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In this paper a new Lyapunov–Krasovskii methodology for both the (local) asymptotic

stability and the global asymptotic stability of non-linear coupled delay differential and

difference equations is proposed. This methodology is based on the concept of input-to-state

stability applied to the difference equation, for which a sufficient Lyapunov criterion is given,

and on previous methodologies developed in the literature for linear delay descriptor systems.

1. Introduction

Coupled delay differential and difference equations

describe, for instance, lossless propagation phenomena

(see Niculescu (2001) and Rasvan and Niculescu (2002))

and internal dynamics of recently studied non-linear

delay control systems; see Germani et al. (2003) and

Pepe (2004) and references therein. Neutral equations

in the Hale’s form, which describe many engineering

systems (consider for instance the model of partial

element equivalent circuits in Bellen et al. (1999)), can be

rewritten as coupled delay differential and difference

equations; see Niculescu (2001), Fridman (2002) and

Pepe (2005) and references therein). Therefore stability

criteria for coupled delay differential and difference

equations can also be successfully used for neutral

equations in Hale’s form. Recently, a Lyapunov–

Krasovskii methodology for the (local) asymptotic

stability of general coupled delay differential and

difference equations has been proposed in Pepe and

Verriest (2003) and Pepe (2005). The methodology

presented there consists of two steps: the first step

leads to the L2 asymptotic stability; the second one leads

to the Lyapunov asymptotic stability. In Fridman (2002)

a Lyapunov–Krasovskii methodology for linear delay

descriptor systems is proposed. Since coupled delay
differential and difference equations can be written as
descriptor systems, the methodology proposed there can
be applied for studying the stability of the class of
systems considered in this paper, at least in the linear
case. In the context of linear systems, different condi-
tions, in terms of linear matrix inequalities, for the
delay-independent asymptotic stability have been
obtained by the Lyapunov–Krasovskii methodologies
proposed in Fridman (2002) and in Pepe and Verriest
(2003) and Pepe (2005) respectively; see Fridman (2002
Theorem 1), Pepe (2005, Corollary 5) Pepe and Verriest
(2003, Corollary 3.4).

The purpose of this paper is to extend the methodol-
ogy proposed in Fridman (2002) from the linear case to
the general non-linear case. In order to carry out the
extension, Sontag’s concept of input-to-state stability
(ISS) for finite-dimensional continuous-time systems
(Sontag 1989) is borrowed and our main results are
based on the discrete-time version of ISS and its
Lyapunov characterization in Jiang and Wang (2001).
In particular, a Lyapunov criterion for the input-to-state
stability of continuous-time difference equations, based
on the one for non-linear finite-dimensional discrete-
time systems given in Jiang and Wang (2001), is first
proposed. Then, using this criterion, it can be stated that
the variable of the continuous-time difference part of
the equations can be guaranteed arbitrarily small if the*Corresponding author. Email: pepe@ing.univaq.it
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7 variable of the differential part of the equations is
sufficiently small. After this result is established, the
descriptor methodology in Fridman (2002) can be
adapted to the current case of general non-linear
coupled delay differential and difference equations,
leading to a new Lyapunov–Krasovskii methodology,
for both the (local) asymptotic stability and the global
asymptotic stability. It is worth noting that the ISS of a
continuous-time difference equation is automatically
guaranteed by the asymptotic stability (input equal to
zero), as long as the equation in question is linear; see
Hale and Verduyn Lunel (1993, Theorem 3.5, pp. 275).
We believe that the presented stability results together

with Pepe and Verriest (2003) and Pepe (2005) will
provide a solid foundation for analysis and synthesis of
non-linear coupled delay differential and difference
equations. In particular, they should prove useful for
delay-dependent stability analysis.
The delay-independent global asymptotic stability of

an electrical circuit containing a LC transmission line is
here studied, showing the effectiveness of the proposed
methodology.
The paper is organized as follows: in x 2 continuous-

time difference equations are briefly described; in x 3 the
input-to-state stability for continuous-time difference
equations is studied; in x 4 coupled delay differential and
difference equations are briefly introduced; in x 5 the
asymptotic stability of coupled delay differential and
difference equations is addressed, and two Lyapunov–
Krasovskii theorems are proved for the global and local
case respectively; in x 6 two examples are studied; x 7
contains the conclusions.

