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ABSTRACT
In this paper we deal with the problem of global exponential practical stability preservation for globally
Lipschitz time-delay systems, by Euler emulation of continuous-time dynamic output feedback controllers
affected by measurement noises and actuation disturbances. Nonlinear time-delay systems not necessar-
ily affine in the control input are studied. It is shown that, if the continuous-time closed-loop system at
hand is globally exponentially stable and themaps describing the plant and the continuous-time dynamic
output feedback controller are globally Lipschitz, then, under suitably fast sampling, the Euler emulation
of the continuous-time controller at hand preserves the global exponential stability of the sampled-data
closed-loop system (no matter whether periodic or aperiodic sampling is used). In the case of bounded
measurement noises andbounded actuation disturbances affecting the control law, it is proved that, under
suitable fast sampling, (global) exponential input-to-state stability with respect to both these external
inputs is guaranteed. A generalisation of the Halanay’s inequality is used as a tool in order to prove the
results. The existence of a Lyapunov-Krasovskii functional for the continuous-time closed-loop system is
sufficient to ensure the preservation of the global exponential practical stability. On the other hand, the
explicit knowledge of a Lyapunov-Krasovskii functional allows us to compute an upper bound for the
sampling period. An example is presented which validates the theoretical results.
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1. Introduction

Sampled-data stabilisation of linear, bilinear and nonlin-
ear systems, even infinite dimensional ones, has been stud-
ied in the literature by many approaches. See, for instance,
Briat (2013), Carnevale, Teel, and Nesic (2007), Clarke (2010),
Clarke, Ledyaev, Sontag, and Subbotin (1997), Gomes da
Silva, Queinnec, Seuret, and Tarbouriech (2016), Di Ferdi-
nando and Pepe (2017), Fridman (2010, 2014), Fridman,
Seuret, and Richard (2004), Hespanha (2005), Laila, Nesic,
and Teel (2002), Monaco and Normand-Cyrot (2001, 2007),
Nesic and Teel (2004), Omran, Hetel, Richard, and Lamnabhi-
Lagarrigue (2014), Pepe (2016, 2017), Postoyan, Ahmed-Ali,
and Lamnabhi-Lagarrigue (2009), Seuret and Briat (2015).
The reader can refer to Hetel et al. (2017) for an interest-
ing survey on the topic. The global (asymptotic, exponential)
stability preservation under sampling, for delay-free systems
has been extensively studied in Ahmed-Ali, Fridman, Giri,
Burlion, and Lamnabhi-Lagarrigue (2016), Burlion, Ahmed-
Ali, and Lamnabhi-Lagarrigue (2006), Carnevale et al. (2007),
Herrmann, Spurgeon, and Edwards (1999), Hsu and Sas-
try (1987), Karafyllis and Jiang (2010), Laila, Nesic, and Astolfi
(2006), Laila et al. (2002), Mazenc, Malisoff, and Dinh (2013).

On the other hand, as far as the sampled-data con-
trol problem of nonlinear time-delay systems is concerned,
the results available in the literature are very few. Sufficient
Lyapunov-like conditions for the global asymptotic stability
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preservation under sampling of control-affine time-varying
systems with small delays in the input channel are given
in Mazenc et al. (2013). Sampled-data stabilisation of finite-
dimensional nonlinear systems, with large delays in the
input/output channels, is extensively studied in Heemels, Teel,
Wouw, and Nesic (2010), Karafyllis and Krstic (2012), Karafyl-
lis, Malisoff, Mazenc, and Pepe (2015), Mattioni, Monaco,
and Normand-Cyrot (2017a, 2017b). As far as nonlinear sys-
temswith state delays are concerned, in Pepe (2014, 2016, 2017),
sufficient conditions, in terms of Lyapunov-Krasovskii func-
tionals, are provided for the semi-global practical stability
preservation under sampling, with arbitrarily small final target
ball of the origin, in the case of static state feedback controllers.
In Di Ferdinando and Pepe (2019), using the same approach
of Pepe (2014, 2016, 2017), sufficient Lyapunov-like conditions
are provided for the semi-global practical stability preserva-
tion by emulation of continuous-time dynamic output feedback
controllers, for locally Lipschitz time-delay systems. Results,
concerning the global exponential stability preservation under
sampling, are provided in Pepe and Fridman (2017) for the
class of nonlinear systems with state-delays, described by glob-
ally Lipschitz maps and admitting globally Lipschitz static state
feedback exponential stabilisers. In Di Ferdinando, Pepe, and
Fridman (in press), the input-to-state stability for globally Lips-
chitz time-delay systems under sampling, with respect to noisy
output and actuation disturbances, is studied in the case of static
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state feedbacks. In Di Ferdinando et al. (in press), the imple-
mentation problems due to the non-availability in the buffer of
some past values of the internal variables are not dealt with (see
Remark 8 in Pepe, 2014). In general, some constraints on the
sampling period are necessary. In this paper, the input-to-state
stability for globally Lipschitz time-delay systems under sam-
pling, with respect to noisy output and actuation disturbances,
is studied in the case of dynamic output feedbacks. Here, the
above problems, related to the non-availability in the buffer of
some past values of the internal variables, are fully overcome.

It is well known that actuation disturbances and observation
errors can deteriorate the performances of controllers (see, for
instance, Malisoff & Sontag, 2004; Sontag, 1989), and the same,
or even worse, kind of problems arises when the control law is
applied by sampling and holding (see Ledyaev & Sontag, 1999;
Sontag, 1999a, 1999b). In Karafyllis and Kravaris (2009) suf-
ficient conditions ensuring input-to-state stability preserva-
tion, with respect to external disturbances, under suitably fast
sampling, for nonlinear delay-free systems, are provided. In
Pepe (2015), concerning the stabilisation in the sample-and-
hold sense of nonlinear control-affine delay-free systems, an
input-to-state stability redesign method (for static state feed-
back controllers) is exploited, in order to attenuate the effects
of bounded actuation disturbances and of suitably bounded
observation errors. The same approach has been used for
nonlinear control-affine time-delay systems in Di Ferdinando
and Pepe (2017). To our best knowledge, the problem related to
the global practical exponential stability preservation by Euler
emulation of continuous-time dynamic output feedback con-
trollers, affected by bounded measurement noises and bounded
actuation disturbances, has never been addressed in the liter-
ature concerning nonlinear, globally Lipschitz, time-delay sys-
tems. In this paper, we fill this gap.

