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a b s t r a c t

We consider a vector reaction–advection–diffusion equation on a hypercube. The measurements are
weighted averages of the state over different subdomains. These measurements are asynchronously
sampled in time. Subject to matched disturbances, the discrete control signals are applied through shape
functions and zero-order holds. The feature of this work is that we consider generalized relay control: the
control signals take their values in a finite set. This allows for networked control through low capacity
communication channels. First, we derive linear matrix inequalities (LMIs) whose feasibility guarantees
the ultimate boundedness with a limit bound proportional to the sampling period. Then we construct
a switching procedure for the controller parameters that ensures semi-global practical stability: for an
arbitrarily large domain of initial conditions the trajectories converge to a set whose size does not depend
on the domain size. For the disturbance-free system this procedure guarantees exponential convergence
to the origin. The results are demonstrated by two examples: 2D catalytic slab and a chemical reactor.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Networked control systems (NCSs),which are comprised of spa-
tially distributed sensors, actuators, and controllers connected via
a communication network, have become widespread due to great
advantages they bring: long distance control, low cost, ease of re-
configuration, reduced system wiring, etc. (Antsaklis & Baillieul,
2004; Hespanha, Naghshtabrizi, & Xu, 2007). Networked control
of distributed parameter systems may be applicable to long dis-
tance control of chemical reactors (Smagina & Sheintuch, 2006)
or air polluted areas (Court, Demetriou, & Gatsonis, 2012). One of
the main challenges in NCSs is a measurement sampling. A variety
of methods have been developed to analyse PDEs in the presence
of sampling: the discrete-time approach (Logemann, 2013; Tan,
Trélat, Chitour, & Nešić, 2009), the time-delay approach (Bar Am
& Fridman, 2014; Fridman & Blighovsky, 2012), the modal decom-
position techniques (Ghantasala & El-Farra, 2012; Yao & El-Farra,
2014), which were also used for sampled-data predictive control
with state and control constraints (Dubljevic, El-Farra, Mhaskar,
& Christofides, 2006; Lao, Ellis, & Christofides, 2014). To reduce
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the amount of transmitted signals, event-triggered approach has
been developed for PDEs (Selivanov & Fridman, 2016a; Yao & El-
Farra, 2013). In this work we use the time-delay approach to de-
velop sampled-data relay control for diffusion equation, where the
control signals take their values in a finite set. This allows for net-
worked control through low capacity communication channels.

Relay control is a well known approach in a wide range
of technical domains (DeCarlo, Zak, & Matthews, 1988). It has
undeniable advantages: simple implementation, control satura-
tion/quantization, finite time convergence, full compensation of
matched disturbances. However, the analysis of sampled-data relay
control is not a trivial task even for linear finite-dimensional sys-
tems. In Fridman, Fridman, and Shustin (2002) it has been shown
that relay control does not lead to the asymptotic stability of a
finite-dimensional system in the presence of input delay. In this
case ultimate boundedness is achieved with a limit bound pro-
portional to the time-delay bound. In Hetel, Fridman, and Floquet
(2015) a convex optimization approach has been used to study
generalized relays for finite-dimensional systems. In that work
sampledmeasurementsweremodelled as input delays and the size
of the limit set was proportional to a sampling period.

In this work we consider sampled-data relay control of semi-
linear diffusion PDEs. We assume that the space domain is divided
into several subdomains. In each subdomain, there is a sensor,
which measures a weighted average of the state function, and a
controller, which influences the dynamics through a shape func-
tion. The control signals are subject to unknown disturbances, take
their values in a finite set, and remain constant within a sampling
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period. First, we derive linearmatrix inequalities (LMIs)whose fea-
sibility guarantees the ultimate boundedness with a limit bound
proportional to the sampling period. Thenwe construct a switching
procedure for the controller parameters that ensures semi-global
practical stability: for an arbitrarily large domain of initial condi-
tions the trajectories converge to a set whose size does not depend
on the domain size. For the disturbance-free system this procedure
guarantees exponential convergence to the origin. The results are
demonstrated by two examples: 2D catalytic slab and a chemical
reactor. Preliminary results, presented in Selivanov and Fridman
(2016c), are generalized here to a vector systemwith multidimen-
sional domain, convection term, reaction term, and asynchronous
sampling.
Notations: N0 = {0} ∪ N, 1 : Ns = {1, 2, . . . ,Ns}, H1(Ω) is
the Sobolev space of absolutely continuous functions with square
integrable first derivatives, div f is the divergence of a vector field f ,
∇z(x, t) is the gradientwith respect to x if z is scalar and∇z(x, t) =

col{∇z1, . . . ,∇zM} if z = (z1, . . . , zM)T . Given a set S ⊂ RN , l(S)
is its diameter, λ(S) is its volume, Int{S} is the interior, conv{S} is
the closed convex hull. For a convex polytope P , ρ ∈ R, we denote
ρP = {ρv | v ∈ P }. For a matrix P ∈ RN×N , P > 0 denotes
that it is symmetric and positive-definite, λmax(P) is themaximum
eigenvalue, ⊗ stands for the Kronecker product.

Lemma 1 (Exponential Wirtinger Inequality, Selivanov & Fridman,
2016b). Let a, b, α ∈ R, 0 ≤ W ∈ Rn×n, and f : [a, b] → Rn be
an H1 function such that f (a) = 0 or f (b) = 0. Then b

a
e2αt f T (t)Wf (t) dt

≤ e2|α|(b−a) 4(b − a)2

π2

 b

a
e2αt ḟ T (t)Wḟ (t) dt.

Lemma 2 (Wirtinger Inequality on Hypercube, Bar Am & Fridman,
2014). Let Ω = [0, 1]N and f ∈ H1(Ω) be a scalar function such
that f |∂Ω = 0. Then

Nπ2


Ω

f 2(x) dx ≤


Ω

∥∇f (x)∥2 dx.

