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1. Introduction

In the last few years, coupled systems have attracted consid-
erable attention in research communities. Stabilization of the cas-
cade of PDE systems was dealt with in Orlov and Dochain (2002)
and Tsubakino, Krstic, and Yamashita (2009). Controller design for
PDE-ODE cascade systems has been extensively studied for many
types of coupling such as ODE-Reaction diffusion equation (see
e.g. Krstic, 2009a, Susto and Krstic, 2010, Tang and Xie, 2011),
ODE-Wave equation (see e.g. Krstic, 2009a), and ODE-Schrédinger
equation (see e.g. Ren, Wang, and Krstic, 2013, Kang and Fridman,
2016). In order to stabilize the cascaded PDE-ODE systems, the
backstepping method has been applied in Krstic (2009a, 2009b),
Ren et al. (2013), Susto and Krstic (2010) and Tang and Xie (2011).
The idea is to use a Volterra integral transformation to transform
the original system to a target system (Krstic and Smyshlyaev,
2008).

Stabilization for systems described by PDEs subject to time
delay has received much attention in recent years. An effective
linear matrix inequality (LMI) approach is proposed for analysis
and design of time delay PDE systems in Fridman (2014), Fridman
and Bar Am (2013), Fridman and Blighovsky (2012), Fridman and
Orlov (2009) and Fridman and Solomon (2015). In Hashimoto

* This work was supported by Israel Science Foundation (Grant No 1128/14).
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Thomas Meurer
under the direction of Editor Miroslav Krstic.

E-mail addresses: kangwen@amss.ac.cn (W. Kang), emilia@eng.tau.ac.il
(E. Fridman).

http://dx.doi.org/10.1016/j.automatica.2017.06.014
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

and Krstic (2016), based on the backstepping method, a control
strategy for reaction-diffusion equations with a constant state
delay is proposed.

For practical application of backstepping controllers, in many
cases the constraints on the control input should be taken into ac-
count. There have been some important results about PDEs subject
to distributed control constraints (see e.g. El-Farra, Armaou, and
Christofides, 2003, Marx, Cerpa, Prieur, and Andrieu, 2015, Prieur,
Tarbouriech, and da Silva, 2014). However, backstepping-based
boundary control of PDEs in the presence of actuator saturation has
not been studied yet in the literature.

In the paper we introduce stabilizing backstepping-based
boundary controllers for coupled heat-ODE systems with time-
varying state delays in the presence of actuator saturation. We
first extend the backstepping method to the latter class of delayed
systems. Differently from the non-delayed case, the resulting tar-
get heat equation is coupled with the ODE system. However, each
subsystem contains design parameters. This allows to stabilize the
coupled system. By using Lyapunov method for the target system,
we find a bound on the domain of attraction of this system, and
further on the domain of attraction of the original system. For
simplicity only, our conditions are based on delay-independent
stability condition for finite-dimensional system with delay. Less
conservative delay-dependent conditions can be derived by em-
ploying Lyapunov-Krasovskii functionals similar to Fridman, Pila,
and Shaked (2003), Tarbouriech and da Silva (2000) and da Silva
and Tarbouriech (2005).

The structure of the paper is as follows. In the next section, the
problem statement is presented and the backstepping transfor-
mation is introduced. Based on the backstepping method, a state
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feedback boundary controller to the original system is designed.
Section 3 is devoted to the existence and uniqueness of the solution
for the closed-loop system with state delay. In Section 4, delay-
independent LMI conditions are presented for the stability analysis
of the target system. In Section 5, we design a controller under
actuator saturation via LMIs. We find an estimate on the set of
initial conditions (as large as we can get) starting from which
the state trajectories of the system are exponentially converging
to zero. Examples with numerical simulations are presented for
illustration of the effectiveness of the method. Some concluding
remarks are presented in Section 6.

Notation. Throughout the paper, the superscript ‘T’ stands
for matrix transposition, R" denotes the n-dimensional Euclidean
space with the norm |-, L*(0, 1) stands for the Hilbert space of
square integrable scalar functions on (0, 1) with the corresponding
norm || - ||. The notation P > 0 denotes that P is symmetric and pos-
itive definite. For any U we denote sat(U, u) = sign(U) min(|U|, u).
Given a Banach space #, the space of the continuous #-valued
functions z : [a, b] — % with the induced norm ||z||¢(a,p1, 1) =
MaXseqq,b]112(S)]l% is denoted by C([a, b], ).

2. Backstepping control for cascaded ODE-Heat equations with
delay

In this section, we consider the following coupled ODE-reaction
diffusion system:

X(t) = AX(t) + A X(t — t(t)) + Bu(0, t),
u(x, t) = uw(x, t) + apu(x, t — t(t)) + au(x, t),

(0, ) = 0, (1)
with Dirichlet boundary actuator:
u(1,t)=U(t), t >0, (2.2)
or Neumann boundary actuator:
uy(1,t) =U(t), t > 0. (2.3)

Here x € (0,1),A,A; € R™" B € R™ a,a, € R denotes
a constant coefficient, t(t) corresponds to a time varying delay,
and (f(t), ¥(x, t)) is the initial state. X(t) € R" is the state of
ordinary differential equation, u(x, t) € R is the displacement of
heat equation, and U(t) € R is the control actuation.

We assume that (A, B) is controllable. Assume that the time-
varying delay 7(t) is a continuously differentiable function of t that
satisfies

O<hy<t(t)<h (2.4)

with some constants hg and h > 0. Note that the assumption
ho > 0is used for simplification of the proof of well-posedness. The
delay and its bounds may be unknown for the exponential stability
conditions (without finding a decay rate) and for the domain of
attraction in the presence of actuator saturation. However, the
upper bound h on the delay should be known for finding a bound
on the decay rate of the exponential stability.

The first equation of (2.1) is ODE with delay or a difference-
differential equation. So, we call it ODE in order to distinguish it
from PDE.

