
˙̄V (t) + 2αV̄ (t) − 2δV0(t) ≤ 0, (17b)

hold for 0 ≤ t < t0 along (5). Then we have

V0(t) ≤ λmax(e2δηM P)|x0|2, 0 ≤ t < t0,
V̄ (t0) ≤ λmax(e2δηM P + Ω)|x0|2,

(18)

where

Ω = ηmS0 + e−2αηm(τM − ηm)S1. (19)
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We are in a position to formulate our main result:

Theorem 1. Given Mj > 0, j = 0, 1, . . . ,N, ∆i > 0, i = 1, . . . ,N,
0 ≤ ηm ≤ ηM < τM and tuning parameters α > 0, 0 < ν < 1,
δ > 0, assume that there exist scalars 0 < β < 1, bi, i = 1, . . . ,N,
n× n matrices P > 0, S0 > 0, R0 > 0, S1 > 0, R1 > 0, S12, such that
LMIs (8)–(9), (13)–(14) and the following LMIs are feasible:

Ψ̃1 = P(A − δIn) + (A − δIn)TP < 0, (20)

Ψ̃2 =


Σ̃ − F̃ TΦ F̃ e−2ατM Ξ̃ TH

∗ − H


< 0, (21)

where

Σ̃ = F̃ T
1 PΞ̃ + Ξ̃ TPF̃1 + Υ̃ − F̃ T

2 R0F̃2e−2αηm ,

F̃1 = [In 0n×3n], F̃2 = [In − In 0n×2n], Ξ̃ = [A 0n×3n],

F̃ =


0n×n In −In 0n×n
0n×n 0n×n In −In


,

(22)

Υ̃ = diag{S0+2αP−2δP, −(S0−S1)e−2αηm , 0n×n, −S1e−2ατM }, and
the notationsΦ and H are given by (8) and (10), respectively. Assume
that the initial condition satisfies the inequality |x0| < X0, where X0 >
0 is known. Then the ‘‘zooming-in’’ algorithm of Section 3.2 starting
with µ(s0) = µ0 with µ0 given by

µ2
0 =

λmax(e2δηM P + Ω)

M2
0

X2
0 (23)

exponentially stabilizes system (5)–(6), where Ω is given by (19).

Proof. As follows from Liu and Fridman (2014), the LMIs (8), (20)
and (21) guarantee (17) along (5) for 0 ≤ t < t0. Therefore, if the
initial condition satisfies the inequality |x0| < X0, then

max{V0(t), V̄ (t0)} ≤ λmax(e2δηM P + Ω)X2
0

= µ2
0M

2
0 , t ∈ [0, t0],

meaning that xt0 ∈ Xµ2
0M

2
0
. The result then follows from Proposi-

tion 1. �

Remark 2. Given α > 0, there always exists δ > 0 such that
A − (δ − α)In is Hurwitz, i.e., V̇0 + 2(α + ε − δ)V0 ≤ 0 holds
for some P > 0with small enough ε > 0. Then LMI (20) is feasible,
and for small enough τM > 0, by standard arguments for delay-
dependent methods (see e.g., Fridman, 2014) the LMIs (8) and (21)
are satisfied.

Remark 3. Note that given a bound X0 > 0 on the state initial
conditions and the values of the quantizer range Mi > 0 and
error ∆i > 0, i = 1, . . . ,N , Eq. (23) defines the initial value of
the zoom variable, starting from which the exponential stability is
guaranteed by using ‘‘zooming-in’’ only.

Remark 4. If the initial value of the zoom variable is given by
µ0, then the ‘‘zooming-in’’ algorithm starting with µ(s0) = µ0
exponentially stabilizes all the solutions of (5)–(6) starting from
the initial ball

|x0| < X0, X0 =
µ0M0

λmax(e2δηM P + Ω)
. (24)

In order to maximize the initial ball (24), i.e., to minimize
λmax(e2δηM P+Ω), the condition e2δηM P+Ω−γ In < 0 can be added
to the conditions of Theorem 1, where γ > 0 is to be minimized.

Remark 5. Consider the case where all the conditions of Theo-
rem 1 are satisfied, but the initial ball |x0| < X̄0 is larger: X̄0 > X0,
where X0 is given by (24). Then we change µ0 in the algorithm
by µ̄0 = M−1
0 X̄0


λmax(e2δηM P + Ω) and zoom-out by resetting

M̄i = µ̄0Mi, ∆̄i = µ̄0∆i, i = 1, . . . ,N . Therefore, we can
start with the quantizer qiµ̄0(zi) (corresponding to µ(s0) = µ̄0)
whose range and quantization error are given by M̄i and ∆̄i, i =

1, . . . ,N , respectively. After this initial ‘‘zooming-out’’, ‘‘zooming-
in’’ is used as suggested in the algorithm of Section 3.2. This
‘‘zooming-in’’–‘‘zooming-out’’ algorithm was originally proposed
by Liberzon (2003).