Lemma 3 (Poincaré Inequality on Rectangle, Payne & Weinberger,
1960). Let Ω ⊂ RN be rectangular with a diameter l(Ω) and f ∈

H1(Ω) be a scalar function such that


Ω
f (x) dx = 0. Then

Ω

f 2(x) dx ≤
l2(Ω)

π2


Ω

∥∇f (x)∥2 dx.

2. Preliminaries and problem formulation

2.1. Lyapunov-based relay control of ODEs

Before proceeding to PDEs, we explain the essential idea of the
Lyapunov-based relay control for ODEs. Consider the plant

ẋ = Ax + B(u + w), x ∈ Rn, u, w ∈ R

such that (A, B) is stabilizable. Then there exist K ∈ R1×n and
0 < P ∈ Rn×n such that P(A−BK)+(A−BK)TP < 0. ForV =

1
2x

TPx
one has

V̇ = xTP[Ax + B(u + w ± Kx)]
= xTP[A − BK ]x + xTPB(u + w + Kx).

If one requires |w| ≤ ρK0 and guarantees |Kx| ≤ (1 − ρ)K0 for
some ρ ∈ [0, 1), then w + Kx ∈ [−K0, K0]. Taking

u = −K0 sign xTPB = arg min
v∈[−K0,K0]

xTPBv,
Fig. 1. The system representation.

one gets

xTPBu ≤ xTPB(−w − Kx) for − (w + Kx) ∈ [−K0, K0]. (1)

Then V̇ < 0 for x ≠ 0. To guarantee that |Kx(t)| ≤ (1− ρ)K0, note
that it follows from

V (x(t)) < min
|Kx|≥(1−ρ)K0

V (x). (2)

The minimum in (2) is positive, since the ellipsoid V (x) = c with
small enough c > 0 lies in the layer |Kx| < (1−ρ)K0. Since V (x(t))
cannot increase when |Kx(t)| ≤ (1 − ρ)K0, if (2) holds for t = 0,
it remains true for t ≥ 0. For an arbitrary domain, (2) holds with
t = 0 if the relay controller gain K0 is large enough. This implies
the semi-global stability.

Consider now sampled-data relay control with sampling 0 =

t0 < t1 < t2 < · · · given by

u(t) = −K0 sign xT (tk)PB, t ∈ [tk, tk+1).

For the same V one has

V̇ = xTP[A − BK ]x + xTPB(u + w + Kx)
= xTP[A − BK ]x + xT (tk)PB(u + w + Kx)

+

 t

tk
ẋT (s) dsPB(u + w + Kx).

By a reasoning similar to the above, the termwith xT (tk) is nonposi-
tive. If ẋ is bounded, the integral term can bemade arbitrarily small
by reducing the maximum sampling, i.e. maxk{tk+1 − tk}. These al-
low to obtain ultimate boundedness proportional to the sampling
and disturbance bounds.

In this paper we will extend these ideas to sampled-data relay
control of a diffusion PDE.

2.2. Problem formulation

Consider a semilinear parabolic system

zt(x, t) = ∆Dz(x, t) + β∇z(x, t) + Az(x, t) + f (x, t, z)

+ B
Ns
j=1

bj(x)[uj(t) + wj(t)], x ∈ Ω, (3)

with the space domain Ω = [0, 1]N , state z : Ω × [t0, ∞) → RM ,
matched disturbances wj(t), and matrices β ∈ RM×MN , A ∈ RM×M ,
B ∈ RM×L. The diffusion term is defined as ∆Dz = (∆1

Dz
1, . . . ,

∆M
D zM)T , where ∆m

D z
m(x, t) = div(Dm(x)∇zm(x, t)) with Dm(x) =

(Dm(x))T ∈ C1(Ω, RN×N) for m ∈ 1 : M . The space domain Ω is
divided into Ns rectangular subdomains Ωj (Fig. 1), where the con-
trol signals are applied through shape functions bj(x) ∈ H1(0, 1)
such thatbj(x) = 0, x ∉ Ωj,

bj(x) = 1, x ∈ Ωε
j ,

bj(x) ∈ [0, 1], x ∈ Ωj \ Ωε
j

(4)
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Fig. 2. Subdomain Ωj and its subset Ωε
j .

Fig. 3. Common sampling intervals.

with Ωε
j being subsets of Ωj depicted in Fig. 2.

Each control signal uj is applied through zero-order hold
changing its value at asynchronous sampling instants t0 = sj,0 <
sj,1 < sj,2 < · · · such that

sj,p+1 − sj,p ≤ h, lim
p

sj,p = ∞, ∀p ∈ N0, j ∈ 1 : Ns.

By [tk, tk+1) we denote common sampling time intervals where
all uj are constant (see Fig. 3). We adopt the notation tj,k =

maxp∈N0{sj,p | sj,p ≤ tk}. For instance, in Fig. 3 t1,0 = t1,1 = t1,2 =

s1,0, t1,3 = t1,4 = s1,1 and so on. Clearly, tj,k+1 − tj,k ≤ h and
[tk, tk+1) =

Ns
j=1[tj,k, tj,k+1).

We assume that the measurements of the system (3), (4) are
given by

yj,p =


Ωj

bj(x)z(x, sj,p) dx, j ∈ 1 : Ns, p ∈ N0.

Let V = {v1, v2, . . . , vq} ⊂ RL be a set of control values. Consider
the generalized sampled-data relay control

uj(t) = argmin
v∈V

yTj,pP1Bv,

t ∈ [sj,p, sj,p+1), j ∈ 1 : Ns, p ∈ N0
(5)

with P1 ∈ RM×M to be defined later. A concrete form of the set
V is not important for our further analysis. For instance, if V =

{−v, v} with 0 < v ∈ R, the minimum in (5) is delivered by
uj(t) = −v sign{(P1B)Tyj,p}, which coincides with the classical
relay control.

Remark 1. For the sake of simplicity, we consider the case of
collocated sensors and actuators, i.e. themeasurements yj,p depend
on the controller shape functions bj(x). However, the results can be
extended to the non-collocated casewith themeasurements yj,p =

Ωj
b̄j(x)z(x, sj,p) dx provided ∥bj(x) − b̄j(x)∥ are small enough.