First, we look for a coordinate transformation

X(t) = X(1),

w(x, t) = u(x, t) — f ke, y)uy. £)dy — y(0X(L), (2:5)
0

that transforms the system (2.1) into the following intermediate
ODE-heat cascade:

X(t) = (A + BK)X(t) + AiX(t — 7(t)) + Bw(0, t),
we(X, t) = ww(x, t) + aaw(x, t — 7(t)) + aw(x, t)
— y(X)[A1 — aI]X(t — (1)), (2.6)
wx(0,t) =0,
(X(6), wix, t)) = (f(t), p(x, t)), —h <t <0,
where K is chosen such that

X(t) = (A4 BK)X(t) + A X(t — 7(t))

is asymptotically stable, and

P, t) = Y(x, t) — fox k(x, Y)Y (y, t)dy — y (x)f (t). (2.7)
Boundary actuation (2.2) is transformed into
w(1,t) =U(t) - /l k(1, y)u(y, t)dy — y (1)X(t), (2.8)
and (2.3) is transfo(r)med into
wy(1,8) = U(t) — k(1, Du(1, t)
-/ o1,y )ty Oy — Y (IX(0)
(2.9)

Second, a further transformation, where (X, w) — (X, z), can be
given by

X(t) = X(t),

zZ(x, t) = w(x, t) — / q(x, y)w(y, t)dy. (2.10)
0

Here the kernel q(x, y) should be chosen to transform the system
(2.6) into the target ODE-heat cascade:

X(t) = (A+ BK)X(t) + AiX(t — T(t)) + Bz(0, t),
Ze(X, t) = zw(x, t) — cz(x, t) + az(x, t — 1(t))

) - f Qe Y OWIA — DX — (1), (211)
0
zx(0,t) =0,
(X(t)7 Z(X7 t)) = (f(t)v (ﬂ(x, t)), _h S t S 0,
where ¢ > 0 is a constant, and
P06, 1) = 93, £) — / a0 V)L, O3y, (2.12)
0
Boundary actuation (2.8) is transformed into
1
z(1,t) = U(t)—f k(1, yu(y, t)dy — y (1)X(t)
0
1
- /0 q(1, y)w(y, t)dy, (2.13)
and (2.9) is transformed into
z(1,t) = U(t) — k(1, 1)u(1,t)—f01 ke(1, y)u(y, t)dy
— ¥/(DX(6) = (1, Duw(1, 1) 2.14)

1
- [ a1 V(. t)dy.
0

Next, we compute the kernels of k(x, ¥), y(x) and q(x, y). Motivated
by Hashimoto and Krstic (2016), we will show that the transfor-
mation for undelayed equations (see Susto and Krstic, 2010) still
works for the above class of delayed equations.
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Differentiation of (2.5) with respect to t yields
we(X, ) = un(X, t) + au(x, t — 7(t))

+alu(x, £) / Kx y)u(y. Ddy)
0

X
— [ ke tupty. 0+ aauty. ¢ — ey
0
— y(x)[AX(t) + A1 X(t — ©(t)) + Bu(0, t)].
Substitution of (2.5) into the resulting equation implies

we(x, t) = (X, t) + aw(x, t — 7(t)) + aw(x, t)
— k(x, x)ux(x, t) 4+ ky(x, x)u(x, t)

—ky(x, 0)u(0, t) — / kyy(x, yIu(y, t)dy

0
— Y (XA — aDX(t) + (A1 — aD)X(t — z(¢))]
— p(x)Bu(0, t).

Similarly, the first and second derivatives of w(x, t) with respect to
X are given by

wy(X, t) = uy(x, t) — k(x, x)u(x, t)

- /0 ek, Y)uCy. Oy — y GOX(E),

Wx(X, ) = Ue(X, t) — %k(x, x)u(x, t)

— k(x, X)uy(x, t) — ky(x, x)u(x, t)

- / kX, YUy, Oy — 7" COX(E).
0

Substituting (2.5) into (2.1) and comparing with (2.6), we obtain
the following set of conditions on the kernels k(x, y) and y(x) (see
e.g. Krstic, 2009a):

ky(x’ O) = —V(X)B» (2]5)

k(x,x) =0,
{V”(X) = y(x)(A —al),

{kXX(Xv .V) = kyy(xa y)v

y(0) =K,
y'(0) = 0.

(2.16)

The solution to (2.15) and (2.16) is given by

Kx.y) = / (o,
0

y(x)=[K 0] e[? 2 "] ['} :

0

(2.17)

In the similar manner, the change of variable (2.5) has an inverse
transformation:

u(x, t) = w(x,t)—i—f n(x, y)w(y, t)dy + ¥ (x)X(t), (2.18)
0
where
x=y
n(x, y) = / ¥ (o )Bdo
0 (2.19)

0 A+BK-—al
v(x) =[K 0]6[’ ’ }m

By the standard procedures (see Krstic and Smyshlyaev, 2008), we
differentiate (2.10) with respect to t and x respectively to obtain

Ze(X, £) = wye(X, £) + azz(x, t — 7(t)) + aw(x, t)
- q(X, X)wX(X’ t) + Qy(x’ X)U)(X, t)

— gy, 0w(0, £) — f Gy V)9 £y
0
—a f q(x, y)w(y, t)dy
0

- / 4. Yy ()dyl(A; — aal)
0

x X(t — z(t)),
zZx(X, t) = wy(x, t) — q(x, x)w(x, t)

- / ax(x, y)w(y, t)dy,
0

(2.20)

2l 1) = . 1)~ g, i, 1

—q(x, x)wx(X, ) — qx(x, X)w(x, t)
- /0 Gux(X, Y)w(y, t)dy.

