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a b s t r a c t

We consider output-feedback predictor-based stabilization of networked control systems with large
unknown time-varying communication delays. For systemswith twonetworks (sensors-to-controller and
controller-to-actuators), we design a sampled-data observer that gives an estimate of the system state.
This estimate is used in a predictor that partially compensates unknown network delays. We emphasize
the purely sampled-data nature of the measurement delays in the observer dynamics. This allows an
efficient analysis via the Wirtinger inequality, which is extended here to obtain exponential stability. To
reduce the number of sent control signals, we incorporate the event-triggering mechanism. For systems
with only a controller-to-actuators network, we take advantage of continuously available measurements
by using a continuous-time predictor and employing a recently proposed switching approach to event-
triggered control. For systems with only a sensors-to-controller network, we construct a continuous
observer that better estimates the system state and increases the maximum output sampling, therefore,
reducing the number of requiredmeasurements. A numerical example illustrates that the predictor-based
control allows one to significantly increase the network-induced delays, whereas the event-triggering
mechanism significantly reduces the network workload.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In networked control systems (NCSs), which are comprised of
sensors, controllers, and actuators connected through a communi-
cation medium, transmitted signals are sampled in time and are
subject to time-delays. Most existing papers on NCSs study ro-
bust stability with respect to small communication delays (see,
e.g., Antsaklis & Baillieul, 2004, Fridman, Seuret, & Richard, 2004,
Gao, Chen, & Lam, 2008, Liu & Fridman, 2012a). To compensate
large transport delays, a predictor-based approach can be em-
ployed. This was done in Karafyllis and Krstic (2012) for sampled-
data state-feedback control of nonlinear systems and in Karafyllis
and Krstic (2015) for an output-feedback controlwith approximate
predictors. Sampled-data predictor-based state-feedback control
of linear systems under continuous-time measurements has been
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considered in Mazenc and Normand-Cyrot (2013). Nonlinear sys-
tems under sampled-data measurements and continuous output-
feedback control have been studied in Ahmed-Ali, Karafyllis, and
Lamnabhi-Lagarrigue (2013) and Karafyllis, Krstic, Ahmed-Ali, and
Lamnabhi-Lagarrigue (2014).

All the aforementioned works deal with known constant
network-induced delays. Predictor-based networked control un-
der uncertain time-varying delays has been considered in Selivanov
and Fridman (2016b), where a state-feedback controller has been
studied. In this paper, we propose a predictor-based dynamic out-
put-feedback controller for NCSs with uncertain time-varying de-
lays.We present a newmodel of a closed-loop observer-based NCS
in the framework of the time-delay approach. In such amodel, sev-
eral delays appear due to sampling and network-induced delays.
We emphasize the purely sampled-data nature of measurement
delays in the observer dynamics. This allows an efficient analysis
via the Wirtinger inequality, which is extended here to obtain ex-
ponential stability.

We start by considering the case of two networks: sensors-to-
controller and controller-to-actuators (Section 2). Both networks
introduce large time-varying delays.We assume that themessages
sent from the sensors are time stamped (Zhang, Branicky, &
Phillips, 2001). This allows the controller to calculate the sensors-
to-controller delay. The controller-to-actuators delay is assumed
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Fig. 1. NCS with two networks.

to be unknown but belongs to a known delay interval. We design
an observer that is calculated on the controller side and gives an
estimate of the system state. This estimate is used in a predictor,
which partially compensates both delays. To reduce the workload
of the controller-to-actuators network, we incorporate the event-
triggering mechanism (Tabuada, 2007).

In Section 3, we proceed to NCSs with continuous measure-
ments and controller-to-actuators networks, where we
demonstrate that a recently proposed switching approach to
event-triggered control (Selivanov & Fridman, 2016a) takes advan-
tage of continuously available measurements and further reduces
the number of sent control signals. For the case of continuous con-
trol and sampled measurements, we construct a continuous ob-
server that better estimates the system state and increases the
maximum output sampling, therefore, reducing the number of re-
quiredmeasurements (Section 4). All the results are demonstrated
in Section 5 by an example borrowed from Zhang et al. (2001).

First, we present an extension of the Wirtinger inequality (Liu,
Suplin, & Fridman, 2010, Lemma 3.1).

Lemma 1 (Wirtinger Inequality). Let a, b, α ∈ R, 0 ≤ W ∈ Rn×n,
and f : [a, b] → Rn be an absolutely continuous function with a
square integrable first derivative such that f (a) = 0 or f (b) = 0.
Then b

a
e2αt f T (t)Wf (t) dt

≤ e2|α|(b−a) 4(b − a)2

π2

 b

a
e2αt ḟ T (t)Wḟ (t) dt.

Proof is based on an idea from Gelig and Churilov (1998,
Lemma A.18). If α ≥ 0, we have b

a
e2αt f T (t)Wf (t) dt ≤ e2αb

 b

a
f T (t)Wf (t) dt

≤ e2αb
4(b − a)2

π2

 b

a
ḟ T (t)Wḟ (t) dt

≤ e2|α|(b−a) 4(b − a)2

π2

 b

a
e2αt ḟ T (t)Wḟ (t) dt, (1)

where the second inequality follows from Liu et al. (2010,
Lemma 3.1). If α < 0, the proof is similar but e2αb should be
replaced by e2αa after the first and second inequalities in (1). �

If α = 0, Lemma 1 coincides with Liu et al. (2010, Lemma 3.1)
that was used in Liu and Fridman (2012b) to construct a Lyapunov
functional for stability analysis of a sampled-data system. Here we
use the extended Wirtinger inequality of Lemma 1 for Lyapunov-
based exponential stability analysis (see VW term in (A.1)).

