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Stability, L2-gain analysis and state-feedback H∞ control of linear systems with uncertain time-varying
delays are considered in the case, where the nominal values of delays are constant and non-zero. A
new construction of Lyapunov–Krasovskii functionals (LKFs) is introduced: to a nominal LKF, which is
appropriate to the system with nominal delays, terms are added that correspond to the perturbed system
and that vanish when the delay perturbations approach 0. In the present paper we apply the nominal
Lyapunov–Krasovskii functional (LKF) which is based on the descriptor model transformation. Sufficient
conditions are given in terms of linear matrix inequalities. Numerical examples illustrate the efficiency
of the method.
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1. Introduction

During the last decade, a considerable amount of attention has been paid to stability and control of linear
systems with uncertain constant or time-varying delays lying in the given segment [0, µ] (see, e.g. Cao
et al., 1998; Fridman & Shaked, 2003; Kolmanovskii & Myshkis, 1999; Kolmanovskii & Richard, 1999;
Li & de Souza, 1997; Mahmoud, 2000; Niculescu, 2001; Richard, 2003 and the references therein). This
type of delays may be considered as uncertain delays with zero nominal values and perturbations from
[0, µ]. Throughout the paper, such a delay will be called the uncertain small delay (note that the delay
perturbations may not be necessarily small). For linear systems with uncertain small delays, the so-
called delay-dependent sufficient conditions in terms of linear matrix inequalities (LMIs) have been
derived by using Lyapunov–Krasovskii or Lyapunov–Razumikhin approaches (Razumikhin approach
usually leads to more conservative results and it is not applicable to H∞ control). Delay-dependent
conditions via LKFs are based on different model transformations. The most recent one, the descriptor
representation introduced in Fridman (2001), leads to less conservative results and is applicable, unlike
the other LKF methods, to the case of fast-varying uncertain small delays. By the descriptor approach,
the derivative of the LKF along the trajectories of the system depends on both the state vector and the
state derivative. The latter allows the treatment of the delay uncertainty in a less conservative way.

The case of uncertain non-small time-varying delays, where the nominal delay values are non-
zero and constant, appears in different applications: in engineering and biological systems (see Part 1,
Chapter 2 of Kolmanovskii & Myshkis, 1999), in networked control with constant transport delay and
time-varying data packets dropout (Yu et al., 2004). This case is mathematically more complicated than
the case of small delay, since it may include the systems which are not asymptotically stable without
delays. Only a few papers have been published on this topic.The stability of linear retarded-type systems
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with one time-varying non-small delay has been studied by Kharitonov & Niculescu (2003). Sufficient
stability conditions in their study have been derived via a modification of complete LKF. The complete
LKF for robust stability was introduced in Kharitonov & Zhabko (2003) and it corresponds to necessary
and sufficient stability conditions of the nominal system. The modified complete LKF of Kharitonov &
Niculescu (2003) does not depend explicitly on the delay perturbation and, as a result, the conditions
obtained are conservative.

H∞ control of systems with non-small delays as well as the stability for neutral-type systems with
multiple non-small delays have not yet been studied. In the present paper we consider a linear neutral
system with multiple (for simplicity two) uncertain state delays hi + ηi (t), i = 1, 2, where the constant
nominal values hi > 0 are non-zero and the time-varying perturbations ηi satisfy the bounding condition
|ηi (t)| � µi , ∀ t � 0, with given bounds µi > 0. We introduce a new construction of the LKF: to a
nominal LKF, which is appropriate to the nominal system (with nominal delays), the terms are added
which correspond to the perturbed system and which vanish when the delay perturbations approach 0.
The derivative of the nominal LKF along the trajectories of the nominal system depends on the state and
the state derivative which allows a less conservative treatment of the delay perturbations.

In the present paper we combine a nominal LKF which is based on the descriptor model transfor-
mation (Fridman & Shaked, 2002) with appropriate additional terms. Sufficient conditions for stability,
L2-gain analysis and state-feedback H∞ control are given in terms of LMIs. As a by-product, new ef-
fective criteria for small fast-varying delays are obtained. For the case of analysis, we have to assume
that for the nominal values of the delays the sufficient stability conditions of Fridman & Shaked (2002)
are feasible. If this is not the case, the complete nominal LKF may be applied. The latter will not be
considered in the present paper.

Notations. Throughout the paper the superscript ‘T’ stands for matrix transposition, Rn denotes the
n-dimensional Euclidean space, Rn×m is the set of all n × m real matrices with the Euclidean norm ‖·‖
and the notation P > 0, for P ∈ R

n×n , means that P is symmetric and positive definite. Symmetric
terms in symmetric matrices are denoted by ∗, i.e.[

A B
BT C

]
=

[
A B
∗ C

]
.