In this paper, under the assumption that the continuous-
time closed-loop system at hand is globally exponentially stable
and the maps describing the plant and the continuous-time
dynamic output feedback controller are globally Lipschitz, the
following result is proved: there exists a suitably fast sam-
pling period such that, emulation, by Euler approximation,
of the continuous-time dynamic output feedback controller,
affected by bounded measurement noises and bounded actu-
ation disturbances, ensures the (global) exponential input-to-
state stability of the sampled-data closed-loop system, with
respect to both these external inputs (no matter whether peri-
odic or aperiodic sampling is used). We highlight that, differ-
ently from the results provided in Pepe and Fridman (2017),
here actuation disturbances, observation errors and dynamic
output feedback controllers are addressed. We highlight also
that, in Di Ferdinando and Pepe (2019), in order to preserve
the semi-global practical stability of the sampled-data closed-
loop system, the bounds of the actuation disturbances and
of the observation errors must be sufficiently small. More-
over, in Di Ferdinando and Pepe (2019), only semi-global
practical stability results are provided in the ideal case when
actuation-measurement disturbances are zero. Instead, in the
present contribution, the global practical (with offset depend-
ing on the disturbances and observation errors bounds) expo-
nential stability preservation of the sampled-data closed-loop
system is guaranteed for arbitrary actuation disturbances and

arbitrary observation errors, as long as bounded, and the
global exponential stability, in the case these disturbances and
observation errors do not appear, is guaranteed. A linear ISS
inequality is provided with respect to actuation disturbances
and observation errors bounds. On the other hand, differ-
ently from Di Ferdinando and Pepe (2019) (concerning locally
Lipschitz systems and semi-global practical stability preser-
vation), the globally Lipschitz property, of the maps describ-
ing the plant and the continuous-time dynamic output feed-
back exponential stabiliser, is here assumed. Globally Lipschitz
Time-Delay systems are very frequent in practice. In partic-
ular, such systems arise in the study of transport PDEs (e.g.
purely convective/first-order hyperbolic PDE dynamics), which
are very frequent in industrial practice (e.g. gas flow pipelines,
gas-liquid flow in oil production pipes) as well as in theoreti-
cal studies (see, for instance, Cai, Liao, Zhang, & Zhang, 2016;
Krstic, 2009a, 2009b; Krstic & Bekiaris-Liberis, 2013; Krstic
& Karafyllis, 2019; Krstic & Smyshlyaev, 2008). Moreover, dif-
ferently from Di Ferdinando and Pepe (2019), results con-
cerning the study of other emulation schemes than the Euler
ones are not provided. This last point is not a big limita-
tion. Indeed, the Euler approximation is the simplest way to
emulate continuous-time dynamic output feedback controllers
because of its easy implementation and, for this reason, is
the most used in practical engineering applications (see, for
instance, Buccella, Cecati, Latafat, Pepe, & Razi, 2015; Di
Ferdinando, Pepe, Palumbo, Panunzi, & De Gaetano, n.d.;
Ikeda, 2017; Katayama, 2010; Katayama & Aoki, 2014).

Halanay’s inequality (see Baker & Buckwar, 2005; Halanay,
1966; Hien, Phat, & Trinh, 2015) and converse Lyapunov the-
orems (see Karafyllis, Pepe, & Jiang, 2008; Krasovskii, 1963;
Pepe & Karafyllis, 2013) are the main tools used to prove the
results. As long as the continuous-time closed-loop system at
hand is globally exponentially stable, since the existence of a
Lyapunov-Krasovskii functional is ensured by the converse the-
orems, the proof of the existence of a suitably small sampling
period does not require its explicit knowledge. If a Lyapunov-
Krasovskii functional is explicitly known, then an explicit upper
bound on the sampling period that preserves practical stability
can be always provided. This upper boundmay be conservative,
but the results provided here are of the existence type and the
provision of a non conservative sampling frequency is beyond
the aims of this work. A numerical example is studied which
validates the theoretical results.

Notation: N denotes the set of nonnegative integer numbers,
R denotes the set of real numbers, R

� denotes the extended
real line [−∞,+∞], R

+ denotes the set of nonnegative reals
[0,+∞). The symbol | · | stands for the Euclidean norm of a
real vector, or the induced Euclidean norm of a matrix. For
a given positive integer n, for a symmetric, positive definite
matrix P ∈ R

n×n, λmax(P) and λmin(P) denote the maximum
and theminimum eigenvalue of P, respectively. For a given pos-
itive integer n, 0 denotes a vector of all zero in R

n. The essential
supremumnormof an essentially bounded function is indicated
with the symbol ‖ · ‖∞. For a positive integer n, for a positive
real � (maximum involved time-delay): Cn denotes the space
of the continuous functions mapping [−�, 0] into R

n. For a
positive real p, forφ ∈ Cn,Cnp (φ) = {ψ ∈ Cn : ‖ψ − φ‖∞ ≤ p}.
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The symbol Cnp denotes Cnp (0). For a continuous function x :
[−�, c) → R

n, with 0 < c ≤ +∞, for any real t ∈ [0, c), xt is
the function in Cn defined as xt(τ ) = x(t + τ), τ ∈ [−�, 0].
For positive integers n, m, for a map f : Cn × R

m → R
n, and

for a globally Lipschitz functional V : Cn → R
+, D+V : Cn ×

R
m → R

� denotes the derivative in Driver’s form of V, defined,
for φ ∈ Cn, u ∈ R

m, as follows (see Pepe, 2007) D+V(φ, u) =
lim suph→0+

V(φh,u)−V(φ)
h , where, for 0 ≤ h < �, φh,u ∈ Cn is

defined, for s ∈ [−�, 0], as

φh,u (s) =
{
φ (s + h) , s ∈ [−�,−h) ,
φ (0)+ (s + h) f (φ, u) , s ∈ [−h, 0] .

Throughout the paper, GES stands for globally exponentially
stable or global exponential stability, RFDE stands for retarded
functional differential equation.

2. Preliminaries and problem statement

Let us consider a nonlinear time-delay system (the plant),
described by the following RFDE (see Hale & Lunel, 1993;
Kolmanovskii & Myshkis, 1999)

ẋ (t) = f (xt , u (t)) , t ≥ 0 a.e.,

y (t) = h (xt) ,

x (τ ) = x0 (τ ) , τ ∈ [−�, 0] ,

(1)

where: x(t) ∈ R
n;n is a positive integer; x0, xt ∈ Cn;� > 0 is the

maximum involved time delay, which is assumed to be known;
u(t) ∈ R

m is the input (the input signal is Lebesgue measurable
and locally essentially bounded); m is a positive integer; y(t) ∈
R
q is the output; q is a positive integer; f is a map from Cn × R

m

to R
n; h is a map from Cn to R

q. It is assumed that f (0, 0) =
h(0) = 0 (regularity of the maps f and h will be established in
forthcoming Assumption 2.1).