Comparing (2.20) with the second equation of (2.11), we obtain
that g(x, y) satisfies

Ax(X, YY) = Qyy(x, y) + (a + c)q(x, ¥),
qy(X7 0) = Oa

a—+c
X, X) = —
q(x, x) 5

The solution to (2.21) is given by
h(v/(a+c)x* —y?))
(a+c)x* —y?)

where I;(-) denotes the modified Bessel function of the first order:

(2.21)

X.

qx.y) = —(a+c)

oo

(X/2)2n+1
W=D

In the similar manner, the change of variable (2.10) has an inverse
transformation:

w(x, t)=2z(x, t)+ /X I(x, y)z(y, t)dy, (2.22)
0

where

l(x,y) = —(a + o LAAT X Z¥7) (2.23)

(a+c)x* —y?)

and J4(-) is Bessel function of the first order:

o (—1)"(x/2)21
hix) = ; nn+ 1) °

2.1. Dirichlet actuation

We design the state feedback controller for the target system
(2.11). By selecting the following feedback controller:

1
U = / KL yuly. Ody + ¥ (1X(E)
0 (2.24)

1 Yy
+ / a(1,y) [u(y, 0 — / K, S)uls, r)ds—y(y)xu)} dy,
0 0
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one arrives to the closed-loop system of (2.11) with boundary
actuation (2.13) as follows:

X(t) = (A+ BK)X(t) + A1 X(t — t(t)) + Bz(0, t),
Ze(x, t) = Zyw(X, t) — cz(x, t) + az(x, t — (1))

—[rX) —/ a(x, )y y)dyl(Ar — a2D)X(t — z(t)), (2.25)
0
ZX(O, t) =0,
(X(t), z(x, £)) = (f(t), @(x, £)), —h <t <0,
subject to
z(1,t)=0. (2.26)
Remark 2.1. Differently from the non-delayed case (Krstic,

2009a), the resulting target system (2.25), (2.26) is coupled. How-
ever, each differential equation (for X and for z) contains the design
parameter (either K or c). This allows to stabilize the target system
by appropriate choice of K and c (see (ii) of Propositions 4.1, 4.2
and Remark 4.1).

2.2. Neumann actuation

The Neumann controller is obtained using the same exact trans-
formation as in the case of the Dirichlet actuation, but with the
appropriate change in the boundary condition of the target sys-
tem. In this case, the backstepping approach yields the following
controller for the target system (2.11):

1
u(t) = / k(1. Y)u(y, Oy + ¥/ (DX(¢)
0 (2.27)

1
+q(1,1>w(1,t)+[ a(1, y)w(y. O)dy.
0

Here we use the fact that k(1, 1) = 0.
Under (2.27), the closed-loop system of (2.11) with boundary
actuation (2.14) becomes (2.25) subject to

z(1,t) = 0. (2.28)

3. Well-posedness of the closed-loop systems

We start with the Dirichlet actuation. Consider the closed-loop
target system (2.25) and (2.26). We introduce the Hilbert space
Hi(0,1) = {f € H'(0, 1)|f(1) = 0}. Let H = R" x L*(0, 1) be
the Hilbert space with the norm: ||(f, g)II,ZH = Lflﬂzw + IIgIIfZ(O "

While being viewed over the time segment [0, ho], the system
can be rewritten as the differential equation:

%Y(-, t) = A Y(, )+ A Y(e, t — (1)),

Y(-,0) = (f(6), ¢(-, 0)), 6 € [—h, 0]

Ln ‘H, where the system operator A, : D(A,) C ‘H — H is defined
y

A;(X, z) = [(A+ BK)X + Bz(0), zyx — cz],

D(A;) = {(X,2) € R" x (H*(0, 1) N Hg(0, 1))|2(0) = 0},

and the bounded operator A; : # — H is defined by

Ai(X, z) = [A1X, a2z — g(-)(A1 — ax1)X],

(3.1)

(3.2)

where g(x) = y(x) — [; q(x, y)y (y)dy.
A straightforward computation gives

AXX*, 2*) = [(A+ BK)'X, z, — czl,
D(A?) = {(X*,z*) € R" x (H%(0, 1) N Hp(0, 1)) (3.3)
z}(0) = —B'X*},

where A} is the adjoint operator of A;.

By the arguments of Wang, Liu, Ren, and Chen (2015), it can
be shown that there is a sequence of eigenfunctions of A} which
forms a Riesz basis for 7 and hence .4} generates an exponentially
stable semigroup. Then by Propositions 2.8.1 and 2.8.5 of Tucsnak
and Weiss (2009), we obtain that A, generates a Cp-semigroup.

Define the initial conditions in the space

W £ C([—h, 0], D(A;)) N C'([—h, 0], H).

The inhomogeneous term A;Y(-, t — z(t))is of class C' on [0, hy].
By Theorem 3.1.3 of Curtain and Zwart (1995), for any initial value
(X(09), z(-, 8)) € W, the closed-loop target system admits a unique
classical solution (X(t), z(-, t)) for all t € [0, hg].

The same line of reasoning is step-by-step applied to the time
segments [ho, 2ho], [2ho, 3ho], [3ho, 4ho], - - - . Following this pro-
cedure, we obtain that there exists a unique classical solution
(X(t), z(-, t)) for all t > 0 with the initial condition (X(6), z(-, 8)) €
W (see e.g. Fridman and Orlov, 2009).

Consider next the closed-loop target system (2.25),(2.28) under
the Neumann actuation. Let #; = R" x H!(0, 1) be the Hilbert
space with the norm:

2
1. @, = 1+ D8Py + 18 20,1

The existence and uniqueness of the solution of the system (2.25)
subject to (2.28) can be easily obtained by applying the same
procedure. But the expression of the domain D(.A,) and initial space
W should be changed into

D(A;) = {(X.2) € R" x H*(0, 1)2'(0) = Z(1) = 0},
and

W = C([—h, 0], D(A;)) N C'([—h, 0], H1).

Remark 3.1. By using the transformation (2.5) and (2.10), we
establish the well-posedness of the closed-loop original system
(2.1) under the Dirichlet or Neumann actuation.

For the case of Dirichlet actuation, we define

D(Ay) = {(x, u) € R" x H(0, 1)|u/'(0) = 0,
1
u(1) = / KL y)uly)dy + y(1X
0

1 y
+ / q(1, y)luly) — / k(y, S)u(S)ds—y(y)X]dy},
0 0
Wi £ C([—h, 0], D(A)) N CY([—h, O], H).