The space of vector functions that are square integrable over [0, ∞) is denoted by L2.

2. Problem formulation

We consider the following linear system with uncertain time-varying delays τi (t), i = 1, 2, and g(t):

ẋ(t) − Fẋ(t − g(t)) =
2∑

i=0

Ai x(t − τi (t)) + B2u(t) + B1w(t), (2.1a)

x(t) = φ(t), t ∈ [−h, 0], (2.1b)

z(t) = Cx(t) + Du(t), (2.1c)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the control input, w(t) ∈ R
q is the disturbance

input, z(t) ∈ R
l is the objective vector, τ0 ≡ 0, Ai , B1, B2, C and D are constant matrices, φ is a

continuously differentiable initial function and h is an upper-bound on the time delays τi , i = 1, 2, and
g. For simplicity, we took only two delays τ1, τ2 and one delay g. The results of this paper can be easily
generalized to the case of multiple delays τ1, . . . , τm, g1, . . . , gk .
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The uncertain delays τi (t) are supposed to have the following form:

τi (t) = hi + ηi (t), i = 1, 2, (2.2)

where hi > 0 is a nominal constant value and ηi is a time-varying perturbation. We will consider two
cases of delay perturbation:
Case 1 ηi (t) are sign-varying (take both positive and negative values) piecewise-continuous functions
satisfying

|ηi (t)| � µi � hi , i = 1, 2, (2.3)

with known upper-bounds µi , i.e. τi (t) ∈ [hi − µi , hi + µi ].
Case 2 ηi (t) are non-negative functions and ηi (t) � µi , and thus τi (t) ∈ [hi , hi + µi ].

Our results for the case h1 = h2 = 0 will coincide with the corresponding results of Fridman &
Shaked (2002). As in the case of small uncertain delays (with h1 = h2 = 0), we here consider two
different subcases for time-varying delay perturbations:
Case 2A ηi (t) are differentiable functions, satisfying for all t � 0

0 � ηi (t) � µi , η̇i (t) � di < 1, i = 1, 2, (2.4)

where µi and di are constant upper-bounds.
Case 2B ηi (t) are piecewise-continuous functions, satisfying for all t � 0,

0 � ηi (t) � µi , i = 1, 2.

We do not consider the case of non-positive ηi because criteria for this case are feasible for the
smaller intervals of the values of τi , i = 1, 2, and thus are more conservative than for the Case 2.

Equation (2.1a) is a general neutral-type system. We assume that g(t) is a differentiable function sat-
isfying ġ(t) � d0 < 1, for all t � 0, where d0 is a known upper-bound. Our results will be independent
of g and dependent on d0. For example, g(t) = τ1(t) (usually such models appear in the applications)
and one can apply the results of Case 2A with d0 = d1.

We assume that ‖F‖ < 1. The latter will guarantee the applicability of Lyapunov-Krasovskii
method for stability of neutral type systems with time-varying delays (Kolmanovskii & Myshkis, 1999).
Note that in the case of constant delay g we do not need any assumptions on F since our LMI conditions
will guarantee the stability of the difference equation (see, e.g. Fridman & Shaked, 2003).

We will start with the stability analysis of (2.1a), where B1 = B2 = 0. Further, we will proceed with
H∞ control problem. For a pre-chosen γ > 0, we consider the following performance index:

J =
∫ ∞

0
[zT(t)z(t) − γ 2wT(t)w(t)]dt. (2.5)

We seek a state-feedback control law
u(t) = K x(t) (2.6)

that will internally stabilize (2.1aa) and will lead to J < 0, for all x(t) satisfying (2.1a), with the initial
value φ = 0 and for all 0 �= w(t) ∈ L2.

3. The stability issue

In this section we consider B1 = B2 = 0. We represent (2.1a) in the from

ẋ(t) = f (t, xt , ẋt )
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with f (t, xt , ẋt ) = Fẋ(t −g(t))+∑2
i=0 Ai x(t −τi (t)). The assumption ‖F‖ < 1 implies that f satisfies

Lipshitz condition in ẋt with a constant less than 1. Hence, by Theorem 1.6 (p. 337 of Kolmanovskii &
Myshkis, 1999) the existence of V > 0 such that V̇ < 0 guarantees asymptotic stability of (2.1a).
Similar to delay-dependent methods and following Kharitonov & Niculescu (2003), we represent the
system in the form

ẋ(t) − Fẋ(t − g(t)) =
2∑

i=0

Ai x(t − hi ) +
2∑

i=1

Ai [x(t − hi − ηi (t)) − x(t − hi )], (3.1)

or equivalently

ẋ(t) − Fẋ(t − g(t)) =
2∑

i=0

Ai x(t − hi ) −
2∑

i=1

Ai

∫ t−hi

t−hi −ηi (t)
ẋ(s)ds, (3.2)

where h0 = 0 since τ0 ≡ 0.
We suggest the following form of LKF:

V = Vn + Va, (3.3)

where Vn is a nominal LKF corresponding to the nominal system (3.1) with η1 = η2 = 0, and Va is an
additional term.

