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This article focuses on the stabilisation problem of neutral systems in the presence of time-varying delays and
control saturation. Based on a descriptor approach and the use of a modified sector relation, global and local
stabilisation conditions are derived using Lyapunov–Krasovskii functionals. These conditions, formulated directly
as linear matrix inequalities (LMIs), allow one to relate the control law to be computed to a set of admissible initial
conditions, for which the asymptotic and exponential stabilities of the closed-loop system are ensured. An
extension of these conditions to the particular case of retarded systems is also provided. From the theoretical
conditions, optimisation problems with LMI constraints are therefore proposed to compute stabilising state
feedback gains with the aim of ensuring stability for a given set of admissible initial conditions or the global stability
of the closed-loop system. A numerical example illustrates the application of the proposed results.
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1. Introduction

In the past years great attention has been paid to
stability and control of time-delay systems
(Kolmanovskii and Myshkis 1999; Niculescu 2001;
Richard 2003). This is due to the fact that the
behaviour of many physical systems (mechanical,
chemical processes, telecommunication, etc.) can be
modelled by functional differential equations. Delays
can appear in the state, input or output variables
(retarded systems), as well as in the state derivative
(neutral systems). Furthermore, it is well known that
the presence of the delays in control systems can lead
to bad time-domain performances or even to the
instability of the closed-loop system. Hence, we can
find in the literature a great amount of techniques and
methodologies dealing with the stability and stabilisa-
tion of time-delay systems (retarded and also neutral),
and associated problems, such as performance, robust-
ness and filtering.

The difficulty in controlling time-delay systems
becomes even greater if the control signal is bounded.
Unfortunately, this is a practical constraint, which
comes from the impossibility of actuators to drive
signals with unlimited amplitude or energy to the
controlled plants. For retarded systems, some works
addressing the stability analysis and stabilisation in the
presence of saturating control signals can be found in

the literature. In Oucheriah (1996) and Niculescu,

Dion, and Dugard (1996) globally stabilising control

laws are proposed. In Chen, Wang, and Lu (1988) and

Tissir and Hmamed (1992), conditions for stability or

stabilisation are proposed with state feedback and

sampled-data state feedback. However, in these papers,

the set of admissible initial conditions, for which the

asymptotic stability is ensured (i.e. the domain of

attraction) in the presence of control saturation, is not

mentioned or explicitly defined. Based on invariance

properties, in Dambrine, Richard, and Borne (1995)

the control was computed to avoid the (input and

state) saturations. In Tarbouriech and Gomes da Silva

Jr (2000), Cao, Lin, and Hu (2002) and Fridman,

Seuret, and Richard (2004), methods for computing

stabilising state feedback control laws aiming at

enlarging well defined estimates of the domain of

attraction of the closed-loop system have been

proposed. These methods are based on the use of

polytopic differential inclusions for describing the

behavior of the closed-loop system with saturating

inputs. In Tarbouriech, Gomes da Silva Jr and Garcia

(2003, 2004), the synthesis of stabilising static

anti-windup loops is addressed for the case of retarded

systems presenting fixed delays. On the other hand,

considering neutral systems, we can cite only

Tarbouriech and Garcia (1999). In that paper, using
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a polytopic approach for modelling saturation effects,
a method for computing stabilising state feedback
controls with the aim of maximising the set of
admissible initial conditions is proposed. It should be
pointed out that the results in Tarbouriech and Garcia
(1999) are derived in the delay independent context and
the obtained conditions are in the form of nonlinear
matrix inequalities. Furthermore, due to the use of a
polytopic approach, only local stability can be ensured.

As in Tarbouriech and Garcia (1999), this article is
concerned with the asymptotic as well as the exponen-
tial stabilisation problem of neutral systems in the
presence of control saturation.1 Based on a Lyapunov–
Krasosvskii functional (LKF) and on the application
of a modified sector condition (Tarbouriech et al.
2004), global and local stabilisation conditions are
derived in a delay dependent context. Different from
Tarbouriech and Garcia (1999), these conditions allow
one to consider the case of time-varying delays in a
delay dependent context and they are formulated
directly as linear matrix inequalities (LMIs). In addi-
tion, the extension of these conditions to the particular
case of retarded systems with delays is also presented.
Optimisation problems are then formulated with the
aim of computing stabilising state feedback control
laws. These optimisation problems allow one to search
the maximal delay bound for which a global stabilising
control law can be found. On the other hand, when
only local stabilisation is possible (e.g. when the
open-loop system is unstable), the optimisation objec-
tive consists of finding a control law that maximises an
estimate of the domain of attraction or that ensures the
stability for a given set of admissible initial states.

The article is organised as follows. In Section 2, the
problem to be treated is formally stated. The results
concerning the asymptotic stabilisation are presented
in Section 3. Exponential stabilisation results are
provided in Section 4. Optimisation problems to
compute stabilising gains are proposed and discussed
in Section 5. Finally, in Section 6, numerical examples
illustrate the application of the results.

Notations. Throughout the article Rn denotes the n
dimensional Euclidean space. Ai denotes the i-th row of
matrix A. For two symmetric matrices, A and B,A4B
means that A�B is positive definite. A0 denotes the
transpose of A. I denotes an identity matrix of
appropriate order. �max(P) and �min(P) denote, respec-
tively, the maximal and the minimal eigenvalues of
matrix P. Ch¼C([�h, 0],Rn) is the Banach space of
continuous vector functions mapping the interval
[�h, 0] into Rn with the norm k�kc ¼ sup�h�t�0k�ðtÞk.
k � k refers to either the Euclidean vector norm or the
induced matrix 2-norm. Cvh is the set defined by
C
v
h ¼ f� 2 Ch; k�kc5 v, v4 0g.

