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Abstract

We study the in�nite horizon nonlinear quadratic optimal control problem for a singularly perturbed system, which
is nonlinear in both, the slow and the fast variables. It is known that the optimal controller for such problem can be
designed by �nding a special invariant manifold of the corresponding Hamiltonian system. We obtain exact slow–fast
decomposition of the Hamiltonian system and of the special invariant manifold into the slow and the fast ones. On the
basis of this decomposition we construct high-order asymptotic approximations of the optimal state-feedback and optimal
trajectory. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Exact slow–fast decomposition of the in�nite horizon LQ singularly perturbed optimal control problem has
been obtained in [11]. Such decomposition leads to new e�ective algorithms for numerical and asymptotic
approximations of optimal solutions [11,5,3]. For a class of singularly perturbed systems being nonlinear only
on the slow variable a formal expansion of the optimal controller in the powers of � has been found in [2,7]
(see also references therein). For this class of systems the exact slow–fast decomposition has been obtained
in [4] by applying invariant manifolds approach [8]. On the basis of this decomposition a new algorithm for
expansion of the optimal controller has been introduced and near-optimality of the high-order approximation
to the optimal controller (in the sense of its closeness to the optimal one) has been proved.
In the present paper we extend results of [4] to the general singularly perturbed system, being a�ne in the

control and nonlinear in both, the slow and the fast variables. Under suitable assumptions on the linearized
system, we obtain the exact decomposition of the problem and construct a higher-order approximation to the
optimal controller and optimal trajectory.
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2. Problem formulation

Consider the nonlinear singularly perturbed system

ẋ1 = F1(x1; x2) + B1(x1; x2)u; �ẋ2 = F2(x1; x2) + B2(x1; x2)u (1)

with the functional

J =
∫ ∞

0
[k ′(x1; x2)k(x1; x2) + u′R(x1; x2)u] dt; (2)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the state vectors, x = col{x1; x2}; u(t) ∈ Rm is the control input, and
�¿ 0 is a small parameter. Prime denotes the transposition of a matrix. The functions Fi; Bi (i=1; 2); R and
k are di�erentiable with respect to x a su�cient number of times. We assume also that Fi(0; 0)=0; k(0; 0)=0
and R= R′ ¿ 0. We consider a nonstandard singularly perturbed problem in the sense that we do not require
the solvability with respect to x2 of the algebraic equation F2(x1; x2) + B2(x1; x2)u = 0. In the standard case
the assumption that the latter equation is solvable with respect to x2 is a crucial one (see e.g. [2,7]).
We are looking for a nonlinear state feedback

u= �(x); �(0) = 0; (3)

that minimizes the cost (2), where x(t) satis�es (1) with the initial condition x(0) = x0. For each �¿ 0 the
control law (3) is locally optimal on 
⊂Rn1 × Rn2 if there exists 
1; 0 ∈ 
⊂
1, such that the closed-loop
trajectories for initial data in 
 remain in 
1 and if for any initial value x0 ∈ 
 and for any control u(t) such
that

(i) x(t) ∈ 
1; t¿0; (ii) J (x0; u)¡∞; (iii) lim
t→∞ x(t) = 0

we have J (x0; �)6J (x0; u) [1].
Consider the Hamiltonian function

H(x1; x2; p1; p2) =p′
1F1(x1; x2) + p′

2F2(x1; x2)

− 1
2
(p′
1p

′
2)

(
S11(x) S12(x)

S21(x) S22(x)

)(
p1
p2

)
+ 1

2k
′(x1; x2)k(x1; x2); (4)

where p1 and �p2 play the role of the costate variables and Sij=BiR−1B′
j; i=1; 2; j=1; 2. The corresponding

Hamiltonian system has the form

ẋ1 = f1(x1; p1; x2; p2); (5a)

ṗ1 = f2(x1; p1; x2; p2); (5b)

�ẋ2 = f3(x1; p1; x2; p2); (5c)