Thus, for any initial value (X(0), u(-,0)) € W, the closed-loop
original system admits a unique classical solution (X(t), u(-, t)) for
allt > 0.

For the case of Neumann actuation, we define

D(A,) = {(x, u) € R" x H(0, 1)|u'(0) = 0,
1
W) = f k(1. Yu)dy + /()X
0
1
+qt, 1>[u(1)—f KL y)u(y)dy — y(1)X]
0

1 y
+ /0 a1 YU0y) — /0 k(y,s)u(s)ds—y(y)xwy},
Wy = C(=h, 01, D(A) N C'(=h, O], 1),

Thus, well-posedness of the closed-loop original system can be
obtained.
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4. Stability analysis

In Theorem 2 of Hashimoto and Krstic (2016), a delay-
independent condition for the exponential stability of target sys-
tem, which is described by reaction diffusion equation with state
delay, has been shown by applying Lyapunov-Razumikhin theory.
In this section, we will derive an exponential bound on the solution
of the target coupled system via Halanay’s inequality. This solution
bound will allow to find a domain of attraction in the case of
actuator saturation.

4.1. Stability of system (2.25) subject to (2.26)

For the case of Dirichlet actuation, we choose the Lyapunov
functions of the form
1
V(t) = X"PX + p; / Z2(x, t)dx, (4.1)
0
where the n x n matrix P = PT > 0, and the parameter p; > 0

will be chosen later. We aim to derive conditions that satisfy the
Halanay inequality.

Lemma 4.1 (Halanay'’s Inequality (Halanay, 1966)). Let 0 < &1 < Jo
and let V : [—h, 00) — [0, oo) be an absolutely continuous function
that satisfies

V(t) < —280V(t)+28; sup V(t+6), t=>0. (4.2)
—h=<6<0

Then

V(t) <e ®t sup V(d), (4.3)

—h<6<0
where 8 is a unique solution of 8§ = 8y — 8,e?".
We will employ further Wirtinger’s Inequality:
Lemma 4.2 (Wirtinger’s Inequality (Hardy, Littlewood, & Palya,

1952)). Let z € HY(0,L) be a scalar function with z(0) = 0 or
z(L) = 0. Then

. 412 (trdz7’
2
fo e = 72 /o [dg] &

Proposition 4.1. (i) Given gains K and c, and tuning parameters
r > 0,0 < 8; < &, let there exist scalars p; > 0,0 < A < 2p;
and an n x n matrix P > O that satisfy the following linear matrix
inequalities:

(4.4)

6128 +pr 'R<0, (4.5)

72 72
(—Zc + 28+ 1 — —) p1+ ZA axpq <0, (46)

6, & 2
* —281p1

where

011 PA4 PB
E=|% =25P 0 |, (4.7)

* * —A
R = diag{0, {(A; — a2I) (A1 — ayl), 0}, (4.8)
611 = P(A+ BK) + (A +BK)"P + 28,P, (4.9)
¢2(1+ max |qx,y))*(max |y (x)])*. (4.10)

O<y=<x<1 0<x<1

Then, for all hy > 0, h > 0 and t(t) € [ho, h], the system (2.25)
subject to (2.26) with initial conditions (f, ¢) € W is exponentially

stable with a decay rate § in the sense that (4.3) holds, where § is a
unique solution of 8§ = 8y — 81e*%". Moreover, if the strict LMIs (4.5)
and (4.6) with 8o = 8; > 0 hold, then for allhg > 0, h > 0 and
7(t) € [ho, h], the system (2.25) subject to (2.26) is exponentially
stable with a small enough decay rate.

(ii) Assume now that A, is a scalar matrix, i.e. Ay = a;I, where a,
is some constant. Then given any § > 0, the exponential stability of
the system (2.25) subject to (2.26) with the decay rate § > 0 can be
achieved by appropriate choice of design parameters c and K.

Proof. (i) Differentiating V along (2.25) and (2.26) we find
1
V(t) = 2p; / 2(x, )ze(x, £)dx + X T(E)PX(t) + X T (£)PX(¢).
0

Integration by parts and substitution of the boundary conditions
z,(0,t) = z(1,t) =0lead to

V(t)+ 28,V (t) — 28, sup V(t+6)
—h<6<0
1 1
< -2p$ / Z2(x, t)dx + 2ayp, / z(x, t)z(x, t — T(t))dx

0 0

1 1

—2plc/ Z2(x, t)dx — 281p1/ 22(x, t — T(t))dx
0 0

1
_2p, / 2%, )y ()
0

) (4.11)
- f q(x, y)y (y)dyldx(A; — aal)
0
x X(t — t(t)) + X (£)[P(A + BK)+(A + BK)P1X(t)
+2X T(£)PBz(0, t) 4+ 2X T(t)PA1X(t — T(t))
1
+ 280p1 / Z2(x, t)dx + 280X T (t)PX(t)
0
—28:XT(t — z(t))PX(t — (1))
Sobolev’s inequality and Wirtinger’s inequality imply
1
—/ Z2(x, t)dx < —Z%(0, t), (4.12)
0
1 7.[2 1
— / Z2(x, t)dx < —— / Z%(x, t)dx. (4.13)
0 4 0

Multiplying the inequality (4.12) by a constant A € (0, 2p;] and
multiplying the inequality (4.13) by 2p; — A on both sides and
summing, we obtain that

7.’:2 1
I(2p1 - A)/ Z22(x, t)dx — 2z%(0, t).
0

(4.14)

1
—2131/ Z2(x, t)dx < —
0

As y(x), q(x, y) are continuous functions bounded on any compact,
the following inequality can be obtained:

2

1 X
/ y(x) / axy)y ()| dx
0 0 (4.15)
<(1+ max |q(x, y))*(max|y(x)|)? = ¢,
0<y<x<1 0<x<1
which together with Young's inequality implies
1 X
ap, f 2(x, Oy (x) — / 4 y)y )dyldx(Ar — )
0 0
x X(t — ©(t)) (4.16)

1
<p; [r/ Z2(x, t)dx + r X T(t = 7(6))SX(t — r(t))j| ,
0
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where
S = ¢(A — aaD) (A — aal). (4.17)

Set n1(t) = col{X(t), X(t—1(t)), z(0, t)}, n2(t) = col{z(x, t), z(x, t—
7(t))}. Then substituting (4.14), (4.16) into (4.11) yields

V(t)+28,V(t) — 28, sup V(t+6)
—h<6<0

2 1
< Z/O 0 (0)@mi(t)dx < 0
i=1

if the LMIs ®; < 0 and ®, < 0 hold. Therefore, the feasibility
of ®;1 < 0 and ®, < 0 guarantees that the Halanay inequality
(4.3) holds meaning that the system (2.25) subject to (2.26) is
exponentially stable.