For the nominal system in the present paper we choose LKF which corresponds to the descriptor
model transformation. The latter transformation of (3.2) has the form

E ˙̄x(t) =
[

ẋ(t)
0

]
=

[
y(t)

−y(t) + ∑2
i=0 Ai x(t − hi ) + Fy(t − g(t))

]

−
2∑

i=1

[
0
Ai

] ∫ t−hi

t−hi −ηi

y(s)ds,

(3.4)

with x̄(t) = col{x(t), y(t)}, E = diag{I, 0}. The nominal LKF is given by (see, e.g. Fridman & Shaked,
2002):

Vn = x̄T(t)E Px̄(t) +
2∑

i=1

∫ 0

−hi

∫ t

t+θ
yT(s)Ri y(s)ds dθ

+
2∑

i=1

∫ t

t−hi

xT(s)Si x(s)ds +
∫ t

t−g(t)
yT(s)Uy(s)ds, Ri > 0, Si > 0,U > 0, (3.5)

where

P =
[

P1 0
P2 P3

]
, P1 > 0. (3.6a,b)
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The nominal system is asymptotically stable if there exist n×n matrices 0 < P1, P2, P3, Si ,U, Yi1, Yi2,
Zi1, Zi2, Zi3, Ri such that the following LMIs are feasible

Γn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ψn PT
[

0

A1

]
− Y T

1 PT
[

0

A2

]
− Y T

2 PT
[

0

F

]

∗ −S1 0 0

∗ ∗ −S2 0

∗ ∗ ∗ −(1 − d0)U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.7a,b)

[
Ri Yi

∗ Zi

]
� 0, i = 1, 2,

where

Yi = [Yi1 Yi2], Zi =
[

Zi1 Zi2

∗ Zi3

]
, i = 1, 2,

Ψn = PT
[

0 I

A0 −I

]
+

[
0 I

A0 −I

]T

P +
2∑

i=1

hi Zi

+
[∑2

i=1 Si 0

0
∑2

i=1 hi Ri + U

]
+

2∑
i=1

[
Yi

0

]
+

2∑
i=1

[
Yi

0

]T

. (3.8a–c)

By the descriptor approach, the derivative of the nominal LKF depends on both x(t) and ẋ(t).
Therefore, the additional terms Va may be chosen in the following forms:
Case 1

Va =
2∑

i=1

∫ µi

−µi

∫ t

t+θ−hi

ẋT(s)Ria ẋ(s) dsdθ, Ria > 0. (3.9)

Case 2A

Va =
2∑

i=1

∫ 0

−µi

∫ t

t+θ−hi

ẋT(s)Ria ẋ(s) dsdθ

+
2∑

i=1

∫ t

t−τi (t)
xT(s)Siax(s)ds, Ria > 0, Sia > 0. (3.10)

Case 2B Va has the form (3.10) with Sia = 0.
Note that for µi → 0 (and Sia → 0 in Case 2A) we have Va → 0 in all the cases under consider-

ation and thus V → Vn. The latter will guarantee that if the conditions for the stability of the nominal
system are feasible, then the stability conditions for the perturbed system will be feasible for small
enough µi .
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We obtain:

THEOREM 1

(i) Under Case 1, the system (2.1a) with B1 = B2 = 0 is asymptotically stable if there exist n × n
matrices 0 < P1, P2, P3, Si ,U, Yi1, Yi2, Zi1, Zi2, Zi3, Ri and Ria > 0, i = 1, 2, that satisfy
(3.7b) and the following LMIs:

Γ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ PT
[

0
A1

]
− Y T

1 PT
[

0
A2

]
− Y T

2 PT
[

0
F

]
µ1 PT

[
0
A1

]
µ2 PT

[
0
A2

]
∗ −S1 0 0 0 0

∗ ∗ −S2 0 0 0

∗ ∗ ∗ −(1 − d0)U 0 0

∗ ∗ ∗ ∗ −µ1 R1a 0

∗ ∗ ∗ ∗ ∗ −µ2 R2a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.11)

where Yi , Zi and Ψn are given by (3.8) and

Ψ = Ψ1 = Ψn + 2
2∑

i=1

[
0 0
0 µi Ria

]
. (3.12)