2. NCSs with two networks

Consider a linear system

ẋ(t) = Ax(t)+ Bu(t)+ w1(t),
y(t) = Cx(t)+ w2(t),

t ≥ 0 (2)
Fig. 2. Time-delays and updating times.

with the state x ∈ Rn, input u ∈ Rm, output y ∈ Rl, exogenous
disturbance w1 ∈ Rn, measurement noise w2 ∈ Rl, and constant
matrices A, B, and C . We assume that (A, B) is stabilizable and
(A, C) is detectable meaning that there exist constant matrices
K ∈ Rm×n and L ∈ Rn×l such that A + BK and A + LC are Hurwitz.
Let {sk} be sampling instants such that

0 = s1 < s2 < · · · , lim
k→∞

sk = ∞, sk+1 − sk ≤ h.

In this section, we assume that at each sampling time sk (k ∈

N throughout the paper) the output y(sk) is transmitted to a
controller, which generates a control signal and transmits it to
actuators, where it is applied through zero-order hold (see Fig. 1).
The controller and actuators are event-driven with updating times
(see Fig. 2)

ξk = sk + r0 + ηk, tk = ξk + r1 + µk,

where r0 and r1 are known constant transport delays, ηk andµk are
time-varying delays such that

0 ≤ ηk ≤ ηM , 0 ≤ µk ≤ µM , ξk ≤ ξk+1, tk ≤ tk+1. (3)

Note that the sequences {ξk} and {tk} should be increasing, but we
do not require ηk + µk to be less than a sampling interval. We
assume that the sensors’ and controller’s clocks are synchronized
(Zhang et al., 2001) and together with y(sk) the time stamp sk is
transmitted so that ηk = ξk − sk − r0 can be calculated by the
controller. The delay uncertainty µk is unknown.

To reduce the workload of a controller-to-actuators network,
we incorporate the event-triggering mechanism (Tabuada, 2007).
The idea is to send only those control signals u(ξk) whose relative
change is greater than some threshold. Namely, let the nominal
control (without event-triggering) be

u(t) =


0, t < ξ1,
u(ξk), t ∈ [ξk, ξk+1),

where u(ξk) will be constructed later. Then the applied control
signal ū(t) is 0 for t < ξ1 and

ū(t) =


ū(ξk−1), t ∈ [ξk, ξk+1), (5) is true,
u(ξk), t ∈ [ξk, ξk+1), (5) is not true, (4)

where the event-triggering rule is given by

[ū(ξk−1)− u(ξk)]T Ω [ū(ξk−1)− u(ξk)] ≤ σuT (ξk)Ωu(ξk) (5)

with event-triggering parameters 0 ≤ Ω ∈ Rm×m, σ ∈ [0, 1), and
initial value ū(ξ0) = 0. Then the system (2) transforms into

ẋ(t) = Ax(t)+ w1(t), t ∈ [0, t1),
ẋ(t) = Ax(t)+ Bū(ξk)+ w1(t), t ∈ [tk, tk+1),
y(t) = Cx(sk)+ w2(sk), t ∈ [sk, sk+1).

(6)

The purpose of this section is to construct a predictor-based
controller that stabilizes (6). First, we construct the following
observer for x(t):

˙̂x(t) = Ax̂(t)+ Bu(t − r1)− L[y(t)− ŷ(t)], t ≥ 0,
ŷ(t) = Cx̂(sk), t ∈ [sk, sk+1)

(7)
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with x̂(0) = 0. The idea of this observer is the following. The
system (6) suggests that one should use ū(ξk) for t ∈ [tk, tk+1)
instead of u(t − r1) in (7) to obtain a ‘‘control-free’’ system for the
estimation error x(t)− x̂(t). However, this is not possible, since the
value tk = ξk+r1+µk depends on the unknownµk. Then onemay
intend to use ū(t−r1) = ū(ξk) for t ∈ [ξk+r1, ξk+1+r1) in (7). This,
however, leads to additional event-triggering error, which can be
avoided using u(t − r1).

Consider the change of variables (Artstein, 1982; Kwon &
Pearson, 1980)

z(t) = eA(r0+r1)x(t)+

 t+r0

t−r1
eA(t+r0−θ)Bu(θ) dθ,

ẑ(t) = eA(r0+r1)x̂(t)+

 t+r0

t−r1
eA(t+r0−θ)Bu(θ) dθ,

(8)

for t ≥ 0 and z(t) = ẑ(t) = 0 for t < 0. Then we obtain

ż(t) = Az(t)+ Bu(t + r0)− eA(r0+r1)Bu(t − r1)

+ eA(r0+r1)w1(t), t ∈ [0, t1),

ż(t) = Az(t)+ Bu(t + r0)+ eA(r0+r1)B[ū(ξk)− u(t − r1)],

+ eA(r0+r1)w1(t), t ∈ [tk, tk+1),

˙̂z(t) = Aẑ(t)+ Bu(t + r0)− eA(r0+r1)L

y(t)− ŷ(t)


, t ≥ 0.

(9)

If µM = 0, it is reasonable to take ū(θ) instead of u(θ) in (8) to
obtain a more precise state prediction. For µM ≠ 0 we take u(θ)
to avoid additional event-triggering errors that otherwise would
appear in (9) (see Selivanov & Fridman, 2016b for details). As the
nominal control law, we take u(t) = 0 for t < ξ1 and

u(t) = K ẑ(sk) = K

eA(r0+r1)x̂(sk)

+

 sk+r0

sk−r1
eA(sk+r0−θ)Bu(θ) dθ


, t ∈ [ξk, ξk+1). (10)

The value of y(sk) is available to the controller at time ξk, therefore,
x̂(sk) can be calculated by solving (7) on [sk−1, sk]. Since the
time stamp sk is sent together with y(sk), the control signal (10)
can be calculated on the controller side. Moreover, no numerical
difficulties arise while calculating the integral term in (10), since
u(θ) is piecewise constant.

