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a b s t r a c t

We consider distributed control of a class of 1-D parabolic PDEs under distributed in-domain point
actuation and measurements in the presence of control constraints. This class includes unstable
diffusion-reaction equations as well as stable Burgers’ equations, where we aim to locally improve
the convergence. We suggest an observer-based control law that employs the averaged values of the
observer state. This allows to regionally stabilize the system. We derive linear matrix inequalities
(LMIs) conditions that provide an estimate on the set of initial conditions starting from which the
state trajectories of the system are exponentially converging to zero. A numerical example validates
the efficiency of the method.
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1. Preface

The authors are honored to be able to contribute this article
to this special issue, dedicated to the memory of professor Ruth
F. Curtain. The second author wants to share some memories
about this great woman who was a leader in infinite-dimensional
systems.

I met Ruth on ECC 1993 in Groningen. It was my first confer-
ence out of Russia. With my background in time-delay systems, I
wanted to study H∞ control for time-delay systems. I approached
Prof. Curtain, and she gave me references on the topic and later
on sent me a thesis of her Ph.D. student Bert van Keulen. Her
encouragement and help were very important for me.

We met on numerous conferences, and had interesting discus-
sions on various topics. I remember her nice plenary lectures. This
bright and elegant woman was an inspiring model for me. Ruth
explained me the importance of special sessions on distributed
parameter systems. Now I greatly appreciate this opportunity not
to be lost on huge conferences.
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In conclusion, I would like to cite [1]: ‘‘There is no doubt
that the flourishing state of infinite-dimensional systems today is
greatly due to her long-term leadership. Many of her colleagues
continued her efforts, and the field remains on the firm ground’’.

2. Introduction

In many cases, the constraints on the control input should be
taken into account for practical application of control laws. There
have been some important works on constrained distributed con-
trol of PDEs (see e.g. [2–5]). In [2], the internal feedbacks with
input constraints of quasi-linear heat equation were designed and
the domains of attractions were found via the Galerkin method.
In [3,4], global stabilization by distributed saturated control of
1-D Korteweg–de Vries and wave equations was studied. Global
stabilization of linear or semilinear system in the Hilbert space
by using constrained control was presented in [5]. In [6,7], re-
gional boundary stabilization of coupled linear ODE-heat system
and nonlinear Schrödinger equation in the presence of actuator
saturation was presented respectively. The results in [6,7] were
based on the backstepping method [8] and on direct Lyapunov
method for finding domains of attraction of the resulting target
systems.

In [9,10] point in-domain control of unstable diffusion equa-
tion under the collocated point state measurements was studied.
In the absence of disturbances in the equation, a linear static
output feedback may globally stabilize the system. However, in
the presence of control input constraints, it is not clear if such a
controller can achieve at least regional stability. Finding domain
of attraction seems to be not possible here. In the present paper,
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for stabilization of 1-D parabolic PDEs under point actuation and
measurements, we suggest an observer-based control law that
employs averaged values of the observer. This allows to regionally
stabilize the system and to give an estimate on the domain of
attraction via Lyapunov method. Moreover, sensors and actuators
are not supposed to be collocated.

We consider a class of parabolic PDEs that includes unstable
heat equations as well as stable Burgers’ equations, where we
aim at locally improving the convergence. As a by-product, we
design a novel observer for Burgers’ equation by using sampled in
space measurements. Note that Burgers’ equation is used in traffic
problems modeling the hydrodynamic mode of car clustering
(see e.g. [11]). Burgers’ equation describes also models in fluid
mechanics, nonlinear acoustics and gas dynamics. Boundary sta-
bilization of Burgers’ equation has been extensively studied (see
e.g. [8,12–15] and the references therein). In [16], some stability
results were provided for distributed and boundary stabilization
of Burgers’ equation.