Notation: R denotes the set of real numbers, R
þ

denotes the set of non-negative real numbers, R� denotes
the extended real line ½�1, þ1�. For any given positive
integer l, Rl denotes the set of real vectors of length l.
The symbol j � j stands for the Euclidean norm of a real
vector, or the induced Euclidean norm of a matrix. For
any a, b2R, a < b,Cð½a, b�;Rl

Þ denotes the set of
continuous functions defined on [a, b] and taking
values in R

l, endowed with the supremum norm. For
any set V � R

l, B((a, b]; V) denotes the set of the
essentially bounded functions defined on (a, b] and
taking values in V. The essential supremum norm of an
essentially bounded function is denoted with the symbol
k � k. For �2Bðða, b�;VÞ, k�k ¼ ess sup� 2 ða, b� j�ð�Þj. A
function u: ½0, þ1Þ ! Rl is said to be locally essentially
bounded if, for any positive real T the function
uT: ½0, þ1Þ ! R, given by uT(t)¼ u(t) for all t2 ½0,TÞ
and ¼ 0 elsewhere, is essentially bounded on ½0, þ1Þ. A
function w: ½0, cÞ ! R, 0 < c � þ1, is said to be locally
absolutely continuous if it is absolutely continuous in
any interval [0, d], 0< d< c. A function �: Rþ

! R
þ is

said to be of class K if it is continuous, strictly increasing

and satisfies �(0)¼ 0. It is of class K1 if, additionally, it

is unbounded. A function � : Rþ
�R

þ
! R

þ is of class

KL if for each fixed t, the function �(�, t) is of class K and

for each fixed s, the function �(s, t) decreases to 0 as

t ! þ1. For any positive integer j, the symbol Ij
denotes the identity matrix of dimension j. For any

positive integers i, j, the symbol 0i,j denotes a matrix of

zeros in R
i�j.

2. Continuous-time difference equations

Consider the following system of non-linear continuous-

time difference equations:

xðtÞ ¼ fðxðt��1Þ,xðt��2Þ, . . . ,xðt��mÞ,uðtÞÞ, t� 0,

xð�Þ ¼ x0ð�Þ, �2½��,0�,

)

ð1Þ

where the (continuous) time variable t2 ½0, þ1Þ,

xðtÞ 2R
n, 0 < �1 < �2 < � � � < �m ¼ � are the arbi-

trary (non-commensurate) delays, f is a continuous
function defined on R

nm
� R

p and taking values in R
n,

the input u is a locally essentially bounded function

defined on ½0, þ1Þ and taking values in R
p, the initial

condition x0 is a continuous function defined on ½��, 0�

and taking values in R
n, m, n, p are positive integers.

Assume that fð0, . . . , 0, 0Þ ¼ 0, thus ensuring that

x(t)¼ 0 is the solution of system (1) with zero input

and zero initial conditions. Note that system (1) admits a

unique solution in ½0, þ1Þ for any input function u and

any initial condition x0. It was shown in Germani et al.

(2003) that continuous-time difference equations can be

rewritten as discrete-time systems on a suitable normed

linear space. In Pepe (2003) such transformation has

been given in the case of multiple and not commensurate

delays. In this general case, the involved space is

Bðð0,�min�;R
ðkmþ1Þn

Þ, endowed with the essential

supremum norm, where

�min ¼ minf�1,�2 ��1, . . . ,�m ��m�1g,

�i ¼ ki�min þ �i, i ¼ 1, 2, . . . ,m,

)
ð2Þ

ki; i¼ 1, 2, . . . ,m, are suitable positive integers, �i,
i¼ 1, 2 , . . . ,m are reals such that 0 � �i < �min. More

specifically, system (1) can be rewritten as a discrete-time

system in the space Bðð0,�min�;R
ðkmþ1Þn

Þ as follows (see

Germani et al. (2003) and Pepe (2003) for the details):

Xðkþ 1Þ ¼ GðXðkÞ,UðkÞÞ, k ¼ 0, 1, . . . ð3Þ

where XðkÞ 2Bð0,�min�;R
ðkmþ1Þn

Þ, UðkÞ 2Bð0,�min�;R
p
Þ

is defined as

UðkÞð�Þ ¼ uðk�min þ �Þ, k ¼ 0, 1 . . . : ð4Þ

108 P. Pepe et al.
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7 G is a suitable function defined on Bðð0,�min�;
R

ðkmþ1Þn
Þ � Bðð0,�min�;R

p
Þ and taking values in

Bðð0,�min�;R
ðkmþ1Þn

Þ.
Due to the particular discrete-time dynamics of

system (3), which involves the function f just for the
last components of the state X(k), it is useful, for the
application of the Lyapunov’s second method, to
consider the following discrete-time system, obtained
by (3),

Xðkþ 1Þ ¼ FðXðkÞ,UðkÞÞ, k ¼ 0, 1, . . . , ð5Þ

where

XðkÞ ¼ Xðkðkm þ 1ÞÞ 2Bð0,�min�; R
ðkmþ1Þn

Þ,

UðkÞ ¼

Uððkðkm þ 1ÞÞ

Uððkðkm þ 1Þ þ 1Þ

..

.

Uðkðkm þ 1Þ þ kmÞ

2
66664

3
777752Bðð0,�min�; R

pðkmþ1Þ
Þ,

and the function F is suitably obtained by the function G
in (3).

Remark 1: In the case of one single delay the above
difficult procedure leading to the discrete-time
system (5) is not necessary. In the case of one single
delay �, the discrete-time system (5) is obtained with
XðkÞ 2Bðð0,��;Rn

Þ, and UðkÞ 2Bðð0,��;Rp
Þ (Germani

et al. 2003). When the delays are multiple but
commensurate, the equation (1) can be transformed
into an equation with one single delay, by a state
extension.