The following lemma is a particular case of Theorem 3.2 in
Hien et al. (2015), as here needed for the forthcoming practi-
cal stability analysis. Theorem 3.2 in Hien et al. (2015) extends
the Halanay’s inequality (see Baker & Buckwar, 2005; Halanay,
1966) to a more general case.

Lemma 2.1 (see Theorem 3.2 in Hien et al., 2015): Let a, b,
γ , r be positive reals, a> b. Let z : [−r,+∞) → R

+ be a con-
tinuous function satisfying the inequality D+z(t) ≤ −az(t)+
b supθ∈[−r,0] z(t + θ)+ γ , where D+z(t) = lim suph→0+
z(t+h)−z(t)

h is the upper right-hand Dini derivative of the
function z. Let λ be the positive real solution of the scalar
equation (with unknown variable λ̄) H(λ̄) = λ̄− 1 + b

a e
λ̄ar =

0. Let σ = a − b and N = eλar. Then the inequality z(t) ≤
supθ∈[−r,0] z(θ)N e−λat + γ

σ
holds for any t ≥ 0.

Let us consider a dynamic output feedback controller for
the nonlinear time-delay system (1), described by the follow-
ing equations (see Ciccarella,Mora, &Germani, 1995; Germani,

Manes, & Pepe, 2001, 2012)

˙̂x (t) = f̂
(
x̂t , u (t) , y (t)

)
, t ≥ 0,

u (t) = k
(
x̂t , y(t)

)
,

x̂ (τ ) = x̂0 (τ ) , τ ∈ [−�, 0] ,

(2)

where: x̂(t) ∈ R
n; x̂0, x̂t ∈ Cn;� is the maximum involved time

delay as in (1); u(t) ∈ R
m and y(t) ∈ R

q are the input and the
output as defined in (1), respectively; f̂ is a map from Cn ×
R
m × R

q to R
n; k is a map from Cn × R

q to R
m; it is assumed

that f̂ (0, 0, 0) = k(0, 0) = 0.

Assumption 2.1: The maps f, h, f̂ and k in (1), (2) are globally
Lipschitz. The continuous-time closed-loop system described by
the RFDEs (see (1), (2))

ẋ (t) = f
(
xt , k

(
x̂t , h (xt)

))
, t ≥ 0,

˙̂x (t) = f̂
(
x̂t , k

(
x̂t , h (xt)

)
, h (xt)

)
,

x (τ ) = x0 (τ ) , x̂ (τ ) = x̂0 (τ ) , τ ∈ [−�, 0] ,

(3)

is 0-GES.

We recall here the notion of partition of [0,+∞) (see Clarke
et al., 1997; Pepe, 2017).

Definition 2.2: A partition π = {ti, i = 0, 1, . . .} of [0,+∞)

is a countable, strictly increasing sequence ti, with t0 = 0,
such that ti → +∞ as i → +∞. The diameter of π , denoted
diam(π), is defined as supi≥0 ti+1 − ti. The dwell time of π ,
denoted dwell(π), is defined as inf i≥0 ti+1 − ti. For any pos-
itive real a ∈ (0, 1], b> 0, πa,b is any partition π with ab ≤
dwell(π) ≤ diam(π) ≤ b.

The real a ∈ (0, 1], inDefinition 2.2, is introduced in order to
allow non-uniform sampling in sampled-data stabilisation. The
problem that we want to address in this paper is the following
one.

Problem 2.1: If Assumption 2.1 holds, prove the existence of
a sufficiently small sampling period δ and of positive reals
λ∗, r1, r2, r3 (and eventually find them) such that: for any
bounded sequence d : N → R

m (actuation disturbance), for
any bounded sequence e : N → R

q (measurement noise), for
any initial state x0, x̂0 ∈ Cn and for any partition πa,δ the solu-
tion of the sampled-data closed-loop system described by (1),
with Euler emulated control input (see Di Ferdinando & Pepe,
2019)

u(t) = k(x̂tj , h(xtj)+ ej)+ dj,

x̂(tj+1) = x̂(tj)+ (tj+1 − tj)̂f
(
x̂tj , k(x̂tj , h(xtj)+ ej), h(xtj)+ ej

)
,

x̂tj(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̂0(tj + θ), tj + θ ≤ 0,

x̂(tk)+ tj + θ − tk
tk+1 − tk

(x̂(tk+1)− x̂(tk)), tj + θ > 0,

k = argmax
l∈N

{tl ∈ πa,δ : tl ≤ tj + θ},
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θ ∈ [−�, 0], t ∈ [tj, tj+1
)
, tj ∈ πa,δ , j = 0, 1, . . . ,

(4)

exists for all t ∈ R
+, and, furthermore, satisfies∣∣∣∣[x(t)x̂(tj)

]∣∣∣∣ ≤ r1

∥∥∥∥[x0x̂0
]∥∥∥∥∞

e−λ
∗t + r2d̄ + r3ē,

t ∈ [tj, tj+1], j = 0, 1, . . . , (5)

where d̄, ē are the positive reals such that |dj| ≤ d̄, |ej| ≤ ē, j =
0, 1, 2, . . ..

Remark 2.1: The continuous-time dynamic output feedback
controller (2) is here discretised by the Euler method, and the
control input is applied by means of a zero-order hold device
(see (4)). The Euler approximation of (2) leads to a contin-
uous, piece-wise linear, approximated solution x̂(t), and thus,
at each tj, x̂tj is described by (4). Notice that, in (4), when
tj + θ ≤ 0, x̂tj(θ) is a point-wise value of the controller initial
state, andwhen tj + θ > 0, x̂tj(θ) is a point-wise value of the lin-
ear interpolation between x̂(tk) and x̂(tk+1), with tk ≤ tj + θ <

tk+1.

Clearly, the dynamic output feedback sampled-data con-
troller (4) does not have causality problems. On the other hand,
possible time-delays, due to computation, are not taken into
account here.