We consider the system (3) under the Dirichlet boundary
conditions

z(x, t)|x∈∂Ω = 0 (6)

and the Neumann boundary conditions

⟨zx(x, t), n̄⟩|x∈∂Ω = 0, (7)

where n̄ is a unit vector normal to the edge.
We adopt the following assumptions:

(1) ∃dm0 : 0 < dm0 I ≤ Dm(x), ∀x ∈ [0, 1], m ∈ 1 : M .
(2) conv{V} ≠ ∅ and 0 ∈ Int{conv{V}}.
(3) ∀j ∈ 1 : Ns, wj ∈ C1 and ∃ρ ∈ [0, 1) such that

wj(t) ∈ −ρ conv{V} ∀t ≥ t0, j ∈ 1 : Ns.

(4) f = (f 1, . . . , f M)T ∈ C1 and ∀m ∈ 1 : M , z ∈ RN , x ∈ Ω ,
t ∈ [t0, ∞),

(µm
T z

m
− f m(x, t, z))(f m(x, t, z) − µm

B z
m) ≥ 0

for some µm
T ≥ µm

B .
(5) There exists K ∈ RL×M such that the system

zt(x, t) = ∆Dz(x, t) + Az(x, t) + Bu(x, t) t ≥ t0 (8)

is stable under the state-feedback control u(x, t) = −Kz(x, t).

Assumption 1 determines a parabolic system with minimum
diffusion rates dm0 . Assumption 2 is a standard technical assump-
tion. Assumption 3 allows to compensate the disturbances using
the relay control u ∈ V . Assumption 4 implies that the nonlin-
earity f m belongs to the sector [µm

T , µm
B ]. Assumption 5 guarantees

that for a large enough number of subdomainsNs and small enough
sampling h, the finite-dimensional controller uj(t) = −Kyj,p (for
j ∈ 1 : Ns, t ∈ [sj,p, sj,p+1)) stabilizes the system (Bar Am & Frid-
man, 2014). Similarly to Section 2.1, this controller can be replaced
by relay control if the system state is bounded (see Remark 3).

Remark 2. In order to verify Assumption 5, consider

V1(t) =


Ω

zT (x, t)P1z(x, t) dx (9)

with P1 = diag{p11, . . . , p
m
1 } > 0. Then (8) implies

V̇1 = 2


Ω

zTP1[∆Dz + (A − BK)z]. (10)

Using Green’s formula and taking into account the boundary
conditions (6) or (7), we obtain:

2


Ω

zTP1∆Dz = −2
M

m=1


Ω

(∇zm)Tpm1 D
m
∇zm

≤ −2


Ω

(∇z)T (P1D0 ⊗ IN)∇z,

where D0 = diag{d10, . . . , d
M
0 } with dm0 from Assumption 1. For the

Dirichlet boundary conditions we can use theWirtinger inequality
(Lemma 2) to obtain

−2


Ω

(∇z)T (P1D0 ⊗ IN)∇z ≤ −2Nπ2


Ω

zTP1D0z.

Therefore, Assumption 5 is satisfied if

P1[A − BK − µD0] + [A − BK − µD0]
TP1 ≤ 0, (11)

where µ = Nπ2 for (6) and µ = 0 for (7). Denoting P−1
1 = P̄1,

Y = KP̄1 andmultiplying (11) by P̄1 fromboth sides, we obtain that
Assumption 5 is satisfied if there exist P̄1 = diag{p̄11, . . . , p̄

m
1 } > 0

and Y ∈ RL×M such that

[A − µD0]P̄1 + P̄1[A − µD0]
T

+ BY + Y TBT
≤ 0

where µ = Nπ2 for (6) and µ = 0 for (7). The controller gain is
given by K = −Y P̄−1

1 .

Remark 3. Here we explain how Lyapunov-based relay control
(Section 2.1) is extended to PDEs. Consider the system with
continuous-time control

zt(x, t) = ∆Dz(x, t) + Az(x, t) + B[u(t) + w(t)] (12)
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subject to boundary conditions (6) or (7). Let themeasurements be
given by y(t) =


Ω
z(x, t) dx. For V1 from (9), we have

V̇1 = 2


Ω

zTP1[∆Dz + (A − BK)z] + 2


Ω

zTP1BK [z − y]

+ 2


Ω

zT (x, t)P1B[u(t) + w(t) + Ky(t)] dx.

The first integral term coincides with (10) and is negative if (11) is
true. The second term may be compensated using the Poincaré in-
equality (see (A.8) for details). The last term is equal to 2yTP1B[u+

w + Ky]. If −w ∈ ρ conv{V} and −Ky ∈ (1 − ρ) conv{V}, then
−w − Ky ∈ conv{V}. Taking

u = argmin
v∈V

yTP1Bv = argmin
v∈conv{V}

yTP1Bv,

one obtains

2yTP1Bu ≤ 2yTP1B[−w − Ky].

Thus, the last integral term of V̇1 is nonpositive. In Theorem 1 this
idea is extended to sampled-data control through shape functions
on several subdomains.

Remark 4. Our main objective is to achieve ultimate bound for
the trajectories that is proportional to a sampling period. In this
remark we explain what prevents us from obtaining such results
under point measurements. Consider the system (12) with point
measurements ȳ(t) = z( 1

2 , t). For V1 from (9), we have

V̇1 = 2


Ω

zTP1[∆Dz + (A − BK)z]

+ 2


Ω

ȳT (t)P1B[u(t) + w(t) + Kz(x, t)] dx

+ 2


Ω

δT (x, t)P1B[u(t) + w(t) + Kz(x, t)] dx,

where δ(x, t) = z(x, t) − ȳ(t). The first integral term coincides
with (10) and is negative if (11) is true. If −w − K


Ω
z ∈ conv{V},

the second term is nonpositive for u = argminv∈V ȳTP1Bv. The
difficulty arises when analysing the last term due to the presence
of u and w. Using the boundedness of u and w, one can prove only
ultimate boundedness of the sampling-free system. This eliminates
the possibility of obtaining an ultimate bound proportional to a
sampling period for the sampled-data system. The other types of
functionals, like V2 =


Ω
zTx P2zx, seem to be inapplicable.