Since the LMIs (9), (20) and (21) are affine in the system
matrices, the conditions of Theorem 1 can be applied to the case
where these matrices are uncertain. Consider next system (1) with
the polytopic type uncertainties. Denote Θ =


A B


and assume

that

Θ =

M
j=1

gj(t)Θj, 0 ≤ gj(t) ≤ 1,
M
j=1

gj(t) = 1, (25)

where gj are uncertain time-varying parameters and where the
M vertices of the polytope are described by Θj =


A(j) B(j)


,

j = 1, . . . ,M.
Suppose that the following LMIs for j = 1, . . . ,M , are feasible

with the same decision matrices:

Ψ (j)
=


Σ (j)

− F TΦFe−2ατM (Ξ (j))TH
∗ − H


< 0, (26)

Ψ̃
(j)
1 = P(A(j)

− δIn) + (A(j)
− δIn)TP < 0, (27)

Ψ̃
(j)
2 =


Σ̃ (j)

− F̃ TΦ F̃ e−2ατM (Ξ̃ (j))TH
∗ − H


< 0, (28)

where

A(j)
1 = B(j)KC, B(j)

i = B(j)Ki, i = 1, . . . ,N,

Σ (j)
= F T

1 PΞ (j)
+ (Ξ (j))TPF1 + Υ − F T

2 R0F2e−2αηm ,

Ξ (j)
= [A(j) 0n×n A(j)

1 0n×n B(j)
1 · · · B(j)

N ],

Σ̃ (j)
= F̃ T

1 PΞ̃ (j)
+ (Ξ̃ (j))TPF̃1 + Υ̃ − F̃ T

2 R0F̃2e−2αηm ,

Ξ̃ (j)
= [A(j) 0n×3n],

(29)

and where notations are given by (8), (10), (22). Then we obtain
M
j=1

gj(t)Ψ (j)
= Ψ < 0 and

M
j=1

gj(t)Ψ̃
(j)
i = Ψ̃i < 0, i = 1, 2,

which mean that (9), (20) and (21) are feasible. The following
statement holds:

Theorem 2. Given Mj > 0, j = 0, 1, . . . ,N, ∆i > 0, i = 1, . . . ,N,
0 ≤ ηm ≤ ηM < τM and tuning parameters α > 0, 0 < ν < 1,
δ > 0, assume that there exist scalars 0 < β < 1, bi, i = 1, . . . ,N,
n × n matrices P > 0, S0 > 0, R0 > 0, S1 > 0, R1 > 0, S12, such
that LMIs (8), (13)–(14), (26)–(28) are feasible for j = 1, . . . ,M,
where notations are given by (8), (10), (22) and (29). Assume that the
initial condition satisfies the inequality |x0| < X0, where X0 > 0
is known. Then the ‘‘zooming-in’’ algorithm of Section 3.2 starting
with µ(s0) = µ0 with µ0 given by (23) exponentially stabilizes the
uncertain system (5)–(6) with (25).

Remark 6. Theorems 1 and 2 focus on the stability analysis of
NCSs with dynamic quantization, variable communication delays
and variable sampling intervals. For the static output-feedback
stabilization problem, one possible solution is to apply the
approach introduced in Liu and Fridman (2012) together with the
descriptor method (Fridman & Shaked, 2003).
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4. Example: uncertain inverted pendulum

Consider an inverted pendulum mounted on a car. Following
Geromel, Korogui, and Bernussou (2007), we assume that the
friction coefficient between the air and the car, fc , and the air
and the bar, fb, are not exactly known and time-varying: fc(t) ∈

[0.15, 0.25] and fb(t) ∈ [0.15, 0.25]. The linearized model can be
written as (1), where matrix A = E−1Af is determined from

E =

1 0 0 0
0 1 0 0
0 0 3/2 −1/4
0 0 −1/4 1/6

 ,

Af =

0 0 1 0
0 0 0 1
0 0 −(fc + fb) fb/2
0 5/2 fb/2 −fb/3

 .