Firstly, in order to cope with Problem 2.1, by the same rea-
soning as in Laila et al. (2002) (see Remark 2.3 in Laila et al.,
2002), taking into account (1) and (2), let us consider the
open-loop system described by the following RFDEs

ẋ (t) = f
(
xt , ũ1 (t)

)
,

˙̂x (t) = ũ2 (t) , t ≥ 0 a.e.,

y (t) = h (xt) ,

x (τ ) = x0 (τ ) , x̂ (τ ) = x̂0 (τ ) , τ ∈ [−�, 0] ,

(6)

where: x0, x̂0 ∈ Cn are the initial states in (1) and (2); xt , x̂t ∈
Cn; x(t), x̂(t) ∈ R

n; f is the map in (1); ũ1(t) = u(t) ∈ R
m is the

input in (1); ũ2(t) ∈ R
n is a new input (Lebesgue measurable

and locally essentially bounded); y(t) ∈ R
q is the output in (1);

h is the map in (1). Let (as long as the solution of (6) exists)

x̃ (t) =
[
x (t)
x̂ (t)

]
∈ R

2n, x̃t =
[
xt
x̂t

]
∈ C2n,

ũ (t) =
[
ũ1 (t)
ũ2 (t)

]
∈ R

m+n. (7)

By (7), system (6) can be rewritten as follows

˙̃x (t) =
[
ẋ (t)
˙̂x (t)

]
=
[
f
(
xt , ũ1 (t)

)
ũ2 (t)

]
= F

(
x̃t , ũ (t)

)
,

x̃ (τ ) = x̃0 (τ ) =
[
x0 (τ )
x̂0 (τ )

]
, τ ∈ [−�, 0] ,

(8)

where themap F : C2n × R
m+n → R

2n is readily defined by (8).
ByAssumption 2.1, themapF is globally Lipschitz andF(0, 0) =

0. Taking into account the dynamic output feedback con-
troller (2), let K : C2n × R

q → R
m+n be the map defined, for

all φ̃ =
[
φ

φ̂

]
∈ C2n, φ, φ̂ ∈ Cn and for all e ∈ R

q, as

[
k(φ̂, h(φ)+ e)

f̂ (φ̂, k(φ̂, h(φ)+ e), h(φ)+ e)

]
= K(φ̃, e), (9)

where: f̂ and k are the maps in (2); h is the map in (1).
By Assumption 2.1 the map K is globally Lipschitz and sat-
isfies K(0, 0) = 0. Taking into account (6), (7), (8), (9), the
continuous-time closed-loop system (3) can be rewritten as
follows

˙̃x (t) = F(x̃t ,K(x̃t , 0)),

x̃ (τ ) = x̃0 (τ ) =
[
x0 (τ )
x̂0 (τ )

]
, τ ∈ [−�, 0] .

(10)

From Assumption 2.1, it follows that the continuous-time
closed-loop system described by (10) is 0-GES.

The following lemma, concerning a standard Lyapunov con-
verse result (see Karafyllis et al., 2008; Krasovskii, 1963; Pepe
& Karafyllis, 2013), holds for the system described by (10).

Lemma2.3: Let Assumption 2.1 hold. Then, there exist a globally
Lipschitz functional V : C2n → R

+, with LV as Lipschitz con-
stant, and positive reals αi, i = 1, 2, 3, such that the following
inequalities hold for any φ ∈ C2n

α1 ‖φ‖∞ ≤ V(φ) ≤ α2 ‖φ‖∞ ,

D+V(φ,K(φ, 0)) ≤ −α3 ‖φ‖∞ .
(11)

3. Main results

The main result of the paper is given by next Theorem 3.1
which solves Problem 2.1. The proof follows the lines of the ones
in Pepe and Fridman (2016, see Theorem 8), Pepe and Frid-
man (2017, see Theorem 5).

Theorem 3.1: Let Assumption 2.1 hold. Let α1, α2, α3 and LV
be the positive reals provided in Lemma 2.3 for the closed-loop
system described by (10) (see also (3)). Let LF , LK be the Lipschitz
constants related to the maps F and K, respectively (see (8), (9)).
Let a ∈ (0, 1]. Let δ be a positive real satisfying

δ < min
{
�,

α1α3

α2LVL2FLK (1 + LK)

}
. (12)

Let λ be the positive real solution of the scalar equation

λ̄− 1 + α2LVL2FLK (1 + LK)
α1α3

δ e
α3λ̄(�+2δ)

α2 = 0. (13)

Let l be the positive integer such that

laδ ≤ � < (l + 1)aδ. (14)

Let

λ∗ = α3

α2
λ. (15)
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Let r1, r2, r3, be the following positive reals

r1 = α2

α1
(2 + LFLKδ)l+1 e(LF+2λ∗)(�+2δ),

r2 = r1LFδ + α2LVLF(1 + LFLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

,

r3 = r2LK .

(16)

Then, for any partition πa,δ (see Definition 2.2), for any ini-
tial state x0, x̂0 ∈ Cn, for any sequence e : N → R

q(measurement
noise) such that, for some positive real ē, |ej| ≤ ē, j = 0, 1, 2, . . . ,
for any sequence d : N → R

m (actuation disturbance) such that,
for some positive real d̄, |dj| ≤ d̄, j = 0, 1, 2, . . . , the solution of
the sampled-data closed-loop system described by (see (1), (4))

ẋ (t) = f (xt , k(x̂tj , h(xtj)+ ej)+ dj),

x̂
(
tj+1

) = x̂
(
tj
)+ (

tj+1 − tj
)
f̂ (x̂tj , k(x̂tj , h(xtj)+ ej), h(xtj)+ ej),

(1)

x̂tj(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̂0(tj + θ), tj + θ ≤ 0,

x̂(tk)+ tj + θ − tk
tk+1 − tk

(x̂(tk+1)− x̂(tk)), tj + θ > 0,

k = argmax
l∈N

{tl ∈ πa,δ : tl ≤ tj + θ},

θ ∈ [−�, 0], t ∈ [tj, tj+1
)
, tj ∈ πa,δ , j = 0, 1, . . . ,

x (τ ) = x0 (τ ) , x̂ (τ ) = x̂0 (τ ) , τ ∈ [−�, 0] , (17)

exists for all t ≥ 0 and, furthermore, satisfies (5).