2. Problem statement

Consider the following neutral type linear system:

_xðtÞ�F _xðt� �ðtÞÞ ¼AxðtÞþAdxðt� �ðtÞÞþBuðtÞ
xðt0þ �Þ ¼�ð�Þ, 8� 2 ½�h,0�, t0 2<þ, �ð�Þ 2 C

v
h,
ð1Þ

where x(t)2Rn and u(t)2Rm are, respectively, the

state and the input vectors, �(t) corresponds to a

time-varying delay that satisfies

0 � �ðtÞ � h, _�ðtÞ � d5 1:

The initial function �(�) is supposed to be continuously

differentiable. Matrices A, Ad, B and F are real

constant matrices of appropriate dimensions. To

apply the Lyapunov stability theorem (Kolmanovskii

and Myshkis 1999, p. 337) we assume that kFk51.
We suppose that the input vector u is subject to

amplitude limitations defined as follows:

juij � u0i, u0i 4 0, i ¼ 1, . . . ,m: ð2Þ

Consider now a state feedback control law

u(t)¼Kx(t). Due to the control bounds defined in (2),

the effective control signal to be applied to the system

is given by

uðtÞ ¼ satðKxðtÞÞ

where ui(t)¼ sat(Kix(t))¼ sign(Kix(t))min{u0i,Kix(t)}.

Hence, the closed-loop system reads

_xðtÞ�F _xðt� �ðtÞÞ¼AxðtÞþAdxðt� �ðtÞÞþBsatðKxðtÞÞ:

ð3Þ

System (3) is said to be globally asymptotically

stable if for any differentiable initial condition

�(�)2Ch, the trajectories of the system converge

asymptotically to the origin (Niculescu et al. 1996;

Oucheriah 1996). Similar to the case of delay-free

(�(t)¼ 0), the determination of a global stabilising

controller is only possible when some stability assump-

tions are verified by the open-loop system (u(t)¼ 0)

(Lin and Saberi 1993). When this hypothesis is not

verified, it is only possible to achieve local stabilisation.

In this case, given a stabilising matrix K, we associate a

basin of attraction to the equilibrium point xe(t)� 0 of

system (3). The basin of attraction corresponds to all

initial conditions �(�)2Ch such that the corresponding

trajectories of system (3) converge asymptotically to

the origin. Since the determination of the exact basin

of attraction is practically impossible, a problem of

interest is to ensure the asymptotic stability for a set of

admissible initial conditions �(�) (Tarbouriech and

Gomes da Silva Jr 2000; Cao et al. 2002; Fridman, Pila,

and Shaked 2003). Of course, this set is included in

the basin of attraction. Hence, from the above
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considerations, in this article we are interested in
studying the stabilisation problems stated as follows.

(1) Given h and d, find K and a set of admissible
initial conditions, as large as possible, for which
the asymptotic (or exponential) stability of the
closed-loop system is ensured.

(2) Given h, d and a set of admissible initial
conditions, find K such that the asymptotic (or
exponential) stability is ensured for all initial
conditions belonging to the admissible set.

(3) Maximise the bound on the delay h, for which
the asymptotic (or exponential) stability of the
closed-loop system can be ensured for some set
of admissible initial conditions and a given d.

Of course, when it is possible, the objective will be
the global stabilisation of the closed-loop system.
Otherwise, the set of admissible initial conditions will
be defined from bounds on k�(�)kc and k _�ð�Þkc. In the
sequel, theoretical conditions that allow one to address
the above stabilisation problems are proposed. Based
on these conditions, optimisation problems are for-
mulated in Section 5.

3. Asymptotic stabilisation

3.1. Preliminaries

Define the following function:

 ðKxðtÞÞ ¼ KxðtÞ � satðKxðtÞÞ: ð4Þ

Note that  (Kx(t)) corresponds to a decentralised
deadzone nonlinearity. Considering the function
 (Kx(t)), the closed-loop system can be re-written as

_xðtÞ � F _xðt� �ðtÞÞ ¼ ðAþ BKÞxðtÞ þ Adxðt� �ðtÞÞ

� B ðKxðtÞÞ ð5Þ

Considering a matrix G2Rm�n and defining the
following polyhedral set:

S ¼
4
fx 2 <n; jðKi � GiÞxj � u0i, i ¼ 1, . . . ,mg ð6Þ

the following Lemma concerning the nonlinearity
 (Kx(t)) can be stated.

Lemma 1 (Tarbouriech et al. 2004): Consider
the function  (Kx) defined in (4). If x2S then the
relation

 ðKxÞ0T ½ ðKxÞ � Gx� � 0 ð7Þ

is verified for any matrix T2Rm�m diagonal and
positive definite.

The result in Lemma 1 can be seen as a generalised
sector condition. As will be seen in the sequel,
differently from the classical sector condition (used

for instance in Tarbouriech et al. (2003)), this condi-

tion will allow one to obtain stability conditions

directly in an LMI form.
Another instrumental result, needed in the sequel

to devise the stabilisation conditions, is given by the

following lemma.

