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a b s t r a c t

The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by
1-D Kuramoto–Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially
distributed (either point or averaged)measurements of the state overN sampling spatial intervals. Locally
stabilizing sampled-data controllers are designed that are applied through distributed in space shape
functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space,
sufficient conditions ensuring regional exponential stability of the closed-loop system are established in
terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and
Lyapunov–Krasovskii method. As it happened in the case of diffusion equation, the descriptor method
appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto–Sivashinsky
equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the
efficiency of the results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Kuramoto–Sivashinsky equation (KSE) describes a variety of
physical and chemical phenomena including magnetized plas-
mas, flame front propagation, viscous flow problems and chemical
reaction–diffusion processes (see e.g. Kuramoto & Tsuzuki, 1975;
Sivashinsky, 1977; Lunasin & Titi, 2017). Boundary control of 1-D
KSE was studied in Coron and Lü (2015) and Liu and Krstic (2001).
The local rapid stabilization problem for a controlled KSE on a
bounded intervalwas considered in Coron and Lü (2015). In Liu and
Krstic (2001), a Neumann feedback lawwas designed to guarantee
L2-global exponential stability and H2-global asymptotic stability
for small values of the anti-diffusion parameter.

Distributed control of KSE was studied in Armaou and
Christofides (2000a, b), Christofides and Armaou (2000) and Lu-
nasin and Titi (2017). In Armaou and Christofides (2000a, b), a
finite-dimensional controller was designed on the basis of a finite-
dimensional system that captures the dominant (slow) dynamics
of the infinite-dimensional system. In Christofides and Armaou
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(2000), the problem of global exponential stabilization of the KSE
subject to periodic boundary conditions was considered. In Lu-
nasin and Titi (2017), a distributed finite-dimensional feedback
controller based on either point or averaged measurements of the
state was proposed.

For practical application of finite-dimensional controllers for
partial differential equations (PDEs), their sampled-data imple-
mentation is important. Sampled-data control of PDEs is becoming
a hot topic. Sampled-data control of KSEwas studied in Ghantasala
and El-Farra (2012), where model reduction approach was sug-
gested, and the designwas based on the finite-dimensional system
that captures the dominant dynamics. The latter approach is a
qualitative one without giving explicit bounds on the performance
(e.g. decay rate) or on the domain of attraction of the closed-loop
system.

Distributed sampled-data control of PDEs under the point or
spatially averaged measurements was suggested in Bar Am and
Fridman (2014), Fridman and Bar Am (2013) and Fridman and
Blighovsky (2012), where LMI conditions for the exponential sta-
bility and L2-gain analysis of the closed-loop systemswere derived
in the framework of time-delay approach to sampled-data control
by employing appropriate Lyapunov functionals. However, the
above results were confined to diffusion equations and to globally
Lipschitz nonlinearities, where stabilization is global. Distributed
sampled-data control of various classes of PDEs is of great interest.

In the present paper, we introduce distributed sampled-data
control of 1-D nonlinear KSE with the Dirichlet or periodic bound-
ary conditions. The sensors provide either point or averaged
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discrete-time measurements of the state. The controllers enter
KSE through distributed in space shape functions and the con-
trol signals are generated by zero-order hold devices. As for the
diffusion equation, we exploit the time-delay approach to
sampled-data control and the descriptor method for Lyapunov–
Krasovskii-based delay-dependent stability analysis (Fridman,
2001, 2014; Fridman & Orlov, 2009). In terms of LMIs, we give
regional exponential stability conditions for the sampled-data
closed-loop system and find a bound on the domain of attrac-
tion (i.e. on the set of initial conditions, starting from which the
solutions are exponentially converging). Under the correspond-
ing continuous-time controllers, we derive LMI conditions for the
global exponential stability. Some preliminary results under point
statemeasurementswill be presented in Kang and Fridman (2018).

The paper is organized as follows. Problem formulation is given
in Section 2. In Sections 3 and 4, continuous in time and sampled-
data controllers under the point or averaged state measurements
are constructed to stabilize the system. Section 5 contains a nu-
merical example to illustrate the efficiency of the main results.
Finally, some concluding remarks are presented in Section 6 and
some proofs are given in the Appendix.

Notation. L2(0, L) stands for the Hilbert space of square inte-
grable scalar functions u(x) on (0, L) with the corresponding norm
∥u∥L2 = [

∫ L
0 u2(x)dx]

1
2 . The Sobolev space Hk(0, L) is defined as

Hk(0, L) = {u : Dαu ∈ L2(0, L), ∀ 0 ≤ |α| ≤ k}

with norm ∥u∥Hk =
{∑

0≤|α|≤k∥D
αu∥2

L2
} 1

2 . Moreover,

Hk
0(0, L) = {u ∈ Hk(0, L) : u(0) = Du(0) = · · ·

= Dk−1u(0) = 0, u(L) = Du(L) = · · · = Dk−1u(L) = 0}.

2. Problem formulation and useful lemmas

We consider 1-D Kuramoto–Sivashinsky equation

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

=

N∑
j=1

bj(x)Uj(t), 0 < x < L, t ≥ 0, (2.1)

subject to Dirichlet

u(0, t) = u(L, t) = 0, ux(0, t) = ux(L, t) = 0 (2.2)

or to periodic
∂mu
∂xm

(0, t) =
∂mu
∂xm

(L, t), m = 0, 1, 2, 3 (2.3)

boundary conditions. Here ν is a positive constant, u(x, t) is the
state of KSE, and Uj(t) ∈ R, j = 1, 2, . . . ,N are the control inputs.
Dirichlet boundary conditions were considered in Liu and Krstic
(2001), whereas the periodic ones were studied in Armaou and
Christofides (2000a, b) and Lunasin and Titi (2017). The open-loop
system (2.1) (subject to Uj(t) ≡ 0) may become unstable if ν is
small enough. Thus, for L = 2π if ν < 1 the open-loop system is
unstable (see the example below).

As in Azouani and Titi (2014), Fridman and Bar Am (2013), Frid-
man and Blighovsky (2012) and Lunasin and Titi (2017), consider
the points

0 = x0 < x1 < · · · < xN = L

that divide [0, L] into N sampling intervals Ωj = [xj−1, xj). Let

0 = t0 < t1 < · · · < tk · · · , lim
k→∞

tk = ∞

be sampling time instants. The sampling intervals in time and in
space may be variable but bounded,

0 ≤ tk+1 − tk ≤ h, 0 < xj − xj−1 = ∆j ≤ ∆,

where h and ∆ are the corresponding upper bounds. The control
inputs Uj(t) enter (2.1) through the shape functions{
bj(x) = 1, x ∈ Ωj,

bj(x) = 0, x ̸∈ Ωj,
j = 1, . . . ,N. (2.4)

Sensors provide either point

yjk = u(x̄j, tk), x̄j =
xj−1 + xj

2
, j = 1, . . . ,N,

k = 0, 1, 2 . . .
(2.5)

or averaged

yjk =

∫ xj
xj−1

u(x, tk)dx

∆j
, j = 1, . . . ,N, k = 0, 1, 2 . . . (2.6)

measurements of the state. Ourmain objective is to design for (2.1)
an exponentially stabilizing sampled-data controller that can be
implemented by zero-order hold devices:

Uj(t) = −µyjk, j = 1, . . . ,N, t ∈ [tk, tk+1), k = 0, 1, . . . , (2.7)

whereµ is a positive controller gain and yjk is given by (2.5) or (2.6).
We formulate next some useful lemmas.1

Lemma 2.1 (Poincaré Inequality Payne & Weinberger, 1960). Let
g ∈ H1(0, L) be a scalar function with

∫ L
0 g(x)dx = 0. Then∫ L

0
g2(x)dx ≤

L2

π2

∫ L

0

[
dg
dx

(x)
]2

dx.