We analyse the system (9) under the event-triggered control
(4), (5), (10) using the time-delay approach to NCSs (Fridman,
2014; Fridman et al., 2004; Gao et al., 2008). Define the following
time-delays

τ0(t) = t − sk, t ∈ [ξk − r0, ξk+1 − r0),
τ1(t) = t − sk, t ∈ [ξk + r1, ξk+1 + r1),
τ2(t) = t − sk, t ∈ [tk, tk+1).

(11)

It is easy to check that for t ≥ t1 the following holds:

0 ≤ τ0(t) ≤ τ̄ = h + ηM ,

r0 + r1 ≤ τ1(t) ≤ τ2(t) ≤ τM = r0 + r1 + h + ηM + µM .

To avoid some technical complications,we assume that τ̄ ≤ r0+r1.
The control law (10) implies u(t + r0) = K ẑ(sk) for t ∈ [ξk −

r0, ξk+1 − r0). Therefore, u(t + r0) = K ẑ(t − τ0(t)). Similarly,
u(t − r1) = K ẑ(t − τ1(t)). Define the event-triggering error e(t)
by 0 for t < t1 and

e(t) = ū(ξk)− u(ξk), t ∈ [tk, tk+1).

Then for t ∈ [tk, tk+1)we have

ū(ξk) = u(ξk)+ e(t) = K ẑ(t − τ2(t))+ e(t)
and the event-triggering (4), (5) for t ≥ t1 implies

0 ≤ σ ẑT (t − τ2(t))K TΩK ẑ(t − τ2(t))− eT (t)Ωe(t). (12)

For t ∈ [sk, sk+1) predictors (8) imply

y(t)− ŷ(t) = C[x(sk)− x̂(sk)] + w2(sk)
= Ce−A(r0+r1)[z(sk)− ẑ(sk)] + w2(sk).

Using the notation δz(t) = z(t)− ẑ(t), we obtain

˙̂z(t) = Aẑ(t)+ BK ẑ(t − τ0(t))− Dδz(sk)

− eA(r0+r1)Lw2(sk), t ∈ [sk, sk+1) ∩ [t1,∞)

δ̇z(t) = Aδz(t)+ Dδz(sk)+ eA(r0+r1)Be(t)

+ eA(r0+r1)BK [ẑ(t − τ2(t))− ẑ(t − τ1(t))]

+ eA(r0+r1)[w1(t)− Lw2(sk)], t ∈ [sk, sk+1) ∩ [t1,∞),

(13)

where D = eA(r0+r1)LCe−A(r0+r1).

Remark 1. While the state estimate ẑ enters (13) with different
time-delays, the estimation error δz has a delay due to sampled-
data only (does not undergo additional delays). This allows
an efficient analysis via Wirtinger-based Lyapunov–Krasovskii
functional (see VW term in (A.1)).

Theorem 1. For given event-triggering parameter σ ≥ 0 and decay
rate α > 0 let there exist n × n matrices P1 > 0, P2 > 0, n × n
non-negative matrices S, S0, S1, R0, R1,W, an m × mmatrixΩ ≥ 0,
and n × n matrices Gi (i = 0, . . . , 3) such that

Φ < 0,

R0 G0
∗ R0


≥ 0,


R1 Gi
∗ R1


≥ 0, i = 1, 2, 3,

whereΦ = {Φij} is a symmetric matrix composed from

Φ11 = P1A + ATP1 + 2αP1 + S0 − ρ̄R0, Φ13 = ρ̄G0,

Φ12 = P1BK + ρ̄(R0 − G0),

Φ18 = Φ19 = −P1D, Φ1,11 = ATH,

Φ23 = ρ̄(R0 − G0), Φ22 = −Φ23 − ΦT
23,

Φ2,11 = (BK)TH,
Φ33 = ρ̄(S − S0 − R0),

Φ44 = e−2α(r0+r1)(S1 − S)− ρMR1,

Φ45 = ρM(R1 − G1), Φ46 = ρM(G1 − G2),

Φ47 = ρMG2,

Φ55 = −Φ45 − ΦT
45, Φ57 = ρM(G3 − G2),

Φ56 = Φ45 − Φ57,

Φ67 = ρM(R1 − G3), Φ68 = −Φ58 = (ρABK)TP2,

Φ6,12 = −Φ5,12 = heαh(ρABK)TW ,
Φ77 = −ρM(S1 + R1),

Φ66 = −Φ67 − ΦT
67 + σK TΩK ,

Φ8,11 = Φ9,11 = −DTH,

Φ88 = P2(A + D)+ (A + D)TP2 + 2αP2, Φ89 = P2D,

Φ8,10 = P2ρAB, Φ8,12 = heαh(A + D)TW ,

Φ99 = −π2W/4,

Φ9,12 = heαhDTW , Φ10,10 = −Ω,

Φ10,12 = heαh(ρAB)TW ,
Φ11,11 = −H, Φ12,12 = −W
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withH = τ̄ 2R0+(τM−r0−r1)2R1, ρA = eA(r0+r1), ρ̄ = e−2ατ̄ , ρM =

e−2ατM . Then the system (6), (7) under the predictor-based event-
triggered controller (4), (5), (10) is input-to-state stable with the
decay rate α, i.e.