Lemma 2: Consider two scalars a5b and a symmetric

positive definite matrix R2Rn�n. For any continuous

function ! : [a, b]!Rn and any strictly positive contin-

uous function f : [a, b]!R, the following inequality

holds:

Z b

a

!0ðsÞ f ðsÞR!ðsÞds �

Z b

a

!ðsÞds

� �0 Z b

a

ð f ðsÞÞ�1ds

� ��1

�R

Z b

a

!ðsÞds

� �
: ð8Þ

Proof: Consider any �2 [0 1). By virtue of the Schur

complement, we can write that

f ðsÞ!0ðsÞR!ðsÞ !0ðsÞ

!ðsÞ ð�f ðsÞRÞ�1

" #
� 0:

Then the proof consists of integrating the previous

inequality, applying the Schur complement and taking

�! 1. œ

Remark 1: From (8), it is simple to see that if f(s)¼ 1,

the classical Jensen’s inequality is obtained (Gu,

Kharitonov, and Chen 2003, p. 322).

3.2. Neutral systems

Theorem 1: If there exist symmetric positive definite

matrices Q1, L, J, X, matrices Q2, Q3, Y, W and a

diagonal matrix S of appropriate dimensions satisfying

the LMIs (9) and (10),

~K
J=h

AdQ1

" #
0

FL

" #
Y0

�BS

" #
h

Q02

Q03

" #
Q02

Q03

" #

? ðd�1ÞX�J=h 0 0 0 0

? ? ðd�1ÞL 0 0 0

? ? ? �2S 0 0

? ? ? ? �2hQ1þhJ 0

? ? ? ? ? �L

2
6666666666664

3
7777777777775
50

with ~K¼
Q2þQ

0
2þX�J=h Q1A

0 þW0B0 �Q02þQ3

? �Q3�Q
0
3

" #
ð9Þ

Q1 ðW� YÞ0j

? u20j

" #
� 0, j ¼ 1, . . . ,m ð10Þ

International Journal of Systems Science 1095
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then for K ¼WQ�11 and all initial conditions satisfying

� ¼ ð�maxðQ
�1
1 Þ þ h�maxðQ

�1
1 XQ�11 ÞÞk�ð�Þk

2
c

þ

� h2
2
�maxðQ

�1
1 JQ�11

�
þ h�maxðL

�1ÞÞk _�ð�Þk2c � 1,

ð11Þ

the corresponding trajectories of system (5) converge
asymptotically to the origin.

Proof: Consider that x(t)2S and the following LKF
proposed in Fridman and Shaked (2002) for dealing
with time-varying delays:

VðtÞ ¼ x0ðtÞP1xðtÞ þ

Z t

t��ðtÞ

x0ðsÞMxðsÞds

þ

Z t

t��ðtÞ

_x0ðsÞU _xðsÞdsþ

Z 0

�h

Z t

tþ�

_x0ðsÞR _xðsÞds d�

with P1, R, M and U being symmetric positive define
matrices. Noting that ðAþ BKÞxðtÞ þ Adxðt� �ðtÞÞ�
B ðKxðtÞÞ þ F _xðt� �ðtÞÞ � _xðtÞ ¼ 0, it follows that the
derivative of the functional is given by

_VðtÞ ¼ x0ðtÞP1 _xðtÞ þ _x0ðtÞP1xðtÞ þ x0ðtÞMxðtÞ

� ð1� _�ðtÞÞx0ðt� �ðtÞÞMxðt� �ðtÞÞ

þ _x0ðtÞU _xðtÞ � ð1� _�ðtÞÞ _x0ðt� �ðtÞÞU _xðt� �ðtÞÞ

þ h _xðtÞ0R _xðtÞ �

Z 0

�h

_x0ðtþ �ÞR _xðtþ �Þd�

þ 2x0ðtÞP02ððAþ BKÞxðtÞ þ Adxðt� �ðtÞÞ

� B ðKxðtÞÞ þ F _xðt� �ðtÞÞ � _xðtÞÞ

þ 2 _x0ðtÞP03ððAþ BKÞxðtÞ þ Adxðt� �ðtÞÞ

� B ðKxðtÞÞ þ F _xðt� �ðtÞÞ � _xðtÞÞ:

Introducing the vectors �x0ðtÞ ¼ ½x0ðtÞ _x0ðtÞ� and
�0ðtÞ ¼ ½ �x0ðtÞ �x0ðt� �ðtÞÞ  0ðKxðtÞÞ� and the matrix

P ¼
P1 0
P2 P3

� �
we will follow the descriptor approach

(Fridman and Shaked 2002). In this case, the derivative
of the functional is expressed as

_VðtÞ ¼ �x0ðtÞL �xðtÞ þ 2 �x0ðtÞP0 0 A0d
� 	0

xðt� �ðtÞÞ

� 2 �x0ðtÞP0 0 B0
� 	0

 ðKxðtÞÞ

þ 2 �x0ðtÞP0 0 F 0
� 	0

_xðt� �ðtÞÞ þ x0ðtÞMxðtÞ

� x0ðt� �ðtÞÞð1� _�ðtÞÞMxðt� �ðtÞÞ

þ _x0ðtÞU _xðtÞ � ð1� _�ðtÞÞ _x0ðt� �ðtÞÞU _xðt� �ðtÞÞ

þ h _x0ðtÞR _xðtÞ �

Z t

t�h

_x0ðsÞR _xðsÞds ð12Þ

with L ¼
0 I

ðAþ BKÞ �I

� �0
Pþ P0

0 I
ðAþ BKÞ �I

� �
.