Lemma2.2 (Wirtinger Inequality and its GeneralizationWang, 1994).
Let g ∈ H1

0 (0, L). Then the following inequality holds:∫ L

0
g2(x)dx ≤

L2

π2

∫ L

0

[
dg
dx

(x)
]2

dx.

Moreover, if g ∈ H2
0 (0, L), then∫ L

0

[
dg
dx

(x)
]2

dx ≤
L2

π2

∫ L

0

[
d2g
dx2

(x)
]2

dx.

Lemma 2.3 (Halanay’s Inequality Halanay, 1966 or p.138 of Fridman,
2014). Let 0 < δ1 < 2δ and let V1 : [t0 − h, ∞) → [0, ∞) be an
absolutely continuous function that satisfies

V̇1(t) ≤ −2δV1(t) + δ1 sup
−h≤θ≤0

V1(t + θ ), t ≥ t0.

Then

V1(t) ≤ e−2α(t−t0) sup
−h≤θ≤0

V1(t0 + θ ), t ≥ t0,

where α is a unique positive solution of

α = δ −
δ1

2
e2αh. (2.8)

3. Continuous-time global stabilization

We will start with continuous in time results, where global
stabilization can be achieved. Here the stability analysis is similar
to Lunasin and Titi (2017), but differently from Lunasin and Titi
(2017)wegive a boundon thedecay rate. Sampled-data controllers
under the point/averagedmeasurements leading to regional stabil-
ity will be presented in Section 4.

1 It should be noted that the first Wirtinger’s inequality in Lemma 2.2 is the one-
dimensional Poincaré’s inequality in Lemma 2.1 with optimal constant. This can be
easily proved by the minimization principle of the nth eigenvalue.
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In this section, we consider the stabilization of (2.1) with the
Dirichlet or periodic boundary conditions under the continuous-
time measurements

yj(t) = u(x̄j, t), x̄j =
xj−1 + xj

2
, j = 1, . . . ,N, (3.1)

or

yj(t) =

∫ xj
xj−1

u(x, t)dx

∆j
(3.2)

via a continuous-time control law

Uj(t) = −µyj(t). (3.3)

The control law (3.3) can be presented as

Uj(t) = −µ[u(x, t) − fj(x, t)],

where for (3.1)

fj(x, t) =

∫ x

x̄j

uξ (ξ, t)dξ, (3.4)

and for (3.2)

fj(x, t) =

∫ xj
xj−1

[u(x, t) − u(ζ , t)]dζ

∆j
. (3.5)

Then the closed-loop system (2.1), (3.3) has a form

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −

N∑
j=1

µbj(x)[u(x, t) − fj(x, t)], t ≥ 0. (3.6)

We aim to find µ that enlarges ∆ (leading to smaller number of
sensors).

3.1. Well-posedness and stability of (3.6) subject to (2.2)

Let H = L2(0, L) be a Hilbert space with the inner product ⟨·, ·⟩
and induced norm ∥ · ∥L2 . We define an unbounded linear operator
A : D(A) ⊂ H → H as follows:{
Af = −νf ′′′′, ∀f ∈ D(A),
D(A) = H4(0, L) ∩ H2

0 (0, L).
(3.7)

It is well-known that A is a dissipative operator, and A generates an
analytic semigroup T (t).

The domain H1 = D(A) = A−1H forms another Hilbert space
with the graph inner product ⟨x, y⟩1 = ⟨Ax, Ay⟩, ∀x, y ∈ H1. The
domain D(A) is dense in H .

Operator −A is positive implying that its square root (−A)
1
2 is

also positive. We define the Hilbert space:

H 1
2

= D((−A)
1
2 ) = H2

0 (0, L).

The norm of H 1
2
is endowed by the induced inner product:

⟨f , g⟩ 1
2

= ⟨(−A)
1
2 f , (−A)

1
2 g⟩ ∀f , g ∈ H 1

2
,

∥f ∥H 1
2

= ν
1
2

[∫ 1

0
|f ′′(x)|2dx

] 1
2

∀f ∈ H 1
2
. (3.8)

Note that H 1
2
norm is equivalent to the inherent norm ∥ · ∥H2 of

Sobolev space H2(0, L). We define the spaces H
−

1
2
and H−1 as the

dual spaces of H 1
2
and H1 respectively, with respect to the pivot

space H . Therefore, H
−

1
2

= H−2(0, L). Then we have H1 ⊂ H 1
2

⊂

H ⊂ H
−

1
2

⊂ H−1, densely and with continuous embedding. All
relevant material on fractional operator degrees can be found in
Tucsnak and Weiss (2009) (see pp. 81–83).

The nonlinear term F : H2(0, L) → L2(0, L) is defined on
functions u(·, t) according to

F (u(·, t)) = −u(x, t)ux(x, t) − uxx(x, t)

−

N∑
j=1

µbj(x)[u(x, t) − fj(x, t)], t ≥ 0.

With the operator A at hand, the system (3.6) subject to (2.2) can
be written as an evolution equation:⎧⎨⎩

d
dt

u(·, t) = Au(·, t) + F (u(·, t)),

u(·, 0) = u0(·).
(3.9)

Note that the nonlinear term F is locally Lipschitz continuous,
that is, there exists a positive constant l(K ) such that the following
inequality

∥F (u1) − F (u2)∥L2 ≤ l(K )∥(u1 − u2)∥H2
0 (0,L)

holds for u1, u2 ∈ H2
0 (0, L) with ∥u1∥H2

0 (0,L)
≤ K , ∥u2∥H2

0 (0,L)
≤ K .

Thus, by Theorem 6.3.1 of Pazy (1983), we obtain that for any
initial condition u0 ∈ H2

0 (0, L), there exists a unique local classical
solution u ∈ C([0, T ), L2(0, L)) ∩ C1((0, T ), L2(0, L)) of (3.6) subject
to (2.2), where T = T (u0) > 0.

The following proposition provides conditions that guarantee
the existence of solution of the closed-loop system (3.6) subject to
(2.2) for all t ≥ 0 as well as the global stability of this system:

Proposition 3.1. Consider the closed-loop system (3.6) subject to
(3.4) or (3.5) under the Dirichlet boundary conditions (2.2). Given a
scalar α > 0 and tuning parameter ∆ > 0, let there exist scalars
µ > 0, λ ≥ 0 and λ1 > 0 that satisfy the following LMI

W =

⎡⎢⎢⎢⎣
W11 −1 −

λ1

2
µ

∗ −2ν + λ 0

∗ ∗ −λ1
π2

∆2

⎤⎥⎥⎥⎦ < 0, (3.10)

where

W11 = −2µ + 2α − λ
π4

L4
. (3.11)

Then a unique classical solution of the Dirichlet boundary value prob-
lem (3.6), (2.2) subject to (3.4) or (3.5) initialized by u0 ∈ H2

0 (0, L)
exists for all t ≥ 0 and the system is exponentially stable with a decay
rate α, i.e. its classical solutions satisfy∫ L

0
u2(x, t)dx ≤ e−2αt

∫ L

0
u2(x, 0)dx, ∀t ≥ 0. (3.12)

If the LMI (3.10) is feasible with α = 0, then the closed-loop system
is exponentially stable with a small enough decay rate α0 > 0.
Particularly, if ∆2

π2 < ν and µ =
2π2

∆2 , then (3.10) is feasible with
λ = α = 0 and λ1 = 2, meaning that the closed-loop system is
exponentially stable.