Proof: In the following, the structure of the proofs used in
Pepe and Fridman (2016, see Theorem 8), Pepe and Frid-
man (2017, see Theorem 5) is suitably adapted in order to
cope with sampled-data dynamic output feedback controllers
affected by actuation disturbances andmeasurement noises. Let
us consider the system described by (8) with (as long as the
related solution exists)

ũ(t) =
[

k(x̂tj , h(xtj)+ ej)
f̂ (x̂tj , k(x̂tj , h(xtj)+ ej), h(xtj)+ ej)

]
+
[
dj
0

]
= K

(
x̃tj , ej

)+ d̃j,

tj ≤ t < tj+1, tj ∈ πa,δ , j = 0, 1, . . . ,

(18)

where the sequence d̃ : N → R
m+n is readily defined by (18)

with dj ∈ R
m (the actuation disturbance) and 0 ∈ R

n. Notice
that |d̃j| ≤ d̄, j = 0, 1, 2, . . .. From the global Lipschitz prop-
erty of the map F and the strictly increasing property of the
partition πa,δ , it follows that the closed-loop system described
by (8), (18) admits a unique locally absolutely continuous solu-
tion inR

+ (seeHale & Lunel, 1993). Let x̃t ∈ C2n be the solution
of the closed-loop system (8), (18). Let p be the positive inte-
ger such that, for the partition at hand, tp ≤ � < tp+1. Notice
that, by (14), p ≤ l. Firstly, let us consider the intervals [tj, tj+1],

j = 0, 1, . . . , p. For t ∈ [0, t1], we have

‖x̃t‖∞ ≤ ‖x̃0‖∞ + sup
θ∈[−�,0], t+θ≥0(

‖x̃0‖∞ +
∫ t+θ

0
|F(x̃τ ,K(x̃0, e0)+ d̃0)| dτ

)
≤ 2‖x̃0‖∞ + sup

θ∈[−�,0], t+θ≥0

∫ t+θ

0
LF(‖x̃τ‖∞

+ LK‖x̃0‖∞

+ LK |e0| + |d̃0|) dτ
≤ (2 + LFLKδ)‖x̃0‖∞ + LFLKδē + LFδd̄

+
∫ t

0
LF‖x̃τ‖∞ dτ . (19)

Let

c1 = 2 + LFLKδ, c2 = LFLKδē + LFδd̄. (20)

By theGronwall-BellmanLemma (see LemmaA.1, pp. 651–652,
in Khalil, 2000) and taking into account (20), it follows
from (19) that, for t ∈ [0, t1], the following inequality holds
‖x̃t‖∞ ≤ c1 eLFt‖x̃0‖∞ + c2 eLFt . Taking into account that, for
any nonnegative integer y, the inequalities

∑y
i=0 c

i
1 ≤ cy+1

1 ,
‖x̃t‖∞ ≤ c1 eLF(t−ty)‖x̃ty‖∞ + c2 eLF(t−ty), t ∈ [ty, ty+1] hold,
by an induction reasoning it follows that, for t ∈ [tj, tj+1], j =
0, 1, 2, . . . , p, the inequality holds

‖x̃t‖∞ ≤ cj+1
1 eLFt‖x̃0‖∞ + cj+1

1 c2 eLFt . (21)

From (21), recalling that p ≤ l and taking into account (20), for
any t ∈ [0, tp+1] the following inequality/equality holds

‖x̃t‖∞ ≤ cl+1
1 eLF(�+2δ)‖x̃0‖∞ + cl+1

1 c2 eLF(�+2δ)

= (2 + LFLKδ)l+1 eLF(�+2δ)‖x̃0‖∞

+ (2 + LFLKδ)l+1(LFLKδē + LFδd̄) eLF(�+2δ). (22)

Now, let w : R
+ → R

+ be the continuous function defined, for
t ∈ R

+, as w(t) = V(x̃t), with V the functional provided in
Lemma 2.3 (for the system described by (10)). The following
equalities hold for tj ≤ t < tj+1, j = p + 1, p + 2, . . .,

D+w(t) = lim sup
h→0+

1
h
(V
(
x̃t+h

)− V
(
x̃t
)
)

= lim sup
h→0+

1
h
(V
(
x̃t+h

)− V((x̃t)h,K(x̃tj ,ej)+d̃j)

+ V((x̃t)h,K(x̃tj ,ej)+d̃j)− V
(
x̃t
)
), (23)

where, for t ≥ 0, and any v ∈ R
m+n, (x̃t)h,v ∈ C2n is defined (see

the Notation section), for h ∈ [0,�), as

(x̃t)h,v (θ) =
{
x̃t (θ + h) , θ ∈ [−�,−h) ,
x̃t (0)+ (θ + h) F

(
x̃t , v

)
, θ ∈ [−h, 0] .
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Now, for any positive real h < min{tj+1 − tj,�}, the following
equalities/inequalities hold (see Driver, 1962; Pepe, 2007)

1
h
|V (x̃t+h

)− V((x̃t)h,K(x̃tj ,ej)+d̃j)|

≤ LV
h

‖x̃t+h − (x̃t)h,K(x̃tj ,ej)+d̃j‖∞

= LV
h

sup
θ∈[−�,0]

|x̃t+h(θ)− (x̃t)h,K(x̃tj ,ej)+d̃j(θ)|

= LV
h

sup
θ∈[−h,0]

|x̃(t + h + θ)− x̃(t)

− (θ + h)F(x̃t ,K(x̃tj , ej)+ d̃j)|

≤ LV
h

sup
θ∈[−h,0]

∣∣∣∣∣x̃(t)+
∫ t+h+θ

t
F(x̃τ ,K(x̃tj , ej)+ d̃j) dτ

−x̃(t)− (θ + h)F(x̃t ,K(x̃tj , ej)+ d̃j)

∣∣∣∣∣
= LV

h
sup

θ∈(−h,0]

∣∣∣∣∣(θ + h)

(
1

(θ + h)

∫ t+h+θ

t

F(x̃τ ,K(x̃tj , ej)+ d̃j) dτ

−F(x̃t ,K(x̃tj , ej)+ d̃j)

)∣∣∣∣∣
≤ LV sup

θ∈(−h,0]

∣∣∣∣∣
(

1
(θ + h)

∫ t+h+θ

t
F(x̃τ ,K(x̃tj , ej)+ d̃j) dτ

−F(x̃t ,K(x̃tj , ej)+ d̃j)
)∣∣∣ . (24)

From (24), taking into account of the continuity of the map F
and of the solution x̃τ ∈ C2n, τ ∈ R

+ (see Lemma 2.1, p. 40, in
Hale & Lunel, 1993) the limit follows

lim sup
h→0+

1
h
(V
(
x̃t+h

)− V((x̃t)h,K(x̃tj ,ej)+d̃j)) = 0. (25)