Provided that x(t)2S, from Lemma 1, it follows that

_VðtÞ � _VðtÞ � 2 ðKxÞ0T ½ ðKxÞ � Gx� ð13Þ

where T is a diagonal positive definite matrix.
Applying now Jensen’s inequality to the last term

of (12), the following inequality holds:

�

Z t

t�h

_x0ðsÞR _xðsÞds

� �ðxðtÞ � xðt� �ðtÞÞ0
R

h
ðxðtÞ � xðt� �ðtÞÞ: ð14Þ

Combining (13) and (14), it follows that
_VðtÞ � �0ðtÞ��ðtÞ with

�¼

Lþ�
R=h

0

� �
þP0

0

Ad

� �
P0

0

F

� �
G0T

0

� �
�P0

0

B

� �
? ðd�1ÞM�R=h 0 0

? ? ðd�1ÞU 0

? ? ? �2T

2
666664

3
777775

where � ¼
M� R=h 0

0 hRþU

� �
.

Suppose now that �50. Applying Schur’s comple-

ment to the terms
0 0
0 hR

� �
and

0 0
0 U

� �
, it follows

that �50 is equivalent to

where ~L ¼ L þ
M� R=h 0

0 0

� �
. Note now that if the

previous matrix inequality is satisfied, one has ~L5 0,

which implies that �P3
0 �P3 is negative definite.

Hence, since P140, it follows that matrix P is

invertible. Denote now the matrix P�1 ¼

Q ¼
Q1 0
Q2 Q3

� �
and define a block diagonal matrix

�¼ diag{Q,Q1,U
�1,T�1, I, I}. By pre- and post-

multiplying (15) by �1
0 and �1 respectively, one

~L
R=h
0

� �
þ P0

0
Ad

� �
P0

0
F

� �
G0T
0

� �
� P0

0
B

� �
h

0
I

� �
0
I

� �
? ðd� 1ÞM� R=h 0 0 0 0
? ? ðd� 1ÞU 0 0 0
? ? ? �2T 0 0
? ? ? ? �hR�1 0
? ? ? ? ? �U�1

2
666666664

3
777777775
5 0 ð15Þ
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obtains:

Consider now the change of variables: X¼Q1MQ1,

J¼Q1RQ1, L¼U�1, S¼T�1, Y¼GQ1 and W¼KQ1.

Noting that Q0 ~LQ ¼ ~K and that the development
of (Q1�R�1)R(Q1�R�1)� 0 implies R�1� 2Q1� J,

it follows that the LMI condition (9) is obtained. Thus,

we conclude that (9) implies that �50, which implies
that _VðtÞ5 0, provided that x(t)2S, t40.

From the definition of V(t), it follows that

Vð0Þ � x0ð0ÞP1xð0Þþ

Z 0

�h

x0ðsÞMxðsÞdsþ

Z 0

�h

_x0ðsÞU _xðsÞds

þ

Z 0

�h

Z 0

�

_x0ðsÞR _xðsÞdsd�

� ð�maxðQ
�1
1 Þþh�maxðQ

�1
1 XQ�11 ÞÞk�ð�Þk

2
c

þ

�h2
2
�maxðQ

�1
1 JQ�11

�
þh�maxðL

�1ÞÞk _�ð�Þk2c ¼ �:

If _VðtÞ5 0, 8t� 0, then we can conclude that

xðtÞ0P1xðtÞ � VðtÞ � Vð0Þ � �, 8t � 0: ð17Þ

Consider the ellipsoidal set E ¼ {x2Rn ; x0P1x� 1},

where P1 ¼ Q�11 . It is easy to see (Tarbouriech and
Gomes da Silva Jr 2000) that (10) implies that E 	S,

with S as defined in (6). Suppose now that the initial

condition �(�) satisfies (11), i.e. �� 1, and conditions
(9)–(10) hold. From (17), it follows that the state

trajectory is confined in the ellipsoid E, 8t� 0, which
ensures that x(t)2S, 8t� 0. Then, _VðtÞ5 0, 8t � 0 is

effectively satisfied for all initial conditions verifying

(11), which concludes the proof. œ

Theorem 1 considers the local (or regional) stabi-

lisation, in the sense that the computed gain K ensures
asymptotic stability just for the initial conditions

satisfying (11). As pointed out in Section 2, provided

the open-loop system is asymptotically stable, it can be
possible to compute globally stabilising gains. The next

result, which can be seen as a particularisation of

Theorem 1, allows one to address this problem.

Corollary 1: If there exist positive definite matrices Q1,

L, J, X, matrices Q2, Q3, W and a diagonal matrix S of
appropriate dimensions satisfying (9) with Y¼W, then,

for K ¼WQ�11 the origin of system (5) is globally
asymptotically stable.

Proof: The proof mimics the one of Theorem 1.

In this case, it follows that G ¼WP1 ¼WQ�11 ¼ K.

Hence (7) is verified for all x2Rn and the global

asymptotic stability follows. œ

3.3. Retarded systems

We focus now on the stabilisation of the following

retarded system:

_xðtÞ ¼ AxðtÞ þ Adxðt� �ðtÞÞ þ BsatðKxðtÞÞ: ð18Þ

This system can be seen as a particular case of system

(3) when F¼ 0. The following theorem gives a condi-

tion to stabilise system (18).