Proof. See Appendix A. □

3.2. Extension to periodic boundary conditions

The well-posedness under the periodic boundary conditions
can be established similar to the case of Dirichlet boundary con-
ditions. Here instead ofH2

0 (0, L) we consider a Hilbert spaceH2
per =

{f ∈ H2(0, L) : f (m)(0) = f (m)(L), m = 0, 1} with respect to the
H2 norm. By arguments of Proposition 3.1, where in (4.23) λ = 0,
because Wirtinger’s inequality is not applicable here, we arrive at
the following result:
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If the LMI condition of Proposition 3.1 holds with λ = 0,
then there exists a unique solution of the periodic boundary value
problem (3.6), (2.3) subject to (3.4) or (3.5) initialized by u(·, 0) ∈

H2
per in the sense that u ∈ C([0, ∞), L2(0, L))∩ C1((0, ∞), L2(0, L)).

Moreover, the solution satisfies (3.12) meaning that the closed-
loop system (3.6), (2.3) subject to (3.4) or (3.5) is exponentially
stable with a decay rate α.

Remark 3.1. In Lunasin and Titi (2017) stabilization of (2.1) was
studied subject to the periodic boundary conditions (2.3) under the
assumption

∫ L
0 u0(x)dx = 0 (that implies also

∫ L
0 u(x, t)dx = 0). In

this case Poincaré inequality allows to use (4.23) with λ ≥ 0 as
for the case of Dirichlet boundary conditions leading to LMI (3.10)
with λ ≥ 0. The stability conditions of (3.6) subject to (2.3) were
given in Lunasin and Titi (2017) as µ > 4

ν
, ν > µ

△
4

π4 (cf. (15) in
Lunasin & Titi, 2017). The LMI condition (3.10) of Proposition 3.1
is less conservative (due to the use of λ1 > 0 and λ ≥ 0
instead of conservative use of Young inequality with a specific
constant), and gives also a bound on the decay rate. The advantages
of LMI condition (3.10) are illustrated in the example below (see
Section 5).

4. Sampled-data regional stabilization

4.1. Sampled-data control under point measurements

By selecting the controller (2.7) subject to (2.5), we arrive at the
closed-loop system

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −µ

N∑
j=1

bj(x)u(x̄j, tk), t ∈ [tk, tk+1), k = 0, 1, . . . (4.1)

subject to (2.2) or (2.3).

4.1.1. Well-posedness and stability of (4.1) subject to (2.2)
We start with the well-posedness of the sampled-data closed-

loop system (4.1) under the Dirichlet boundary conditions (2.2)
initialized with u0(x) = u(x, 0). We will use the step method for
solution of time-delay systems (Bellman & Cooke, 1963; Fridman,
2014).

For t ∈ [t0, t1], we consider the following equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −µ

N∑
j=1

bj(x)u(x̄j, t0),

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0.

(4.2)

We canpresent the system (4.2) as an evolution equation (3.9)with
A defined by (3.7). Here the nonlinear term F : H2(0, L) → L2(0, L)
is defined on functions u(·, t) according to

F (u(·, t)) = −u(x, t)ux(x, t) − uxx(x, t)

−

N∑
j=1

µbj(x)u0(x̄j), t ∈ [t0, t1).
(4.3)

A function u ∈ C([0, T ];H2
0 (0, L)) ∩ L2([0, T ];D(A)) such that

u̇ ∈ L2([0, T ]; L2(0, L)) is called a strong solution of (3.9) with the
nonlinearity F given by (4.3) if (3.9) holds almost everywhere on
[0, T ].

From (4.3) it follows that the nonlinear term F is locally Lips-
chitz continuous. Thus, Theorem3.3.3 of Henry (1981) is applicable
to (3.9). Given any initial condition u0 ∈ H2

0 (0, L), there exists a
unique local strong solution u(·, t) ∈ H2

0 (0, L) of (4.2) on some
interval [0, T ] ⊂ [0, t1], where T = T (u0) > 0. From Theorem

6.23.5 of Krasnoselskii, Zabreiko, Pustylii, and Sobolevskii (1976),
it follows that if this solution admits a priori estimate, then the
solution exists on the entire interval [0, t1]. The a priori estimate
on the solutions starting from the domain of attraction will be
guaranteed by the stability conditions that we will provide (see
Theorem 4.1).

For the stability analysis, we present (4.1) as

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −µu(x, tk) + µ

N∑
j=1

bj(x)
∫ x

x̄j

uξ (ξ, tk)dξ,

t ∈ [tk, tk+1), k = 0, 1, . . .

(4.4)

We will use an input delay approach to sampled-data control
(Fridman, Seuret, & Richard, 2004; Mikheev, Sobolev, & Fridman,
1988), where the sampling time tk is presented as delayed time
t − τ (t) with τ (t) = t − tk for t ∈ [tk, tk+1).

In order to derive the stability conditions for (4.4) we employ
the following Lyapunov–Krasovskii functional

V1(t) = p1

∫ L

0
u2(x, t)dx + p3ν

∫ L

0
u2
xx(x, t)dx

+ r(tk+1 − t)
∫ L

0

∫ t

tk

e2δ(s−t)u2
s (x, s)dsdx,

t ∈ [tk, tk+1), p1 > 0, p3 > 0, r > 0.

(4.5)

Here p1 and p3-terms are extensions of the corresponding terms
of Fridman and Blighovsky (2012) to KSE, whereas r-term treats
sampled-data control as introduced in Fridman (2010), and δ > 0
stands for the decay rate. In the time-derivative of r-term we have
a positive term r(tk+1 − t)

∫ L
0 u2

t (x, t)dx (see (4.13)). To compen-
sate such a term in V̇1, we choose the p3-term that guarantees
convergence in H2-norm (and not in H1-norm like in Fridman and
Blighovsky (2012) for the case of diffusion–reaction equation).

For convenience we define

∥u(·, t)∥2
V = p1

∫ L

0
u2(x, t)dx + p3ν

∫ L

0
u2
xx(x, t)dx, (4.6)

where p1 and p3 are positive constants, and u(·, t) ∈ H2
0 (0, L).

The choice of such norm is motivated by the Lyapunov–Krasovskii
functional (4.5). By using Lyapunov–Krasovskii functional (4.5), in
Theorem 4.1 we provide LMI conditions for regional exponential
stability of (4.1) and for a bound on the domain of attraction.

Remark 4.1. To find a bound on the domain of attraction for
system (4.4) subject to (2.2), we use positive invariance principle
in Theorem 4.1: we derive stability conditions in terms of matrix
inequalities that guaranteeV1(t) ≤ V1(0) for all t ≥ 0. Thesematrix
inequalities (Θ1 < 0 andΘ2 < 0withΘ1 andΘ2 defined by (4.10)
and (4.11)) are affine in ux(x, t). Our objective is to guarantee that
maxx∈[0,L]|ux(x, t)|2 < C2 for all t ≥ 0. This allows to verify the
matrix inequalities in the vertices ux = ±C (see (4.8)). Therefore,
if the initial condition satisfies ∥u0∥V <

√
p3ν

L C , then from the
Sobolev inequality we obtain the desired bound on ux:

max
x∈[0,L]

|ux(x, t)|2 ≤ L∥uxx(·, t)∥2
L2 ≤

L
p3ν

V1(t)

≤
L

p3ν
V1(0) =

L
p3ν

∥u0∥
2
V < C2.