Since w, f ∈ C1, by arguments of Fridman and Bar Am (2013) we
establish the existence of a unique strong solution of (3)–(5) initial-
ized with z(·, t0) ∈ H1(Ω) subject to appropriate boundary con-
ditions. Moreover, if z(·, t0) ∈ H2 subject to appropriate boundary
conditions, then the solution z(·, t) is of class C1 in time as a func-
tion with values in H1 (Tucsnak & Weiss, 2009).

Remark 5. For the proof of our main result (Theorem 1), we
need the Lyapunov–Krasovskii functional (A.1) to be continuous
on (tk, tk+1). To achieve this, it suffices to guarantee that the
solution is continuous in H1-norm. This requires to take the shape
functions (4) from H1. For smaller ε in (4) the stability conditions
of Theorem 1 are less restrictive. Thus, if the system is stable for
ε′ > 0, it remains stable for all ε ∈ (0, ε′). For ε → 0 the shape
functions approach

bj(x) =


1, x ∈ Ωj,
0, x ∉ Ωj,

j ∈ 1 : Ns,

which are not fromH1. However, after the stability is proved for all
ε ∈ (0, ε′), one can prove the stability for ε = 0 using continuous
dependence of the solutions on the parameters (see, e.g., Henry,
1981, Theorem 3.4.4).

Our objective is to derive conditions for local practical stability
of the closed-loop system (3)–(5) and to find a bound on the do-
main of attraction. Moreover, we construct a switching procedure
that allows to obtain semi-global results, i.e. practical stability for
an arbitrary set of initial conditions. For disturbance-free systems
this procedure guarantees exponential convergence to the origin.

3. Regional stabilization

For convenience we define

∥z(·, t)∥2
V =


Ω

zT (x, t)P1z(x, t) dx

+ h
M

m=1


Ω

pm3 (∇zm(x, t))TDm(x)∇zm(x, t) dx,

where P1 = diag{p11, . . . , p
M
1 } ≥ 0, P3 = diag{p13, . . . , p

M
3 } ≥ 0,

and z(·, t) ∈ H1(Ω). The choice of such norm is motivated by
the Lyapunov–Krasovskii functional (A.1). Similarly to Bar Am and
Fridman (2014) and Fridman and Blighovsky (2012), the terms
with pm3 appear due to sampling.

Denote by ai ∈ RL, i ∈ 1 : Na, the dual vectors of conv{V}:

conv{V} = {v ∈ RL
| aTi v ≤ 1, i ∈ 1 : Na}. (13)

Such vectors always exist (see, e.g., Ziegler, 1995, Theorem 1.1).
The following theorem provides the ultimate boundedness

conditions for the closed-loop system (3)–(5) under (6) or (7) with
an ultimate bound C∞ proportional to a product of the sampling
period h and maxv∈V ∥v∥

2.

Theorem 1. Consider the system (3), (4) with control laws (5) and
boundary conditions (6) or (7) under Assumptions 1–5. For given
sampling period h > 0, decay rate α > 0, and tuning parameter
ν > 0 let there exist P2 = diag{p12, . . . , p

M
2 }, 0 ≤ W ∈ RM×M ,

L× L nonnegative matrices βu, βw , and M ×M nonnegative diagonal
matrices P1, P3, Λf , Λκ , ΛD, where ΛD = 0 for the Neumann
boundary conditions (7), such that1 Φ ≤ 0, where Φ = {Φij} is a
symmetric matrix composed from

Φ11 = P1(A − BK) + (A − BK)TP1 + 2αP1 − µTµBΛf

+ 2Nε(1 + ν−1)Λκ − Nπ2ΛD + h(P2A + ATP2),

Φ12 = (P1 + hP2)β, Φ13 = P1 + hP2 +
1
2
(µT + µB)Λf ,

Φ14 = P1BK , Φ15 = h(ATP3 − P2), Φ16 = h(P1BK)T ,

Φ17 = Φ18 = hP2B, Φ22 = 2(αhP3 − P1 − hP2)D0 ⊗ IN

+ ΛD ⊗ IN + (1 + ν)
l2

π2
(Λκ ⊗ IN), Φ25 = h(P3β)T ,

Φ33 = −Λf , Φ35 = hP3, Φ44 = −Λκ , Φ46 = −h(P1BK)T ,

Φ55 = h(e2αhW − 2P3), Φ57 = Φ58 = hP3B, Φ66 = −
π2h
4

W ,

Φ67 = Φ68 = hP1B, Φ77 = −hβu, Φ88 = −hβw,

µT = diag{µ1
T , . . . , µ

M
T }, µB = diag{µ1

B, . . . , µ
M
B }, l = maxj l(Ωj),

D0 = diag{d10, . . . , d
M
0 }. Denote

C0 = min
i∈1:Na

(aTi KP
−1
1 K Tai)−1 min

j=1:Ns
λ(Ωj),

C∞ =
h
2α

(λmax(βu) + ρ2λmax(βw))max
v∈V

∥v∥
2.

1 MATLAB codes for solving the LMIs are available at https://github.com/
AntonSelivanov/Aut17.

https://github.com/AntonSelivanov/Aut17
https://github.com/AntonSelivanov/Aut17
https://github.com/AntonSelivanov/Aut17
https://github.com/AntonSelivanov/Aut17
https://github.com/AntonSelivanov/Aut17
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If

C∞ < (1 − ρ)2C0 (14)

then for initial conditions z(·, t0) ∈ H1(Ω) subject to appropriate
boundary conditions (6) or (7), such that

∥z(·, t0)∥2
V < (1 − ρ)2C0, (15)

the strong solution of the system satisfies

∥z(·, t)∥2
V ≤ ∥z(·, t0)∥2

V e
−2α(t−t0) + C∞. (16)

Proof is given in the Appendix.