The article is organized as follows. In Section 3, the prob-
lem statement is presented and useful lemmas are introduced.
Section 4 is devoted to construction of an observer by using point
measurements. Then based on the observer, a point controller
is designed and LMI conditions are presented for the stability
analysis of the closed-loop system. In Section 5, we design a
constrained controller via LMIs. We find an estimate on the set
of initial conditions starting from which the state trajectories
of the system are exponentially attracted to a bounded set. A
numerical example is presented in Section 6. Section 7 contains
some concluding remarks and possible further research lines.
Some preliminary results (with skipped proofs) for stabilization
of Burgers’ equation will be presented in Kang and Fridman [17].

Notation. Throughout the paper, L2(0, 1) stands for the Hilbert
space of square integrable scalar functions z(x) on (0, 1) with
the corresponding norm ∥z∥2

L2(0,1)
=

∫ 1
0 |z(x)|2dx. H1

0 (0, 1) is
the closure in H1(0, 1) of the set of smooth functions that are
vanishing at x = 0 and x = 1. It is equipped with the norm
∥z∥2

H1
0 (0,1)

=
∫ 1
0 |z ′(x)|2dx.

3. Problem formulation and useful lemma

We consider the following 1-D parabolic PDEs:⎧⎪⎪⎪⎨⎪⎪⎪⎩
zt (x, t) = γ zxx(x, t) − αz(x, t)zx(x, t) + λz(x, t)

+

N−1∑
j=0

δ(x − x̄j)uj(t),

z(x, 0) = z0(x),

(3.1)

under the Dirichlet boundary conditions

z(0, t) = z(1, t) = 0, (3.2)

where γ > 0 is viscosity, λ > 0 denotes a constant coefficient,
α ≥ 0, z(x, t) is the state of parabolic PDEs, and uj(t) (j =

0, 1, . . . ,N − 1) are the control inputs. The coefficient α ≥ 0 is
supposed to be positive for the case of Burgers’ equation or zero
for the case of unstable diffusion-reaction equation. If λ < γπ2,
the open-loop system (with uj(t) ≡ 0) is exponentially stable. For
λ > γπ2, the open-loop system (with uj(t) ≡ 0) may become
unstable.

We assume that {Ωuj}
N−1
j=0 is a partition of [0, 1]. The intervals

Ωuj are upper bounded by ∆u:

0 < |Ωuj | ≤ ∆u,

where ∆u is the maximum subdomain length maxj |Ωuj |.

The control inputs uj(t) enter (3.1) through the Dirac delta
function at some points x̄j ∈ Ωuj .

1

Sensors are supposed to be uncollocated with actuators pro-
viding point measurements of the state

yk(t) = z(xk, t), k = 0, . . . ,M,

where 0 = x0 < x1 < · · · < xM = 1.
Moreover,

xk+1 − xk ≤ ∆y, k = 0, . . . ,M − 1.

It is well-known that global stabilization by constrained con-
trol can be achieved for linear finite-dimensional systems that
have no eigenvalues in the right-half plane. Since linear sys-
tem (3.1), (3.2) with α = 0 and uj = 0 has exponentially
growing solutions for λ > γπ2, our objective in this paper
is to obtain regional stabilization with a bound on domain of
attraction. In our case of point actuation and measurements, the
control inputs and measurements are multiplied by unbounded
operator, whereas the convergence of the closed-loop system can
be proved only in L2-norm (see e.g. [18]). To obtain a bound on the
initial conditions, differently from [18], we suggest a controller
by employing averaged measurements of the observer state that
leads to regional exponential stability of the closed-loop system.

We aim to design a constrained controller that regionally
stabilizes the system for α = 0 or improves its convergence for
α > 0. The following useful lemmas will be employed in the proof
of our main results:

Lemma 3.1 (Wirtinger’s Inequality [19]). For a < b, let g ∈ H1(a, b)
be a scalar function with g(a) = 0 or g(b) = 0. Then∫ b

a
g2(x)dx ≤

4(b − a)2

π2

∫ b

a

[
dg
dx

(x)
]2

dx.

Moreover, if g ∈ H1
0 (a, b), then∫ b

a
g2(x)dx ≤

(b − a)2

π2

∫ b

a

[
dg
dx

(x)
]2

dx.