(4.7)

Now we are in a position to formulate our first main result:

Theorem4.1. Consider the closed-loop system (4.4) under the Dirich-
let boundary conditions (2.2). Given positive scalars C, R, h, µ, ∆ and
δ1 < 2δ, let there exist scalars r > 0, λ ≥ 0, pi > 0 (i=1,2,3) that
satisfy the LMIs:

Θi|ux=C < 0, Θi|ux=−C < 0, i = 1, 2, (4.8)
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and

Θ̄ =

[
−δ1p1

µ

2
∆

π
R−1(p2 + p3)

∗ −δ1p3ν

]
< 0, (4.9)

where

Θ1 =

⎡⎢⎣θ11 θ12 θ13

∗ rh − 2p3 +
∆

π
µRp3 θ23

∗ ∗ θ33

⎤⎥⎦ , (4.10)

Θ2 =

⎡⎢⎢⎢⎣
θ11 θ12 θ13 µp2h

∗ −2p3 +
∆

π
µRp3 θ23 µp3h

∗ ∗ θ33 0
∗ ∗ ∗ −re−2δhh

⎤⎥⎥⎥⎦ , (4.11)

θ11 = 2δp1 +
∆

π
µRp2 − 2µp2 − λ

π4

L4
,

θ12 = p1 − p2 − µp3 − p3ux,

θ13 = −p2, θ23 = −p3, θ33 = 2δp3ν − 2p2ν + λ.

Then for any initial function u(·, 0) ∈ H2
0 (0, L) subject to ∥u(·, 0)∥V <√

p3ν

L C, a unique strong solution of (4.4), (2.2) exists and satisfies

p1

∫ L

0
u2(x, t)dx + p3ν

∫ L

0
u2
xx(x, t)dx

≤ e−2αt
[
p1

∫ L

0
u2(x, 0)dx + p3ν

∫ L

0
u2
xx(x, 0)dx

] (4.12)

for all t ≥ 0, where α is a unique positive solution of (2.8). Fur-
thermore, if the strong inequalities (4.8) and (4.9) are feasible with
δ =

δ1
2 > 0, then the strong solutions of (4.4), (2.2) initialized with

u(·, 0) ∈ H2
0 (0, L) subject to ∥u(·, 0)∥V <

√
p3ν

L C are exponentially
converging with a small enough decay rate.

Proof. Step 1: It has been shown that a unique local strong solution
of (4.2) exists on some interval [0, T ] ⊂ [0, t1]. From Theorem
6.23.5 of Krasnoselskii et al. (1976), it follows that if this solution
admits a priori estimate, then the solution exists on the entire
interval [0, t1]. We will prove in Step 3 that if the LMIs (4.8), (4.9)
are feasible, then the solution of (4.2) starting from ∥u(·, 0)∥V <√

p3ν

L C admits a priori bound. The latter guarantees the existence
of the strong solution of (4.2) on the entire interval [0, t1]. Then,
by applying the same arguments step-by-step for [tk, tk+1], k =

1, 2, . . . we conclude that the strong solution exists for all t ≥ 0.

Step 2. Assume formally that strong solutions of (4.4) subject to
(2.2) starting from ∥u0∥V <

√
p3ν

L C exist for all t ≥ 0. Differentiat-

ing V1 along (4.4) subject to (2.2), we have

V̇1(t) + 2δV1(t) = 2p1

∫ L

0
u(x, t)ut (x, t)dx

+ 2p3ν
∫ L

0
uxx(x, t)uxxt (x, t)dx + 2δp1

∫ L

0
u2(x, t)dx

+ 2δp3ν
∫ L

0
u2
xx(x, t)dx − r

∫ L

0

∫ t

tk

e2δ(s−t)u2
s (x, s)dsdx

+ r(tk+1 − t)
∫ L

0
u2
t (x, t)dx,

(4.13)

where t ∈ [tk, tk+1).
Denote

ρ(x, t) ≜
1

t − tk

∫ t

tk

us(x, s)ds. (4.14)

Here we understand limt→t+k
ρ(x, t) = ut (x, tk) and obtain

u(x, t) = u(x, tk) + (t − tk)ρ(x, t). (4.15)

Jensen’s inequality (Gu, Kharitonov, & Chen, 2003) yields

−r
∫ L

0

∫ t

tk

e2δ(s−t)u2
s (x, s)dsdx

≤ −re−2δh
∫ L

0

1
t − tk

[∫ t

tk

us(x, s)ds
]2

dx

= −re−2δh(t − tk)
∫ L

0
ρ2(x, t)dx.

(4.16)

Weapply the descriptormethod (Fridman, 2001, 2014; Fridman
& Orlov, 2009) by adding to V̇1 + 2δV1 the left-hand sides of the
following equations:

2
∫ L

0
[p2u(x, t) + p3ut (x, t)][−ut (x, t) − uxx(x, t)

− νuxxxx(x, t) − u(x, t)ux(x, t) − µu(x, tk)]dx

+ 2µ
N∑
j=1

∫ xj

xj−1

[p2u(x, t) + p3ut (x, t)]
∫ x

x̄j

uξ (ξ, tk)dξdx = 0,

(4.17)

where p2 > 0 is some scalar. This avoids substitution of ut from
(4.4) into the right-hand side of (4.13). Integration by parts and
substitution of the Dirichlet boundary conditions (2.2) lead to

− 2p2

∫ L

0
u(x, t)[u(x, t)ux(x, t)]dx = 0, (4.18)

− 2p2

∫ L

0
u(x, t)[νuxxxx(x, t)]dx = −2p2ν

∫ L

0
u2
xx(x, t)dx, (4.19)

and

−2p3

∫ L

0
ut (x, t)[νuxxxx(x, t)]dx

= −2p3ν
∫ L

0
uxx(x, t)uxxt (x, t)dx.

(4.20)

By adding to V̇1 + 2δV1 the equality (4.17), and using (4.15), (4.16),
(4.18), (4.19), (4.20), we obtain

V̇1(t) + 2δV1(t)

= 2p1

∫ L

0
u(x, t)ut (x, t)dx − 2p2ν

∫ L

0
u2
xx(x, t)dx

+ 2δp1

∫ L

0
u2(x, t)dx + 2δp3ν

∫ L

0
u2
xx(x, t)dx

− re−2δh(t − tk)
∫ L

0
ρ2(x, t)dx

+ r(tk+1 − t)
∫ L

0
u2
t (x, t)dx

+ 2
∫ L

0
[p2u(x, t) + p3ut (x, t)][−ut (x, t) − uxx(x, t)

− µu(x, t) + µ(t − tk)ρ(x, t)]dx

− 2p3

∫ L

0
ut (x, t)u(x, t)ux(x, t)dx

+ 2µ
N∑
j=1

∫ xj

xj−1

[p2u(x, t) + p3ut (x, t)]
∫ x

x̄j

uξ (ξ, tk)dξdx.

(4.21)
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From Young’s and Wirtinger’s inequalities, we have

2µ
N∑
j=1

∫ xj

xj−1

[p2u(x, t) + p3ut (x, t)]
∫ x

x̄j

uξ (ξ, tk)dξdx

≤ µR̄
∫ L

0
[p2u2(x, t) + p3u2

t (x, t)]dx

+ µR̄−1(p2 + p3)
∆2

π2

∫ L

0
u2
x (x, tk)dx, ∀R̄ > 0.