∃M : |x(t)| ≤ Me−αt
|x(0)| + M sup

s∈[0,t]
|w(t)|,

|x̂(t)| ≤ Me−αt
|x(0)| + M sup

s∈[0,t]
|w(t)|, (14)

wherew(t) = col{w1(t), w2(sk)} for t ∈ [sk, sk+1).

Proof is given in Appendix A.

Remark 2. The proposed approach can be easily extended to cope
with packet dropouts with bounded number of consecutive packet
losses. Consider an unreliable networkwith themaximumnumber
of consecutive packet losses dsc (from a sensor to a controller) and
dca (from the controller to an actuator). To cope with this issue,
we set the sensor to send the measurement y(sk) dsc + 1 times at
time instants sk + ihd/dsc , where i = 0, . . . , dsc, hd > 0. The same
strategy is applied to the data sent from the controller. Denote by
r sck and rcak network delays that correspond to the first successfully
sent packets. Then the closed-loop system is given by (13) with

ηk = (dsck /d
sc

+ dcak /d
ca)hd + r sck + rcak ≤ ηM ,

where dsck and dcak are the actual numbers of consecutive packets
that were lost. If r sck + rcak < ηM , one can choose hd > 0 such
that ηk ≤ ηM and apply the results of this section. This approach
can be improved by introducing the acknowledgement signal of
successful reception as suggested in Guinaldo, Lehmann, Sanchez,
Dormido, and Johansson (2012).

3. NCSs with a controller-to-actuators network

In this section, we consider a system with a controller-to-
actuator network and continuously available measurements (see
Fig. 3). Based on the available measurements, a controller con-
tinuously calculates a control signal and transmits it at the sam-
pling times ξk. To obtain appropriate sequence of ξk, we use a
switching approach to event-triggered control (Selivanov & Frid-
man, 2016a) that takes advantage of continuously available mea-
surements. Namely, we take ξ1 = 0 and

ξk+1 = min{ξ ≥ ξk + h | (u(ξk)− u(ξ))TΩ(u(ξk)− u(ξ))

≥ σuT (ξ)Ωu(ξ)}, (15)

with event-triggering parameters 0 ≤ Ω ∈ Rm×m, σ ∈ [0, 1), h >
0. According to (15), after the controller sends out the control signal
u(ξk), it waits for at least the time period h. Then it starts to contin-
uously check the event-triggering rule and sends the next control
signal when the event-triggering condition is violated. The idea of
a switching approach to event-triggered control is to present the
closed-loop systemas a switching between a systemwith sampling
h and a system with continuous event-triggering mechanism. This
ensures large inter-event times and reduces the number of sent
signals (Selivanov & Fridman, 2016a).

The system takes the form

ẋ(t) = Ax(t)+ w1(t), t ∈ [0, t1),
ẋ(t) = Ax(t)+ Bu(ξk)+ w1(t), t ∈ [tk, tk+1),
y(t) = Cx(t)+ w2(t).

(16)

Recall that tk = ξk + r1 + µk are the actuators updating times.
We take the observer (7) with continuously changing u(t), y(t),
and ŷ(t) = Cx̂(t). Performing the change of variable (8) (with
Fig. 3. NCS with a controller-to-actuators network.

r0 = 0), we obtain the system (9) with ū(ξk) = u(ξk). As the
nominal control law we take

u(t) = K ẑ(t) = K

eAr1 x̂(t)+

 sk

sk−r1
eA(sk−θ)Bu(θ) dθ


(17)

for t ≥ 0 and u(t) = 0 for t < 0. Since u(θ) enters the
integral term in (17), one needs to continuously calculate u(θ) and
x̂(t). Therefore, the implementation of (17) is more complicated
than that of (10) with a piecewise constant u(θ) (Mirkin, 2004).
On the other hand, (7) with continuously changing u(t), y(t), ŷ(t)
gives a better estimate of the state x(t) and, as a results, allows
to transmit less control signals (see Section 5 for details). Further
analysis is based on a switching approach to event-triggered
control (Selivanov & Fridman, 2016a). Define

t∗k = min{tk + h, tk+1},
τ3(t) = t − ξk − r1, t ∈ [tk, t∗k ),

µ(t) = µk + (t − t∗k )
µk+1 − µk

tk+1 − t∗k
, t ∈ [t∗k , tk+1),

e1(t) = u(ξk)− u(t − r1 − µ(t)), t ∈ [t∗k , tk+1),

where 0 ≤ τ3(t) ≤ τ̄3 = h + µM . The function µ(t) is chosen so
that t − r1 −µ(t) ∈ [ξk + h, ξk+1) for t ∈ [t∗k , tk+1), therefore, (15)
implies

0 ≤ σ ẑT (t − r1 − µ(t))K TΩK ẑ(t − r1 − µ(t))

− eT1(t)Ωe1(t) (18)

for t ∈ [t∗k , tk+1). Using the time-delay approach described in the
previous section and denoting δz(t) = z(t)− ẑ(t), we obtain

˙̂z(t) = (A + BK)ẑ(t)− Dδ(t)− eAr1Lw2(t), t ≥ 0,

δ̇z(t) = (A + D)δz(t)− eAr1BK ẑ(t − r1)

+ eAr1 [w1(t)− Lw2(t)], t ∈ [0, t1),

δ̇z(t) = (A + D)δz(t)+ eAr1 [w1(t)− Lw2(t)]

+ eAr1BK [ẑ(t − r1 − τ3(t))− ẑ(t − r1)], t ∈ [tk, t∗k ),

δ̇z(t) = (A + D)δz(t)+ eAr1Be1(t)

+ eAr1BK [ẑ(t − r1 − µ(t))− ẑ(t − r1)]

+ eAr1 [w1(t)− Lw2(t)], t ∈ [t∗k , tk+1),

(19)

with D = eAr1LCe−Ar1 .