(ii) Under Case 2A, the system (2.1a) with B1 = B2 = 0 is asymptotically stable if there exist
n × n matrices 0 < P1, P2, P3, Si ,U, Sia, Yi1, Yi2, Yia, Zi1, Zi2, Zi3, Zi1a, Zi2a, Zi3a, Ri and
Ria > 0, i = 1, 2, that satisfy (3.7b) and the following LMIs:

Γ2A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ2A PT
[

0
A1

]
− Y T

1a PT
[

0
A2

]
− Y T

2a PT
[

0
F

]
Y T

1a − Y T
1 Y T

2a − Y T
2

∗ −(1 − d1)S1a 0 0 0 0

∗ ∗ −(1 − d2)S2a 0 0 0

∗ ∗ ∗ −(1 − d0)U 0 0

∗ ∗ ∗ ∗ −S1 0

∗ ∗ ∗ ∗ ∗ −S2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.13a,b)

and

[
Ria Yia
∗ Zia

]
� 0, i = 1, 2,

where Yi , Zi and Ψn are given by (3.8) and

Yi = [Yi1a Yi2a], Zia =
[

Zi1a Zi2a

∗ Zi3a

]
, i = 1, 2,

Ψ2A = Ψn +
2∑

i=1

µi Zia +
[∑2

i=1 Sia 0

0
∑2

i=1 µi Ria

]
.

(iii) Under Case 2B, the system (2.1aa) with B1 = B2 = 0 is asymptotically stable if there exist
n × n matrices 0 < P1, P2, P3, Si ,U, Yi1, Yi2, Zi1, Zi2, Zi3, Ri and Ria > 0, i = 1, 2, that
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satisfy (3.11), (3.7b), where Yi , Zi and Ψn are given by (3.8) and

Ψ = Ψ2B = Ψn +
2∑

i=1

[
0 0
0 µi Ria

]
.

Proof. Derivative of Vn in t along the trajectories of the nominal system satisfies the following inequality
(see Fridman & Shaked, 2002):

V̇n � ξT(t)Γnξ(t), (3.14)

where Γn is given by (3.7a) and

ξ(t) = col{x(t), y(t), x(t − h1), x(t − h2), y(t − g(t))}, (3.15)

provided (3.7b) is satisfied. Note that

x̄T(t)E Px̄(t) = xT(t)P1x(t)

and, hence, differentiating this term in t along the trajectories of the perturbed system (3.4) gives:

d

dt
{x̄T(t)E Px̄(t)} = 2xT(t)P1 ẋ(t) = 2x̄T(t)PT

[
ẋ(t)

0

]

= 2x̄T(t)PT

[
y(t)

−y(t) + ∑2
i=0 Ai x(t − hi ) + Fy(t − g(t))

]
+

2∑
i=1

∆i (t), (3.16)

where

∆i (t) = −2x̄T(t)PT
∫ t−hi

t−hi −ηi (t)

[
0
Ai

]
y(s)ds,

while differentiating the same term along the trajectories of the nominal system gives (3.16) with
∆i (t) = 0.

Therefore, V̇n along the trajectories of the perturbed system satisfies the following inequality:

V̇n � ξT(t)Γnξ(t) +
2∑

i=1

∆i (t). (3.17)

We will bound ∆i (t) differently for each case.
Case 1

∆i (t) �
∣∣∣∣
∫ t−hi

t−hi −ηi

x̄T(t)PT
[

0
Ai

]
R−1

ia [0 AT
i ]Px̄(t)ds

∣∣∣∣ +
∣∣∣∣
∫ t−hi

t−hi −ηi

yT(s)Riay(s)ds

∣∣∣∣
� µi x̄

T(t)PT
[

0
Ai

]
R−1

ia [0 AT
i ]Px̄(t) +

∫ t−hi +µi

t−hi −µi

yT(s)Riay(s)ds. (3.18)

For Va of (3.9) we have

V̇a = 2yT(t)

[
2∑

i=1

µi Ria

]
y(t) −

2∑
i=1

∫ t−hi +µi

t−hi −µi

yT(s)Riay(s)ds. (3.19)
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Hence, from (3.17)–(3.19) we find

V̇ = V̇n + V̇a � ξT(t)Γnξ(t) +
2∑

i=1

µi x̄
T(t)PT

[
0
Ai

]
R−1

ia [0 AT
i ]

× Px̄(t) + 2yT(t)

[
2∑

i=1

µi Ria

]
y(t) (3.20)

and thus by Schur complements formula (3.11) implies V̇ < 0 and asymptotic stability of (2.1aa).
Case 2B Proof is similar to Case 1 with the following bounding of ∆i (t):

∆i (t) � µi x̄
T(t)PT

[
0
Ai

]
R−1

ia [0 AT
i ]Px̄(t) +

∫ t−hi

t−hi −µi

yT(s)Riay(s)ds.