Remark 6. For zero values of ε, µT , µB, α, l, h, β the condition
Φ ≤ 0 is reduced to

diag{P1(A − BK) + (A − BK)TP1 − Nπ2ΛD,

− 2P1D0 ⊗ IN + ΛD ⊗ IN} ≤ 0.

The latter inequality coincideswith (11) if one takesΛD = −2P1D0
for (6) or ΛD = 0 for (7). Therefore, Assumption 5 guarantees
Φ ≤ 0 for small enough ε, µT , µB, α, l, h, β and establishes a
relation among the system parameters (such as sampling h, decay
rate α, subdomains’ maximum diameter l, etc.) that preserves the
stability.

Remark 7. If the conditions of Theorem 1 are satisfied for h = 0,
they are also satisfied with the same decision variables for all h ∈

[0, h∗
], where h∗ is sufficiently small (this can be verified using

Schur complement formula). Since C0 does not depend on h and C∞

is linear in h, this implies that by decreasing the sampling period h
one ensures exponential convergence of the solutions from the set
(15) to an arbitrarily small vicinity of zero.

Remark 8. If K is unknown, the matrix inequalities of Theorem 1
are nonlinear. Similarly to Suplin, Fridman, and Shaked (2007),
they can be linearized by setting P2 = µ2P1, P3 = µ3P1, P̄1 = P−1

1 ,
multiplyingΦ from both sides by diag{P̄1⊗ IN+5, I2N} and denoting
Y = KP̄1. The scalars µ2 and µ3 are tuning parameters.

Remark 9. Theorem1 admits several straight-forward extensions.
First, one may consider the boundary conditions

z(x, t)|x∈Γ1 = 0, ⟨zx(x, t), n̄⟩|x∈Γ2 = 0,

where Γ1 ∪Γ2 = ∂Ω . Moreover, for constant diffusion coefficients
Dm(x) = Dm one may derive the stability conditions with non-
diagonal matrices P1, P2, and P3 (see Solomon & Fridman, 2015).

4. Semi-global stabilization by switching

The set of control values V has no impact on the feasibility of
Φ ≤ 0 from Theorem 1. At the same time, V determines the
sizes of the initial set (1 − ρ2)C0 (through dual vectors ai) and
the limit set C∞. Using this observation, we construct a switching
procedure that ensures ultimate boundedness for an arbitrarily
large domain with a limit bound independent of the domain
size (Corollary 1). For disturbance-free systems this procedure
guarantees exponential convergence to the origin.

Consider the system (3), (4) with boundary conditions (6) or
(7) under Assumptions 1–5. Let us choose a ‘‘zooming’’ parameter
σk > 0 and switching period T > 0. Assumption 3 can be rewritten
as

wj(t) ∈ −ρ conv{V} = −
ρ

σk
conv{σkV}.
Then the substitute V → σkV (with dual vectors ai → σ−1
k ai) in

Theorem 1 leads to the following changes

C0 → σ 2
k C0, C∞ → σ 2

k Cu + Cw, ρ →
ρ

σk
,

where

Cu =
h
2α

λmax(βu)max
v∈V

∥v∥
2,

Cw =
h
2α

ρ2λmax(βw)max
v∈V

∥v∥
2.

In particular, the condition (14), which guarantees that the limit
set is larger than the initial set, takes the form

σ 2
k Cu + Cw <


1 −

ρ

σk

2

σ 2
k C0 = Uk. (17)

The condition (15) was imposed to guarantee V (t0) < (1 − ρ)2C0,
which in our case can be written as

V (kT ) < (σk − ρ)2C0 = Uk. (18)

If Φ ≤ 0 and (17), (18) are true then, in a manner similar to the
proof of Theorem 1, one obtains (cf. (A.3))

V (kT + T ) ≤ (Uk − σ 2
k Cu − Cw)e−2αT

+ σ 2
k Cu + Cw. (19)

Due to (17), this upper bound for V (kT + T ) is smaller than
Uk, an upper bound for V (kT ). Thus, we can reduce the zooming
parameter σk+1 so that Uk+1 = (σk+1 − ρ)2C0 satisfies

Uk+1 = (Uk − σ 2
k Cu − Cw)e−2αT

+ σ 2
k Cu + Cw.

This leads to a switching control

uj(t) = argmin
v∈σkV

yTj,pP2Bv,

t ∈ [sj,p, sj,p+1) ∩ [kT , kT + T ),
(20)

where j ∈ 1 : Ns, k, p ∈ N0 and

σk = ρ +

Uk/C0,

Uk+1 = (Uk − σ 2
k Cu − Cw)e−2αT

+ σ 2
k Cu + Cw.

(21)

To ensure the stability, it suffices to guarantee (17) and (18) for
k ∈ N0. Let Cu < C0. Then the parabola σ 2Cu+Cw −(σ −ρ)2C0 = 0
opens down with the largest (real) root

σ∞ =


1 −

Cu

C0

−1


ρ +


ρ2 Cu

C0
+


1 −

Cu

C0


Cw

C0


. (22)

Therefore, the relation (17) is satisfied for any σk > σ∞. By taking
σ0 > σ∞ such that V (t0) < U0 = C0(σ0 − ρ)2, we guarantee (17)
and (18) for k = 0. If (17) and (18) hold for some k ∈ N0 then (19)
implies (18) for k + 1. Moreover, (19) implies that Uk+1 < Uk and,
consequently, σk+1 < σk. Therefore,

Uk+1
(21)
> σ 2

k Cu + Cw > σ 2
k+1Cu + Cw,

which guarantees (17) for k + 1. By induction, (17) and (18) hold
for k ∈ N0, therefore, V (t) < Uk for t ∈ [kT , kT + T ), with
Uk and σk being monotonically decreasing sequences of positive
numbers. These sequences converge to a unique (real) positive root
of (21) given by (22) and U∞ = C0(σ∞ − ρ)2. We have proved the
following results.

Corollary 1. Consider the system (3), (4) with boundary condi-
tions (6) or (7) under Assumptions 1–5. Let Φ ≤ 0, where Φ is given
in Theorem 1, and Cu < C0. Then, for an arbitrary set of initial condi-
tions z(·, t0) ∈ H1(Ω) subject to appropriate boundary conditions,
the switching controller (20), (21) with σ0 > σ∞ such that

∥z(·, t0)∥2
V < (σ0 − ρ)2C0 = U0
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Table 1
Parameters of switching.