�ṗ2 = f4(x1; p1; x2; p2); (5d)

where f1 = (@H =@p1)′; f2 =−(@H =@x1)′; f3 = (@H =@p2)′; f4 =−(@H =@x2)′.
The solution of the optimal control problem is related to the invariant manifold

p1 = Z1(x1; x2); p2 = Z2(x1; x2); (6)

of (5) [8]. For each �¿ 0 Eqs. (6) de�ne the invariant on 
1 manifold of (5) if for any x01 ; x
0
2 ∈ 
1, there

exists t1¡ 0¡t2 such that a solution of (5) with the initial conditions

x1(0) = x01 ; x2(0) = x02 ; p1(0) = Z1(x01 ; x
0
2); p2(0) = Z2(x01 ; x

0
2)
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satis�es (6) for t ∈ (t1; t2). The restriction of (2n1 + 2n2)-dimensional system (5) to (6) (i.e. the 
ow on the
invariant manifold (6)) is governed by the (n1 + n2)-dimensional system

ẋ1 = f1(x1; Z1; x2; Z2); �ẋ2 = f3(x1; Z1; x2; Z2): (7)

Eqs. (7) result after substitution of (6) into (5a) and (5c).
Denote by (Vx1 ; Vx2 ) the Jacobian matrix of V . For each �¿ 0 the problem is locally solvable on 
⊂Rn1 ×

Rn2 if there exists 
1; 0 ∈ 
⊂
1, and a C2 nonnegative solution V : 
1 → R to the Hamilton–Jacobi (HJ)
partial di�erential equation

Vx1F1(x1; x2) +
1
�
Vx2F2(x1; x2)

− 1
2

(
Vx1
1
�
Vx2

)(
S11(x) S12(x)

S21(x) S22(x)

) V ′
x1

1
�
V ′
x2


+ 1

2k
′(x1; x2)k(x1; x2); V (0) = 0 (8)

with the property that system (7), where

Vx1 = Z ′
1; Vx2 = �Z ′

2; (9)

is asymptotically stable [1]. The latter is equivalent to the existence of the stable invariant manifold (6) of
(5) with asymptotically stable 
ow (7), such that V¿0; V (0)=0 (that implies Vx(0)=0). Then 
 is the set
of all initial conditions that give rise to asymptotically stable trajectories of (7) that are restricted to 
1. The
optimal controller is given by

u=−R−1[B′
1; �

−1B′
2] V

′
x =−R−1B′

1Z1 − R−1B′
2Z2: (10)

Remark 2.1. In [4] we used the other form of Hamiltonian (4), where coe�cients − 1
2 and

1
2 were replaced

by − 1
4 and 1 correspondingly. Therefore, the optimal controller was given by the right-hand sides of (10)

multiplied by 1
2 .

Note that the 
ow on the special manifold (6) is governed by system of coupled slow and fast equations
(7) and thus this manifold is a slow–fast one. We obtain the exact decomposition of the special slow–fast
manifold into the reduced-order slow submanifold of the Hamiltonian system and the fast manifold of an
auxiliary system.

3. Exact decomposition of the special invariant manifold

3.1. Assumptions

Consider the linearization of (1) at x = 0:

E�ẋ = Ax + B0u (11)

with the quadratic functional

J =
∫ ∞

0
[x′C′Cx + u′R(0)u] dt; (12)

where

E� =

[
In1 0

0 �In2

]
; A=

[
A11 A12
A21 A22

]
; B=

[
B10
B20

]
; C =

[
C1 C2

]
;

Aij =
@Fi

@xj
(0; 0); Bi0 = Bi(0; 0); Ci =

@k
@xi
(0; 0); i = 1; 2; j = 1; 2:
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Denote E0 = E�|�=0
. The Hamiltonian system that corresponds to (11), (12) can be written in the form


ẋ1
ṗ1
ẋ2
ṗ2


=Ham




x1
p1
x2
p2


 ; (13a)

Ham =

[
T11 T12

�−1T21 �−1T22

]
; (13b)

Tij =

[
Aij −Sij(0)

−C′
i Cj −A′

ji

]
: (13c)

To guarantee that for all small � this LQ problem is solvable we assume [12]:
A1. The exponential modes of descriptor system (11), where � = 0, are controllable-observable, i.e. both

pencils [sE0 − A;B] and [sE′
0 − A′;C] are of full row rank for any �nite s.

A2. The triple {A22; B20; C2} is controllable-observable.
It is known [12] that under A1 and A2 the LQ problem is solvable for all small �.

Lemma 3.1. Under A1 and A2
(i) A fast Riccati equation

A′
22Xf + XfA22 + C′

2C2 − XfS22(0)Xf = 0 (14)

has a solution Xf = X ′
f¿0; such that the matrix �f = A22 − S22(0)Xf is Hurwitz.