Theorem 2. For given event-triggering parameter σ ≥ 0 and decay
rate α > 0 let there exist n × n matrices P1 > 0, P2 > 0, n × n
non-negative matrices S, S0, S1, R0, R1, an m×mmatrixΩ ≥ 0, and
n × n matrices G0,G1 such that

Ξ ≤ 0, Ψ ≤ 0,

R0 G0
∗ R0


≥ 0,


R1 G1
∗ R1


≥ 0,

whereΞ = {Ξij},Ψ = {Ψij} are symmetric matrices composed from

Ξ11 = Ψ11 = P2(A + D)+ (A + D)TP2 + 2αP2,

Ξ12 = Ψ12 = −DTP1, Ξ15 = −Ξ13 = Ψ14 = −Ψ13 = P2ρABK ,

Ξ22 = Ψ22 = P1(A + BK)+ (A + BK)TP1 + 2αP1 + S,
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Ξ27 = Ψ28 = (A + BK)TH,

Ξ17 = Ψ18 = −DTH, Ξ34 = ρMR0,

Ξ33 = Ψ33 = e−2αr1(S0 − S)− ρMR0,

Ξ45 = Ξ56 = ρ̄(R1 − G1),

Ξ44 = Ψ55 = ρM(S1 − S0 − R0)− ρ̄R1, Ξ55 = −Ξ45 − Ξ T
45,

Ξ46 = ρ̄G1, Ξ66 = −ρ̄(S1 + R1), Ξ77 = Ψ88 = −H,
Ψ17 = P2ρAB, Ψ35 = ρMG0, Ψ34 = Ψ45 = ρM(R0 − G0),

Ψ44 = −Ψ34 − Ψ T
34 + σK TΩK , Ψ56 = ρ̄R1,

Ψ66 = −ρ̄(S1 + R1), Ψ77 = −Ω

with H = µ2
MR0 + h2R1, ρA = eAr1 , ρM = e−2α(r1+µM ), ρ̄ =

e−2α(r1+τ̄3). Then the system (7), (15)–(17)with ŷ(t) = Cx̂(t) is input-
to-state stable with the decay rate α in the sense of (14).

Proof is given in Appendix B.

Remark 3. Note that the event-triggering rules (5) and (15)
guarantee the Zeno behaviour avoidance (that is limk ξk = ∞).
For (5), this follows from the condition limk sk = ∞ and the
definition of ξk. The event-triggering rule (15) explicitly guarantees
that ξk+1 − ξk ≥ h > 0.

4. NCSs with a sensors-to-controller network

In this section, we consider a systemswith a continuous control
and a sensor-to-controller network (see Fig. 4) with sampling
instants sk = kh, k ∈ N:

ẋ(t) = Ax(t)+ Bu(t)+ w1(t),
y(t) = Cx(sk)+ w2(sk), t ∈ [sk, sk+1).

(20)

We use the observer (7) with r1 = 0. The change of variable (8) for
t ≥ 0 leads to

ż(t) = Az(t)+ Bu(t + r0)+ eA(r0+r1)w1(t),
˙̂z(t) = Aẑ(t)+ Bu(t + r0)− eA(r0+r1)L(y(t)− ŷ(t)).

(21)

As one can see from (21), the time delay r0 is compensated by the
predictors (8), therefore, one could intend to use u(t) = K ẑ(t −

r0). However, the value of ẑ(t − r0) cannot be calculated by the
controller for t ∈ [ξ ∗

k , ξk+1), where ξ ∗

k = min{ξk, sk+1+r0}, since it
depends on y(sk+1) that is not available to the controller. The latest
value of ẑ that can be calculated by the controller for t ∈ [ξ ∗

k , ξk+1)
is ẑ(sk + h) = ẑ(sk+1). Therefore, we take u(t) = ẑ(t − r0) for
t ∈ [ξk, ξ

∗

k ) and u(t) = ẑ(sk+1) for t ∈ [ξ ∗

k , ξk+1) or, equivalently,
u(t) = 0 for t < ξ1 and

u(t) = K ẑ(t − r0 − η(t)), (22)

where

η(t) =


0, t ∈ [ξk, ξ

∗

k ),
t − sk+1 − r0, t ∈ [ξ ∗

k , ξk+1).

Note that η(t) ≤ ηM . Using the time-delay approach described in
Section 2 and denoting δz(t) = z(t) − ẑ(t) for t ∈ [sk, sk+1), we
obtain

˙̂z(t) = Aẑ(t)+ BK ẑ(t − η(t))− Dδz(sk)− eA(r0+r1)Lw2(sk),

δ̇z(t) = Aδz(t)+ Dδz(sk)+ eA(r0+r1)[w1(t)− Lw2(sk)],

where D = eA(r0+r1)LCe−A(r0+r1).
Fig. 4. NCS with a sensors-to-controller network.

Theorem 3. For a given decay rate α > 0 let there exist n × n
matrices P1 > 0, P2 > 0, n × n non-negative matrices S, R,W, and
n × n matrix G such that

N ≤ 0,

R G
∗ R


≥ 0,

where N = {Nij} is a symmetric matrix composed from

N11 = P1A + ATP1 + 2αP1 + S − ρMR,
N12 = N15 = −P1D,
N13 = P1BK + ρM(R − G), N14 = ρMG,

N16 = ηMATR,

N22 = P2(A + D)+ (A + D)TP2 + 2αP2, N25 = P2D,

N26 = N56 = −ηMDTR, N27 = heαh(A + D)TW ,

N34 = ρM(R − G), N33 = −N34 − NT
34,

N36 = ηM(BK)TR,

N44 = −ρM(S + R), N55 = −π2W/4,

N56 = −ηMDTR,

N57 = heαhDTW , N66 = −R, N77 = −W

with ρM = e−2αηM . Then the system (7), (8), (20), (22) is input-to-
state stable with the decay rate α in the sense of (14).