Example 1 Example 2
k σk Uk σk Uk

0 1 0.1702 1 52.73
1 0.998 0.1694 0.69 24.97
2 0.996 0.1687 0.48 11.87
3 0.994 0.1680 0.33 5.68

guarantees

∥z(·, t)∥2
V < Uk, t ∈ [kT , kT + T ), k ∈ N0. (23)

Moreover, σk and Uk monotonically decrease to σ∞ and U∞ = (σ∞ −

ρ)2C0.

Corollary 2. Consider the disturbance-free system (3), (4) with
wj(t) ≡ 0 and boundary conditions (6) or (7) under Assump-
tions 1, 2, 4, 5. Let Φ ≤ 0, where Φ is given in Theorem 1, and
Cu < C0. Then, for an arbitrary set of initial conditions z(·, t0) ∈

H1(Ω) subject to appropriate boundary conditions, the switching
controller (20) with

σk =

Uk/C0, Uk+1 = λUk, (24)

where

λ =


1 −

Cu

C0


e−2αT

+
Cu

C0

and σ0 > 0 is such that

∥z(·, t0)∥2
V < σ 2

0 C0 = U0,

guarantees the exponential stability with the decay rate

δ = −
ln λ

2T
.

For the disturbance-free case, switching algorithm (24) is
obtained by substitutingρ = 0 (consequently, Cw = 0) in (21). The
condition Cu < C0 implies λ < 1, therefore, Uk → 0 and σk → 0
when k → ∞. That is, the system is exponentially stable. Since
Uk are upper bounds for the Lyapunov functional, the exponential
decay rate δ is found from the equation λ = e−2δT .

5. Examples

Example 1. Consider a 2D extension of the catalytic rod equation
from Christofides (2001):

∂z
∂t

=
1

π2
√
2


∂2z
∂x21

+
∂2z
∂x22


− βUz + βT


e−

γ
1+z − e−γ


+ βU

Ns
j=1

βj(x)[uj(tj,k) + wj(t)], t ∈ [tk, tk+1) (25)

under the Dirichlet boundary conditions (6), where z is the
temperature in the reactor, βT = 50 is a heat of reaction, βU = 2
is a heat transfer coefficient, γ = 4 is an activation energy, and the
control u is the temperature of the cooling medium. For the above
values the steady state z(x, t) = 0 is unstable.

To stabilize the system (25), we use the controllers (5). The non-
linearity f (x, t, z) = βT (e−

γ
1+z − e−γ ) satisfies Assumption 4 with

µT = 6.15 and µB = 0. The conditions of Theorem 1 are feasible
with V = {±10}, K = 4, Ns = 36, α = 2.4, ρ = 0.01, ε = 10−9,
Fig. 4. Example 1: Evolution of ∥z(·, t)∥2
V : (A) on [0, 0.1]; (B) on [0.09, 0.1].

ν = 10−5, h = 1.4 × 10−3. For such choice of V the dual vec-
tors a1,2 = ±0.1 lead to C0 = 0.1736, C∞ = 0.1696. The initial
conditions were chosen as

z(x, 0) = 2 exp


−1
1 − (2x1 − 1)2 − (2x2 − 1)2


if (2x1−1)2+(2x2−1)2 ≤ 1 and 0 otherwise. Note that z(·, 0) sat-
isfies (15). The disturbance wj(t) is piecewise linear function with
wj(tk) ∈ −ρ conv{V} being uniformly distributed random num-
bers. The evolution of ∥z(·, t)∥2

V is presented in Fig. 4. As one can
see, the state z(·, t) converges to the vicinity of the origin.

Consider the switching controller (20). The values of the
switching parameters (21) for T = 1 are given in Table 1. Note that
the values of σk and Uk are decreasing. This indicates that the state,
which gets smaller and smaller, requires smaller control effort after
every switching time.

Note that by increasing the number of sensors Ns we reduce
l = maxj l(Ωj) that appears in Φ22 of Theorem 1. Therefore, for
larger Ns the LMI Φ ≤ 0 remains feasible. This corresponds to
the general intuition, which says ‘‘the more sensors/actuators the
better’’. On the other hand, larger Ns reduces the bound for initial
conditions C0. Thus, for large Ns, the condition Cu

∞
< C0 may no

longer hold. In the considered example, the LMIs are not feasible
for Ns ≤ 25 and the condition Cu

∞
< C0 is violated for Ns ≥ 49.

Example 2. Consider the chemical reactor model from Smagina
and Sheintuch (2006)

Le
∂z1
∂t

+ V
∂z1
∂x

−
∂2z1
∂x2

= f ∗(z)

+

Ns
j=1

bj(x)[uj(tj,k) + wj(t)], t ∈ [tk, tk+1),

∂z2
∂t

+ V
∂z2
∂x

− D
∂2z2
∂x2

= g(z),

under the Neumann boundary conditions (7), where Le = 100
is the Lewis number, V = 1.1 is convective velocity, D = 10 is
diffusion coefficient. Thismodel accounts for an activator z1, which
undergoes reaction (expressed as f ∗(z)), advection and diffusion,
and for a fast inhibitor z2, which may be advected by the flow. The
kinetics terms are given by

f ∗(z) = z1 cos2(z1) + z2, g(z) = −βz1 − dz2,

where β = 0.45, d = 0.2. The conditions of Theorem 1 are feasible
with V = {±2}, K = [2, 0], Ns = 4, α = 0.14, ρ = 0.01,
ε = 10−7, ν = 10−5, h = 10−3. For such choice of V the dual
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Fig. 5. Example 2: Evolution of z1(·, t).

Fig. 6. Example 2: Evolution of z2(·, t).

vectors a1,2 = ±0.5 lead to C0 = 53.8, C∞ = 15.9. The results of
numerical simulations on [0, 0.1] for

z(x, 0) =


cos(πx) + 1
3 cos(πx)


× 10−2

are presented in Figs. 5–7. As one can see, the state z(·, t) converges
to the vicinity of the origin.