Case 2A When ηi (t) � 0 we can apply less conservative bounding introduced in Moon et al. (2001).
For any a ∈ Rn, b ∈ R2n,N ∈ R2n×n, R ∈ Rn×n, Y ∈ Rn×2n and Z ∈ R2n×2n , the following holds

−2bTNa �
[
a
b

]T [
R Y −N T

Y T −N Z

] [
a
b

]
, where

[
R Y

Y T Z

]
� 0. (3.21)

We apply the latter on the expression we have obtained above for ∆i . From (3.21), taking N = Ni =
PT[ 0

Ai
], R = Ria, Z = Zia, Y = Yia, a = y(s) and b = x̄(t), we obtain, for i = 1, 2, that

∆i (t) �
∫ t−hi

t−hi −ηi

[yT(s) x̄T(t)]

⎡
⎣ Ria Yia − [0 AT

i ]P

Y T
ia − PT

[
0
Ai

]
Zia

⎤
⎦ [

y(s)
x̄(t)

]
ds

=
∫ t−hi

t−hi −ηi

yT(s)Riay(s)ds + 2
∫ t−hi

t−hi −ηi

yT(s)(Yia − [0 AT
i ]P)x̄(t)ds

+
∫ t−hi

t−hi −ηi

x̄(t)T Zia x̄(t)ds

=
∫ t−hi

t−hi −ηi

yT(s)Ri y(s)ds + 2
∫ t−hi

t−hi −ηi

ẋT(s)(Yia − [0 AT
i ]P)x̄(t)ds

+ ηi x̄(t)T Zia x̄(t)

�
∫ t−hi

t−hi −µi

yT(s)Riay(s)ds + 2xT(t − hi )(Yia − [0 AT
i ]P)x̄(t)

− 2xT(t − hi − ηi )(Yia − [0 AT
i ]P)x̄(t) + µi x̄(t)T Zi x̄(t).

Substituting the latter into (3.17) and applying (3.3), (3.10) we find that V̇ � ξ̄T(t)Γ2A ξ̄ (t), where

ξ̄ (t) = col{x̄(t), x(t − h1 − η1), x(t − h2 − η2), y(t − g(t)), x(t − h1), x(t − h2)}

and thus the LMIs of (ii) guarantee V̇ < 0 and asymptotic stability of (2.1a). �
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REMARK 1 Similar to the case of small uncertain delays, in Case 2A choosing µi → 0 and Sia → 0
we obtain conditions of Case 2B.

In Case 2 for hi → 0 choosing Si → 0 and Yia → Yi we obtain that the criteria of Cases 2A and 2B
coincide with those of Fridman & Shaked (2002) for small time-varying delays.

REMARK 2 For feasibility of the LMIs in Theorem 1, the LMIs Γn < 0 and (3.7b) should necessarily
be feasible for the nominal system, which guarantee that the original system (2.1a) with constant delays
τi is asymptotically stable ∀ τi ∈ [0, hi ], i = 1, 2.

If the nominal LMIs (3.7a,b) are feasible, then, evidently, the perturbed LMIs of Theorem 1 in the
Cases 1 and 2B have solutions for small enough values of µi . In the Case 2A, the same is true for
Sia = ρ I , where ρ is small enough .

REMARK 3 The only difference between LMIs in Cases 1 and 2B is that Γ1 has an additional positive
term

∑2
i=1 µi Ria and thus LMIs for Case 1 are more restrictive. On the other hand, in Case 1 the lengths

of the delay intervals are 2µi , while in Case 2 it is µi . In most of the examples, criterion of Case 1 leads
to the larger delay intervals, but in some examples (see Example 2 below) criterion of Case 2B gives
less conservative results.

REMARK 4 It follows from (3.13a) that the diagonal elements −Sia(1 − di ), i = 1, 2, are negative, and
thus Sia > 0, since by assumption di < 1.