Theorem 2: If there exist positive definite matrices Q1,

X, J, matrices Q2, Q3, Y, W and a diagonal matrix S of

appropriate dimensions satisfying the LMIs (10) and (19)

~K
J=h

AdQ1

" #
Y0

�BS

" #
h

Q02

Q03

" #

? ðd�1ÞX�J=h 0 0

? ? �2S 0

? ? ? �2hQ1þhJ

2
666666664

3
777777775
50 ð19Þ

then for K ¼WQ�11 and all initial conditions satisfying

�r ¼ ð�maxðQ
�1
1 Þ þ h�maxðQ

�1
1 XQ�11 ÞÞk�ð�Þk

2
c

þ
h2

2
�maxðQ

�1
1 JQ�11 Þk

_�ð�Þk2c � 1

the corresponding trajectories of system (18) converge

asymptotically to the origin.

Proof: Considering the following LKF:

VðtÞ ¼ x0ðtÞP1xðtÞ þ

Z t

t��ðtÞ

x0ðsÞMxðsÞds

þ

Z 0

�h

Z t

tþ�

_x0ðsÞR _xðsÞds d�

with P1, R and M being symmetric positive define

matrices, it suffices to follow the same steps of the

proof of Theorem 1 considering U¼ 0. œ

Q0 ~LQ
Q1RQ1=h
AdQ1

� �
0

FU�1

� �
Q1G

0

�BT�1

� �
h

Q02
Q03

� �
Q02
Q03

� �
? Q1ððd� 1ÞM� R=hÞQ1 0 0 0 0
? ? ðd� 1ÞU�1 0 0 0
? ? ? �2T�1 0 0
? ? ? ? �hR�1 0
? ? ? ? ? �U�1

2
666666664

3
777777775
5 0: ð16Þ
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Concerning the global stabilisation, the following
result follows in this case.

Corollary 2: If there exist positive definite matrices
Q1, X, J, matrices Q2, Q3, W and a diagonal matrix S
of appropriate dimensions satisfying the LMI (19) with
Y¼W, then the state feedback gain K ¼WQ�11 ensures
that the origin of system (18) is globally asymptotically
stable.

Remark 2: The result presented in Theorem 2 can be
easily adapted to consider the case of delays that can
vary arbitrarily fast (i.e. _�ðtÞ is not bounded by d ). This
can be done by setting the matrix X equal to zero in
(19), which corresponds to set M¼ 0 in the LKF.

4. Exponential stabilisation

Exponential stability properties can be an interesting
way to characterise the convergence rate of the system.
As usual (Niculescu, de Souza, Dion, and Dugard
1998; Sun, Zhao and Hill 2006; Xu, Lam, and Zhong
2006), given some rate 	40, a system (5) is said to
be 	-stable, or ‘exponentially stable with the rate 	’,
if there exists a scalar 
� 1 such that its solution
x(t; t0,�(�)), with any initial continuously differentiable
function �(�), satisfies

kxðt, t0;�ð�ÞÞk � 
½k�ð�Þkc þ k _�ð�Þkc�e
�	ðt�t0Þ: ð20Þ

The following theorem provides a sufficient condi-
tion to ensure the exponential stabilisation of system
(5), with a decay rate 	.

Theorem 3: If, for a positive number 	, there exist
positive definite matrices Q1, X, L, J, matrices Q2, Q3,
Y, W and a diagonal matrix S of appropriate dimensions
satisfying the LMIs (10) and (21),

then, for K ¼WQ�11 and all initial conditions satisfying

�e ¼ ð�maxðQ
�1
1 Þ þ �1�maxðQ

�1
1 XQ�11 ÞÞk�ð�Þk

2
c

þ ð�1�maxðL
�1Þ þ �2�maxðQ

�1
1 JQ�11 ÞÞk

_�ð�Þk2c � 1

ð22Þ

with

�1 ¼
1� e�2	h

2	
and �2 ¼

e�2	h � 1þ 2	h

4	2
, ð23Þ

the corresponding trajectories of system (5) converge

exponentially to the origin, with a decay rate 	.

Proof: Consider the following LKF:

V	ðtÞ ¼x
0ðtÞP1xðtÞ þ

Z t

t��ðtÞ

x0ðsÞe2	ðs�tÞMxðsÞds

þ

Z t

t��ðtÞ

_x0ðsÞe2	ðs�tÞU _xðsÞds

þ

Z 0

�h

Z t

tþ�

_x0ðsÞe2	ðs�tÞR _xðsÞds d�

with P1, R, M and U40 being symmetric positive

define matrices. Following the proof of Theorem 1, the

differentiation of the LKF along the trajectories of

system (1) leads to

_V	ðtÞ ¼ �x0ðtÞL �xðtÞ þ 2 �x0ðtÞP0 0 A0d
� 	0

xðt� �ðtÞÞ

� 2 �x0ðtÞP0 0 B0
� 	0

 ðKxðtÞÞ

þ 2 �x0ðtÞP0 0 F 0
� 	0

_xðt� �ðtÞÞ

þ x0ðtÞMxðtÞ þ _x0ðtÞU _xðtÞ

� ð1� _�ðtÞÞx0ðt� �ðtÞÞe�2	�ðtÞMxðt� �ðtÞÞ

� ð1� _�ðtÞÞ _x0ðt� �ðtÞÞe�2	�ðtÞU _xðt� �ðtÞÞ

þ h _x0ðtÞR _xðtÞ �

Z t

t�h

_x0ðsÞe2	ðs�tÞR _xðsÞds

þ 2	x0ðtÞP1xðtÞ � 2	V	ðtÞ:

Applying Lemma 2 to the integral term of the

previous expression, the following inequality is

obtained:

�

Z t

t�h

_x0ðsÞe2	ðs�tÞR _xðsÞds

� �
2	

e2	h � 1
ðxðtÞ � xðt� �ðtÞÞ0RðxðtÞ � xðt� �ðtÞÞ:

~K	
Je�2	h=�1

AdQ1

" #
0

FL

� �
Y0

�BS

� �
h

Q02

Q03

� �
Q02

Q03

� �

? ððd� 1ÞX� J=�1Þe
�2	h 0 0 0 0

? ? ðd� 1ÞLe�2	h 0 0 0

? ? ? �2S 0 0

? ? ? ? �2hQ1 þ hJ 0

? ? ? ? ? �L

2
6666666666664

3
7777777777775
5 0

with ~K	 ¼
Q2 þQ02 þ Xþ 2	Q1 � Je�2	h=�1 Q1A

0 þW0B0 �Q02 þQ3

? �Q3 �Q03

" #

ð21Þ
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Noting that 2	
e2	h�1

¼ e�2	h=�1 and that for all delay

�(t)2 [0 h], e�2	�(t)� e�2	h, then the following inequal-

ity holds:

_V	ðtÞþ2	V	ðtÞ � �x0ðtÞL �xðtÞþ2 �x0ðtÞP0 0 A0d
� 	0

xðt� �ðtÞÞ

�2 �x0ðtÞP0 0 B0
� 	0

 ðKxðtÞÞ

þ2 �x0ðtÞP0 0 F 0
� 	0

_xðt� �ðtÞÞ

þx0ðtÞMxðtÞþ _x0ðtÞU _xðtÞ

� ð1� _�ðtÞÞx0ðt� �ðtÞÞe�2	hMxðt� �ðtÞÞ

� ð1� _�ðtÞÞ _x0ðt� �ðtÞÞe�2	hU _xðt� �ðtÞÞ

þh _x0ðtÞR _xðtÞ� e�2	h=�1ðxðtÞ

�xðt� �ðtÞÞ0RðxðtÞ�xðt� �ðtÞÞÞ

þ2	xðtÞ0P1xðtÞ:

The end of the proof strictly follows the line of

Theorem 1. Thus if LMI (21) is satisfied, it follows that
_V	ðtÞ þ 2	V	ðtÞ5 0 for all x(t)2S and consequently,

by integration, that V	(t) exponentially decreases with

the decay rate 2	. This implies that the condition (20),

for the exponential stability of the solution of system

(1), holds (Sun et al. 2006).
On the other hand, one has

V	ð0Þ � �maxðP1Þ þ

Z 0

�h

e2	sds

� �
�maxðMÞ

� �
k�ð�Þk2c

þ

� Z 0

�h

e2	sds

� �
�maxðUÞ

þ

Z 0

�h

Z 0

�

e2	sds d�

� �
�maxðRÞ

�
k _�ð�Þk2c

� �maxðP1Þ þ �1�maxðMÞð Þk�ð�Þk2c

þ �1�maxðUÞ þ �2�maxðRÞð Þk _�ð�Þk2c : ð24Þ

From the definition of Q1, X, J and L as in Theorem 1,

it follows that �maxðP1Þ ¼ �maxðQ
�1
1 Þ, �maxðMÞ ¼

�maxðQ
�1
1 XQ�11 Þ, �maxðRÞ ¼ �maxðQ

�1
1 JQ�11 Þ and

�max(U)¼ �max(L
�1). Hence, if �(�) verifies (22), we

can conclude that

x0ðtÞP1xðtÞ � V	ðtÞ � e�2	tV	ð0Þ � �e � 1, 8t � 0,

which implies that x(t)2E, 8t� 0. Then, since (10)

implies that E 	S, as in Theorem 1, we can effectively

conclude that (21) implies _V	ðtÞ5�2	V	ðtÞ50, 8t�0,

for all initial conditions verifying (22). œ

Remark 3: Since the exponential function is convex,

from (23) it follows that �1� h and �2 �
h2

2 . This

ensures that the set of initial conditions for the

asymptotic case is greater than the one for the

exponential case. Moreover, when 	! 0, �1! h and

�2!
h2

2 , which ensures the continuity of the set with

respect to 	. Thus the set of admissible initial

conditions of Theorem 1 is recovered when 	! 0.

Remark 4: Since the LMIs in Theorems 1–3, as well
as in Corollaries 1 and 2, are affine in the system
matrices A, Ad, B and F, the extension of the
conditions to consider uncertain systems described by
polytopic uncertainties is straightforward. Note that if
these matrices can be computed as a convex combina-
tion of the vertices of a polytope of matrices, given by
ðAi,Ai

d,B
i,FiÞ, i¼ 1, . . . ,N, then, by convexity, it

suffices to verify the LMIs at each vertex of the
polytope simultaneously. Furthermore, for each
vertex, different matrices Qi

3 and Qi
2 can be considered.