(4.22)

From Lemma 2.2, the Wirtinger inequality implies

λ

∫ L

0

[
u2
xx(x, t) − (

π2

L2
)2u2(x, t)

]
dx ≥ 0, (4.23)

where λ ≥ 0.
Substituting (4.22) into the right-hand side of (4.21), adding

(4.23) to V̇1 + 2δV1, using Halanay’s inequality and employing the
inequality

∥ux(·, tk)∥2
L2 ≤ ∥u(·, tk)∥L2∥uxx(·, tk)∥L2 ,

we obtain

V̇1(t) + 2δV1(t) − δ1 sup
θ∈[−h,0]

V1(t + θ )

≤ V̇1(t) + 2δV1(t) − δ1V1(tk)

≤ (2p1 − 2p2 − 2µp3)
∫ L

0
u(x, t)ut (x, t)dx

+ (2δp3ν − 2p2ν + λ)
∫ L

0
u2
xx(x, t)dx

− 2
∫ L

0
[p2u(x, t) + p3ut (x, t)]uxx(x, t)dx

+

[
2δp1 + µR̄p2 − 2µp2 − λ

π4

L4

] ∫ L

0
u2(x, t)dx

+
[
r(tk+1 − t) − 2p3 + µR̄p3

] ∫ L

0
u2
t (x, t)dx

− 2p3

∫ L

0
ut (x, t)u(x, t)ux(x, t)dx

− re−2δh(t − tk)
∫ L

0
ρ2(x, t)dx

+ µ(p2 + p3)
∆2

π2 R̄
−1

∥u(·, tk)∥L2∥uxx(·, tk)∥L2

+ 2µ
∫ L

0
[p2u(x, t) + p3ut (x, t)][(t − tk)ρ(x, t)]dx

− δ1p1

∫ L

0
u2(x, tk)dx − δ1p3ν

∫ L

0
u2
xx(x, tk)dx.

(4.24)

Set
η = col{u(x, t), ut (x, t), uxx(x, t), ρ(x, t)},
η0 = col{u(x, t), ut (x, t), uxx(x, t)},
η̄ = col{∥u(·, tk)∥L2 , ∥uxx(·, tk)∥L2},

(4.25)

and choose R =
π
∆
R̄. Since 0 ≤ tk+1 − tk ≤ h, from (4.24) it follows

that

V̇1(t) + 2δV1(t) − δ1 sup
θ∈[−h,0]

V1(t + θ )

≤

∫ L

0

h − t + tk
h

ηT
0Θ1η0 +

t − tk
h

ηTΘ2η + η̄T Θ̄ η̄dx,

∀t ∈ [tk, tk+1),

(4.26)

where Θ̄ , Θ1 and Θ2 are given by (4.9), (4.10), (4.11) respectively.

We first assume that

max
x∈[0,L]

|ux(x, t)| < C, ∀t ≥ 0. (4.27)

Under the assumption (4.27), from (4.26) we obtain

V̇1(t) + 2δV1(t) − δ1 sup
θ∈[−h,0]

V1(t + θ ) ≤ 0 (4.28)

if Θ1 < 0, Θ2 < 0, Θ̄ < 0 hold for all ux ∈ (−C, C).
Matrices Θ1 and Θ2 given by (4.10), (4.11) are affine in ux.

Hence,Θ1 < 0 andΘ2 < 0 for all ux ∈ (−C, C) if these inequalities
hold in the vertices ux = ±C hold, i.e. if LMIs (4.8) are feasible.

We prove next that (4.27) holds. From (4.7) it follows that it is
sufficient to show that V1(t) <

p3ν

L C2. The initial condition V1(0) =

∥u0∥
2
V <

p3ν

L C2 implies maxx∈[0,L]|ux(x, 0)|2 < C2. Let t∗ ∈ (0, ∞)
be the smallest time instance such that V1(t∗) ≥

p3ν

L C2. Since V1 is
continuous in time, we have V1(t∗) =

p3ν

L C2 and V1(t) <
p3ν

L C2 for
t ∈ [0, t∗). Together with (4.7) this implies maxx∈[0,L]|ux(x, t)|2 <

C2 for t ∈ [0, t∗) and, therefore, the feasibility of (4.8) and (4.9)
guarantees that (4.28) is true for t ∈ [0, t∗). Hence, V1(t) ≤

e−2αtV1(0) <
p3ν

L C2 holds for t ∈ [0, t∗], which contradicts to the
definition of t∗. Thus, for all t ≥ 0,

∥u0∥V <

√
p3ν

L C ⇒ (4.27) ⇒ (4.12).

Step 3: Now we continue to prove the well-posedness. When
k = 0, we obtain that if the LMIs conditions (4.8) and (4.9) are
satisfied, then any strong solution of (4.2) initialized with u0 ∈

H2
0 (0, L) subject to ∥u0∥V <

√
p3ν

L C admits a priori estimate

V1(t) ≤ e−2αtV1(0), (4.29)

where α is the solution of (2.8). The latter bound guarantees the
existence of these strong solutions for all t ∈ [0, t1]. Then, by
step method, the strong solution exists for all t ≥ 0. Furthermore,
Halanay’s inequality implies (4.12) for all t ≥ 0.

Note that the feasibility of strong inequalities (4.8) and (4.9)
with δ =

δ1
2 > 0 implies their feasibility with a slightly larger

δ̄ = δ + α0 > 0, where α0 > 0 is small. Therefore, if (4.8) and (4.9)
hold with δ =

δ1
2 > 0, then the system (4.4), (2.2) is regionally

exponentially stable with a small decay rate. □

4.2. Sampled-data control under the averaged measurements

Under the controller (2.7) subject to (2.6), the closed-loop sys-
tem of (2.1) becomes:

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −µ

N∑
j=1

[
bj(x)

∫ xj
xj−1

u(x, tk)dx

∆j

]
,

t ∈ [tk, tk+1), k = 0, 1, . . .

(4.30)

subject to the Dirichlet or periodic boundary conditions.
For j = 1, . . . ,N , k = 0, 1, . . . we consider the quantities

fj(x, t) = u(x, t) −

∫ xj
xj−1

u(ζ , t)dζ

∆j
,

kj(t) =
1

t − tk

∫ xj
xj−1

∫ t
tk
uξ (x, ξ )dξdx

∆j
,

where by kj|t=tk
we understand the following:

lim
t→t+k

kj(t) =

∫ xj
xj−1

ut (x, tk)dx

∆j
.
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Similar to Bar Am and Fridman (2014), we use the following pre-
sentation of Uj(t):

Uj(t) = −µ[u(x, t) − fj(x, t) − (t − tk)kj(t)]. (4.31)

Theorem 4.2. Consider the closed-loop system (4.30) under the
Dirichlet boundary conditions (2.2). Given positive scalars C, h, µ, ∆
and δ, let there exist scalars r > 0, λ ≥ 0, λ1 > 0, pi > 0 (i = 1, 2, 3)
satisfy the linear matrix inequalities:

Φi|ux=C < 0, Φi|ux=−C < 0, i = 1, 2 (4.32)

where

Φ1 =

⎡⎢⎣φ11 φ12 φ13 φ14
∗ rh − 2p3 φ23 φ24
∗ ∗ φ33 φ34
∗ ∗ ∗ φ44

⎤⎥⎦ , (4.33)

Φ2 =

⎡⎢⎢⎢⎣
φ11 φ12 φ13 φ14 µp2h
∗ −2p3 φ23 φ24 µp3h
∗ ∗ φ33 φ34 0
∗ ∗ ∗ φ44 0
∗ ∗ ∗ ∗ −re−2δhh

⎤⎥⎥⎥⎦ , (4.34)

φ11 = −2p2µ + 2δp1 − λ
π4

L4
,

φ12 = p1 − p2 − p3µ − p3ux,

φ13 = −p2 −
λ1

2
, φ14 = µp2, φ23 = −p3, φ24 = µp3,

φ33 = −2p2ν + 2δp3ν + λ, φ34 = 0, φ44 = −
λ1π

2

∆2 .