REMARK 5 If we apply the criterion of Case 1 of Theorem 1 for hi = µi , i = 1, 2, we obtain a new
criterion for stability in the case of small fast-varying τi (t) ∈ [0, 2µi ]. In all the examples that we have
considered (see, e.g. Examples 1 and 2 below) the resulting criterion is less conservative than those of
Fridman & Shaked (2002) for the case of fast-varying delays.

Theorem 1 can be readily used to verify the stability of (2.1a) over the uncertainty polytope

Ω̄ =
N∑

j=1

f jΩ̄ j , for some 0 � f j � 1,

N∑
j=1

f j = 1,

where the N vertices of the polytope are described by

Ω̄ j = [A( j)
0 A( j)

1 A( j)
2

],

by solving the LMI simultaneously for all the N vertices, applying the same matrices P2 and P3 and
solving for the N vertices only.

EXAMPLE 1 Consider the system

ẋ(t) =
[

0 1
−1 −2

]
x(t − τ1(t)) +

[
0 0

−1 1

]
x(t − τ2(t)). (3.22)

The stability of (3.22) has been analysed by Kharitonov & Niculescu (2003) in the case of single delay,
where τ1 ≡ 0, τ2 = 1 + η2(t) and η2(t) is a differentiable sign-varying function satisfying |η2| �
µ2, η̇2 � d2 < 1. The following values of µ2 and d2 for the asymptotic stability of (3.22) have been
found: d2 < 0.8 and µ2 < 1

25600 < 0.00004, i.e. τ2(t) ∈ (0.99996, 1.00004).

Applying Case 2A of Theorem 1 for τ1 ≡ 0, h2 = 0.8 and d2 � 0.8 we obtain the maximum value
of µ2 = 0.4, and thus for essentially larger interval τ2 ∈ [0.8, 1.2], (3.22) is asymptotically stable.



10 of 15 E. FRIDMAN

Applying Case 1 of Theorem 1 for h2 = 1, where η2(t) may be fast varying, we obtain even a larger
interval τ2(t) ∈ [0.73, 1.27] with µ2 = 0.27. The reason for relative conservativeness of the results for
Case 2A in this example is that d2 is large enough (close to 1) and for d2 → 1 the conditions of Case 2A
are close to conditions of Case 2B. The latter conditions may be more conservative than those of Case 1
(see Remark 3). Choosing e.g. d2 = 0.2 for Case 2A we find for h2 = 0.6 the maximum µ2 = 2.6 and
the resulting interval [0.6, 3.2] becomes essentially larger than that by Case 1 of Theorem 1.

Applying Case 1 of Theorem 1 for τ1 ≡ 0, h2 = µ2 = 0.33, we find the following stability
interval for small fast-varying delay: τ2(t) ∈ [0, 0.66]. This interval is larger than the interval τ2(t) ∈
[0, 0.56] obtained by Shaked & Fridman (2002). In this example, Case 2B of Theorem 1 leads to more
conservative results than Case 1.

Consider next the case of two delays: τ1 = 0.1 + η1(t), τ2 = 1.1 + η2(t). By Case 1 of The-
orem 1 we find that the system is asymptotically stable for |η1| � 0.015, |η2| � 0.1, i.e. for all
τ1(t) ∈ [0.085, 0.115], τ2(t) ∈ [1, 1.2]. Simulation results for (3.22) with the initial condition x(0) =
[1 5]T, x(t) = 0, t < 0, and with τ1 = 0.11, τ2 = 1 + 0.2| sin 5t | (see Fig. 1 for plots of x1(t) and
x2(t)) show that the system is stable, while for a greater value of the delay τ1 = 0.23 and τ2 as above,
(3.22) becomes unstable (see Fig. 2).

EXAMPLE 2 Consider the scalar system

ẋ(t) = −x(t − τ). (3.23)

It is well known that for all constant τ ∈ [0, π/2) this system is asymptotically stable. Consider τ =
h + η(t). By Kharitonov & Niculescu (2003), (3.23) is asymptotically stable for h = 1, η̇ � 0.9 and
|η(t)| � 0.0002.

Applying Case 1 of Theorem 1 (with h = 1, µ = 0.18), we obtain that for all piecewise-continuous
(including fast-varying) delays τ(t) ∈ [0.82, 1.18] the system is asymptotically stable. Application of
Case 2B of Theorem 1 (with h = 0.82, µ = 0.38) leads to a slightly wider interval τ(t) ∈ [0.82, 1.2].

FIG. 1. Solution of (3.22) for τ1 = 0.11, τ2 = 1 + 0.2| sin 5t |.
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FIG. 2. Solution of (3.22) for τ1 = 0.23, τ2 = 1 + 0.2| sin 5t |.