1 The Dirac delta function is a distribution (a generalized function, such as
a probability distribution) that is also a measure (i.e. it assigns a value to a
function) - terms that come from probability and set theory. Dirac delta function
is defined indirectly by specifying its effect on a continuous test function ϕ(ξ )
as

⟨δ(ξ − x), ϕ(ξ )⟩ = ϕ(x).
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Lemma 3.2 (Agmon’s Inequality, See p. 20 in [8]). For any z ∈

H1(0, 1), the following inequalities hold:

max
x∈[0,1]

|z(x, t)|2 ≤ z2(0) + 2∥z(t)∥L2(0,1)∥zx(t)∥L2(0,1),

max
x∈[0,1]

|z(x, t)|2 ≤ z2(1) + 2∥z(t)∥L2(0,1)∥zx(t)∥L2(0,1).

4. Observer and feedback for regional stabilization of system

Based on the point measurements we construct the following
observer for system (3.1), (3.2) to estimate the value of the state
z(x, t):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẑt (x, t) = γ ẑxx(x, t) − αẑ(x, t)ẑx(x, t) + λẑ(x, t)

+

N−1∑
j=0

δ(x − x̄j)uj(t) − L
M−1∑
k=0

bk(x)[ẑ(xk, t) − z(xk, t)],

ẑ(0, t) = ẑ(1, t) = 0,
ẑ(x, 0) = 0,

(4.1)

where L > 0 will be chosen later.
As in [20], here the shape functions are given by

bk(x) =

{
1, x ∈ Γk ≜ [xk, xk+1),
0, otherwise, k = 0, . . . ,M − 1. (4.2)

Let e(x, t) = ẑ(x, t) − z(x, t) be the estimation error. It is easy
to see that e is governed by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

et (x, t) = γ exx(x, t) − αe(x, t)ẑx(x, t) − αẑ(x, t)ex(x, t)

+αe(x, t)ex(x, t) + λe(x, t) − L
M−1∑
k=0

bk(x)e(xk, t),

e(0, t) = e(1, t) = 0,
e(x, 0) = −z0(x).

(4.3)

We propose the following observer-based feedback controller to
stabilize the system (3.1), (3.2):

uj(t) = −K
∫
Ωuj

ẑ(ξ, t)dξ, (4.4)

where K is a positive constant to be determined later.
The closed-loop system (4.1), (4.3) corresponding to controller

(4.4) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑt (x, t) = γ ẑxx(x, t) − αẑ(x, t)ẑx(x, t) + λẑ(x, t)

−L
M−1∑
k=0

bk(x)e(xk, t) −

N−1∑
j=0

δ(x − x̄j)K
∫
Ωuj

ẑ(ξ, t)dξ

ẑ(0, t) = ẑ(1, t) = 0,
et (x, t) = γ exx(x, t) − αe(x, t)ẑx(x, t) − αẑ(x, t)ex(x, t)

+αe(x, t)ex(x, t) + λe(x, t) − L
M−1∑
k=0

bk(x)e(xk, t),

e(0, t) = e(1, t) = 0,
ẑ(x, 0) = 0, e(x, 0) = −z0(x).

(4.5)

Now we study the well-posedness of (4.5). We investigate the
coupled system (4.5) in the energy state space

H = L2(0, 1) × L2(0, 1)

with the norm ∥(f , g)∥2
H = ∥f ∥2

L2(0,1)
+ ∥g∥

2
L2(0,1)

.
Let

H1 = H1
0 (0, 1) × H1

0 (0, 1)

be the Hilbert space with the norm:

∥(f , g)∥2
H1

= ∥f ′
∥
2
L2(0,1) + ∥g ′

∥
2
L2(0,1).