The switching parameters (21) of the controller (20) for T = 5
are given in Table 1. Similarly to Example 1, the values of σk and
Uk are decreasing. That is, the state requires smaller control effort
after every switching time.

Appendix. Proof of Theorem 1

Throughout the proof we assume that the initial conditions
are from H2. This guarantees that the solution z(·, t) is of
class C1 in time as a function with values in H1. Then the
Lyapunov–Krasovskii functional defined below is continuous on
[tk, tk+1) and V (tk) ≤ V (tk − 0). After being proved for the ini-
tial conditions from H2, Theorem 1 for z(·, t0) ∈ H1 follows from
continuous dependence of the solutions on the initial conditions
(see, e.g., Pazy, 1992, Theorem 6.1.2) and the density of H2 in H1.
Fig. 7. Example 2: Evolution of ∥z(·, t)∥2
V : (A) on [0, 0.1]; (B) on [0.08, 0.1].

Consider the functional V = V1 + V2 + VW with

V1 =


Ω

zT (x, t)P1z(x, t) dx,

V2 = h
M

m=1


Ω

pm3 (∇zm(x, t))TDm(x)∇zm(x, t) dx,

VW = he2αh
Ns
j=1


Ωj

 t

tj,k
e−2α(t−s)zTs (x, s)Wzs(x, s) ds dx

−
π2h
4

Ns
j=1


Ωj

 t

tj,k
e−2α(t−s)ηT (x, s)Wη(x, s) ds dx,

t ∈ [tk, tk+1), k ∈ N0,

(A.1)

where η(x, t) =
1
h [z(x, t)−z(x, tj,k)] for x ∈ Ωj, t ∈ [tk, tk+1). Here

V1 and V2 are chosen as in Bar Am and Fridman (2014), VW is an
extension of the Wirtinger-based terms of Liu and Fridman (2012)
to the case of diffusion PDEs. The exponential Wirtinger inequality
(Lemma 1) implies VW ≥ 0, therefore, V ≥ 0.

We divide the proof into two parts. First, we assume that

K
λ(Ωj)


Ωj

z(x, t) dx ∈ −(1 − ρ) conv{V}, ∀j ∈ 1 : Ns (A.2)

and show that

V (t) ≤ (V (t0) − C∞) e−2α(t−t0) + C∞, t ≥ t0. (A.3)

Then we prove that the solutions of (3)–(5) satisfy (A.2) for t ≥ t0.
I. Proof of (A.3) under the assumption (A.2)

V̇1 = 2


Ω

zTP1[∆Dz + β∇z + Az + f ]

+ 2
Ns
j=1


Ωj

zT (x, t)P1Bbj(x)[uj(tj,k) + wj(t)] dx. (A.4)

The key idea is to transform the last term as follows:

2


Ωj

zT (x, t)P1Bbj(x)[uj(tj,k) + wj(t)] dx

± 2


Ωj

zT (x, t)P1BKz(x, t) dx

± 2


Ωj

zT (x, t)P1BK
bj(x)
λ(Ωj)


Ωj

z(y, t) dy dx

= −2


Ωj

zT (x, t)P1BKz(x, t) dx + 2


Ωj

zT (x, t)
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× P1BK


z(x, t) −

bj(x)
λ(Ωj)


Ωj

z(y, t) dy


dx

+ 2


Ωj

zT (x, t)P1Bbj(x)

×


K

λ(Ωj)


Ωj

z(y, t) dy + uj(tj,k) + wj(t)


dx. (A.5)

Denote

κ(x, t) = z(x, t) −
bj(x)
λ(Ωj)


Ωj

z(y, t) dy, x ∈ Ωj.

Now we derive the inequality

0 ≤ −

Ns
j=1


Ωj

κTΛκκ + 2Nε(1 + ν−1)

Ns
j=1


Ωj

zTΛκz

+ (1 + ν)
l2

π2

Ns
j=1


Ωj

(∇z)T (Λκ ⊗ IN)∇z, (A.6)

which allows to bound κ(x, t) and compensate the second term of
(A.5). By Young’s inequality,

Ωj

(κm(x, t))2 dx =


Ωj


zm(x, t) −

1
λ(Ωj)


Ωj

zm(y, t) dy

+
1 − bj(x)
λ(Ωj)


Ωj

zm(y, t) dy
2

dx

≤ (1 + ν)


Ωj


zm(x, t) −

1
λ(Ωj)


Ωj

zm(y, t) dy
2

dx

+ (1 + ν−1)


Ωj

(1 − bj(x))2

λ2(Ωj)


Ωj

zm(y, t) dy
2

dx. (A.7)

Since
Ωj


zm(x, t) −

1
λ(Ωj)


Ωj

zm(y, t) dy


dx = 0,

the Poincaré inequality (Lemma 3) allows to obtain

(1 + ν)


Ωj


zm(x, t) −

1
λ(Ωj)


Ωj

zm(y, t) dy
2

dx

≤ (1 + ν)
l2(Ωj)

π2


Ωj

(∇zm(x, t))T∇zm(x, t) dx. (A.8)

By Bernoulli’s inequality,
Ωj\Ωε

j

dx =

1 − (1 − 2ε)N


λ(Ωj) ≤ 2Nελ(Ωj),

which together with Jensen’s inequality (Gu, Kharitonov, & Chen,
2003) implies

(1 + ν−1)


Ωj

(1 − bj(x))2

λ2(Ωj)


Ωj

zm(y, t) dy
2

dx

≤ (1 + ν−1)
1

λ2(Ωj)


Ωj\Ωε

j

dx λ(Ωj)


Ωj

(zm(y, t))2 dy

≤ 2Nε(1 + ν−1)


Ωj

(zm(y, t))2dy. (A.9)

Using the estimates (A.8) and (A.9) in (A.7), we obtain (A.6).
The last term of (A.5) can be presented in the form

2


Ωj

zT (x, t)P1Bbj(x)
 K
λ(Ωj)


Ωj

z(y, t) dy

+ uj(tj,k) + wj(t)

dx

= 2


Ωj

zT (x, tj,k)P1Bbj(x) dx
 K
λ(Ωj)


Ωj

z(y, t) dy

+ uj(tj,k) + wj(t)


+ 2


Ωj

hηT (x, t)P1B

×

bj(x)(uj(tj,k) + wj(t)) + Kz(x, t) − Kκ(x, t)


dx (A.10)

where η(x, t) =
1
h [z(x, t)− z(x, tj,k)] for x ∈ Ωj, t ∈ [tk, tk+1). Due

to Assumption 3 and (A.2),

wj(t) +
K

λ(Ωj)


Ωj

z(y, t) dy ∈ − conv{V}, ∀j ∈ 1 : Ns.