Also in this example, the method of Shaked & Fridman (2002) leads to a more conservative result
of fast-varying τ(t) ∈ [0, 0.99] than that of τ(t) ∈ [0, 1.11] (for h = µ = 0.505) obtained by Case 1 of
Theorem 1.

Note that for constant τ by descriptor approach (Fridman & Shaked, 2002) the system is stable for
all τ ∈ [0, 1.41]. Hence, for h ∈ (1.41, π/2) the method of the present paper is not applicable. Another
(complete) nominal LKF should be used.

4. H∞ control

4.1 Bounded real lemma (BRL)

In this section for simplicity we will consider the mixed case of delays: τ1 of Case 1 and τ2 of Case
2A. Consider (2.1a), where B2 = 0, D = 0 and φ = 0. We are looking for conditions which guarantee
that J < 0, for all w(t) ∈ L2. Using the arguments of Theorem 1 and finding the conditions that
V̇ + zTz − γ 2wTw < 0, we obtain similarly to Fridman & Shaked (2003) the following BRL:

LEMMA 1 For a prescribed γ > 0, consider (2.1a) with B2 = 0, D = 0, φ = 0 and delays given by
(2.2), where η1(t) is a piecewise-continuous function satisfying |η1(t)| � µ1 � h1 and η2(t) is a differ-
entiable function satisfying (2.4), where i = 2. The cost function (2.5) achieves J < 0 for all non-zero
w ∈ L2 if there exist n × n matrices 0 < P1, P2, P3, Si ,U, S1a, Yi1, Yi2, Y21a, Y22a, Z21a, Z22a, Z23a,
Zi1, Zi2, Zi3, Ri and Ria > 0, i = 1, 2, that satisfy (3.7b), (3.13b) with i = 2 and the following LMI:

⎡
⎢⎢⎢⎢⎣

Γ12
PT

[
0
B1

]
0

[
CT

0

]
0

∗ −γ 2 Iq 0
∗ ∗ −Il

⎤
⎥⎥⎥⎥⎦ < 0, (4.1)
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where

Γ12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ12 PT
[

0
A1

]
− Y T

1 PT
[

0
A2

]
− Y T

2a PT
[

0
F

]
µ1 PT

[
0
A1

]
Y T

2a − Y T
2

∗ −S1 0 0 0 0

∗ ∗ −(1 − d2)S2a 0 0 0

∗ ∗ ∗ −(1 − d0)U 0 0

∗ ∗ ∗ ∗ −µ1 R1a 0

∗ ∗ ∗ ∗ ∗ −S2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)

Y2a = [Y21a Y22a], Z2a =
[

Z21a Z22a

∗ Z23a

]
,

Ψ12 = Ψn + µ2 Z2a +
[

S2a 0

0 2µ1 R1a + µ2 R2a

]
,

(4.3)

and where Yi , Zi and Ψn are given by (3.8).

4.2 State-feedback H∞ control

Consider (2.1a) with B2 �= 0, D �= 0. We apply the BRL of Lemma 1 to the closed-loop system (2.1a),
where u(t) = K x(t). Following Suplin et al. (2004) we choose P3 = εP2, ε ∈ R, where ε is a tuning
scalar parameter. Note that P2 is non-singular due to the fact that the only matrix which can be negative
definite in the second block on the diagonal of (4.1) is −ε(P2 + PT

2 ). Defining

P̄ = P−1
2 ,

[
P̄1 Ȳi j Ȳ2 ja S̄i Ū R̄i R̄ia Z̄ik Z̄2ka

]
= P̄T [

P1 P̄ Yi j P̄ Y2 ja P̄ Si P̄ U P̄ Ri P̄ Ria P̄ Zik P̄ Z2ka P̄
]
,

i = 1, 2, j = 1, 2, k = 1, 2, 3,

and W = K P̄, multiplying (4.1) by diag{P̄, P̄, P̄, P̄, P̄, P̄, P̄, Iq , Il} and its transpose, from the right
and the left, respectively, and multiplying (3.7b), (3.13b) by diag{P̄, P̄, P̄} and its transpose, from the
right and the left, we obtain:

THEOREM 2 For a prescribed γ > 0, consider (2.1a) with delays given by (2.2), where η1(t) is a
piecewise-continuous function satisfying |η1(t)| � µ1 � h1 and η2(t) is a differentiable function
satisfying (2.4), where i = 2. Under the state-feedback law u = K x(t), the system (2.1a) is asymp-
totically stable and for a prescribed scalar γ , J < 0, ∀ 0 �= w(t) ∈ L2, φ = 0, if for some tuning
scalar parameter ε there exist n × n matrices 0 < P̄1, P̄, S̄i , Ū , S̄2a, Ȳi j , Ȳ2 ja, Z̄2ka, Z̄ik, R̄i , Ū , R̄ia >
0, i = 1, 2, j = 1, 2, k = 1, 2, 3, W ∈ R

m×n that satisfy (3.7b), (3.13b) with i = 2 and the
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following LMIs:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Φ1 Φ2