3. Input-to-state stability of continuous-time

difference equations

In the following, for a given positive integer �k, we will
indicate with U

½ �k� the truncation of UðkÞ at �k, that is the
sequence which is equal to UðkÞ, for k ¼ 0, 1, . . . , �k, and
is equal to zero for k > �k. We will indicate with kU

½ �k�k1
the quantity sup0�k� �k kUðkÞk.
For a given �s 2R

�, �s 2R
�, let Sð�sÞ ¼

fv2R
p, jvj � �sg, and let MSð�sÞ be the set of the locally

essentially bounded functions defined on ½0, þ1Þ and
taking values in Sð�sÞ. By these notations, it results that
Sðþ1Þ ¼ R

p, and that MSðþ1Þ is the set of the locally
essentially bounded functions defined on ½0, þ1Þ and
taking values in R

p.

Definition 1: Let �s 2R
�, �s > 0. System (1) is said to

be input-to-state stable (ISS) with respect to inputs
u2MSð�sÞ, if there exist a function � of class KL
and a function � of class K such that, for any
essentially bounded initial condition x0 and for any
input function u2MSð�sÞ, the following inequality

holds for the solution of the equivalent discrete-time

system (5)

kXðkÞk � �ðkXð0Þk, kÞ þ �ðkU½k�1�k1Þ: ð6Þ

Theorem 1: Let �s 2R
�, �s>0. Let there exist a

continuous functional V : Bðð0,�min�;R
ðkmþ1Þn

Þ ! R
þ

such that

(i) there exist functions �1 and �2, of class K1, such

that, for any X 2Bðð0,�min�;R
ðkmþ1Þn

Þ, the following

inequalities hold

�1ðkXkÞ � VðXÞ � �2ðkXkÞ; ð7Þ

(ii) there exis a function �3 of class K1 and a function �
of class K, such that, for any X 2Bðð0,�min�;

R
ðkmþ1Þn

Þ, and any

U 2Bðð0,�min�;Sð�sÞ
ðkmþ1Þ

Þ,

the following inequality holds

VðFðX ,UÞÞ � VðXÞ � ��3ðkXkÞ þ �ðkUkÞ: ð8Þ

Then, system (1) is input-to-state stable with respect

to inputs u2MSð�sÞ.

Proof: The same proof given in Jiang and Wang (2001,

Lemma 3.5), concerning finite-dimensional discrete-time

systems, is applicable to the present case (5) of infinite-

dimensional discrete-time systems. œ

Remark 2: Theorem 1 is useful for studying the

internal dynamics of full relative degree delay systems,

when the output is driven, by means of a suitable

feedback control law, to follow a prescribed

reference signal bounded away from zero. That internal

dynamics is often described by continuous-time differ-

ence equations (see Germani et al. (2003) and Pepe

(2003, 2004))

xðtÞ ¼ fðxðt��1Þ, xðt��2Þ, . . . , xðt��mÞ, zðtÞÞ, ð9Þ

where z(t) is the vector of the controlled system

output and its time derivatives up to the order (n� 1),

with n the length of the state vector. In this case, the

ISS property with respect to z(t) assures the desirable

behaviour of the overall time-delay control system,

when z(t) is guaranteed to belong to a suitable

compact set.

4. Coupled delay differential and difference equations

The following system of time invariant non-linear

coupled delay differential and difference equations is

Coupled delay differential and difference equations 109
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_�ðtÞ ¼ Aðxðt��1Þ, . . . , xðt��mÞ, �ðtÞ,

�ðt��1Þ, . . . , �ðt��mÞÞ, t � 0,

xðtÞ ¼ Bðxðt��1Þ, . . . , xðt��mÞ, �ðtÞ, �ðt��1Þ, . . . ,

�ðt��mÞÞ,

9>>>>>>=
>>>>>>;

ð10Þ

�ð�Þ ¼ �0ð�Þ, xð�Þ ¼ x0ð�Þ, � 2 ½��, 0�, ð11Þ

where 0 < �1 < �2 < � � � < �m ¼ � are the arbitrary

(non-commensurate) delays; t2 ½0, þ1Þ;

xðtÞ 2R
n; �ðtÞ 2R

d; x0 and �0 are functions in

Cð½��, 0�;Rn
Þ and Cð½��, 0�;Rd

Þ, respectively; A is a

continuous function from R
dðmþ1Þþnm to R

d; B is a

continuous function from R
dðmþ1Þþnm to R

n, m, n, d are

positive integers. Assume that Að0, . . . , 0Þ ¼ 0, and

Bð0, . . . , 0Þ ¼ 0, thus ensuring that �(t)¼ 0, x(t)¼ 0, for

every t� 0, is the trivial solution of system (10)–(11)

corresponding to zero initial conditions.
We also impose the following hypothesis; see Pepe

and Verriest (2003, Remark 2.1)
H1: The functional �A : Cð½��, 0�;RnÞ � Cð½��, 0�;