From (23), (25) and by the use of Lemma 2.3 we obtain

D+w(t) = lim sup
h→0+

1
h
(V((x̃t)h,K(x̃tj ,ej)+d̃j)− V

(
x̃t
)
)

= lim sup
h→0+

1
h
(V((x̃t)h,K(x̃tj ,ej)+d̃j)− V((x̃t)h,K(x̃t ,0))

+ V((x̃t)h,K(x̃t ,0))− V
(
x̃t
)
)

≤ lim sup
h→0+

1
h
(V((x̃t)h,K(x̃tj ,ej)+d̃j)− V((x̃t)h,K(x̃t ,0)))

+ lim sup
h→0+

1
h
(V((x̃t)h,K(x̃t ,0))− V

(
x̃t
)
)

≤ −α3‖x̃t‖∞ + lim sup
h→0+

1
h
(V((x̃t)h,K(x̃tj ,ej)+d̃j)

− V((x̃t)h,K(x̃t ,0))). (26)

Moreover, we have

lim sup
h→0+

1
h
|V((x̃t)h,K(x̃tj ,ej)+d̃j)− V((x̃t)h,K(x̃t ,0))|

≤ lim sup
h→0+

LV
h

(
sup

θ∈[−�,0]
|(x̃t)h,K(x̃tj ,ej)+d̃j(θ)

−(x̃t)h,K(x̃t ,0)(θ)|
)

= lim sup
h→0+

LV
h

(
sup

θ∈[−h,0]
|x̃(t)+ (θ + h)F(x̃t ,K(x̃tj , ej)+ d̃j)

−x̃(t)− (θ + h)F(x̃t ,K(x̃t , 0))|
)

= lim sup
h→0+

LV
h

(
sup

θ∈[−h,0]
(θ + h)|F(x̃t ,K(x̃tj , ej)+ d̃j)

−F(x̃t ,K(x̃t , 0))|
)

≤ LVLF(LK‖x̃tj − x̃t‖∞ + LK‖ej‖∞ + |d̃j|)
≤ LVLF(LK‖x̃tj − x̃t‖∞ + LKē + d̄). (27)

From (26), taking into account (27), the following inequality
holds

D+w(t) ≤ −α3‖x̃t‖∞ + LVLF(LK‖x̃tj − x̃t‖∞ + LKē + d̄).
(28)

Now, let us consider any j ≥ p + 1. Let t̂1 = maxi∈N{ti ∈ πa,δ :
ti ≤ tj −�} and let t̂2, t̂3, . . . , t̂s, s positive integer, be the set
of all sampling times, in increasing order, in the interval (tj −
�, tj]. Taking into account (14) and since t̂s = tj it must be
2 ≤ s ≤ l + 2. Then, for tj ≤ t < tj+1, we have

‖x̃tj − x̃t‖∞ = sup
θ∈[−�,0]

|x̃(tj + θ)− x̃(t + θ)|

≤ sup
q=1,2,...,s−1

sup
θ∈[t̂q−tj,t̂q+1−tj]

|x̃(tj + θ)− x̃(t + θ)|

≤ sup
q=1,2,...,s−1

sup
θ∈[t̂q−tj,t̂q+1−tj]

∣∣∣∣∣
∫ t+θ

tj+θ
LF

(
(1 + LK) sup

β∈[tj+θ ,t+θ]
‖x̃β‖∞ + LKē + d̄

)
dτ

∣∣∣∣∣
≤ sup

q=1,2,...,s−1
sup

θ∈[t̂q−tj,t̂q+1−tj]
LF(1 + LK)δ

sup
β∈[tj+θ ,t+θ]

‖x̃β‖∞ + LFLKδē + LFδd̄

≤ LF(1 + LK)δ sup
β∈[t̂1,t]

‖x̃β‖∞ + LFLKδē + LFδd̄

≤ LF(1 + LK)δ
α1

sup
β∈[t̂1,t]

w(β)+ LFLKδē + LFδd̄. (29)

From (28), taking into account (29) and settingw(θ) = w(0) for
θ ∈ [−2δ, 0], by the use of Lemma 2.3, the following inequality
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holds for all t ≥ tp+1

D+w(t) ≤ −α3
α2

w(t)

+ LVL2FLK(1 + LK)δ
α1

sup
θ∈[−�−2δ,0]

w(t + θ)

+ (δLVL2FL
2
K + LVLFLK)ē + (δLVL2FLK + LVLF)d̄.

(30)

From (30), by the use of Lemma 2.1 in the interval [tp+1,+∞)

and taking into account (15), we obtain

w(t) ≤ sup
θ∈[−�−2δ,0]

w(tp+1 + θ) eλ
∗(�+2δ) e−λ

∗(t−tp+1)

+ α1α2(LVLFLK + LVL2FL
2
Kδ)

α1α3 − α2LVL2FLK (1 + LK) δ
ē

+ α1α2(LVLF + LVL2FLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

d̄. (31)

From (31), by Lemma 2.3 and taking into account (22), for t ∈
[tp+1,+∞), the following inequalities hold

‖x̃t‖∞ ≤ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)‖x̃0‖∞ e−λ
∗(t−tp+1)

+ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)LFδd̄ e−λ
∗(t−tp+1)

+ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)ēLFLKδ

e−λ
∗(t−tp+1)

+ α2(LVLF + LVL2FLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

d̄

+ α2(LVLFLK + LVL2FL
2
Kδ)

α1α3 − α2LVL2FLK (1 + LK) δ
ē. (32)

From (32), taking into account that tp+1 ≤ �+ δ and that,
for t ∈ [0, tp+1], the right-hand side of the inequality in (32)
is greater than the right-hand side of the equality in (22), we
can conclude that, for t ∈ [0,+∞), the following inequality
holds

‖x̃t‖∞ ≤ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)‖x̃0‖∞ e−λ
∗(t−δ−�)

+ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)LFδd̄ e−λ
∗(t−δ−�)

+ α2

α1
(2 + LFLKδ)l+1 e(LF+λ

∗)(�+2δ)ēLFLKδ

e−λ
∗(t−δ−�)

+ α2(LVLFLK + LVL2FL
2
Kδ)

α1α3 − α2LVL2FLK (1 + LK) δ
ē

+ α2(LVLF + LVL2FLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

d̄. (33)

From (33), taking into account (16), we obtain

‖x̃t‖∞ ≤ α2

α1
(2 + LFLKδ)l+1 e(LF+2λ∗)(�+2δ)‖x̃0‖∞ e−λ

∗t

+ α2

α1
(2 + LFLKδ)l+1 e(LF+2λ∗)(�+2δ)