Then for any initial function u(·, 0) ∈ H2
0 (0, L) satisfying ∥u(·, 0)∥V <√

p3ν

L C, a unique strong solution of (4.30), (2.2) exists and satisfies

p1

∫ L

0
u2(x, t)dx + p3ν

∫ L

0
u2
xx(x, t)dx

≤ e−2δt
[
p1

∫ L

0
u2(x, 0)dx + p3ν

∫ L

0
u2
xx(x, 0)dx

] (4.35)

for all t ≥ 0. Furthermore, if the strong inequalities (4.32) are feasible
with δ = 0, then the strong solutions of (4.30), (2.2) initialized with
u(·, 0) ∈ H2

0 (0, L) subject to ∥u(·, 0)∥V <

√
p3ν

L C are exponentially
converging with a small enough decay rate.

Proof. See Appendix B. □

4.3. Extension to periodic boundary conditions

Finding a bound on the domain of attraction of the closed-loop
system (4.1) or (4.30) under the periodic boundary conditions (2.3)
will be based on the following useful Lemma:

Lemma 4.1. Let z(x) ∈ H1(0, L), then

max
x∈[0,L]

|z(x)|2 ≤ (1 +
1
L
)∥z(·, t)∥2

L2 + ∥zx(·, t)∥2
L2 .

Proof. By Proposition 5.22 of Robinson (2001), z(·) ∈ H1(0, L)
implies z(·) ∈ C[0, L]. Then by mean value theorem, there exists
c ∈ (0, L) such that

z(c) =
1
L

∫ L

0
z(x)dx.

Then, by integration by parts and further application of Jensen’s
and Young’s inequalities, for all x1 ∈ [0, L] we have

z2(x1) = z2(c) + 2
∫ x1

c
z(x)zx(x)dx

=

[
1
L

∫ L

0
z(x)dx

]2

+ 2
∫ x1

c
z(x)zx(x)dx

≤
1
L

∫ L

0
z2(x)dx +

∫ L

0
z2(x)dx +

∫ L

0
z2x (x)dx

≤ (1 +
1
L
)
∫ L

0
z2(x)dx +

∫ L

0
z2x (x)dx. □

Denote

M = max{
1

2p1
,

3
2p3ν

}. (4.36)

Similar to Section 3.2, Theorems 4.1 and 4.2, can be easily extended
to periodic boundary conditions:

(i) If the conditions of Theorem 4.1 with λ = 0 hold, then for
the initial function u(·, 0) ∈ H2

per satisfying ∥u(·, 0)∥V <

√
L

(L+1)M C ,

a unique strong solution of (4.1) under the periodic boundary
conditions (2.3) exists and satisfies (4.12).

(ii) If the conditions of Theorem 4.2 with λ = 0 hold, then for
the initial function u(·, 0) ∈ H2

per satisfying ∥u(·, 0)∥V <

√
L

(L+1)M C ,

a unique strong solution of (4.30) under the periodic boundary
conditions (2.3) exists and satisfies (4.35).

Proof of (i) The proof is similar to the case of Dirichlet boundary
conditions. Due to the periodic boundary conditions, theWirtinger
inequality is not applicable (cf. (4.23)). Therefore, by arguments of
Theorem 4.1, we obtain that if the conditions of Theorem 4.1 with
λ = 0 hold, then (4.28), (4.29) are satisfied (and, thus, (4.12) holds)
provided that (4.27) holds for all t ≥ 0.

By Lemma 4.1 and Young’s inequality, using the inequality
∥ux(·, t)∥2

L2
≤ ∥u(·, t)∥L2∥uxx(·, t)∥L2 we have

max
x∈[0,L]

|ux(x, t)|2 ≤ (1 +
1
L
)∥ux(·, t)∥2

L2 + ∥uxx(·, t)∥2
L2

≤ (1 +
1
L
)∥u(·, t)∥L2∥uxx(·, t)∥L2 + ∥uxx(·, t)∥2

L2

≤ (1 +
1
L
)
[
1
2
∥u(·, t)∥2

L2 + (
1
2

+ 1)∥uxx(·, t)∥2
L2

]
≤ (1 +

1
L
)M

[
p1∥u(·, t)∥2

L2 + p3ν∥uxx(·, t)∥2
L2

]
= (1 +

1
L
)M∥u(·, t)∥2

V ≤ (1 +
1
L
)MV1(t),

(4.37)

whereM is given by (4.36). Therefore, if the initial functionu(·, 0) ∈

H2
per satisfies ∥u(·, 0)∥V <

√
L

(L+1)M C , then

max
x∈[0,L]

|ux(x, 0)|2 ≤ (1 +
1
L
)M∥u(·, 0)∥2

V < C2.

Due to (4.37), the LMI conditions of Theorem 4.1 with λ = 0
guarantee that

max
x∈[0,L]

|ux(x, t)|2 ≤ (1 +
1
L
)MV1(t)

≤ (1 +
1
L
)MV1(0) = (1 +

1
L
)M∥u(·, 0)∥2

V < C2

meaning that (4.27) holds.
Proof of (ii) follows arguments of (i).

Remark 4.2. The presented results can be extended to the case of
time-varying input delay. Similar to Bar Am and Fridman (2014)
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Fig. 1. Open-loop system (without control input).

Fig. 2. Closed-loop systemwith xj −xj−1 =
π
8 , tk+1 − tk = 0.28 under the averaged

measurements.

and Fridman and Blighovsky (2012), LMI stability conditions for
KSE with time-varying delay can be derived. However, a special
attention should be paid to the bound on the domain of attraction.
This is because of the initial time interval, where the system is in
the open-loop (see Liu & Fridman, 2014).

5. Example

Consider KSE (2.1) under the Dirichlet boundary conditions
(2.2) with L = 2π and ν = 0.5 < 1:

ut (x, t) + uxx(x, t) + 0.5uxxxx(x, t) + u(x, t)ux(x, t)

=

N∑
j=1

bj(x)Uj(t), 0 < x < 2π, t ≥ 0.

Fig. 1 demonstrates the time evolution of the L2-norm ∥u(·, t)∥2
L2

for the open-loop system initialized by u(x, 0) = (1 − cos x) sin x
(0 ≤ x ≤ 2π ). It is seen that the open-loop system is unstable.

(i) We start with the continuous in time controller under the
point and averaged measurements. Verifying the LMI condition of
Proposition 3.1 with α = 0 by Yalmip Toolbox of Matlab, we find
that the closed-loop system preserves the exponential stability
till ∆ ≤ 2.2 (this corresponds to µ = 3.0853, λ1 = 1.5131
and λ = 2.2905 ∗ 10−7). Note that for ∆ ≤ 2.2, the condition
∆2

π2 ≤ 0.49 < ν of particular case of Proposition 3.1 is satisfied,
and the corresponding bound for µ =

2π2

∆2 is essentially larger:

Table 1
Max. values of h preserving the stability of the closed-loop system in Example 1.

δ 0.4 0.3 0.26
h 0.2 0.22 0.23

µ = 4.07 > 3.0853. For both values of µ, the condition of Lunasin
and Titi (2017) µ > 8 is not satisfied.

Using Proposition 3.1 with α = 0, µ > 4/ν = 8 that satisfies
the condition of Lunasin and Titi (2017), we find that the closed-
loop system is exponentially stable till∆ ≤ 2.1 (allowing 3 sensors
under the point measurements). This corresponds to µ = 8.0004,
λ1 = 2.7795 and λ = 3.3738∗10−5. Here we added the restriction
µ > 4/ν (that is used to compare with Lunasin & Titi, 2017).
The condition µ∆4

π4 < ν of Lunasin & Titi (2017) with the same
µ = 8.0004 leads to essentially smaller ∆ < 1.56 (that requires 5
point sensors) meaning that the LMIs conditions of Proposition 3.1
are less restrictive.