The feasibility of strict inequalities (4.5) and (4.6) with §; =
8o > 0 implies feasibility of these inequalities with §; and §; given
by 8o = 8¢ + € > 8o = 87 for small enough € > 0. Since Halanay’s
inequality holds with 8y and §1, the system is exponentially stable
with a small enough decay rate.

(ii) The decay rate bound can be enlarged if for given §; > 0 we
can enlarge 6o > &7 subjectto ®; < 0, ®, < 0. Applying Schur
complement theorem, we obtain

Z <0 <= P(A+BK)+(A+BK) P+, 'PBB'P

4.18
+[280 + (281)'a?]P < 0. (4.18)

Multiplying the last inequality by Q = P~! from left and right we
arrive at

E <0 <= (A+BK)Q +Q(A+BK)" +A7'BBT
+ 280 + (281)'a?1Q < O.

Since (A, B) is controllable, forany 0 < §; < §pand 0 < A < 2, we
can choose K such that Lyapunov inequality (4.19) has a solution
Q > 0.Then there exist large enough r > 0 and p; = 1 such that
(4.5) holds.
By Schur complement theorem,
7.[2
Oy <0 & —2c+ 28y — 7(2—Ap;1)+r
+(281)7'a3 < 0.

With the chosen above parameters &g, 81, p1, A and r, (4.20) always
holds for large enough c. Thus, given h, any decay rate bound

may be achieved by appropriate choice of design parameters c
and K. O

(4.19)

(4.20)

Remark 4.1. Less conservative delay-dependent stability condi-
tions for system (2.25) subject to (2.26) with fast varying delays
can be derived by using Lyapunov-Krasovskii approach similar
to Fridman (2014) and Fridman and Blighovsky (2012). In fact,
one can consider the following Lyapunov-Krasovskii functional

t
V() = XT(6)PX(t) + / e~ 20=9X T (5)SX(s5)ds

t—h

0 t
+h / / e~ 2%(=)X T (§)RX(s)dsd6
—h Jt+6

1
+ p1f Z2%(x, t)dx
0

combined with the Halanay inequality, where P,S,R > 0 are
some matrices, and p; > 0 is a constant. The resulting conditions
will be always feasible for small enough h provided (A + Ay, B) is
controllable.

Remark 4.2. The original system (2.1) is equivalent to system
(2.11) under the invertible transformation (2.5), and (2.10). There-
fore, under the conditions of Proposition 4.1, for the original system

(2.1), the same decay rate can be guaranteed by the controller U(t)
given by (2.24).

4.2. Stability of system (2.25) subject to (2.28)

For the case of Neumann actuation, we choose the Lyapunov
function

Vi(t) = V(6) + p2llzdl® = XTPX + pallz® + pa 2l

where the n x n matrix P = PT > 0, the parameters p; > 0 and
p> > 0 will be chosen later, and V(t) is defined by (4.1).

Remark 4.3. Similar to the case of Dirichlet actuation, for the
proof of the stability of system (2.25) subject to (2.28), we can
choose p, = 0. For finding a domain of attraction under Neumann
actuation in the presence of actuator saturation, we need p, > 0
(see Section 5).

Proposition 4.2. (i) Given gains K and c, and tuning parameters
r>00<r1; <20 < 8 < &, let there exist an n x n matrix
P > 0, and scalars p; > 0, p, > 0, A > 0 and A, > O that satisfy the
LMIs

G120 +pr;'R=E+(pir ' +par; R <0, (4.21)

~ (=2c+ 28 +71)p1 +21  aypq 0
@2 = * —251]31 —pr | < 0, (422)
* * 933

and the inequality
2

2Py — 2pac + A+ 28002 — %Al <0, (4.23)

where Z, R are defined by (4.7) and (4.8) respectively,
033 = —(2 —11)p2 + A1,

Then, for all hy > 0, h > 0 and t(t) € [ho, h], the system (2.25)
subject to (2.28) with initial condition (f, ¢) € W is exponentially
stable with a decay rate 8, where § is a unique solution of § = 8o —
81621 Moreover, if (4.21)—(4.23) hold with 8 = 8; > 0, then for all
ho > 0and h > 0, the system (2.25) subject to (2.28) is exponentially
stable with a small enough decay rate for all =(t) € [hg, h].

(ii) Assume now that A1 is a scalar matrix, i.e. Ay = a;l, where a,
is some constant. Then given any § > 0, the exponential stability of
the system (2.25) subject to (2.28) with the decay rate § > 0 can be
achieved.