5. Optimisation problems

In this section, we show how the proposed theoretical
conditions can be cast into LMI-based optimisation
problems to determine a suitable stabilisation gain K.
In particular, three criteria are considered: the max-
imisation of the delay bound h for which global
stability can be ensured; the maximisation of the set of
admissible initial conditions, which indirectly corre-
sponds to determine K in order to maximise the region
of attraction of the closed-loop system and the
maximisation of the delay bound h or a quadratic
performance criteria, while ensuring the stability for a
given set of admissible initial conditions.

5.1. Maximisation of the delay for which global
stability is ensured

In the case where the system can be globally
asymptotically stabilised in the absence of the delays,
an interesting problem consists of finding the maximal
bound h� on the time-varying delay �(t), for which
system (5) can be globally stabilised, considering a
given bound d on _�ðtÞ. This can be accomplished by
solving the following optimisation problem:

max h
subject to

(9Þ with Y ¼W:
ð25Þ

Note that, due to the product between h and the
variables Q2, Q3 and J, the solution of this problem can
be obtained by iteratively increasing h and testing the
feasibility of (9), which is an LMI for a fixed h.

5.2. Maximisation of the set of admissible
initial conditions

Consider given h and d. In order to ensure the stability
of system (5) by using Theorem 1, the admissible
initial conditions must verify condition (11). Assume
that k�ð�Þk2c ¼ �1 and k _�ð�Þk2c ¼ �2. Note that the
smaller the maximal eigenvalues of Q�11 ,Q�11 JQ�11 ,
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Q�11 XQ�11 , and L�1, the larger �1 and �2 for which (11)

is verified. Hence, the problem of finding K leading

to the maximisation of the region of stability of the

closed-loop system can be achieved by minimising

these maximal eigenvalues. With this aim, consider the

following auxiliary LMIs:

�Q1
I I

? Q1

� �
� 0,

�XI I

? 2Q1 � X

� �
� 0,

�JI I

? 2Q1 � J

� �
� 0,

�LI I

? L

� �
� 0:

ð26Þ

From the fact that R�1� 2Q1� J and M�1�

2Q1�X it follows that these LMIs are, respectively,

equivalent to �Q1
� �maxðQ

�1
1 Þ, �X � �maxðQ

�1
1 XQ�11 Þ,

�J � �maxðQ
�1
1 JQ�11 Þ and �L � �maxðL

�1Þ.
Hence, the following optimisation problem can be

considered:

min 
1�Q1 þ 
2�X þ 
3�J þ 
4�L
subject to

ð9Þ, ð10Þ and ð26Þ
ð27Þ

where 
1, 
2, 
3 and 
4 are weights that should be

tuned in order to satisfy some trade-off between �1 and
�2. The choice of these weighting parameters are

performed in an ad hoc way. In general, the minimisa-

tion of one of the eigenvalues is more critical to obtain

larger values of �1 and/or �2. In this case, the weight

associated with the appropriate eigenvalue should be
increased.

5.3. Maximisations for a given set of admissible
initial conditions

Consider now �140 and �240. The idea is then to
compute K in order to guarantee the stability for
all initial conditions satisfying k�ð�Þk2c � �1 and
k _�ð�Þk2c � �2. This case can be addressed considering
the auxiliary LMIs (26) and the following additional
constraint:

ð�Q1 þ h�XÞ�1 þ ð0:5h
2�J þ h�LÞ�2 � 1 � 0: ð28Þ

Note that if k�ð�Þk2c � �1 and k _�ð�Þk2c � �2, (28)
implies that (11) is verified. In this case, for instance,
the following optimisation criteria can be considered.

5.3.1. Maximisation of the bound h for which is
possible to find a stabilising gain

In this case, a problem analogous to (25) can be
formulated as follows:

max h
subject to

ð9Þ, ð10Þ, ð26Þ and ð28Þ:
ð29Þ

5.3.2. Minimisation of an upper bound to a given cost
function (guaranteed cost problem)

A natural performance measure is given by the
following quadratic criterion on plant states:

J ¼

Z 1
0

x0ðtÞC0CxðtÞdt where C0C � 0, C0C 2 <n�n:

If we are now able to show that

_VðtÞ þ
1

�
�x0

C0

0

� �
C 0
� 	

�x5 0, ð30Þ

it follows that J5�V(0)5�, 8�(�) satisfying (11).
Note that (30) is satisfied if the following matrix

inequality is verified:

Hence, the following optimisation problem can be

formulated in order to minimise the bound �
(guaranteed cost) on the performance quadratic

criterion:

min �

subject to

ð31Þ, ð10Þ, ð26Þ and ð28Þ:

ð32Þ

Remark 5: The optimisation problems above can be

straightforwardly adapted to the problem of retarded

systems and to the exponential stabilisation. It suffices

to consider the conditions stated in Theorems 2 and 3.

In particular, for the case of exponential stabilisation,

~K
J=h

AdQ1

� �
0

FL

� �
Y0

�BS

� �
h

Q02

Q03

� �
Q02

Q03

� �
Q01C

0

0

� �
? ðd� 1ÞX� J=h 0 0 0 0 0

? ? ðd� 1ÞL 0 0 0 0

? ? ? �2S 0 0 0

? ? ? ? �2hQ1 þ hJ 0 0

? ? ? ? ? �L 0

? ? ? ? ? 0 ��I

2
66666666666664

3
77777777777775
5 0 ð31Þ
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another problem of interest is the maximisation of the
decay rate 	, for which it is possible to ensure
the stability for a given set of admissible initial states
or the global stability.