(ii) Consider next the closed-loop system (4.30) subject to (2.2)
under the sampled-data control law (2.7) with the averaged mea-
surements. To enlarge the sampling time interval, we choose µ =

3.0853 (the smallest µ found from the LMI of Proposition 3.1).
We verify LMI conditions of Theorem 4.2 with δ = 0.0002 and
C = h = 0 and find that the LMIs are feasible till∆ ≤ 2.2 (as in the
continuous-time case). For δ = 0.2, C = 1 and∆ =

π
8 , we find that

the closed-loop system preserves the exponential stability within
a given domain of initial conditions ∥u(·, 0)∥V <

√
p3ν

L C = 0.58
for tk+1 − tk ≤ h = 0.28.

Next, a finite difference method is applied to compute the
displacement of the closed-loop system (4.30) under the Dirichlet
boundary conditions (2.2). We choose initial condition u(x, 0) =

0.05(1 − cos x) sin x, 0 ≤ x ≤ 2π satisfying ∥u(·, 0)∥V < 0.58. The
steps of space and time are taken as π

16 and 0.0001, respectively.
Simulations of solutions under the sampled-data in time and in

space controller Uj(t) = −3.0853
∫ xj
xj−1 u(x,tk)dx

∆j
with xj − xj−1 =

∆j =
π
8 , j = 1, . . . , 16, tk+1 − tk = 0.28, where the spatial

domain is divided into sixteen sub-domains, show that the closed-
loop system is exponentially stable (see Fig. 2). By enlarging the
sampling period, we find that the system becomes unstable for
tk+1 − tk ≥ 1 (see Fig. 3).

(iii) Consider now the sampled-data controller under the point
measurements. Here we choose the same value of µ as in (ii). For
sampled-data control law (2.7) with the point measurements, we
verify LMI conditions of Theorem 4.1 with δ1 = 0.5, δ = 0.26,
R = 1, C = 1 and ∆ = π/8. We find that the closed-loop system is
exponentially stable for tk+1 − tk ≤ h = 0.23 for any initial values
satisfying ∥u(·, 0)∥V <

√
p3ν

L C = 0.5. For h = 0.23, the above
controller locally exponentially stabilizes the closed-loop system
with a decay rate α = 0.0089. Table 1 shows the maximum values
of h that preserve the exponential stability. The corresponding
value of δ1 is given by δ1 = 0.5, whereas the values of δ >

δ1
2

are chosen to be close to δ1
2 . The latter leads to a small decay rate

α but enlarges the sampling intervals.
We proceed further with the numerical simulations of the so-

lutions of the closed-loop system (4.1) subject to (2.2) under the
sampled in time and in space controller Uj(t) = −3.0853u(x̄j, tk)
with xj − xj−1 =

π
8 , j = 1, . . . , 16, tk+1 − tk = 0.23. Here we

choose the same initial conditions and the same value ofµ as in (ii).
The simulations show that the state of KSE converges to zero (see
Fig. 4). Simulations of the solutions confirm the theoretical results
that follow from LMIs.

As expected (because averaged measurements use more in-
formation on the state), the averaged measurements allow larger
sampling intervals than point measurements.
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Fig. 3. Closed-loop system with xj − xj−1 =
π
8 , tk+1 − tk = 1 under the averaged

measurements.

Fig. 4. Closed-loop system with xj − xj−1 =
π
8 , tk+1 − tk = 0.23 under the point

measurements.

6. Conclusion

Distributed control of KSE under the point or averaged state
measurements was initiated in Lunasin and Titi (2017). However,
for practical use of such controllers, their sampled-data implemen-
tation was missing. This paper provided distributed sampled-data
control of KSEunder the point or averageddiscrete-time statemea-
surements and either Dirichlet or periodic boundary conditions.
By using the time-delay approach to sampled-data control and
constructing an appropriate Lyapunov–Krasovskii functional, suf-
ficient conditions for the regional exponential stabilization were
derived in terms of LMIs.

The presented method gives efficient tools for sampled-data
observer design. Another interesting, yet technically challenging,
open question is design of observer-based sampled-data con-
trollers for distributed parameter systems, which may be a topic
for future research.

Appendix A. Proof of Proposition 3.1

The proof of this proposition consists of several steps.
Step 1: It has been shown that the local classical solution of (3.6)

under the Dirichlet boundary conditions (2.2) exists in the sense
that u ∈ C([0, T ), L2(0, L))∩C1((0, T ), L2(0, L)), where T = T (u0) >

0. FromTheorem6.23.5 of Krasnoselskii et al. (1976), it follows that
if this solution admits a priori estimate, then the solution exists for
any T > 0. We will prove in Step 3 that if the LMI (3.10) is feasible,
then the solution of (3.6) subject to (2.2) admits a priori bound,

which guarantees the existence of the solution of (3.6) subject to
(2.2) for all t ≥ 0.

Step 2: Assume formally that solution of (3.6) subject to (2.2)
exists for all t ≥ 0 and choose the Lyapunov function of the form:

V (t) =

∫ L

0
u2(x, t)dx. (A.1)

Differentiating V along (3.6) subject to (2.2) and integrating by
parts, we find

V̇ (t) = 2
∫ L

0
u(x, t)ut (x, t)dx

= −2
∫ L

0
u(x, t)uxx(x, t)dx − 2ν

∫ L

0
u2
xx(x, t)dx

+ 2µ
N∑
j=1

∫ xj

xj−1

u(x, t)fj(x, t)dx

− 2µ
∫ L

0
u2(x, t)dx.

(A.2)

(a) For the case of the distributed control under the pointmeasure-
ments, fj(x, t) is given by (3.4).

Applying Wirtinger’s inequality, we obtain∫ xj

xj−1

f 2j (x, t)dx =

∫ xj

xj−1

[∫ x

x̄j

uξ (ξ, t)dξ

]2

dx

≤
∆2

π2

∫ xj

xj−1

u2
x (x, t)dx.

(A.3)

(b) For the case of the distributed control under the averaged
measurements, fj(x, t) is given by (3.5).

Since∫ xj

xj−1

[
u(x, t) −

∫ xj
xj−1

u(ζ , t)dζ

∆j

]
dx = 0,

the Poincaré inequality and Jensen inequality allow to obtain∫ xj

xj−1

f 2j (x, t)dx =

∫ xj

xj−1

[
u(x, t) −

∫ xj
xj−1

u(ζ , t)dζ

∆j

]2

dx

≤
∆2

π2

∫ xj

xj−1

u2
x (x, t)dx.

(A.4)

Hence, for both cases (a) and (b), from (A.3) and (A.4) the following
inequality∫ xj

xj−1

f 2j (x, t)dx ≤
∆2

π2

∫ xj

xj−1

u2
x (x, t)dx (A.5)

holds.
Note that integration by parts of −uuxx yields

−

∫ L

0
u(x, t)uxx(x, t)dx =

∫ L

0
u2
x (x, t)dx. (A.6)

Multiplying the inequality (A.5) by some constant λ1 > 0, sum-
ming and using (A.6) we obtain
N∑
j=1

λ1

[∫ xj

xj−1

u2
x (x, t)dx −

π2

∆2

∫ xj

xj−1

f 2j (x, t)dx

]

= −λ1

∫ L

0
u(x, t)uxx(x, t)dx

−

N∑
j=1

λ1π
2

∆2

∫ xj

xj−1

f 2j (x, t)dx ≥ 0.