Proof. (i) Taking the time derivative of the Lyapunov function
along the solution of (2.25) subject to (2.28), and from (4.11) we
get

Vi(t) + 280Vi(t) — 281 sup Vi(t +6)
—h<6<0

1 1
< —2p; / Z2(x, t)dx + 2ayp, / z(x, t)z(x, t — 7(t))dx
0 0
1 1
- 2p1c/ Z2%(x, t)dx — 2p2cf Z2(x, t)dx
0 0
1 1
—2p, / z2(x, t)dx — Zazpzf Zu(x, )z(x, t — T(t))dx
0 0
1
-2 / [p1z(x, t) — pazux(x, )]y (X)
0

— / q(x, y)y (y)dyldx
0
x (A1 — aDX(t — (1))
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+XT(t)[P(A+ BK) + (A + BK)TP1X(t)

+2XT(t)PBz(0, t) + 2X T (t)PALX(t — (1))
1

1
+280p1 / Z2(x, t)dx + 280p2 / Z2(x, t)dx
0 0

+ 280X T(E)PX(t) — 281X T(t — T(£))PX(t — (1))
1

1
- 281p2/ Z2(x, t — T(t))dx — 281py / Z2(x, t — 7(t))dx.
0 0
(4.24)

From Young’s inequality, we have (4.16) and

1 X
2 / Pazu(X, )y () — f q(x, y)y (y)dyldx(A, — axl)
0 0

x X(t — z(t)) (4.25)

1
< pal f 22(x, Odx + X T(t = T(E)SK(E — (O],
0

where r; > 0 and S is defined by (4.17).
By using Agmon’s and Wirtinger’s inequalities, we have

4
2 2 2 2 2
(0, )7 =< 21zlI” + llzll®, Nzll” = 7 12l
Hence,

0 < Alllzl® + 201zl1* — 12(0, )1, (4.26)

2

, T
0 < Mlllzwll” — 7

where A, A; > 0 are some constants.

Set m(t) = col{X(t),X(t — =(t)),z(0,0)}, malt) =
col{z(x, t), z(x, t — t(t)), Zw(X, t)}. Let ®1 be defined by (4.5) and R
by (4.8). We add (4.26) and (4.27) to (4.24). Then we obtain

Vi(t) + 280Vi(t) — 287 sup Vi(t +6)
—h<6<0

2 1
=3 /0 w7 (©)Bu(dx
i=1
2

1
—(2p1 + 2pac — A — 2580p2 + n—kl)/ z}(x, t)dx <0
0

A (4.27)

(4.28)

4

if the LMIs ®; < 0, @, < O are feasible and the inequality
(4.23) holds. Application of Halanay’s inequality, completes the
proof of (i).

(ii) By (ii) of Proposition 4.1, ®; < 0 is feasible for given
0 < &1 < 8o and appropriate K. Then for r; = 1 and small enough
p2 > 0, @; < 0is feasible.

Now given 0 < §; < 8g, A > 0,p; = 1,p > 0,and A; > 0
such that 633 < 0, we show that (4.22) and (4.23) are feasible for
appropriate choice of large enough ¢ > 0.For (4.23), this is evident.
For (4.22), this is true by Schur complements theorem. O

Remark 4.4. For simplicity only, in the cascade model we consider
a constant coefficient a of the undelayed term au(x, t). For the
variable a(s), one have to modify kernels of the transformations
similarly to Hashimoto and Krstic (2016). Halanay’s inequality is
applicable for the resulting target system.

5. Control under saturation: regional stabilization

In this section, we consider (2.1) with the control law which is
subject to the following amplitude constraint:

[Ut)l < u. (5.1)

Denote the state trajectory of (2.1) subject to Dirichlet or Neu-

mann boundary actuation with the initial condition (Xo, ug) £

(f(0), ¥ (-, 8)) € Wy by (X(¢; Xo), u(x, t; uo)).
For the case of Dirichlet actuation, the domain of attraction of
the closed-loop original system is then the set

§ = {(Xo. uo) € Wy lim [ (X(E5 Xo), u(x, & uoDllae = 0] . (5:2)

For the case of Neumann actuation, the domain of attraction of the
closed-loop original system is given by (5.2), where # is replaced
by H1.

5.1. Dirichlet control under saturation

We first find domain of attraction for the closed-loop target
system. Denoting the state trajectory of closed-loop target system
with the initial condition (Xo,z0) = (f(6),¢(-,6)) € W by
(X(t; Xo), z(x, t; z9)), the domain of attraction of the closed-loop
target system is then the set

§ = {(Xo.20) € W : lim JX(£: Xo), 2(x, £ 2)ll = 0]

We will obtain an estimate Xy C S on the domain of attraction,
where

Xg = {(Xo,lo) € W : max [Xo|* + max ||z|* < ,371} ,
[—h.0] [—h,0]

B > 0is a scalar that will be minimized in the sequel.
We design the state feedback controller in the form:

Usqe (£) = sat(U(t), u), (5.3)

where U(t) is given by (2.24).

Applying the latter control law (5.3), we represent the saturated
closed-loop target system as the system (2.25) with the following
boundary condition:

z(1,t) = sat(U(t), u) — U(t). (5.4)

From (2.24), U(t) admits the following representation:
1
0ty = [ a1 uly. ey -+ w1
0
1
+ [ 1.
1 ’ y
=/ n(1,y) [z(y,t)—i—/ I(y, s)z(s, t)ds:| dy
0 0

1
+ X + / (1, )20y, t)dy.
0

provided saturation is avoided. Denote

=y, = Ongfgjln(l,y)l (1 +0<ny1<a)3<<1|l(x,y)|>

+ max [[(1, y)].
O=<y=<1

Dueto(2.19)and (2.23), n(x, y) and I(x, y) are continuous functions
bounded on any compact. Then Jensen’s inequality implies

[U(t) < 11X+ callzll.
Applying Young’s inequality, we obtain
IUE)? < 2¢21X)? + 2¢21z)|% (5.5)

Given u > 0, we define the following set:

)
- u
£(cy, ¢, 1) = {(X,z) eH X +clz|? < > }
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From the inequality (5.5) and the definition above, we can obtain
the following implication: if (X, z) € £(cy, 3, ut), then |U(t)] < 4,
and the saturation is avoided. Thus, the system (2.25) subject to
(5.4) admits the linear representation (2.25) subject to (2.26).