(ii) A slow algebraic Riccati equation

X0A0 + A′
0X0 − X0S0X0 + Q0 = 0; (15)

where [
A0 −S0
−Q0 −A′

0

]
= T11 − T12T−1

22 T21 = T0 (16)

has a solution X0 = X ′
0¿0 such that the matrix �s = A0 − S0X0 is Hurwitz.

(iii) The matrix T22 has n2 eigenvalues with negative real parts and n2 with positive ones.
(iv) The matrix T0 has n1 eigenvalues with negative real parts and n1 with positive ones.
(v) In a small enough neighborhood of Rn2 × Rn2 containing 0 the system of equations

f3(x1; p1; x2; p2) = 0; f4(x1; p1; x2; p2) = 0

has an isolated solution

x2 = �(x1; p1); p2 =  (x1; p1) (17)

and the matrix


@f3
@x2

@f3
@p2

@f4
@x2

@f4
@p2




|(x2 ;p2)=(�(x1 ;ptiny1); (x1 ;p1))

has n2 stable eigenvalues �; Re �¡− �¡ 0; and n2 unstable ones �; Re �¿�.
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Proof. Items (i)–(iii) follow from A1 [12]. To prove (iv) consider the matrix Ham. It has one group of 2n1
small eigenvalues O(�) close to those of T0 and another group of 2n2 large eigenvalues O(1) close to those
of �−1T22 [2]. Then (iv) follows from the symmetry of the eigenvalues of Ham, of T22 and thus of T0 and
from the relation

T0 =

(
I 0

X0 I

)(
�s −S0
0 −�′

s

)(
I 0

−X0 I

)
: (18)

Item (v) follows from (i) to (iii) by the implicit function theorem.

Remark 3.1. It follows from the proof of Lemma 3.1 that under A1 and A2 for all small enough � the
matrix Ham has no purely imaginary eigenvalues, i.e. the equilibrium point of the Hamiltonian system (5) is
hyperbolic.

3.2. Decomposition of the slow–fast manifold (6)

Denote by 
mi = {xi ∈ Rni : |xi|¡mi}; i = 1; 2, where | · | is a Euclidean norm of a vector. From (iii) and
(v) of Lemma 3.1 it follows that there exists m1¿ 0 such that for all small enough � system (5) has the
slow manifold [10,7](

x2
p2

)
=

(
L∗
3 (x1; p1; �)

L∗
4 (x1; p1; �)

)
=

(
�(x1; p1)

 (x1; p1)

)
+O(�); (19)

de�ned on 
m1 × 
m1 . The subscripts of L∗
3 and L∗

4 correspond to the third and the fourth variables in the
system of (5). To avoid cumbersome notation we shall omit the argument � in the functions below.
Denote f∗

i (x1; p1) = fi[x1; p1; L∗
3 (x1; p1); L

∗
4 (x1; p1)]; i = 1; 2; 3; 4. Setting (19) into (5) and substituting v1

and w1 for x1 and p1, respectively, we get the 2n1-dimensional system for the 
ow on the slow manifold

v̇1 = f∗
1 (v1; w1); (20a)

ẇ1 = f∗
2 (v1; w1): (20b)

The function L∗ = col{L∗
3 ; L

∗
4} satis�es the following partial di�erential equation (PDE):

�
@L∗

@v1
f∗
1 (v1; w1) + �

@L∗

@w1
f∗
2 (v1; w1) =

(
f∗
3 (v1; w1)

f∗
4 (v1; w1)

)
: (21)

This PDE can be derived by di�erentiating (19), where x2 = x2(t); p2 = p2(t); x1 = v1(t); p1 = w1(t), with
respect to t and by substituting v̇1 and ẇ1 from (20).
Consider the slow system (20). Its linearization in (0; 0) for �= 0 is given by[

v̇1
ẇ1

]
= T0

[
v1
w1

]
:

From (ii) and (iv) of Lemma 3.1 it follows that the latter system possesses the stable manifold of the form
w1=X0v1. Then (see, e.g. [6]) for small enough v1 and � the nonlinear system (20) possesses the slow (stable)
submanifold

w1 = N (v1); (22)

where the function N = N (v1; �) is continuous on both arguments and uniformly bounded together with its
�rst derivative on v1, and N (0) = 0. Substituting (22) into (20a) we obtain the equation for the restriction of
(20)–(22):

v̇1 = f∗
1 (v1; N (v1)): (23)
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Moreover, for all small enough � (23) is exponentially stable. Substituting (22) into (20b) and applying (23)
we obtain the slow PDE:

@N
@v1

f∗
1 (v1; N (v1)) = f∗

2 (v1; N (v1)): (24)

We shall construct the invariant manifold (6), with the stable 
ow, by means of the slow submanifold (22)
and a fast manifold of an auxiliary system. To obtain the latter system we introduce the following change of
variables:(

v2
�p2

)
=

(
x2
p2

)
− L∗(x1; p1);

(
�x1
�p1

)
=

(
x1
p1

)
−
(

v1
w1

)
; (25)

where v1 and w1 satisfy (20). For the new variables we get the system

�̇x1 = g1(v1; w1; �x1; �p1; v2; �p2); (26a)

�̇p1 = g2(v1; w1; �x1; �p1; v2; �p2); (26b)

�v̇2 = g3(v1; w1; �x1; �p1; v2; �p2); (26c)

� �̇p2 = g4(v1; w1; �x1; �p1; v2; �p2); (26d)

where for i = 1; 2,

gi =fi[�x1 + v1; �p1 + w1; v2 + L∗
3 (�x1 + v1; �p1 + w1); �p2 + L∗

4 (�x1 + v1; �p1 + w1)]

−fi[v1; w1; L∗
3 (v1; w1); L

∗
4 (v1; w1)];

and for i = 3; 4,

gi =−�
@L∗

i (�x1 + v1; �p1 + w1)
@x1

�f1 − �
@L∗

i (�x1 + v1; �p1 + w1)
@p1

�f2 + �fi;

�fj =fj[�x1 + v1; �p1 + w1; v2 + L∗
3 (�x1 + v1; �p1 + w1); �p2 + L∗

4 (�x1 + v1; �p1 + w1)]

−fj[�x1 + v1; �p1 + w1; L∗
3 (v1 + �x1; w1 + �p1); L

∗
4 (v1 + �x1; w1 + �p1)]; j = 1; 2; 3; 4:

From (iii), (v) and [10] it follows that there exists �′ such that for all � ∈ (0; �′] the system of (20) and
(26) has the following fast (stable) manifold for |v2|¡m′

(
�x1
�p1

)
=

(
�L+1 (v1; w1; v2)

�L+2 (v1; w1; v2)

)
; �p2 = L+4 (v1; w1; v2): (27)

The functions L+i (i = 1; 2; 4) satisfy the inequalities

|L+i (v1; w1; v2)|6c|v2|; |L+i (v1; w1; v2)− L+i (v1; w1; ṽ2)|6c|v2 − ṽ2|;
|L+i (v1; w1; v2)− L+i (ṽ1; w̃1; v2)|6c|v2|(|v1 − ṽ1|+ |w1 − w̃1|): (28)

The 
ow on the latter manifold is governed by the decoupled system of the slow equations (20) and the
fast equation

�v̇2 = g3(v1; w1; �L+1 ; �L
+
2 ; v2; L

+
4 ); (29)

where L+i = L+i (v1; w1; v2) (i = 1; 2; 4).
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The function L+ = col{L+1 ; L+2 ; L+4 } satis�es the following fast PDE:

�
@L+

@v1
f∗
1 (v1; w1) + �

@L+

@w1
f∗
2 (v1; w1) +

@L+

@v2
g3 = col{g1; g2; g4}; (30)

where gk = gk(v1; w1; �L+1 ; �L
+
2 ; v2; L

+
4 ); k = 1; : : : ; 4; L+ = L+(v1; w1; v2). Eq. (30) follows from substitution of

(27) into (26a), (26b), (26d) and application of (29). Note that L+4 (v1; w1; v2) = Xfv2 + O(|v2|2 + �) and thus
the right-hand side of (29) is given by �fv2 + O([|v1| + |w1| + |v2| + �]|v2|), where �f = A22 − S22(0)Xf

is Hurwitz by (i) of Lemma 3.1. Hence, for small enough � and in the small enough neighborhood of the
origin the with the solutions of (26) lying on the fast manifold of (27) are rapidly exponentially decaying as
t increases.
Substituting (22) and (27) into (25) we get the algebraic system

x1 = v1 + �L+1 [v1; N (v1); v2]; (31a)

x2 = v2 + L∗
3 [x1; N (v1) + �L+2 (v1; N (v1); v2)]; (31b)

p1 = N (v1) + �L+2 [v1; N (v1); v2]; (31c)

p2 = L∗
4 [x1; N (v1) + �L+2 (v1; N (v1); v2)] + L+4 (v1; N (v1); v2): (31d)