RdÞ ! Rd, given, for �2Cð½��, 0�;RnÞ,  2

Cð½��, 0�;RdÞ, by

�Að�, Þ ¼ Að�ð��1Þ, . . . ,�ð��mÞ, ð0Þ,

 ð��1Þ, . . . , ð��mÞÞ ð12Þ

is such that, for any ð ��, � Þ 2Cð½��, 0�;RnÞ�

Cð½��, 0�;RdÞ, there exist a neighbourhood of ð ��, � Þ
and a positive real Lð ��, � Þ such that, for all ð�, 1Þ, ð�, 2Þ

in that neighbourhood, the inequality holds

j �Að�, 1Þ �
�Að�, 2Þj � Lð ��, � Þk 1 �  2k: ð13Þ

From the hypothesis H1 it follows that system (10)–(11)

admits a unique solution

�ðtÞ

xðtÞ

� �

on a maximal time interval [0, b), 0 < b � þ1,

with �(t) locally absolutely continuous and x(t)

continuous. Moreover, if b < þ1, then �(t) is

unbounded in [0, b).
In the following it will be useful to consider the second

equation in (10) rewritten as

xðtÞ ¼ Bðxðt��1Þ, . . . , xðt��mÞ, uðtÞÞ, ð14Þ

where the input uðtÞ 2R
ðmþ1Þd takes the place of the

terms �(t), �ðt��1Þ, . . . , �ðt��mÞ. System (10) is

a descriptor system with delays (Fridman 2002).

Actually it can be rewritten as

E
_�ðtÞ

_xðtÞ

" #

¼

Aðxðt��1Þ, . . . , xðt��mÞ,

�ðtÞ, �ðt��1Þ, . . . , �ðt��mÞÞ

�xðtÞ þ Bðxðt��1Þ, . . . ,

xðt��mÞ, �ðtÞ, �ðt��1Þ, . . . , �ðt��mÞÞ

2
6664

3
7775,
ð15Þ

where

E ¼
Id 0d�n

0n�d 0n�n

� �
:

In the following, the functions �t 2Cð½��, 0�;RdÞ and
xt 2Cð½��, 0�;RnÞ, t� 0, are given, as usual (Hale

and Verduyn Lunel 1993), by �tð�Þ ¼ �ðtþ �Þ,
xtð�Þ ¼ xðtþ �Þ, � 2 ½��, 0�.

5. Stability of coupled delay differential and

difference equations

For stability and asymptotic stability definitions of

coupled delay differential and difference equations; see
Hale and Verduyn Lunel (1993), Niculescu (2001),

Rasvan and Niculescu (2002), Pepe and Verriest (2003)
and Pepe (2005). For global asymptotic stability we
mean, as usual, stability and global attractivity.

For a continuous functional V : Cð½��, 0�;Rnþd
Þ !

R
þ, define (see Hale and Verduyn Lunel (1993) and

Fridman (2002))

_V
�1

�2

� �� �
¼ lim sup

h!0þ

1

h
V

�h

xh

� �� �
� V

�1

�2

� �� �� �
,

ð16Þ

where

�t

xt

� �
, t � 0,

is the solution of system (10) with initial conditions

�0 ¼ �1 2Cð½��, 0�;Rd
Þ, x0 ¼ �2 2Cð½��, 0�;Rn

Þ. Since
the equations of system (10) are satisfied also for t¼ 0,

�1 and �2 must satisfy the matching condition

�2ð0Þ ¼ Bð�2ð��1Þ, . . . ,�2ð��mÞ,

�1ð0Þ �1ð��1Þ, . . . ,�1ð��mÞÞ:
ð17Þ

Theorem 2: Assume that the continuous-time difference
equation (14) is input-to-state stable with respect to inputs

u2MSðþ1Þ. Further assume there exist a continuous
functional V : Cð½��, 0�;Rnþd

Þ ! R
þ, functions �, � and

110 P. Pepe et al.
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(i) for every �1 2Cð½��, 0�;Rd
Þ, every �2 2

Cð½��, 0�;Rn
Þ, with �2ð0Þ ¼ Bð�2ð��1Þ, . . . ,

�2ð��mÞ,�1ð0Þ �1ð��1Þ, . . . ,�1ð��mÞÞ, the follow-
ing inequalities hold

�ðj�1ð0ÞjÞ � V
�1

�2

� �� �
� �

�1

�2

� �����
����

� �
,

_V
�1

�2

� �� �
� �� �1ð0Þ

�� ��� �
;

9>>>=
>>>;

ð18Þ

(ii) the function

wðtÞ ¼ V
�t

xt

� �� �

is locally absolutely continuous in [0, b), for

�t

xt

� �

satisfying (10) in a maximal time interval [0, b),
0 < b � þ1.
Then, the origin of system (10) is globally asympto-
tically stable.