From Proposition 4.1, we find that if there exist 0 < §; = &
such that the strict LMIs (4.5), (4.6) are feasible, then the following
inequality holds

sup V(6)

—h<6<0

1
XT(OPX() + pr / 2(x, t)dx = V(1) <
0
< Amax(P) max [Xo|* + p1 max ||zo]|%, V¢t > 0.
[—h,0] [—h,0]

Hence, the following inequalities:

P<pgl pr=p (56)

guarantee that the trajectories (X(t; Xp), z(x, t; zo)) starting from
initial function (Xo, zp) € X remain within x;, where

1
X, = :(X,z) e H: XT(HPX(t) +p1/ 2%(x, t)dx < 1} .
0

The “ellipsoid” X, is contained in £(cq, 3, i), if the following
implication holds

1
XT(t)PX(t)—i-p]/ Z2(x, t)dx < 1
0

= X)) + 2 lz(x, t)]|*> <

NS

for all (X(t), z(x, t)), i.e. if

SIXOP + 3 llzx, )]
=2

1
< “? |:XT(t)PX(t)+p1/ 2(x, t)dx].
0

The latter inequality is guaranteed if
u? 1’

PE —cii>o, Py = ;> 0. (5.7)

Therefore, the inequalities (5.7) guarantee the saturation avoid-

ance, and together with Proposition 4.1 and condition (5.6) imply

that

lim [[(X(¢; Xo), z(x, t; Z0))ll2« = 0.
t—o00

Returning to the original system by the transformation (2.5) and
(2.10), we have

llzll < [1 + max Iq(x,y)l} lwll, (5.8)
O<y=<x<1

lwll < [1 + max Ik(x,y)l} flull + [maXIV(X)I} X (5.9)
O<y<x<1 0<x<1

Hence,

IXP + Nzl < Mi|X[* + My lul?, (5.10)

where

2
M =1 +2[max|y(x)| (1 + max |q(x, y)|>] s
0<x<1 O<y=<x<1
2 2
M, =2[1+ max Ik(X,Y)I] [1+ max |Q(X,J’)|] .
1 0<y=x<1

O<y=x<

Denote
Xy = {(Xo, Uup) € Wy : My max |Xo|* + My max [luo|® < 1371} .
[—h,0] [—h,0]

It follows from the inequality (5.10) that if the initial function of
(2.1) with the Dirichlet boundary actuation (5.3) satisfies (X, ug) €

Xy, then by backstepping transformation, the initial function of
(2.25) subject to (5.4) satisfies (Xo, zo) € Ap. The following is thus
obtained:

Theorem 5.1. Given gains K and c, and tuning parameters r > 0,
0 < 81 = 8, let there exist an n x n matrix P > 0 and scalars p; > 0,
0 < A < 2p; that satisfy LMIs (4.5), (4.6) with notations given
by (4.7)-(4.10) and LMIs (5.6), (5.7). Then for all hy > O and h > 0O,
the classical solutions of (2.1) with Dirichlet boundary actuation (5.3)
starting from initial functions (Xo, up) € X, converge to zero for all
delays t subject to (2.4), i.e.

lim [J(X(: Xo). u(x, £ uo)) . = 0.

Example 5.1. Consider (2.1) with Dirichlet actuation, and the
scalar x(t) e RwithA=1,B=1,A; =04,a, =0.1,a = 0.2,and
u = 20. For the target system (2.25), we choose K = —2,¢c = 0.8.
In order to enlarge the volume of the ellipsoid inside of the domain
of attraction, we would like to minimize 8. By Proposition 4.1,
with §¢ = 61 = 0.3,¢c; = 091,c; = 2.93,r = 1, we obtain
that min 8 = 0.0739, and the largest obtained ellipsoid inside of
domain of attraction is given by

Xg = {(Xo,zo) € W: max |Xo|? + max |zo]* < 13.53} )
[—h,0] [—h,0]
By Theorem 5.1, with M; = 18.15, M, = 30.31, we obtain
X, = {(XO, Up) € Wi: 1.34 max |Xo|? + 2.24 max ||ug|® < 1} )
[—h,0] [—h,0]

Next, a finite difference method is applied to compute the state
of the closed-loop system. The steps of space and time are taken
as 0.04 and 0.0002, respectively. We choose the delay 7(t) = h =
0.4. Fig. 1 shows the state of the system starting from the initial
condition X(0) = 0.82, u(x,0) = 0.29cos(wx) (0 € [—0.4,0]),
which is inside the ellipsoid ;. Here

1.34 max |Xo|% + 2.24 max |jug||®> = 0.99 < 1.

[—h,0] [—h,0]
It is seen from Fig. 1 that the state converges. Simulations of the
state starting outside the ellipsoid X, from X(0) = 5 and u(x, 0) =

4 cos(x) (0 € [—0.4,0]) illustrate that this state is unbounded.
See the corresponding plots in Kang and Fridman (2017).

5.2. Neumann control under saturation

For the case of Neumann actuation, the domain of attraction of
the closed-loop target system is the set

§ = {(Xo.20) € W: lim JX(£: Xo), 2(x. £ 20D, =0

We will obtain an estimate Xy C & of the domain of attraction,
where

Xg = {(Xo,zo) € W : max |Xo|2 + max ||zo]|?
[—h,0] [—h,0]
+max ||z]|? < 871},
max izl < B

B > 0is a scalar that will be minimized in the sequel.
Then we design the state feedback controller in the following
form

Usa[(t) = sat(U(t), a)v

where U(t) is given by (2.27).

Applying the latter control law (5.11), we represent the satu-
rated closed-loop target system into the system (2.25) with the
following boundary condition:

(5.11)

z(1, t) = sat(U(t), @) — U(t). (5.12)
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1 T T T T T T T T T

X(t)

u(z,t)

Fig. 1. State with initial condition inside x;.

In this case, from (2.27), U(t) admits the representation:
1
0e) = [ mpuly. 0y + v (X0
0
1
+l(1,1)z(1,t)+/ L1, y)(y, dy
0
1 y
= / n(1,y) [z(y, t)—i—/ I(y, s)z(s, t)ds:| dy
0 0

1
g (DX + 11, 1)2(1, ) + f L(1y)2(y. £)dy.
0

Here we use the fact that n(1, 1) = 0.