ΦT
2 Φ3

] [
A1 P̄ − Ȳ T

11

εA1 P̄ − Ȳ T
12

] [
A2 P̄ − Ȳ T

21a

εA2 P̄ − Ȳ T
22a

] [
F P̄

εF P̄

]
µ1

[
A1 P̄

εA1 P̄

] [
Ȳ T

21a − Ȳ T
21

Ȳ T
22a − Ȳ T

22

]

∗ −S̄1 0 0 0 0

∗ ∗ −(1 − d2)S̄2a 0 0 0

∗ ∗ ∗ −(1 − d0)Ū 0 0

∗ ∗ ∗ ∗ −µ1 R̄1a 0

∗ ∗ ∗ ∗ ∗ −S̄2

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

[
B1

εB1

] [
P̄TCT + W T DT

0

]

0 0

0 0

0 0

0 0

0 0

−γ 2 Iq 0
∗ −Il

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.4)

⎡
⎢⎢⎣

R̄i Ȳi1 Ȳi2

∗ Z̄i1 Z̄i2

∗ ∗ Z̄i3

⎤
⎥⎥⎦ > 0, i = 1, 2,

⎡
⎢⎢⎣

R̄2a Ȳ21a Ȳ22a

∗ Z̄21a Z̄22a

∗ ∗ Z̄23a

⎤
⎥⎥⎦ > 0,

where

Φ1 = P̄T AT
0 + A0 P̄ + B2W + W T BT

2 +
2∑

i=1

[Ȳi1 + Ȳ T
i1 + S̄i + hi Z̄i1] + S̄2a + µ2 Z̄21a,

Φ2 = P̄1 − P̄ + ε(P̄T AT
0 + W T BT

2 ) +
2∑

i=1

[Ȳi2 + hi Z̄i2] + µ2 Z̄22a,

Φ3 = −ε(P̄T + P̄) + Ū +
2∑

i=1

hi (R̄i + Z̄i3) + µ2 Z̄23a + 2µ1 R̄1a + µ2 R̄2a.

The state-feedback gain is then given by

K = W P̄−1. (4.4c)
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EXAMPLE 3 We address the problem of finding a H∞ state-feedback controller for (2.1a) with one
delay, where

A0 =
[

0 0

0 1

]
, A1 =

[−1 −1

0 −0.9

]
, B2 =

[
0

1

]
, B1 =

[
1

1

]
, C = [0, 1], D = 0.1.

By descriptor method, the system is stabilizable for all fast-varying small delays τ(t) ∈ [0, 1) (Fridman
& Shaked, 2003). Hence, the existing method for fast-varying delays τ(t) � 1 is not applicable. For
constant delays by descriptor method with iterative search of gain (Gao & Wang, 2003) the system is
stabilizable for τ ∈ [0, 3.2].

Choosing e.g. h = 2, |η(t)| � 0.2, ε = 1 and applying Theorem 2, we find that the gain K =
−[74.8 105.5] stabilizes the system for all time-varying delays τ(t) ∈ [1.8, 2.2] and leads to γ = 6.

5. Conclusions

A new Lyapunov–Krasovskii technique is introduced for stability and control of linear systems with
uncertain time-varying delay in the case when the nominal value of the delay is constant and non-
zero. The following construction of LKF is suggested: to a nominal LKF, which is appropriate to the
nominal system (with nominal delays), terms are added that correspond to the perturbed system and that
vanish when the delay perturbations approach 0. In the present paper the nominal descriptor-type LKF
is considered. The method is applied to the stability and state-feedback H∞ control problem. Sufficient
LMI conditions are derived which are affine in the system matrices and, thus, the results for the case of
the systems with polytopic-type uncertainties are straightforward. As a by-product, new criteria are also
derived for the case of small fast-varying delays from [0, µ]. Illustrative examples show the efficiency
of the method.

The obtained LMIs may be feasible if the nominal LMIs (for the system with nominal values of the
delay) based on descriptor method are feasible. If the latter assumption does not hold, the other nominal
LKF (e.g. the complete LKF) should be applied. This case is currently under study. The new Lyapunov
technique may be applied to the discrete-time delay systems.
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