Proof: By Lemma A1 in Jiang et al. (1996), we may
assume without any loss of generality that the function �
is continuously differentiable. From (18), taking into
account (ii), it follows that, for t2 ½0, bÞ,

�ðj�ðtÞjÞ �V
�t

xt

� �� �

�V
�0

x0

� �� �
�

Z t

0

� �ðsÞ
�� ��� �

� �
�0

x0

� �����
����

� �
:

ð19Þ

From (19) it follows that b ¼ þ1 (otherwise �(t) would
be unbounded in [0, b)), and that �(t) can be as small as
desired provided the initial conditions are sufficiently
small. From the hypothesis of input-to-state stability of
(14), it follows that the origin of system (10) is stable. As
far as the global attractivity is concerned, let us note first
that, since the inequalities (19) hold globally and since
the continuous-time difference equation (14) is input-
to-state stable with respect to inputs u2MSðþ1Þ, for
any initial conditions in (10), the correspondent solution
is bounded in ½0, þ1Þ. From (19) it follows that

lim
t!þ1

Z t

0

� �ðsÞ
�� ��� �

� V
�0
x0

� �� �
: ð20Þ

From (20) it follows that the function

t !

Z t

0

�ðj�ðsÞjÞds ð21Þ

admits a finite limit as t ! þ1. We claim that
limt!þ1 �ðj�ðtÞjÞ ¼ 0. For, let us consider the derivative

with respect to time of the function t ! �ðj�ðtÞjÞ. The
following equality/inequality hold

d�ðj�ðtÞjÞ

dt

����
���� ¼ d�ðj�ðtÞjÞ

dj�ðtÞj

�TðtÞ _�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�TðtÞ�ðtÞ

p
�����

����� � d�ðj�ðtÞjÞ

dj�ðtÞj

����
���� _�ðtÞj:

ð22Þ

From the boundedness of the solution and the
continuity of the functional A, it follows that _�ðtÞ is
bounded in [0, þ1). Since the function � is continu-
ously differentiable, and the solution is bounded, it
follows that the function t ! ðd�ðj�ðtÞjÞ=dj�ðtÞjÞ is
bounded in ½0, þ1Þ. Therefore, since its derivative
is bounded in ½0, þ1Þ, the function t ! �ðj�ðtÞjÞ is
uniformly continuous in ½0, þ1Þ. From this fact, taking
into account that the function (21) admits a finite limit,
by invoking the Barbalat’s Lemma, it follows
that limt!þ1 �ðj�ðtÞjÞ ¼ 0 and therefore that
limt!þ1 j�ðtÞj ¼ 0.

As far as the proof that limt!þ1 jxðtÞj ¼ 0 is
concerned, taking into account the time invariant
character of the equation (14) and its ISS property, the
following inequality holds with suitable function �� of
class KL and function �� of class K

kXðkÞk � ��ðkXðk0Þk, k� k0Þ þ ��ðkU½k0, k�1�k1Þ, ð23Þ

where: k0, k are positive integers, k> k0; X , U are the
variables of the discrete-time system (5) equivalent to
the continuous-time difference equation (14);
U½k0, k�1�ð	Þ ¼ Uð	Þ for k0 � 	 � k� 1, and is ¼ 0 else-
where. Now, let 
 be a positive real. Since in the
continuous-time difference equation (14) the role of the
input u is played by the solution variable �, it follows
that there exist a �k0 such that ��ðkU

½ �k0, k�
k1Þ < 
=2, for

any k > �k0. Moreover, since �� is a KL function, it
follows that there exist a �k1 � �k0 such that
��ðkXð �k0Þk, k� �k0Þ < 
=2, for any k > �k1. Therefore,
for k > �k1 the inequality kXðkÞk < 
 holds and the
proof of the theorem is accomplished. œ

Remark 3: Note that the argument of the function � in
the inequalities (18) involves only �1.

Analogously, a version of Theorem 2 concerning the
(local) asymptotic stability can be obtained.

Theorem 3: Assume that there exists a positive real �s
such that the continuous-time difference equation (14) is
input-to-state stable with respect to inputs u2MSð�sÞ.
Further assume there exist a positive real �, a continuous
functional V : Cð½��, 0�;Rnþd

Þ ! R
þ, functions �, � and

� of class K1, such that:

(i) for every �1 2Cð½��, 0�;Rd
Þ with k�1k < �, and

every �2 2Cð½��, 0�;Rn
Þ, with �2ð0Þ ¼

Bð�2ð��1Þ, . . . ,�2ð��mÞ, �1ð0Þ,�1ð��1Þ, . . . ,

Coupled delay differential and difference equations 111
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7 �1ð��mÞÞ, the following inequalities hold

�ðj�1ð0ÞjÞ � V
�1

�2

� �� �
� �

�1

�2

� �����
����

� �
,

_V
�1

�2

� �� �
� �� �1ð0Þ

�� ��� �
;

9>>>=
>>>;

ð24Þ

(ii) the function

wðtÞ ¼ V
�t

xt

� �� �

is locally absolutely continuous in [0, b), for

�t

xt

� �

satisfying (10) in a maximal time interval [0, b),
0 < b � þ1.