Following [10] (see Definition 1 in [10]), we give the following
definition of the solution to system (4.5):

Definition 4.1. For any T > 0, a function (ẑ(·, t), e(·, t)) ∈

C([0, T ];H1) such that (ẑt (·, t), et (·, t)) ∈ L∞([0, T ];H)∩L2([0, T ];

H1), is said to be a solution of the boundary value problem (4.5)
initialized by z0 ∈ H2(0, 1) ∩ H1

0 (0, 1) if for every (φ(ξ ), ϕ(ξ )) ∈

H1, the functions
∫ 1
0 ẑ(ξ, t)φ(ξ )dξ and

∫ 1
0 e(ξ, t)ϕ(ξ )dξ are abso-

lutely continuous on [0, T ] and relation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∫ 1
0 ẑ(ξ, t)φ(ξ )dξ + γ

∫ 1
0 ẑξ (ξ, t)φξ (ξ )dξ

= −α
∫ 1
0 ẑ(ξ, t)ẑξ (ξ, t)φ(ξ )dξ + λ

∫ 1
0 ẑ(ξ, t)φ(ξ )dξ

−L
M−1∑
k=0

e(xk, t)
∫
Γk

φ(ξ )dξ

−K
N−1∑
j=0

φ(x̄j)
∫
Ωuj

ẑ(ξ, t)dξ,

d
dt

∫ 1
0 e(ξ, t)ϕ(ξ )dξ + γ

∫ 1
0 eξ (ξ, t)ϕξ (ξ )dξ

= −α
∫ 1
0 [e(ξ, t)ẑξ (ξ, t) + ẑ(ξ, t)eξ (ξ, t)]ϕ(ξ )dξ

+α
∫ 1
0 e(ξ, t)eξ (ξ, t)ϕ(ξ )dξ + λ

∫ 1
0 e(ξ, t)ϕ(ξ )dξ

−L
M−1∑
k=0

e(xk, t)
∫
Γk

ϕ(ξ )dξ

(4.6)

holds for almost all t ∈ [0, T ].

The weak solution concept (4.6) is based on the integration-
by-parts property∫ 1

0 ẑξξ (ξ, t)φ(ξ )dξ = −
∫ 1
0 ẑξ (ξ, t)φξ (ξ )dξ,∫ 1

0 eξξ (ξ, t)ϕ(ξ )dξ = −
∫ 1
0 eξ (ξ, t)ϕξ (ξ )dξ

of the Sobolev derivatives of H1
0 (0, 1)-valued functions for any

test function (φ(ξ ), ϕ(ξ )) ∈ H1.
Now we are in a position to formulate the conditions that

guarantee regional stability and well-posedness of the closed-
loop system:

Theorem 4.1. Consider the system (3.1), (3.2) under the observer-
based controller (4.4), where ẑ is governed by (4.1). For α > 0,
given positive scalars ∆u, ∆y, δ and tuning parameters 0 < β < 1,
C > 0, assume that there exist positive scalars K , L, µi(i = 1, 2) and
nonnegative scalars µi(i = 3, 4) such that the following LMIs hold:

− γ + µ1 + µ3 +
C
2

≤ 0, (4.7)

− γ + µ2 + µ4 +
C
2

≤ 0, (4.8)

Θ1 =

⎡⎢⎢⎢⎢⎣
θ1 −

K
2

−
βL
2

∗ −µ1
π2

4∆2
u

0

∗ ∗ θ2

⎤⎥⎥⎥⎥⎦ ≤ 0, (4.9)

Θ2 =

⎡⎢⎢⎢⎢⎣
θ3 −

L
2

−
(1 − β)L

2

∗ −µ2
π2

4∆2
y

−
L
2

∗ ∗ θ4

⎤⎥⎥⎥⎥⎦ ≤ 0, (4.10)
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where
θ1 = β[−K − µ3π

2
+ λ+ δ],

θ2 = β[−L − µ4π
2
+ λ+ δ],

θ3 = (1 − β)[−K − µ3π
2
+ λ+ δ],

θ4 = (1 − β)[−L − µ4π
2
+ λ+ δ].

(4.11)

Then for any initial function in (4.5) z0 ∈ H2(0, 1) ∩ H1
0 (0, 1)

satisfying ∥z0∥L2(0,1) < α−1C, the following holds:
(i) [Well-posedness] A solution of the system (4.5) exists in the sense
that
(ẑ, e) ∈ C([0, T ];H1),
(ẑt , et ) ∈ L∞([0, T ];H) ∩ L2([0, T ];H1).