Matrix B is given by B = E−1B0 with B0 = [0 0 1 0]T . Note that A
can be described by a polytope with four vertices. The pendulum
can be stabilized by the state feedback u(t) = Kx(t) = YQ−1x(t),
where Y ∈ R1×4 and 0 < Q ∈ R4×4 satisfy

AQ + QAT
+ 2αQ + BY + Y TBT < 0 (30)

in the vertices of polytope for a tuning parameter α > 0.
Consider N = 2 and

C1 =


1 0 0 0
0 1 0 0


, C2 =


0 0 1 0
0 0 0 1


.

The quantizer is chosen as

qµ(yi) =


100µ sgn(yi), if |yi| > 100µ,

µ


yi

µ
+ 0.1


, if |yi| ≤ 100µ,

where yi is the ith component of y, i = 1, . . . , ny. Therefore, we can
takeM1 = M2 = 100, ∆1 = ∆2 = 0.1. Choose µ0 = 1,M0 = 100,
ν = 0.8, δ = 10.

First, choosing α = 0.3, from (30) we obtain the controller gain

K = [K1 K2], (31)

where

K1 =

25.1319 −222.9722


, K2 =


28.7826 −44.2075


.

Application of Theorem 2 with τM = 0.02, ηm = 0.011, ηM =

0.015 leads to T = −
ln(1−β)+2lnν

2α = 1.0002 from (15). Then
the ‘‘zooming-in’’ algorithm of Section 3.2 with T = 1.0002 and
ν = 0.8 exponentially stabilizes all the solutions of (5)–(6) with
(25) starting from the initial ball |x0| < 5.2693. The evolution of
the zoom variable µ is shown in Fig. 3.

Moreover, we find that the system is exponentially stable with
a decay rate κ = −

lnν
T+τM+2ηM−2ηm

= 0.2170. Let the initial state
x0 = [1 3 2 − 1]T . The evolution of the control input and the state
is shown in Fig. 4.

If all the conditions of Theorem 2 are satisfied, but the initial
ball is |x0| < 15, which is out of |x0| < 5.2693, we substituteµ0 =

15/5.2693 = 2.85 for 1 and zoom-out by resetting M̄i = µ0Mi =

285, ∆̄i = µ0∆i = 0.285, i = 1, 2. After this initial ‘‘zooming-
out’’, ‘‘zooming-in’’ is used by Theorem 2 and the algorithm of
Section 3.2.

Next, taking a larger α = 0.7, from (30) we have another
controller gain

K̄ = [K̄1 K̄2], (32)

where

K̄1 =

15.6527 −105.6658


, K̄2 =


16.0894 −22.0086


.

Fig. 3. Evolution of the zoom variable µ in the ‘‘zooming-in’’ algorithm.

a

b

Fig. 4. (a) Evolution of the control input with the gain (31); (b) Trajectory of the
closed-loop system with the controller gain (31).

We find that given τM = 0.02, ηm = 0.011, ηM = 0.015, the
‘‘zooming-in’’ algorithm of Section 3.2 with a smaller T = 0.3457
and the same ν = 0.8 exponentially stabilizes all the solutions of
(5), (6) and (25) starting from a larger initial ball |x0| < 6.2782
with a larger decay rate κ = 0.5972. The evolution of the zoom
variableµ and the evolution of the control input, the state with the
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a

b

Fig. 5. (a) Evolution of the control input with the gain (32); (b) Trajectory of the
closed-loop system with the controller gain (32).

initial state x0 are shown in Figs. 3 and 5, respectively (confirming
the theoretical results).

The simulation results listed above show that the larger value
of α and the resulting controller gain give rise to a larger decay
rate. The choice of α to be 1.58 and the corresponding controller
gain K̃ = [K̃1 K̃2], where K̃1 = [39.8549 − 141.5345], K̃2 =

[30.1820 − 30.7271], lead to the maximum value of the decay
rate κ = 1.0689.

5. Conclusions

In this paper, a time-delay approach was developed for the sta-
bility analysis of uncertain linear NCSs with dynamic quantization,
variable communication delays and variable sampling intervals. An
LMI-based time-triggered zooming algorithm was presented for
the dynamic quantization that leads to the exponential stability of
the closed-loop system. A novel Lyapunov-based method was pro-
posed for initialization of the zoom parameter. Future work will
involve analysis of more general NCS models, including quantized
input and stochastic communication delays.