Then, the origin of system (10) is asymptotically
stable.

Proof: Let 0< 
< �. Let 0 < � < 
 such that
�(�)<�(
). Let the initial conditions such that

�0

x0

� �����
���� < �:

Then j�0(0)j< �. We show that j�(t)j< 
 for all t2 ½0, bÞ.
For, by contradiction, let t1 2 ½0, bÞ be the first time such
that j�ðt1Þj ¼ 
. From (24), taking into account (ii) it
would follow that

�ð2Þ � V
�t1
xt1

� �� �
� V

�0

x0

� �� �
�

Z t

0

� �ðsÞ
�� ��� �

ds

� �
�0

x0

� �����
����

� �
� �ð�Þ: ð25Þ

Thus it would be �ð
Þ � �ð�Þ, while it was supposed
�ð�Þ < �ð
Þ. It follows that b ¼ þ1 (otherwise the
solution �(t) would be unbounded in [0, b)) and that
�(t) can be as small as desired provided the initial
conditions are sufficiently small. From the hypothesis of
input-to-state stability of (14) when the input (that is
�(�)) is sufficiently small, it follows that the origin of
system (10) is stable.
As far as the local attractivity is concerned, the same

reasoning in the proof of Theorem 2 can be used here.
For, just consider that, if the initial conditions are
sufficiently small, then the solution is arbitrarily small in
ð0, þ1Þ. Consequently, since the input u in the equation
(14), which takes the place of �, can be supposed to be
bounded by the positive real �s, the ISS property of the
equation (14) holds and the reasoning in the proof of
Theorem 2, inequality (20) on, can be repeated equal.œ

6. Illustrative examples

Example 1: Let us consider the following coupled
delay differential and continuous-time difference

equation

_�ðtÞ ¼ ��3ðtÞ þ �ðt��1Þxðt��2Þ,

xðtÞ ¼ 0:5xðt��1Þ þ �ðtÞxðt��2Þ,

)
ð26Þ

where �ðtÞ, xðtÞ 2R.
Let us prove first that the difference equation in (26) is

ISS with respect to suitable small �(�). Let us consider,

for instance, the case �min¼�1 and k2¼ 2. Other cases

can be treated analogously. Since n¼ 1 and k2¼ 2, the

state vector X of system (5) consists of three scalar

functions, that is

XðkÞ ¼

�1ðkÞ

�2ðkÞ

�3ðkÞ

2
64

3
752Bðð0,�min�;R

3
Þ, ð27Þ

and UðkÞ 2Bðð0,�min�;R
3Þ (take into account that the

role of the input is here taken by �(t)). Let us choose the
Lyapunov functional V : Bðð0,�min�;R

3
Þ ! Rþ given,

for � ¼ ½�1 �2 �3�
T
2Bðð0,�min�;R

3
Þ, by

VðXÞ ¼ sup
i¼1, 2, 3

k�ik, ð28Þ

and let us apply Theorem 1. Let �ð�Þ 2MSð�sÞ, with

0< �s<0.1. The following inequality holds

VðFðX ,UÞÞ � supfð0:5þ kUkÞVðXÞ,

ð0:25þ 1:5kUkÞVðXÞ, ð0:125þ 1:25kUk þ kUk2ÞVðXÞg:

ð29Þ

Therefore,

VðFðX ,UÞÞ � 0:5VðXÞ þ 1:5kUkVðXÞ þ kUk2VðXÞ,

ð30Þ

from which the following inequality is obtained

VðFðX ,UÞÞ � VðXÞ � �0:025kXk þ kUk: ð31Þ

Then it follows that the difference equation in (26) is ISS

with respect to the variable � when this variable is such

that j�(t)j � �s, t� 0.
Choose now the following Lyapunov–Krasovskii

functional V : Cð½��, 0�;R2Þ ! R
þ given by

V
�1

�2

� �� �
¼ �1ð0Þ �2ð0Þ½ �EP

�1ð0Þ

�2ð0Þ

� �

þ

Z 0

��1

�21ð�Þ �2ð�Þ

 �

Q
�21ð�Þ

�2ð�Þ

� �
d�

þ

Z 0

��2

�21ð�Þ �2ð�Þ

 �

S
�21ð�Þ

�2ð�Þ

� �
d�, ð32Þ
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7 where

E ¼
1 0

0 0

� �
, P ¼

p1 0

0 p2

� �
,

Q ¼
q1 0

0 q2

� �
, S ¼

s1 0

0 s2

� �
, p1, p2, q1, q2, s1, s2

are positive reals, and apply Theorem 3 (note that this
functional satisfies the hypothesis ii in Theorem 3,
because �2 appears only inside an integral which
transforms a continuous time function into an abso-
lutely continuous one). The derivative _V of the
Lyapunov–Krasovskii functional V is given by