Then, (5) leads to (cf. (1))
Ωj

zT (x, tj,k)P1Bbj(x) dx uj(tj,k)

= min
v∈V


Ωj

zT (x, tj,k)P1Bbj(x) dx v

= min
v∈conv{V}


Ωj

zT (x, tj,k)P1Bbj(x) dx v

≤ −


Ωj

zT (x, tj,k)P1Bbj(x) dx

×


wj(t) +

K
λ(Ωj)


Ωj

z(y, t) dy

. (A.11)

Therefore, the first term on the right-hand side of (A.10) is
nonpositive.

We use the following descriptor representation of (3) (Bar Am
& Fridman, 2014):

0 = 2h
Ns
j=1


Ωj

[zT (x, t)P2 + zTt (x, t)P3][−zt(x, t)

+ ∆Dz(x, t) + β∇z(x, t) + Az(x, t) + f (x, t, z)

+ Bbj(x)(uj(tj,k) + wj(t))] dx, t ∈ [tk, tk+1). (A.12)

Let us transform the terms of (A.4) and (A.12) that involve
∆Dz. Using Green’s formula and taking into account the boundary
conditions (6) or (7), we obtain

2


Ω

zT [P1 + hP2]∆Dz

= −2
M

m=1


Ω

[pm1 + hpm2 ](∇zm)TDm
∇zm

≤ −2


Ω

(∇z)T ([P1 + hP2]D0 ⊗ IN)∇z,

2h


Ω

zTt P3∆Dz = −2h
M

m=1


Ω

pm3 (∇zmt )TDm
∇zm = −V̇2.

(A.13)
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Furthermore,

V̇W = −2αVW + he2αh
Ns
j=1


Ωj

zTt Wzt

−
π2h
4

Ns
j=1


Ωj

ηTWη. (A.14)

By multiplying the inequalities of Assumption 4 by λm
f ≥ 0 and

summing them up, we obtain

0 ≤

Ns
j=1


Ωj


z
f

T  −µTµBΛf
1
2
(µT + µB)Λf

1
2
(µT + µB)Λf −Λf

zf


.

(A.15)

For the Dirichlet boundary conditions (6) we use the Wirtinger
inequality (Lemma 2) to obtain

0 ≤


Ω

(∇z)T (ΛD ⊗ IN)∇z − Nπ2


Ω

zTΛDz. (A.16)

By summing up (A.4), (A.14) with the right-hand sides of (A.6),
(A.12), (A.15), (A.16) and taking into account (A.5), (A.10), (A.11),
(A.13), we obtain

V̇ + 2αV −

Ns
j=1


Ωj

hb2j (x)

uT
j (tj,k)βuuj(tj,k)

+ wT
j (t)βwwj(t)


dx ≤

Ns
j=1


Ωj

ϕT
j (x, t)Φϕj(x, t) dx,

where ϕj = col{z, ∇z, f , κ, zt , η, bj(x)uj(tj,k), bj(x)wj(t)}. There-
fore, the condition Φ ≤ 0 guarantees V̇ ≤ −2αV + 2αC∞, which
implies (A.3).
II. Proof of (A.2) for t ≥ t0

Due to (13), we need to prove

− aTi Kdj ≤ (1 − ρ), i ∈ 1 : Na, (A.17)

where dj =
1

λ(Ωj)


Ωj

z. Since for i ∈ 1 : Na,

min
−aTi Kdj=(1−ρ)

dTj P1dj = (1 − ρ)2(aTi KP
−1
1 K Tai)−1,

due to Assumption 2, it suffices to prove (cf. (2))

dTj P1dj < (1 − ρ)2 min
i

(aTi KP
−1
1 K Tai)−1.

Jensen’s inequality implies

dTj P1dj = λ−2(Ωj)


Ωj

zTP1


Ωj

z

≤ λ−1(Ωj)


Ωj

zTP1z ≤
1

min
j

λ(Ωj)
V1.

Therefore, it suffices to show

V1(t) < min
j

λ(Ωj)(1 − ρ)2 min
i

(aTi KP
−1
1 K Tai)−1

= (1 − ρ)2C0, t ≥ t0. (A.18)

Let (A.18) be false for some t1 ≥ t0. Then

V1(t0) ≤ V (t0)
(15)
< (1 − ρ)2C0 ≤ V1(t1).
Since V1 is continuous, there must exist t∗ ∈ (t0, t1) such that

V1(t) < (1 − ρ)2C0, t ∈ [t0, t∗]
V1(t∗) > V (t0). (A.19)

The first relation of (A.19) guarantees (A.3) on [t0, t∗], which
implies V (t∗) ≤ V (t0). This contradicts the second relation of
(A.19), which implies V (t∗) ≥ V1(t∗) > V (t0). Thus, (A.18) and,
consequently, (A.3) are true on [t0, ∞).

Remark 10. Note that the error due to sampling η(x, t) =
1
h [z(x, t) − z(x, tj,k)] is compensated by the Wirtinger-based term
VW . Its derivative (A.14) contains he2αh


Ω
zTt Wzt that we compen-

sate using the descriptor representation (A.12). This allows to avoid
the terms with ∆Dz that would arise if one substituted the expres-
sion for zt .
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