Appendix A

Proof of Lemma 1. Consider t ∈ [tk, tk+1), k ∈ Z+ and define
ξ(t) = col{x(t), x(t−ηm), x(t−τ(t)), x(t−τM), ω1(t), · · · , ωN(t)}.
Differentiating V along (6) and applying Jensen’s inequality, we
have

ηm

 t

t−ηm

ẋT (s)R0ẋ(s)ds ≥

 t

t−ηm

ẋT (s)dsR0

 t

t−ηm

ẋ(s)ds

= ξ T (t)F T
2 R0F2ξ(t),

−(τM − ηm)

 t−ηm

t−τM

ẋT (s)R1ẋ(s)ds

= −(τM − ηm)

 t−ηm

t−τ(t)
ẋT (s)R1ẋ(s)ds

− (τM − ηm)

 t−τ(t)

t−τM

ẋT (s)R1ẋ(s)ds

≤ −
τM − ηm

τ(t) − ηm
ξ T (t)


[In 0n×n]F

T
R1[In 0n×n]Fξ(t)

−
τM − ηm

τM − τ(t)
ξ T (t)


[0n×n In]F

T
R1[0n×n In]Fξ(t)

≤ −ξ T (t)F TΦFξ(t).

The latter inequality holds if (8) is feasible (Park et al., 2011). Then

d
dt

V + 2αV −

N
i=1

bi|ωi(t)|2

≤ ξ T (t)[Σ + Ξ THΞ − F TΦFe−2ατM ]ξ(t) ≤ 0,

(33)

if Σ + Ξ THΞ − F TΦFe−2ατM < 0, i.e., by Schur complement, if (9)
is feasible.

Since |ωi(t)| ≤ µ∆i, i = 1, . . . ,N , by the comparison
principle (Khalil & Grizzle, 2002), (33) implies for t ∈ [tk, tk+1)

V (t, xt , ẋt) ≤ e−2α(t−tk)V (tk, xtk , ẋtk)

+ µ2
N
i=1

bi∆2
i

 t

tk
e−2α(t−s)ds

≤ e−2α(t−tk−1)V (tk−1, xtk−1 , ẋtk−1)

+ µ2
N
i=1

bi∆2
i

 t

tk−1

e−2α(t−s)ds

...

≤ e−2α(t−t0)V (t0, xt0 , ẋt0)

+ µ2
N
i=1

bi∆2
i

 t

t0
e−2α(t−s)ds

≤ e−2α(t−t0)V (t0, xt0 , ẋt0) +
µ2

2α

N
i=1

bi∆2
i ,

that completes the proof. �

Appendix B

Proof of Lemma 2. For all xt ∈ Xt0,(1+βν2)µ2M2
0

starting from
Wµ2M2

0
, we have

xT (t)Px(t) ≤ V (t, xt , ẋt) < (1 + βν2)µ2M2
0 ,

and, thus, (13) guarantees that

xT (sk)CT
i Cix(sk) <

xT (sk)Px(sk) · µ2M2
i

(1 + βν2)µ2M2
0

< µ2M2
i , k ∈ Z+.

Hence, there is no saturation for the sensor node yi(sk) =

Cix(sk), k ∈ Z+ (|Cix(sk)| < µMi), which implies |ωi(t)| ≤ µ∆i,



K. Liu et al. / Automatica 59 (2015) 248–255 255
t ≥ t0, i = 1, . . . ,N whenever xt ∈ Xt0,(1+βν2)µ2M2
0
and xt0 ∈

Xµ2M2
0
.

Let xt0 ∈ Xµ2M2
0
, then solutions of (6) satisfy V (t, xt , ẋt) <

(1 + βν2)µ2M2
0 for t ∈ [t0, t ′) for some t ′ > t0. We will show

next that solutions of (6) with xt0 ∈ Xµ2M2
0
stay in Xt0,(1+βν2)µ2M2

0
for all t ≥ t0 if LMIs (8)–(9), (13)–(14) are feasible.

Assume, on the contrary, that there exists a finite time t ′ > t0
such that V (t, xt , ẋt) < (1 + βν2)µ2M2

0 for t ∈ [t0, t ′) and
V (t ′, xt ′ , ẋt ′) = (1+βν2)µ2M2

0 . Then under (13)we have |ωi(t)| ≤

µ∆i, i = 1, . . . ,N for t ∈ [t0, t ′]. From (11)–(14), it follows that

V (t, xt , ẋt) ≤ e−2α(t−t0)V (t0, xt0 , ẋt0) +
µ2

2α

N
i=1

bi∆2
i

< (1 + βν2)µ2M2
0 , t ∈ [t0, t ′],

which contradicts to V (t ′, xt ′ , ẋt ′) = (1 + βν2)µ2M2
0 .

Then (11)–(15) yield

V (t, xt , ẋt) ≤ e−2αTV (t0, xt0 , ẋt0) +
µ2

2α

N
i=1

bi∆2
i

< (1 − β)ν2
· µ2M2

0 + βν2µ2M2
0

= ν2µ2M2
0 , t ≥ t0 + T,

that completes the proof. �
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