_V
�1

�2

� �� �
¼ 2 �1ð0Þ �2ð0Þ½ �

�P
��31ð0Þþ�1ð��1Þ�2ð��2Þ

0

� �
þ�41ð0Þq1

��41ð��1Þq1þ�
2
2ð0Þq2��

2
2ð��1Þq2þ�

4
1ð0Þs1

��41ð��2Þs1þ�
2
2ð0Þs2��

2
2ð��2Þs2: ð33Þ

Taking into account that 0 ¼ ��2ð0Þ þ 0:5�2ð��1Þ þ

�1ð0Þ�2ð��2Þ, the following inequalities hold

_V
�1

�2

� �� �
��2p1�

4
1ð0Þþ

1
2p1�

4
1ð0Þþ

1
2p1�

4
1ð��1Þ

þp1�
2
2ð��2Þ�2p2�

2
2ð0Þþ

1
2p2�

2
2ð0Þ

þ 1
2p2�

2
2ð��1Þþp2j�1ð0Þj�

2
2ð0Þ

þp2j�1ð0Þj�
2
2ð��2Þþ�

4
1ð0Þq1��

4
1ð��1Þq1

þ�22ð0Þq2��
2
2ð��1Þq2þ�

4
1ð0Þs1��

4
1ð��2Þs1

þ�22ð0Þs2��
2
2ð��2Þs2: ð34Þ

Taking into account that j�1ð0Þj can be sufficiently
small, it results that the second inequality in (24),
Theorem 3, is satisfied by choosing s2> p1, 2q1> p1,
3p1>2q1þ 2s1,

3
2p2 > q2 þ s2,

1
2p2 < q2. A solution is

p1¼ 1, p2¼ 3, q1¼ 1, q2¼ 2, s1¼ 1/3, s2¼ 4/3. Therefore,
system (26) is (locally) asymptotically stable.

Remark 4: The asymptotic stability of system (26)
cannot be checked by means of methods based on first
order approximations, since the linear approximation of
system (26) is not asymptotically stable.

Example 2: Let us consider the following coupled
delay differential and difference equation, describing
an electrical circuit containing a LC transmission line
(see Rasvan and Niculescu (2002, Example 5) or
Niculescu (2001, example 5.55, pp. 213))

_�ðtÞ ¼ A�ðtÞ þ
�

1

C1
f1ð�1ðtÞÞ

0

0
@

1
Aþ Bxðt��Þ

xðtÞ ¼ D�ðtÞ þ Fxðt��Þ

�ð�Þ ¼ �0ð�Þ, xð�Þ ¼ x0ð�Þ, � 2 ½��, 0�,

9>>>>>=
>>>>>;

ð35Þ

where

�ðtÞ ¼
�1ðtÞ

�2ðtÞ

� �
2R2; xðtÞ 2R2; � ¼

ffiffiffiffiffiffiffi
LC

p
;

�0, x0 2Cð½��, 0�;R2Þ;

A¼

�
1þR1

ffiffiffiffiffiffiffiffiffi
C=L

p

R1C1
0

0 �

ffiffiffiffiffiffiffiffiffi
C=L

p

ð1þR2

ffiffiffiffiffiffiffiffiffi
C=L

p
ÞC2

2
664

3
775;

B¼

0 2

ffiffiffiffiffiffiffiffiffi
C=L

p

C1

2

ffiffiffiffiffiffiffiffiffi
C=L

p

ð1þR2

ffiffiffiffiffiffiffiffiffi
C=L

p
ÞC2

0

2
664

3
775;

D¼

1 0

0
1

1þR2

ffiffiffiffiffiffiffiffiffi
C=L

p

2
4

3
5; F¼

0 �1

�
1�R2

ffiffiffiffiffiffiffiffiffi
C=L

p

1þR2

ffiffiffiffiffiffiffiffiffi
C=L

p 0

2
4

3
5;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð36Þ

R1, R2, C, C1, C2, L are (positive real) electrical

parameters (resistors, capacitors, inductors); f1 is a

scalar continuous function describing a non-linear

resistor. Here we hypothesize that the matching

condition is verified, that is the initial conditions are

such that x0ð0Þ ¼ D�0ð0Þ þ Fx0ð��Þ. The matrix F has

eigenvalues inside the open unit circle, therefore the

linear continuous-time difference part of system (35),

with no forcing input (�(t)¼ 0), is asymptotically

stable (see Hale and Verduyn Lunel (1993, x 9.6).

From the asymptotic stability, it follows that the

linear continuous-time difference part of system is

input-to-state stable with respect to inputs � in

MSðþ1Þ. As far as general linear continuous-time

difference equations forced by continuous inputs

(which is actually our case since � is continuous) are

concerned (see Hale and Verduyn Lunel (1993,

Theorem 3.5, pp. 275)). Nevertheless, for locally

essentially bounded inputs, a direct computation of

the solution of system (5), equivalent to the simple

linear continuous-time difference part of system (35),

yields the following ISS inequality

k�ðkÞk � Mlkk�ð0Þk þM
l

1� l
jDj kU½k�1�k1, ð37Þ

where: �ðkÞ 2Bðð0,��;R2Þ, UðkÞ 2Bðð0,��;R2Þ; M and l
are positive reals, l<1, such that, 8k � 0, jFk

j �Mlk

holds. If one uses Theorem 1, the ISS is proved by means

of the functional Vð�Þ ¼ sup� 2 ð0,�� �
Tð�ÞQ�ð�Þ, with Q

suitable symmetric positive definite matrix in R
2�2; see

(Germani et al. 2003, proof of Lemma A1).