Proof is similar to that of Theorem1 and, therefore, is omitted here.

Remark 4. MATLAB codes for solving the LMIs of Theorems 1–3
are available at https://github.com/AntonSelivanov/Aut16

5. Example: an inverted pendulum on a cart

Consider an inverted pendulum on a moving cart (Wang &
Lemmon, 2009) described by (2) with

A =

 0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/l 0

 , B =

 0
1/M
0

−1/(Ml)

 ,
C =


1 0 0 0
0 0 1 0


and x(0) = [0.98, 0, 0.2, 0]T , where x1 is the cart’s position, x2 is
the cart’s speed, x3 is the pendulum’s bob angle with respect to
the vertical, x4 is its speed, M = 10 is the cart mass, m = 1 is
the pendulum mass, l = 3 is the length of the pendulum arm, and
g = 10 is the gravitational acceleration. For

K = [ 2 12 378 210 ] , L =

 −11.7 1.2
−37 8.9
1.2 −11
7.9 −36


the matrices A + BK and A + LC are Hurwitz. Below we compare
different control strategies proposed in this paper.

First, consider a system with two networks (sensors-to-
controller and controller-to-actuators). According to numerical
simulations, the system (6), (7) under the control input ū(ξk) =

https://github.com/AntonSelivanov/Aut16
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Table 1
Average numbers of sent control signals (SCS) for different control strategies (r1 = 0.1, µM = 0.005, α = 0.001, ∥w1(t)∥ ≤ 10−3, ∥w2(t)∥ ≤ 10−3).

r0 = 0.1, ηM = 0.005 r0 = ηM = 0
σ h SCS σ h SCS

Sampled predictor (10) 0 0.044 228 0 0.057 176
Sampled event-triggering (4), (5), (10) 0.01 0.039 147.7 0.01 0.052 124.6
Continuous predictor (17) – – – 0 0.088 114
Switching event-triggering (15), (17) – – – 0.01 0.088 97.6
Kx̂(sk) (without a predictor and event-triggering) is not stable for
r0 = r1 = 0.1, h = 0.035, and ηM = µM = 0. If σ = 0 (no
event-triggering), the conditions of Theorem 1 are satisfied for the
same h and larger r0 = r1 = 0.17, ηM = µM = 0.005. That is, the
predictor-based controller (10) admits larger network delays.

For r0 = r1 = 0.1, ηM = µM = 0.005, α = 0.001, σ = 0
Theorem 1 gives the maximum sampling period h = 0.044. This
implies that, without event-triggering, within 10 s of simulations
⌊10/h⌋ + 1 = 228 control signals are sent in the system (6),
(7) under the predictor-based controller (10) (⌊·⌋ stands for the
integer part). For the event-triggered controller (4), (5), (10) with
σ = 0.01 Theorem 1 gives h = 0.039. To obtain the number
of sent control signals under the event-triggering, we perform 10
numerical simulations with random i.i.d. ηk and µk satisfying (3)
andw1(t), w2(t) satisfying ∥w1(t)∥ ≤ 10−3, ∥w2(t)∥ ≤ 10−3. The
results are given in Table 1. As one can see, event-triggering allows
to reduce the workload of the controller-to-actuators network by
more than 35%. Note that for event-triggered control (σ > 0)
the sampling period h is smaller than for periodic control. That
is, by introducing the event-triggering mechanism, we reduce the
number of sent control signals but increase the number of sent
measurements. However, the total number of signals sent through
both sensors-to-controller and controller-to-actuators networks is
reduced by more than 10%.

Now we consider a system with a controller-to-actuators
network and continuous measurements (r0 = ηM = 0). For this
case, one can apply the sampled predictor-based controller (10) or
the sampled event-triggered controller (4), (5), (10) (with sk = ξk).
The sampled approach simplifies the calculation of the integral
term in (8) but does not take advantage of continuously available
measurements. Indeed, as one can see fromTable 1, the continuous
predictor (17) without event-triggering (ξk = kh) reduces the
network workload compared to the sampled predictor (10) by
more than 35%.

To compare the sampled event-triggering mechanism (4), (5),
(10) and the switching event-triggering (15), (17) for α = 0.001
and σ = 0.01 we apply Theorems 1 and 2 to find the maximum
allowable h. Then we perform 10 numerical simulations with
random i.i.d. µk subject to (3) (r1 = 0.1, µM = 0.005). In
Table 1 one can see that the switching event-triggering reduces
the number of sent control signals by more than 20% compared
to the sampled event-triggering and by almost 15% compared
to the continuous predictor without event-triggering. The total
numbers of sent measurements are reduced by 33% and 7%,
respectively.

Finally, consider the system (20)with only sensors-to-controller
network (sk = kh). For the continuous controller (22) with the ob-
server (7) Theorem 3 gives h = 0.124. For the sampled controller
(10) with the observer (7) Theorem 1 gives h = 0.056. That is, by
using the continuous controller, one can significantly reduce the
number of required measurements y(kh).