Remark 6: It should be noticed that the derived
results apply also to the analysis problem. In this case,
the results and the optimisation problems can be
straightforwardly adapted to consider a given gain K.

6. Numerical examples

Example 1: Consider system (1) with

A ¼
1 1:5

0:3 �2

� �
, Ad ¼

0 �1

0 0

� �
, B ¼

10

1

� �
,

F ¼
0:2 0

0 0:2

� �
, u0 ¼ 15:

Considering the optimisation problem (27) with

1¼ 
2¼ 
3¼
4¼ 1, the gain K¼ [�0.1325 0.0153] is
obtained for h¼ 1 and d¼ 0.1. This gain ensures the
asymptotic stability for any �(�) satisfying

11:4k�ð�Þk2c þ 8:57k _�ð�Þk2c � 105: ð33Þ

It is worth noticing that in our previous work (Gomes
da Silva Jr et al. 2005), where a direct descriptor
approach was adopted, considering the same problem,
the asymptotic stability was ensured for �(�) satisfying
51k�ð�Þk2c þ 9:34k _�ð�Þk2c � 104. This shows that the set
of admissible initial conditions obtained from the
application of Theorem 1 are significantly less
conservative.

Note that the set of admissible �(�) given by (33)
denotes a trade-off between the amplitude and the
derivative of the initial conditions. Hence, for instance,
if we consider that k�ð�Þkc ¼ k _�ð�Þkc the stability is
ensured for �(�) such that k�ð�Þkc ¼ k _�ð�Þkc5 70:74.
On the other hand, if we consider that the initial states
are constant over the interval [�h, 0], that is
k _�ð�Þkc ¼ 0, it follows that all �(�) such that
k�(�)kc� 93.65 are admissible.

Consider now d¼ 0.1 and the optimisation problem
(27) with 
1¼ 
2¼ 
3¼ 
4¼ 1. In Table 1, considering
the initial conditions such that k�ð�Þkc ¼ k _�ð�Þkc � ��,
the maximal value of �� and the respective gain,
obtained from the solution of (27), are shown for
different values of h. As expected, the set of admissible

initial conditions reduces as the upperbound on the
delay increases. The value of h¼ 3.53 corresponds to
the maximum upperbound on the delay for which the
LMIs are feasible. The same behaviour appears when h
is fixed and the parameter d varies. For instance, for
h¼ 1, the set of initial conditions reduces as d increases
and it is almost empty for d¼ 0.947.

Concerning the performance analysis with
Theorem 3 together with the optimisation problem
(27), one can see that the set of admissible initial
conditions reduces as the exponential decay rate 	
increases. This fact is illustrated in Table 2, where
the maximal value of �� obtained considering
k�ð�Þkc ¼ k _�ð�Þkc � ��, h¼ 1 and d¼ 0.1 is shown for
different values of the decay rate 	. For h¼ 1 and
d¼ 0.1, the maximum exponential decay rate, for
which the LMIs are feasible, is 	¼ 1.85.

Example 2: Consider a retarded system given by (18),
with the matrices A, Ad and B defined in the Example
1, u0¼ 15, h¼ 1 and d¼ 0.1. It is possible to ensure the
asymptotic stability of initial conditions satisfying
k�ð�Þkc ¼ k _�ð�Þkc 5 83:55 with the gain K¼ [�0.1950
0.0649]. Note that the bound on the admissible
conditions is larger than the ones obtained in
Fridman et al. (2003) (79.43) and in Gomes da Silva
Jr et al. (2005) (79.54). This indicates that the proposed
method is less conservative than the previous
approaches.

7. Concluding remarks

The synthesis of stabilising gains for linear neutral
systems in the presence of saturating inputs and time-
varying delays has been addressed. First, conditions
that allow the computation of a state feedback matrix
associated with a set of initial conditions, for which the
asymptotic closed-loop stability can be ensured, have
been derived. Considering the case of open-loop
asymptotically stable systems, this condition can be
slightly modified to address the problem of computing
globally stabilising gains. It has also been shown that
the conditions can be particularised to consider retarded
systems. Following the same approach, exponential
stabilisation conditions have been derived.

Based on the theoretical conditions, convex opti-
misation problems (with LMI constraints) have been
proposed in order to compute the stabilising gains
aiming at: maximising the delay for which global

Table 1. h� region of stability.

h �� K

1 70.74 [�0.1325 0.0153]
2 56.17 [�0.1201 �0.0421]
3 18.17 [�0.1681 �0.0137]
3.53 62.8� 10�3 [�1.2062 11.1614]

Table 2. 	� region of stability.

	 0.0 0.2 0.4 0.6 0.8 1.0 1.2

�� 70.74 44.38 35.50 26.38 21.33 18.13 9.58
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stability can be ensured; maximising the set of admis-
sible initial conditions, which indirectly corresponds
to determine K in order to maximise the region of
attraction of the closed-loop system; or maximising the
delay or a quadratic performance criterion, while
ensuring the stability for a given set of admissible
initial conditions.

The extension of the results to uncertain polytopic
systems is straightforward. Another interesting possible
extension regards the problem of static anti-windup
design.
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