Coupled delay differential and difference equations 113
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7 Let us now apply Theorem 1 with the following
Lyapunov–Krasovskii functional

V
�1

�2

� �� �
¼ �T1 ð0Þ �T2 ð0Þ


 �
EP

�1ð0Þ

�2ð0Þ

� �

þ

Z 0

��

�Tð�ÞQ�ð�Þ d�, ð38Þ

where

� ¼
�1

�2

� �
, �1 2Cð½��, 0�;R2Þ,

�2 2Cð½��, 0�;R2Þ; P ¼
P1 0

P2 P3

� �
, P1 2R2�2

is diagonal positive definite, P2,P3 2R2�2; Q2R4�4 is
symmetric positive definite;

E ¼
I2 02�2

02�2 02�2

� �
2R4�4:

The derivative of such functional is given by

_Vð�Þ ¼ T
PTG0 þ GT

0PþQ PTG1

GT
1P �Q

" #


�
2

C1
P1ð1, 1Þ�

1
1ð0Þf1 �

1
1ð0Þ

� �
, ð39Þ

where T ¼ ½�Tð0Þ �Tð��Þ�; G0 and G1 are square
matrices with dimension 4 given by

G0 ¼
A 02�2

D �I2

� �
, G1 ¼

02�2 B

02�2 F

� �
; ð40Þ

P1 (1, 1) is the element first row first column of matrix
�1, �

1
1ð0Þ is the first component of �1ð0Þ. A global

asymptotic stability condition is therefore given by the
feasibility of the LMI

PTG0 þ GT
0PþQ PTG1

GT
1P �Q

" #
þ !

1 01, 7

07, 1 07, 7

� �
< 0,

ð41Þ

and by the condition

�f1ð�Þ � �
C1!

2P1ð1, 1Þ
�2, 8�2R, ð42Þ

where ! is a suitable positive real.
An analysis of the electrical parameters, such that the

LMI (41) is feasible, is beyond the aims of this paper.
Nevertheless, it is worth pointing out that the condition
(42) may be less restrictive than Rasvan and Niculescu
(2002, Condition (14), pp. 163), which is sufficient for
the global asymptotic (more, exponential) stability of
system (6.10). For instance, the choice of the electrical
parameters as R1¼ 1, R2¼ 50, C¼ 10�7, C1¼ 10�6,
C2¼ 10�6, L¼ 10�3, yields the feasibility of the LMI

(41) (checked by Matlab) with, in particular,

!¼ 9.107 � 108, P1(1, 1)¼ 1.282 � 103. Therefore system

(35), with the chosen values of the electrical parameters,

results to be globally asymptotically stable provided that

�f1ð�Þ � �0:355�2, 8�2R: ð43Þ

On the other hand, when the above values of the

electrical parameters are chosen, Rasvan and Niculescu

(2002, Condition (14)) yields the global asymptotic

(exponential) stability of system (35) provided that

�f1ð�Þ � 0:9701�2, 8�2R ð44Þ

The positive real 0.9701, which appears in the right-hand

side of (44), is obtained by an analysis, validated by

Matlab simulations, of the inequalities (17) and of the

roots of equation (18) in Rasvan and Niculescu (2002),

corresponding to the given values of the electrical

parameters.
With the above values of the electrical parameters, the

global asymptotic stability condition improvement, as

far as the function f1 describing the non-linear resistor is

concerned, is considerable. The condition (44) does not

allow to f1 to describe negative resistors, while the

condition (43) does. Moreover, the condition (43) proves

that the circuit is globally asymptotically stable for any

function f1 describing positive resistors, while the

condition (44) proves that the circuit is globally

(exponentially) asymptotically stable only for a class of

functions f1 describing positive resistors.
Note that the choice of P1 diagonal is instrumental to

obtain the only condition (42) on the function f1.

Nevertheless, the matrix A is diagonal too, with negative

elements on the diagonal, therefore the quantity

ATP1þP1A inside the LMI (41) can be equal to any

diagonal negative definite matrix for suitable diagonal

positive definite P1.

Remark 5: The result of (delay-independent) asymp-

totic stability given for example 2 is global, therefore it

cannot be proved by means of methods based on first

order approximations.

7. Conclusions

In this paper, we have employed the notion of input-

to-state stability to establish a new Lyapunov–

Krasovskii methodology for both the (local) asymptotic

stability and the global asymptotic stability of a general

class of coupled delay differential and difference

equations. The obtained results are a significant exten-

sion to the non-linear case of earlier results on linear

descriptor time-delay systems; see Fridman (2002).
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