(A.7)
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Applying S-procedure, we add to V̇ (t)+2αV (t) the left-hand sides
of (4.23) and (A.7). This leads to

V̇ (t) + 2αV (t) ≤

N∑
j=1

∫ xj

xj−1

ϕTWϕdx < 0 (A.8)

ifW < 0 holds, where

ϕ = col{u(x, t), uxx(x, t), fj(x, t)}

and W is given by (3.10).
Note that the feasibility of the LMI (3.10) with α = 0 implies its

feasibility with a small enough α0 > 0. Therefore, if the LMI (3.10)
holds for α = 0, then the system (3.6), (2.2) subject to (3.4) or (3.5)
is exponentially stable with a small decay rate α0 > 0.

For λ = α = 0, by application of Schur complement theorem,
the strict LMI (3.10) is feasible iff the following inequalities hold:

µ2(λ1
π2

∆2 )
−1

− 2µ + (1 +
λ1

2
)2(2ν)−1 < 0. (A.9)

Minimizing the left-hand side of the latter inequality in µ, we find
that for µ = λ1

π2

∆2 this inequality is reduced to ∆2

π2 <
2λ1

(1+ λ1
2 )2

ν.

Note that maxλ1
2λ1

(1+ λ1
2 )2

= 1 (this corresponds to λ1 = 2). There-

fore, the system (3.6), (2.2) subject to (3.4) or (3.5) is exponentially
stable if ∆2

π2 < ν and µ =
2π2

∆2 .
Step 3: We obtain that if the LMI condition (3.10) is satisfied,

then the solution (3.6), (2.2) subject to (3.4) or (3.5) initializedwith
u0 ∈ H2

0 (0, L) on [0, T ) admits a priori estimate

V (t) ≤ e−2αtV (0).

Thus, continuation of this solution of (3.6), (2.2) subject to (3.4) or
(3.5) under a priori bound to entire interval [0, ∞) follows from
Theorem 6.23.5 of Krasnoselskii et al. (1976). Furthermore, the
inequality (A.8) implies (3.12) for all t ≥ 0, which completes the
proof.

Appendix B. Proof of Theorem 4.2

For the case of sampled-data controller under the averaged
measurements, by arguments of Theorem 4.1, the well-posedness
of (4.30) subject to (2.2) can be established via the step method.

Step 1: For [t0, t1], we consider the following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

= −µ

N∑
j=1

[
bj(x)

∫ xj
xj−1

u(ζ , t0)dζ

∆j

]
,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0.

(B.1)

We define the nonlinear term F : H2(0, L) → L2(0, L) according to

F (u(·, t)) = −u(x, t)ux(x, t) − uxx(x, t)

− µ

N∑
j=1

[
bj(x)

∫ xj
xj−1

u0(ζ )dζ

∆j

]
, t ∈ [t0, t1].

The nonlinear term F is locally Lipschitz continuous. Thus, there
exists a unique local strong solution u(·, t) ∈ H2

0 (0, L) of (4.30)
subject to (2.2) on some interval [0, T ] ⊂ [0, t1], where T =

T (u0) > 0. By Theorem 6.23.5 of Krasnoselskii et al. (1976), we
only need to prove that if the LMIs (4.32) are feasible, the solution
of (4.30) subject to (2.2) starting from ∥u(·, 0)∥V <

√
p3νC admits

a priori bound, which guarantees the existence of a strong solution

of (4.30) subject to (2.2) on the entire interval [0, t1]. Then, by ap-
plying the same arguments step-by-step for [tk, tk+1], k = 1, 2, . . .
we conclude that the strong solution exists for all t ≥ 0.

Step 2: Assume formally that strong solution of (4.30) subject
to (2.2) starting from ∥u0∥V <

√
p3ν

L C exists for all t ≥ 0 and
choose the same Lyapunov functionV1 as in (4.5). DifferentiatingV1

along (4.30) subject to (2.2), we obtain the inequalities (4.13) and
(4.16). Taking into account (4.31), we further apply the descriptor
method to (4.30), where we add to V̇1 + 2δV1 the left-hand side of
the following equation

2
∫ L

0
[p2u(x, t) + p3ut (x, t)][−ut (x, t) − uxx(x, t)

− νuxxxx(x, t) − u(x, t)ux(x, t) − µu(x, t)]dx

+ 2µ
N∑
j=1

∫ xj

xj−1

[p2u(x, t) + p3ut (x, t)][fj(x, t)

+ (t − tk)kj(t)]dx = 0.

(B.2)

Integration by parts and substitution of the Dirichlet boundary
conditions (2.2) lead to (4.18), (4.19) and (4.20). Adding the left-
hand side of the expression (B.2) into the right-hand side of (4.13),
we obtain

V̇1(t) + 2δV1(t)

= 2p1

∫ L

0
u(x, t)ut (x, t)dx − 2p2ν

∫ L

0
u2
xx(x, t)dx

− re−2δh
∫ L

0

1
t − tk

[∫ t

tk

us(x, s)ds
]2

dx

+ r(tk+1 − t)
∫ L

0
u2
t (x, t)dx + 2δp1

∫ L

0
u2(x, t)dx

+ 2δp3ν
∫ L

0
u2
xx(x, t)dx

+ 2
∫ L

0
[p2u(x, t) + p3ut (x, t)][−ut (x, t) − uxx(x, t)

− µu(x, t)]dx − 2p3

∫ L

0
ut (x, t)u(x, t)ux(x, t)dx

+ 2µ
N∑
j=1

∫ xj

xj−1

[p2u(x, t) + p3ut (x, t)][fj(x, t)

+ (t − tk)kj(t)]dx.

(B.3)

From Jensen’s inequality, we have

− re−2δh
∫ L

0

1
t − tk

[∫ t

tk

us(x, s)ds
]2

dx

= −
r

t − tk
e−2δh

N∑
j=1

∫ xj

xj−1

[∫ t

tk

us(x, s)ds
]2

dx

≤ −r(t − tk)e−2δh
N∑
j=1

∫ xj

xj−1

k2j dx.

(B.4)

To bound the term ‘‘
∫ L
0 ut (x, t)u(x, t)ux(x, t)dx’’ in (B.3), we need

to bound ux(x, t) by some constant C > 0 for all t ≥ 0 and
x ∈ [0, L]. Similar to Selivanov & Fridman (2016), we first assume
that (4.27) is satisfied.

Set

η1 = col{u(x, t), ut (x, t), uxx(x, t), fj(x, t)},
η2 = col{u(x, t), ut (x, t), uxx(x, t), fj(x, t), kj}.

(B.5)
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Applying S-procedure, we add the left-hand sides of (4.23) and
(A.7) to V̇1(t) + 2δV1(t). Substituting (B.4) into (B.3), we obtain

V̇1(t) + 2δV1(t)

≤

N∑
j=1

∫ xj

xj−1

h − t + tk
h

ηT
1Φ1η1 +

t − tk
h

ηT
2Φ2η2dx < 0

if Φ1 < 0 and Φ2 < 0 hold for all ux ∈ (−C, C), where Φ1 and Φ2
are given by (4.33), (4.34) respectively.

Similarly to Theorem 4.1, LMIs (4.32) yield Φ1 < 0 and Φ2 < 0
for all ux ∈ (−C, C), and

V1(t) ≤ e−2δtV1(0) ∀t ≥ 0

for initial conditions u(·, 0) ∈ H2
0 (0, L) satisfying ∥u(·, 0)∥V <√

p3ν

L C . Moreover, (4.27) is satisfied.

Step 3: By the arguments of the proof of Step 3 in Theorem4.1, if
the LMIs (4.32) are satisfied, then there exists a strong solution for
t ∈ [0, t1] initialized with ∥u(·, 0)∥V <

√
p3ν

L C . Then, by applying
the same arguments step-by-step for [tk, tk+1], k = 1, 2, . . . we
conclude that the strong solution exists for all t ≥ 0.
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