Considering (31a) and (31b) as the system with respect to v1 and v2 and using the contraction principle
argument, one can prove that for all small enough �, this system has a unique solution on 
m1 × 
m2

v1 = U1(x1; x2); (32a)

v2 = U2(x1; x2); (32b)

where the functions U1 and U2 are Lipschitzian on x1 and x2 and they vanish at (x1; x2)=0. Further, applying
the implicit function theorem one can show that U1 and U2 are continuously di�erentiable on x1 and x2.
Substituting (32) into (31c) and (31d) we get (6), where

Z1 = N (U1) + �L+2 [U1; N (U1); U2]; Z2 = L∗
4 (x1; Z1) + L+4 (U1; N (U1); U2): (33)

Similarly to Theorem 2 of [4] we obtain the following

Theorem 3.1. Under A1 and A2 there exist m1; m2 and �1 such that for all � ∈ (0; �1] the (2n1+2n2)-dimen-
sional Hamiltonian system (5) has the invariant on 
m1 ×
m2 manifold (6) with (7) asymptotically stable;
where continuously di�erentiable on x1 and x2 functions Z1 and Z2 are de�ned by (33) from the algebraic
system (31). There exists a C2 function V : 
m1 × 
m2 → [0;∞); satisfying the HJ equation (8) and
relations (9) (therefore the optimal control problem is solvable by the controller of (10)).

4. High-order asymptotic approximations

4.1. High-order approximate controller

We shall �nd an asymptotic approximation to the controller (10) by expanding Z1 and Z2, de�ned by (33),
into the powers of �. It is known [10] that the functions L∗; N and L+ can be found in the form of asymptotic
approximations

L∗(x1; p1; �) =
q∑

j=0

� jl∗j (x1; p1) + O(�
q+1); N (v1; �) =

q∑
j=0

� jNj(v1) + O(�q+1);

L+(v1; w1; v2) =
q∑

j=0

� jl+j (v1; w1; v2) + O(�
q+1):

(34)



128 E. Fridman / Systems & Control Letters 40 (2000) 121–131

The terms of these approximations can be determined by substitution of (34) into the corresponding PDEs
and equating terms with the same powers of �. For l∗j we obtain the algebraic equations, while for Nj and l+j
we get partial di�erential equations. Thus, l∗0 (x1; p1) = col{�(x1; p1);  (x1; p1)}.
The function N0 satis�es the following PDE:

@N0
@x1

f1(x1; N0; �(x1; N0);  (x1; N0)) = f2(x1; N0; �(x1; N0);  (x1; N0)) (35)

and de�nes the stable manifold p1 = N0(x1) of the reduced Hamiltonian system

ẋ1 = f1(x1; p1; �(x1; p1);  (x1; p1)); (36a)

ṗ1 = f2(x1; p1; �(x1; p1);  (x1; p1)): (36b)

The function N0 can be approximated by N0(x1) = X0x1 + O(|x1|2).
For l+j we have

@l+j
@v2

[g3(v1; w1; v2; l+40)]|�=0 = Gj(v1; w1; v2; l+4j); (37)

where l+j =col{l+1j; l+2j; l+4j} and Gj is a known function such that Gj[v1; w1; 0; l+4j(v1; w1; 0)]=0. Eq. (37) depends
on v1 and w1 as on the parameters, and its solution can be found as the stable manifold col{�x1; �p1; �p2} =
l+j (v1; w1; v2) of �-independent system:

v̇2 = g3(v1; w1; v2; l+40)|�=0; col{ �̇x1; �̇p1; �̇p2}= Gj(v1; w1; v2; �p2);

e.g. in the form of the expansions in the powers of v2 with coe�cients depending on parameters v1 and w1
(similar to [8]).
Next, we obtain from (32)

vi = Ui(x1; x2; �) =
q∑

j=0

� jUij(x1; x2) + O(�q+1); i = 1; 2; (38)

where Uij are di�erentiable with respect to x a su�cient number of times since L∗, N and L+ are di�erentiable
with respect to v1, w1 and v2 a su�cient number of times. We substitute expansions (38) and (34) into (33):