Denote ¢ = [¢/(1)], ¢ = V2[I(1, )| +&, ¢3 = |I(1, 1), £ 2
maxo<y<1|m(1, Y)I(1 + maXOsxgvsl“(Xs ) + maxOsygll’x(l’yn-
Applying Jensen’s and Young’s inequalities, we obtain

)l < 111, Dz, o + [ (DIXO]+ & llz(x, O]
By using Agmon’s inequality, we have
l2(1, 0)1* < 2[|z(x, O)II” + llz(x, £)II.

Then, [U(t)P* < 3 [c2IX? + c3llz]1? + Zl|zl?] -
Given u > 0, we define the following set:

£(c1, ¢, 03, 1) = {(X,2) € Ha = X + 5 llz))?
72

u 5.13
+edlad? = 5 (5.13)

From the definition (5.13), we can obtain: if (X, z) € £(c1, ¢2, c3, 1),
then |U(t)] < u, and the saturation is avoided. Thus, the system
(2.25) subject to (5.12) admits the linear representation (2.25)
subject to (2.28).

From Proposition 4.2, we find that if there exist 0 < §; = &g
such that LMlIs (4.21)-(4.23) are feasible, then for all t > 0, the
following inequality holds:

XTPX + pilizll® + pa izl

< Amax(P) max [Xo|? + p1 max ||zo||> + p» max ||z5]|.
< Amax( )[—n,ml ol + p1 max lzoll* + p2 max llzo |l

Hence, the following inequalities:

guarantee that the trajectories (X(t; Xo), z(x, t; zp)) starting from
initial function (Xo, zp) € X remain within &;, where

X, ={(X.2) € H1 : X"PX + pillz|l* + p2llzl® < 1.

Note that the ellipsoid A; is contained in £(cq, c3, c3, 1), if the
following implication holds

XTPX +pilzll* + pallzd® < 1

21912 1 215112 1 <21l |12
= X"+ llzll” +csllzll® <

w| s

for all (X(t), z(x, t)), i.e. if
AIXP + ez + Sz
u
=3 [XTPX + p1llzll* + pallzl®] -

The latter inequality is guaranteed if
ﬁ2 ﬂ2 =2

u
P?—cflzo, plg—czzzo, ng—cgzo. (5.15)

Therefore, the inequalities (5.15) guarantee the saturation avoid-
ance, and together with Proposition 4.2 and the condition (5.14)
imply that

Jim I(X(E: Xo), 2(x, €5 20D, = 0.

Returning to the original system by the transformation (2.5) and
(2.10), we obtain that

lzdll < lluxll + max [ke(x, y)lllull + max [y’ (x)|X]|
0=<y=x=<1 0=<x<1
+ [maXILI(X, X)| + max Iqx(x,y)l] llwll.
0<x<1 O<y<x<1

It follows from (5.8) and (5.9) that
IXI? + Dzl + llzell* < MyIXP? + Mo Jul|® 4 4[],

where

2
M; = {S[maXIq(x,X)H max Iqx(x,y)l}
0<x<1 O<y=<x<1

2 2
+2[1+ max Iq(x,y)l} “maxly(x)l}
0<y<x<1 0<x<1

+4max [y®))*+1,

0<x<1

5
I

2
8|:max lq(x, X)] + max |Qx(X7Y)|1|
0<x<1 0<y=x<1

2
><|:1+ max |k(x,y)|] +4 max |k(x,y)
O<y=<x<1 0<y=<x<1

2

2
+2[1+ max |k(x,y)|] [l—i- max |q(x,y)|:| .
0<y<x<1 0<y<x<1



W. Kang, E. Fridman / Automatica 83 (2017) 252-261 261

Denote X, = {(Xo, o) € Wy : Mymax_p o)|Xol* +Momax;_p,g
lluo 1> + 4max_p,ollugll> < B~} . Then, we obtain the following
result:

Theorem 5.2. Given gains K and c, and tuning parameters r > 0,
0 <r; <20 < 8 = &, let there exist an n x n matrix P > 0,
and scalars p; > 0,p, > 0, A > 0and A > O that satisfy LMIs
(4.21)-(4.23) with notations given by (4.7), (4.8) and LMIs (5.14),
(5.15). Then for all hy > 0 and h > O, the classical solutions of
(2.1) with Neumann boundary actuation (5.11) starting from initial
functions (Xo, ug) € Ay converge to zero for all delays t subject to
(2.4),ie.

Jim (X Xo), u(x, €5 o)), = 0.

Example 5.2. Consider the system (2.1) with Neumann actuation,
and the scalar x(t) € RwithA = 1,B = 1,A; = 0.4,a, = 0.1,
a = 0.2, and u = 50. For (2.25), we choose K = —4,c = 1.8.
By Proposition 4.2, with §g = §; = 0.5,¢; = 6.98,c; = 9.9,
c3 =1 = r; = 1, we obtain min 8 = 0.1176, and the largest
obtained ball inside of domain of attraction is given by

Xg = {(Xo, z eW:maxX2+max22
B {(Xo, 20) [ h,O]l ol (o] llzoll
+ max Z, 2 < 8.50}.
o) Il o|| = }

By Theorem 5.2, with M; = 118.7, M, = 141.8, we obtain
X, = {(Xo, up) € Wy : 13.96 max 1Xo!?

+ 16.67 max [|uol|* + 0.47 max [luy[* < 1}.
[—h,0] [—h,0]

Simulations of the solutions confirm the theoretical results. Thus,
the solution starting inside the ellipsoid from the initial conditions
X(0) = 0.26 and u(x, 8) = 0.05 cos(rx) (0 € [—0.4, 0]) converges
to zero. However, the solution starting outside the ellipsoid from
X(#)=3andu(x, 8) = 0.05 cos(x) (6 € [—0.4, 0]) is unbounded.

6. Conclusion

This paper studied boundary control of PDEs in the presence of
saturation. Boundary stabilization of ODE-heat cascade with state
time-varying delay was considered. The backstepping method was
extended to cascade of systems with state delays. An estimate on
the domain of attraction in the presence of actuator saturation was
found by using LMIs. The presented method gives efficient tools for
various control problems for PDEs with input constraints.
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