(LFLKδē + LFδd̄)

+ α2(LVLFLK + LVL2FL
2
Kδ)

α1α3 − α2LVL2FLK (1 + LK) δ
ē

+ α2(LVLF + LVL2FLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

d̄

= r1‖x̃0‖∞ e−λ
∗t + r1(LFLKδē + LFδd̄)

+ α2(LVLFLK + LVL2FL
2
Kδ)

α1α3 − α2LVL2FLK (1 + LK) δ
ē

+ α2(LVLF + LVL2FLKδ)
α1α3 − α2LVL2FLK (1 + LK) δ

d̄

= r1‖x̃0‖∞ e−λ
∗t + r2d̄ + r3ē. (34)

Now, from (8), (18), it follows that x̃t = [ xt
x̂t
]
is the solution, for

t ∈ R+, of the closed-loop system described by the equations

ẋ (t) = f (xt , k(x̂tj , h(xtj)+ ej)+ dj),

˙̂x (t) = f̂ (x̂tj , k(x̂tj , h(xtj)+ ej), h(xtj)+ ej),

x̂tj(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂0(tj + θ), tj + θ ≤ 0,

x̂(tk)+ tj + θ − tk
tk+1 − tk

(x̂(tk+1)− x̂(tk)), tj + θ > 0,

k = argmax
l∈N

{tl ∈ πa,δ : tl ≤ tj + θ},

θ ∈ [−�, 0], t ∈ [tj, tj+1
)
, tj ∈ πa,δ , j = 0, 1, . . . ,

x (τ ) = x0 (τ ) , x̂ (τ ) = x̂0 (τ ) , τ ∈ [−�, 0] .
(35)

From (35), it follows that
[ xt
x̂tj

]
is the solution, for t ∈ R+, tj ∈

πa,δ , of the systemdescribed by (17) (see also (1), (4)). From (34)
it follows that (5) holds. The proof of the theorem is complete.

�

Remark 3.1: The results provided in Theorem 3.1 allow aperi-
odic sampling. Indeed, the global exponential practical stability
of the sampled-data closed-loop system described by (1)–(4) is
preserved as long as the length of the sampling intervals [tj, tj+1]
is less than the upper bound δ (see (12)) and no matter whether
periodic or aperiodic sampling is used (see the real a ∈ (0, 1]
in Theorem 3.1 and Definition 2.2). The knowledge of the sam-
pling times tj, j = 0, 1, . . . , is not needed. On the other hand, for
the computation of the estimated state x̂(tj+1), j = 0, 1, . . . , the
knowledge of the time elapsed between the latest two sampling
times (i.e. tj+1 − tj) is needed. Otherwise, the Euler numeri-
cal method could not be correctly applied. Notice, in (17), that,
for j = 0, 1, . . ., x̂tj+1 can be computed by suitably shifting x̂tj ,
and then making use of x̂(tj), x̂(tj+1). Again, just the latest sam-
pling times difference tj+1 − tj is involved. Furthermore, even a
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blow up of the variable x(t), tj < t < tj+1, does not prevent the
possibility of computing as well x̂(t), tj < t ≤ tj+1.

Remark 3.2: Differently from Theorem 5 (Pepe & Fridman,
2017), in Theorem 3.1, actuation disturbances and observa-
tion errors as well as dynamic output feedback controllers are
addressed (see (4)). The linear ISS inequality (5) guarantees
global exponential stability in the case these disturbances and
observation errors donot appear. In order to proveTheorem3.1,
more complex tools with respect to the ones used in Pepe
and Fridman (2017), such as a recent extension of the Halanay’s
inequality, are required (see Lemma 2.1). The main difficul-
ties in solving Problem 2.1 are in the concurrent presence of
sampled-data dynamic output feedback, and of actuation dis-
turbances and observation errors. These difficulties are over-
come by exploiting the following tools: (1) the introduction
of a fictitious input in order to deal with the continuous-
time closed-loop system, with dynamic output feedback, as an
extended continuous-time closed-loop system with static state
feedback (seeDi Ferdinando&Pepe, 2019; Laila et al., 2002); (2)
the coincidence of the increment function (see Di Ferdinando
& Pepe, 2019 and the references therein) of the Euler scheme
with the function describing the dynamic output controller; (3)
the global Lipschitz property of the increment function, inher-
ited by the functions describing the dynamic output feedback;
(4) the global Lipschitz property of the involved Lyapunov-
Krasovskii functional for the continuous-time closed-loop sys-
tem. The coincidence in item (2) is a key issue for proving global
exponential stability (not of the practical type) as well as the ISS
inequality (5). Differently from Di Ferdinando and Pepe (2019)
(concerning locally Lipschitz systems), here: (1) global expo-
nential stability is guaranteed in the ideal case when actuation-
measurement disturbances are zero; (2) the globally Lipschitz
property, of the maps describing the plant and the continuous-
time dynamic output feedback exponential stabiliser, is here
assumed; (3) the global practical exponential stability of the
sampled-data closed-loop system is ensured with respect to any
bounded actuation disturbances and to any bounded measure-
ments noise; (4) results concerning the study of other emulation
schemes than the Euler ones are not provided. In Di Ferdi-
nando and Pepe (2017), actuation disturbances and observation
errors are addressed by ISS redesign methodologies for locally
Lipschitz control affine systems with sampled-data static state
feedback, and semi-global practical stability is proved to hold
for sufficiently high sampling frequency, under the assumption
that the observation error affects marginally the ISS redesigned

term in the control law. The following table provides a picture
of the comparison addressed in this remark.

Next corollary readily follows from Theorem 3.1, and there-
fore the proof is omitted.

Corollary 3.2: Let Assumption 2.1 hold. Let a ∈ (0, 1]. Then,
there exist positive reals δ, λ∗, r1, r2, r3 such that, for any par-
tition πa,δ (see Definition 2.2), for any initial state x0, x̂0 ∈ Cn,
for any sequence e : N → R

q(measurement noise) such that, for
some positive real ē, |ej| ≤ ē, j = 0, 1, 2, . . . , for any sequence
d : N → R

m (actuation disturbance) such that, for some positive
real d̄, |dj| ≤ d̄, j = 0, 1, 2, . . . , the solution of the sampled-data
closed-loop system described by (17) (see also (1), (4)) exists for
all t ≥ 0 and, furthermore, satisfies (5).