Z1 =
q∑

i=0

�iNi


 q∑

j=0

� jU1j


+ q∑

i=0

�i+1l+2i


 q∑

j=0

� jU1j;
q∑

i=0

�iNi


 q∑

j=0

� jU1j


 ; � jU2j


+O(�q+1);

Z2 =
q∑

i=0

�il∗4i[x1; Z1] +
q∑

i=0

�il+4i


 q∑

j=0

� jU1j;
q∑

i=0

�iNi


 q∑

j=0

� jU1j


 ; � jU2j


+O(�q+1):

Expanding the right-hand sides of the latter equations in the powers of � we get the asymptotic approximations
to Z1 and Z2:

Zi(x1; x2; �) =
q∑

j=0

� jZij(x1; x2) + O(�q+1); i = 1; 2; (39)

where Zij are di�erentiable with respect to x1 and x2 a su�cient number of times. Note that

Z10 = N0(x1); Z20 =  [x1; N0(x1)] + l40(x1; x2 − �(x1; N0(x1))]:

Substituting (39) into (10) we get the following O(�q+1)-approximation to the optimal controller:

u= uq +O(�q+1); uq =−
2∑

k=1

q∑
j=0

� jR−1B′
kZkj(x1; x2): (40)
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4.2. Asymptotic expansion of optimal trajectory and open-loop control

It can be found from (31), (23), (29) and the relation

u(t) =− 1
2R

−1B′
1p1(t)− 1

2R
−1B′

2p2(t): (41)

Applying standard asymptotic methods (see, e.g., [9]) to the decoupled exponentially stable equations (23)
and (29), where w1 = N (v1), we obtain correspondingly

v1(t) =
q∑

i=0

�iv(i)1 (t) + �q+1r1q(t; �); v2(t) =
q∑

i=0

�iv(i)2 (�) + �q+1r2q(�; �); (42)

where �= t=� and r1q and r2q satisfy the following inequalities for t¿0; �¿0:

|r1q(t; �)|¡ce−�t ; |r2q(�; �)|¡ce−��; �¿ 0; c¿ 0:

Substituting (42a) into (23) and equating coe�cients of equal powers of � we �nd di�erential equations for
v(i)1 with initial values de�ned by (32a), where t = 0. Similarly from (29), (22), (42b) and (32b) we obtain
initial value problems for v(i)2 .
Finally substituting expansions of v1; v2; L+ and L∗ into (31) and (41) and expanding right-hand sides of

the resulting equations in the powers of � we �nd the following approximations:

x(t) =
q∑

i=0

�ix(i)(t) +
q∑

i=0

�i�(i)
1 (�) + �q+1R1q(t; �);

u(t) =
q∑

i=0

�iu(i)(t) +
q∑

i=0

�i�(i)
2 (�) + �q+1R2q(t; �);

(43a,b)

where �1 and �2 are boundary layer terms exponentially decaying when � → ∞, x(i); u(i) and the remainders
R1q and R2q are exponentially decaying when t → ∞:

|x(i)(t)|+ |u(i)(t)|6ce−�t ; |�(i)
1 (�)|+ |�2(�)|6ce−��; |R1q(t; �)|+ |R2q(t; �)|6ce−�t : (44)

Note that (43b) can be found also by substitution of (43a) into the expansion of the optimal feedback (40).
Similar to Theorem 3 of [4], it can be proved that O(�q+1)-approximate controller uq leads to the value of
the cost O(�q+1)-close to the optimal one. We summarize our results in the following

Theorem 4.1. Under A1 and A2 there exist m1; m2; �1 such that for all � ∈ (0; �1] the following holds:
(i) The invariant manifold (6) and the optimal controller (10) can be approximated by (39) and (40);

where approximation is uniform on x1; x2 ∈ 
m1 × 
m2 . The optimal trajectory with the initial conditions
from 
m1 × 
m2 and the corresponding optimal open-loop control can be approximated by (43) such that
inequalities (44) are valid.
(ii) The controller uq leads to the value of the cost O(�q+1)-close to the optimal one for all initial

conditions from 
m1 × 
m2 .