Appendix A. Proof of Theorem 1

For t ≥ t1 consider the functional

V = V1 + V2 + VS0 + VR0 + VS + VS1 + VR1 + VW ,
where

V1 = ẑT (t)P1ẑ(t), V2 = δTz (t)P2δz(t),

VS0 =

 t

t−τ̄
e2α(s−t)ẑT (s)S0ẑ(s) ds,

VR0 = τ̄

 0

−τ̄

 t

t+θ
e2α(s−t) ˙̂z

T
(s)R0

˙̂z(s) ds dθ,

VS =

 t−τ̄

t−r0−r1
e2α(s−t)ẑT (s)Sẑ(s) ds,

VS1 =

 t−r0−r1

t−τM
e2α(s−t)ẑT (s)S1ẑ(s) ds,

VR1 = (τM − r0 − r1)


−r0−r1

−τM

 t

t+θ
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds dθ,

VW = h2e2αh
 t

sk
e2α(s−t)δ̇Tz (s)W δ̇z(s) ds

−
π2

4

 t

sk
e2α(s−t)vT (s)Wv(s) ds, t ∈ [sk, sk+1)

(A.1)

with v(t) = δz(sk) − δz(t) for t ∈ [sk, sk+1). Wirtinger-based
term VW is non-negative due to Lemma 1, therefore, V is positive-
definite. Due to VW , the functional V has finite jumps at t = sk, but
since VW = 0 for t = sk, V (sk − 0) ≥ V (sk).

Jensen’s inequality (Gu, Kharitonov, & Chen, 2003) and Park’s
theorem (Park, Ko, & Jeong, 2011) lead to

V̇R0 + 2αVR0 = τ̄ 2 ˙̂z
T
(t)R0

˙̂z(t)

− τ̄

 t

t−τ̄
e2α(s−t) ˙̂z

T
(s)R0

˙̂z(s) ds ≤ τ̄ 2 ˙̂z
T
(t)R0

˙̂z(t)

− e−2ατ̄


ẑ(t)− ẑ(t − τ0(t))
ẑ(t − τ0(t))− ẑ(t − τ̄ )

T 
R0 G0
GT
0 R0


×


ẑ(t)− ẑ(t − τ0(t))

ẑ(t − τ0(t))− ẑ(t − τ̄ )


, (A.2)

V̇R1 + 2αVR1 = (τM − r0 − r1)2 ˙̂z
T
(t)R1

˙̂z(t)

− (τM − r0 − r1)
 t−r0−r1

t−τM
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds

≤ (τM − r0 − r1)2 ˙̂z
T
(t)R1

˙̂z(t)− e−2ατM

×


ẑ(t − r0 − r1)− ẑ(t − τ1(t))
ẑ(t − τ1(t))− ẑ(t − τ2(t))
ẑ(t − τ2(t))− ẑ(t − τM)

T 
R1 G1 G2
∗ R1 G3
∗ ∗ R1



×


ẑ(t − r0 − r1)− ẑ(t − τ1(t))
ẑ(t − τ1(t))− ẑ(t − τ2(t))
ẑ(t − τ2(t))− ẑ(t − τM)


. (A.3)

By calculating V̇ and adding (12), in view of (A.2), (A.3), we obtain

V̇ + 2αV − β ≤ ϕT (t)Φϕ(t)+ ϕT (t)Ψψ(t)

+ ˙̂z
T
(t)H ˙̂z + e2αhh2δ̇Tz (t)W δ̇z(t)− β,

where ϕ(t) = col{ẑ(t), ẑ(t − τ0(t)), ẑ(t − τ̄ ), ẑ(t − r0 −

r1), ẑ(t − τ1(t)), ẑ(t − τ2(t)), ẑ(t − τM), δz(t), v(t), e(t)}, ψ(t) =
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col{eA(r0+r1)w1(t), eA(r0+r1)Lw2(sk)},Φ is obtained from Φ by
taking away the last two block-columns and block-rows, and Ψ is
(9n + m)× 2nmatrix. By taking

β = βw sup
s∈[0,t]

|eA(r0+r1)w1(t)|2 + βw sup
s∈[0,t]

|eA(r0+r1)Lw2(t)|2,

substituting ˙̂z(t), δ̇z(t) and applying Schur’s complement formula,
we obtain that if
Φ Ψ ′

∗ −βwI2n


≤ 0, (A.4)

whereΨ ′ is (11n+m)×2nmatrix, then V̇ (t) ≤ −2αV (t)+β . Since
Φ < 0, the relation (A.4) is true for large enough βw . Therefore,

V (t) ≤ e−2α(t−t1)V (t1)+
β

2α
, t ≥ t1.

Since z(t) = ẑ(t) + δz(t) and the initial time interval does not
influence exponential decay rate analysis (Liu & Fridman, 2014),
the latter implies

|ẑ(t)| ≤ C1(e−αt
|z(0)| + sup

s∈[0,t]
|w(t)|),

|z(t)| ≤ C1(e−αt
|z(0)| + sup

s∈[0,t]
|w(t)|), t ≥ 0

for some C1 > 0. From (8), we have

x(t) = e−A(r0+r1)z(t)

−

 t+r0

t−r1
eA(t−r1−θ)BK ẑ(θ − r0 − τ0(θ − r0)) dθ, t ≥ 0,

therefore, there exists C2 > 0 such that

|x(t)| ≤ C2(e−αt
|z(0)| + sup

s∈[0,t]
|w(t)|)

≤ C2e−αt
eA(r0+r1)

 |x(0)| + C2 sup
s∈[0,t]

|w(t)|.

Similarly, |x̂(t)| ≤ Me−αt
|x(0)| + M sups∈[0,t] |w(t)|.