Remark 3.3: We highlight that, when |dj| = |ej| = 0, for any
j = 0, 1, . . ., the condition (5) implies the global exponen-
tial stability property of the sampled-data closed-loop sys-
tem described by (17) (see Problem 2.1, Theorem 3.1 and
Corollary 3.2).

4. Example

Let us consider the nonlinear time-delay system described by
the following RFDEs

ẋ1 (t) = −x1 (t)− 0.1x2(t),

ẋ2 (t) = −x2(t)+ tanh(x1(t)+ x2(t)+ x2(t −�)+ u(t)),

y (t) =
[
y1(t)
y2(t)

]
=
[

x2(t)
x2(t −�)

]
,

(36)
where: x1(t), x2(t) ∈ R; � = 0.1 is the involved time delay;
u(t) ∈ R is the input signal; y(t) ∈ R

2 is the output signal. In
this case, the functions f and h in (1) are functions from C2 × R

to R
2 and from C2 to R

2, respectively. We consider here the
dynamic output feedback controller described by the following
RFDEs

˙̂x1 (t) = −x̂1(t)− 0.1y1 (t)+ H1(y1(t)− x̂2(t)),

˙̂x2 (t) = −y1(t)+ tanh(x̂1(t)+ y1 (t)+ y2 (t)+ u(t))

+ H2(y1(t)− x̂2(t)),

u (t) = −x̂1(t)− y1 (t)− y2 (t) ,

(37)

where: x̂1(t), x̂2(t) ∈ R; � is the time delay in (36); H1, H2 are
tuning parameters, that will be chosen later. In this case, the
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Figure 1. Emulation by Euler method with δ = 0.01 [s]: in the first panel, x1(t) and x̂1(t) (dashed line) are reported; in the second panel, x2(t) and x̂2(t) (dashed line) are
reported; the third panel reports the sampled-data control input signal u(t).

functions f̂ and k in (2) are functions from C2 × R × R
2 to R

2

and from C2 × R
2 to R, respectively. Notice that, the maps f, h,

f̂ and k, here involved, are globally Lipschitz. Let P andQ be two
symmetric positive definite matrices defined as:

P =

⎡⎢⎢⎣
0.5 0 0 0
0 0.05 0 0
0 0 0.5 0
0 0 0 0.5

⎤⎥⎥⎦ , Q = 10−3

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

Let us consider the following Lyapunov-Krasovskii functional
V : C4 → R

+, defined,∀φ̃ ∈ C4, asV(φ̃) = V1(φ̃(0))+ V2(φ̃),
where: V1 : R

4 → R
+ is defined, for x̃ ∈ R

4, as V1(x̃) =
x̃TPx̃; V2 : C4 → R

+ is defined, for φ̃ ∈ C4, as V2(φ̃) =∫ 0
−� φ̃

T(τ )Qφ̃(τ ) dτ . Taking into account the functional V and
the continuous-time closed-loop system described by (36), (37),
rewritten as an augmented plant (see (6)–(10)), by choosing the
tuning parameters in (37) as H1 = 0.1, H2 = 1, the following
equality/inequalities hold:

D+V(φ̃,K(φ̃, 0)) = −φ21(0)− 0.1φ1(0)φ2(0)− 0.1φ22(0)

+ 0.1φ2(0) tanh(φ1(0)− φ̂1(0))− φ̂21(0)

− 0.1φ̂1(0)φ̂2(0)− φ̂22(0)

+ 10−3(φ21(0)+ φ22(0)+ φ̂21(0)+ φ̂22(0))

− 10−3(φ21(−�)+ φ22(−�)+ φ̂21(−�)+ φ̂22(−�))

≤ −φ21(0)+ 0.1
(
2φ21(0)+ φ22(0)

8

)
− 0.1φ22(0)+ 0.1

(
2φ21(0)+ φ22(0)

8
+ 2φ̂21(0)+ φ22(0)

8

)

− φ̂21(0)− 0.1

(
φ̂21(0)
2

+ φ̂22(0)
2

)
− φ̂22(0)+ 10−3(φ21(0)+ φ22(0)+ φ̂21(0)+ φ̂22(0))

− 10−3(φ21(−�)+ φ22(−�)+ φ̂21(−�)+ φ̂22(−�))
≤ −10−3‖φ̃‖∞. (38)

By Lemma 2.3, taking into account (38) and the functional
V, givenα1 = λmin(P),α2 = λmax(P)+�λmax(Q),α3 = 10−3,
the continuous-time closed-loop system described by (36), (37)
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is 0-GES. Then, we can apply Corollary 3.2. In performed simu-
lations, uniform sampling is used, and the sampling period has
been chosen equal to 0.01 [s]. The actuator disturbance has been
chosen as d(j) = 0.005 sin(tj), j = 0, 1, . . .. As far as the obser-
vation error is concerned, we considered the sequence e : N →
R
2 defined, for any j = 0, 1, . . ., as e(j) =

[
e1(j)
e2(j)

]
= [ e1

e2
]
, with e1

and e2 taken from the interval [−0.02, 0.02], by emulation of the
uniform probability density function. The initial state has been
chosen equal to

[
x1(τ )
x2(τ )

]
= [ 0.2

0.2
]
,
[
x̂1(τ )
x̂2(τ )

]
= [ 0.1

0.1
]
, τ ∈ [−�, 0].

The practical stability property of the sampled-data closed-loop
system is evident by the plots in Figure 1.

5. Conclusions

In this paper, using the same reasonings as in Pepe and Frid-
man (2017), it has been shown that the global practical expo-
nential stability property of globally Lipschitz fully nonlinear
time-delay systems is preserved when the Euler emulation,
under suitably fast sampling (aperiodic sampling is allowed), of
globally Lipschitz dynamic output feedback controllers, affected
bymeasurement noises and actuation disturbances, is used. The
assumption needed to ensure the results is that the continuous-
time closed-loop system is globally exponentially stable. The
Halanay’s inequality and the converse Lyapunov theorems have
been used as tools to prove the results. Future investigations will
concern the reduction of the conservativeness of the provided
sampling period. The hybrid systems approach seems to be a
very promising tool in such direction (see Carnevale et al., 2007
in the case of systems described by ordinary differential equa-
tions). The non-trivial analysis of sampled-data dynamic output
feedback control, for nonlinear systems with state time-delays,
in the case unknown time-delays affect also the input/output
channels (see Mattioni et al., 2017a, 2017b), is left for future
investigations.
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