4.3. Example

Consider the system

ẋ1 =−tan x2 + 2u; �ẋ2 = tan x2 − u; x(0) = [0:5; 1]′; J =
∫ ∞

0
[x21(t) + u2(t)] dt: (45)

Here A1 and A2 hold. We �nd the following Hamiltonian function (4):

H=−p1 tan x2 + p2 tan x2 − 2p21 + 2p1p2 − 1=2p22 + 1=2x21
and the corresponding Hamiltonian system (5)

ẋ1 =−tan x2 − 4p1 + 2p2; ṗ1 =−x1; �ẋ2 = tan x2 + 2p1 − p2; �ṗ2 = p1 − p2 cos−2 x2: (46)
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Table 1

� 0.01 0.05 0.1 0.15 0.2
J (u0) 0.3134 0.6025 1.0563 1.6348 2.3678
J (u1) 0.3133 0.5987 1.0346 1.5717 2.2267
K [1; 2.030] [1; 2.1536] [1; 2.3136] [1; 2479] [1; 2.649]
J (Kx) 0.3171 0.6088 1.0505 1.5871 2.2266

Further we neglect terms of the order O(�2). Then from (21), (24) and (30) we �nd

L∗ =
[
−arctanp1 + �

2x1
(1 + p21)2

;p1 + �
x1

1 + p21

]′
; N = x1;

L+ = [− 3�v2; 0; 2 tan[v2 − arctanw1] + 2w1 + �l+41]
′; l+41 = O(|v2|2):

Eqs. (31) have the form

x1 = v1 − 3�v2; (47a)

x2 = v2 − arctan v1 + 2�v1
(1 + v21)2

; (47b)

p1 = v1; (47c)

p2 = 3v1 + 2 tan(v2 − arctan v1) + �v1
1 + v21

+ �l+41: (47d)

From (47a) and (47b) we obtain

v1 = x1 + 3�(x2 + arctan x1); v2 = x2 + arctan(x1 + 3�(x2 + arctan x1))− 2�x1
(1 + x21)2

: (48)

Substituting (48) into (47c) and (47d) we �nd

p1 = Z1(x1; x2) = x1 + 3�(x2 + arctan x1);

p2 = Z2(x1; x2) = 3Z1(x1; x2) + 2 tan
(
x2 − 2� x1

(1 + x21)2

)
+ �l+41 +

�x1
1 + x21

:

By (10) u=−2Z1(x1; x2)+Z2(x1; x2) and we obtain the following approximations to the optimal controller:

u0 = x1 + 2 tan x2; u1 = u0 + 3�(x2 + arctan x1) +
�x1
1 + x21

− 4� x1 sec2 x2
(1 + x21)2

+ �l+41:

Applying now u0 and u1 (where we neglect l+41) to (45), we �nd the corresponding values of the cost J (u0)
and J (u1) for �= 0:01; : : : ; 0:2. The latter are given in the Table 1. Comparing the results we see that for all
� under consideration u1 improves the performance incurred by u0.
For each � we �nd the gain K of the optimal controller u= Kx for the full-order linearized problem (11)

(which is O(|x|2)-close to the optimal controller (10) [8]) and the corresponding values of the cost J (Kx).
For �¡ 0:1 u0 improves the performance incurred by the linear controller u=Kx. For the greater values of �
the higher order approximations uq (q¿1) should be taken in order to improve the performance incurred by
the linear controller.
Eqs. (23) and (29) with neglected O(�2) terms have the form

v̇1 =−v1; �v̇2 =−tan(v2 − arctan v1)− v1 + 2�
v1

1 + v21

[
1

cos2(v2 − arctan v1) −
1

cos2(arctan v1)

]
;

v1(0) = 0:5 + 3�(1− arctan 0:5); v2(0) = 1− arctan 0:5− � 1625 :

(49)
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Therefore, O(�2) asymptotic approximations of v1; v2 and of the optimal trajectory x can be found from (49)
and (47a), (47b).

5. Conclusions

We have developed a geometric approach to singularly perturbed optimal control problem, nonlinear in the
state variables and a�ne in the control. We have obtained the exact decomposition of the slow–fast invariant
manifold of the Hamiltonian system into the reduced-order slow manifold and a fast manifold. As a result,
an asymptotic expansion of the optimal controller have been constructed by solving slow and fast partial
di�erential equations. In the same time we have obtained decomposition of the Hamiltonian system to the
slow and fast subsystems. This leads to asymptotic approximation to optimal trajectory and open-loop control.
We have shown that a higher-order accuracy controller improves performance.
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