Appendix B. Proof of Theorem 2

For t ≥ ξ1 consider the functional

V = V1 + V2 + VS + VS0 + VR0 + VS1 + VR1 ,

where V1, V2 are given in (A.1) and

VS =

 t

t−r1
e2α(s−t)ẑT (s)Sẑ(s) ds,

VS0 =

 t−r1

t−r1−µM

e2α(s−t)ẑT (s)S0ẑ(s) ds,

VR0 = µM


−r1

−r1−µM

 t

t+θ
e2α(s−t) ˙̂z

T
(s)R0

˙̂z(s) ds dθ,

VS1 =

 t−r1−µM

t−r1−τ̄3
e2α(s−t)ẑT (s)S1ẑ(s) ds,

VR1 = (τ̄3 − µM)


−r1−µM

−r1−τ̄3

 t

t+θ
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds dθ.

We have

V̇R0 + 2αVR0 = µ2
M

˙̂z
T
(t)R0

˙̂z(t)

−µM

 t−r1

t−r1−µM

e2α(s−t) ˙̂z
T
(s)R0

˙̂z(s) ds,

V̇R1 + 2αVR1 = h2 ˙̂z
T
(t)R1

˙̂z(t)

− h
 t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds.
For t ∈ [tk, t∗k ), τ3(t) ∈ [µM , τ̄3] Jensen’s inequality and Park’s
theorem imply

−µM

 t−r1

t−r1−µM

e2α(s−t) ˙̂z
T
(s)R0

˙̂z(s) ds ≤ −e−2α(r1+µM )

× [ẑ(t − r1)− ẑ(t − r1 − µM)]
TR0[ẑ(t − r1)

− ẑ(t − r1 − µM)], (B.1)

−h
 t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds ≤ −e−2α(r1+τ̄3)

×


ẑ(t − r1 − µM)− ẑ(t − r1 − τ3(t))
ẑ(t − r1 − τ3(t))− ẑ(t − r1 − τ̄3)

T 
R1 G1
GT
1 R1


×


ẑ(t − r1 − µM)− ẑ(t − r1 − τ3(t))
ẑ(t − r1 − τ3(t))− ẑ(t − r1 − τ̄3)


. (B.2)

Calculating V̇ for t ∈ [tk, t∗k ), τ3(t) ∈ [µM , τ̄3] in view of (B.1),
(B.2), we obtain

V̇ + 2αV − β ≤ ξ T (t)Ξξ(t)+ ξ T (t)ΦφT (t)+ ˙̂z
T
(t)H ˙̂z(t)− β,

where ξ(t) = col{δz(t), ẑ(t), ẑ(t − r1), ẑ(t − r1 −µM), ẑ(t − r1 −

τ3(t)), ẑ(t − r1 − τ̄3)}, φ(t) = col{eA(r0+r1)w1(t), eA(r0+r1)Lw2(sk)},
Ξ is obtained from Ξ by taking away the last block-column and
block-row, andΦ is 6n × 2n matrix. By taking

β = βw sup
s∈[0,t]

|eA(r0+r1)w1(t)|2 + βw sup
s∈[0,t]

|eA(r0+r1)Lw2(t)|2,

substituting ˙̂z(t) and applying Schur’s complement formula, we
obtain that if
Ξ Φ ′

∗ −βwI2n


≤ 0, (B.3)

where Φ ′ is 7n × 2n matrix, then V̇ (t) ≤ −2αV (t) + β . Since
Ξ < 0, the relation (B.3) is true for large enough βw . Therefore,
V̇ (t) ≤ −2αV (t)+ β for t ∈ [tk, t∗k ), τ3(t) ∈ [µM , τ̄ ].

For t ∈ [t∗k , tk+1) Jensen’s inequality and Park’s theorem imply

−µM

 t−r1

t−r1−µM

e2α(s−t) ˙̂z
T
(s)R0

˙̂z(s) ds ≤ −e−2α(r1+µM )

×


ẑ(t − r1)− ẑ(t − r1 − µ(t))

ẑ(t − r1 − µ(t))− ẑ(t − r1 − µM)

T 
R0 G0
GT
0 R0


×


ẑ(t − r1)− ẑ(t − r1 − µ(t))

ẑ(t − r1 − µ(t))− ẑ(t − r1 − µM)


, (B.4)

−h
 t−r1−µM

t−r1−τ̄3
e2α(s−t) ˙̂z

T
(s)R1

˙̂z(s) ds ≤ −e−2α(r1+τ̄3)

× [ẑ(t − r1 − µM)− ẑ(t − r1 − τ̄3)]
TR1[ẑ(t − r1 − µM)

− ẑ(t − r1 − τ̄3)]. (B.5)

Calculating V̇ for t ∈ [t∗k , tk+1) in view of (B.4), (B.5) and adding
(18), we obtain

V̇ + 2αV − β ≤ ψT (t)Ψψ(t)+ ψT (t)Φφ(t)+ ˙̂z
T
(t)H ˙̂z(t)− β,

whereψ(t) = col{δz(t), ẑ(t), ẑ(t− r1), ẑ(t− r1−µ(t)), ẑ(t− r1−

µM), ẑ(t−r1− τ̄ ), e1(t)},Ψ is obtained fromΨ by taking away the
last block-column and block-row, andΦ is (6n + m)× 2n matrix.
Similarly to the previous case, we obtain V̇ (t) ≤ −2αV (t)+ β for
t ∈ [t∗k , tk+1).

For t ∈ [tk, t∗k ), τ3(t) ∈ [0, µM) the system (19) is described
by the last line of (19) with e1(t) = 0 satisfying (18), therefore,
V̇ ≤ −2αV + β for t ≥ ξ1. The end of the proof is similar to that
of Theorem 1.
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