(4.12)

holds for all T > 0.
(ii) [Regional stability] The solution of the closed-loop system (3.1),
(3.2), (4.4) satisfies

∥z(·, t)∥L2(0,1) ≤
√
2e−δt

∥z0∥L2(0,1), ∀t ≥ 0. (4.13)

Furthermore, if the strict LMIs (4.9), (4.10) are feasible for δ = 0 and
(4.7), (4.8) are satisfied, then the closed-loop system is exponentially
stable with a small enough decay rate.

Proof. (i) Based on the Galerkin approximation method, the well-
posedness result will be proved in Appendix.
(ii) We construct the Lyapunov function V (t) as follows:

V (t) =
1
2

∫ 1

0
[ẑ2(x, t) + e2(x, t)]dx. (4.14)

As in [1] (see the proof of Theorem 2.1, pp.115), let us multiply
the first equation of (4.5) by ẑ, multiply the third equation of (4.5)
by e and integrate in [0, 1] to obtain

V̇ (t) = −γ

∫ 1

0
[ẑ2x (x, t) + e2x (x, t)]dx + λ

∫ 1

0
[ẑ2(x, t) + e2(x, t)]dx

−L
M−1∑
k=0

∫
Γk

[ẑ(x, t) + e(x, t)]e(xk, t)dx

−K
N−1∑
j=0

∫
Ωuj

ẑ(x̄j, t)ẑ(x, t)dx

+α

∫ 1

0
e(x, t)[−e(x, t)ẑx(x, t) − ẑ(x, t)ex(x, t)]dx.

(4.15)

Denote gk(x, t) ≜
∫ xk
x eξ (ξ, t)dξ , fj(x, t) ≜

∫ x̄j
x ẑξ (ξ, t)dξ .

Then the L-term and K -term of (4.15) can be presented in the
form

−L
M−1∑
k=0

∫
Γk

[ẑ(x, t) + e(x, t)]e(xk, t)dx

= −L
M−1∑
k=0

∫
Γk

[ẑ(x, t) + e(x, t)][e(x, t) + gk(x, t)]dx

= −L
∫ 1

0
ẑ(x, t)e(x, t)dx − L

∫ 1

0
e2(x, t)dx

−L
M−1∑
k=0

∫
Γk

[ẑ(x, t) + e(x, t)]gk(x, t)dx,

(4.16)

−K
N−1∑
j=0

∫
Ωuj

ẑ(x̄j, t)ẑ(x, t)dx

= −K
N−1∑
j=0

∫
Ωuj

[fj(x, t) + ẑ(x, t)]ẑ(x, t)dx

= −K
∫ 1

0
ẑ2(x, t)dx − K

N−1∑
j=0

∫
Ωuj

ẑ(x, t)fj(x, t)dx.

(4.17)

Integration of the term ‘‘−e(x, t)ex(x, t)ẑ(x, t)’’ from 0 to 1 in x
by parts and substitution of the boundary conditions e(0, t) =

e(1, t) = 0 lead to

−

∫ 1

0
e(x, t)ex(x, t)ẑ(x, t)dx =

1
2

∫ 1

0
e2(x, t)ẑx(x, t)dx. (4.18)

The Agmon’s inequality (Lemma 3.2) yields

max
x∈[0,1]

|e(x, t)|2 ≤ 2∥e(·, t)∥L2(0,1) · ∥ex(·, t)∥L2(0,1). (4.19)

By using (4.18), (4.19), Young’s and Cauchy-Schwarz’s inequalities
we obtain∫ 1

0
e(x, t)[−e(x, t)ẑx(x, t) − ẑ(x, t)ex(x, t)]dx

(4.18)
= −

1
2

∫ 1

0
e2(x, t)ẑx(x, t)dx

≤
1
2

max
x∈[0,1]

|e(x, t)|2∥ẑx(·, t)∥L1(0,1)

(4.19)
≤ ∥e(·, t)∥L2(0,1)∥ex(·, t)∥L2(0,1)∥ẑx(·, t)∥L1(0,1)

Cauchy’s
≤ ∥e(·, t)∥L2(0,1)∥ex(·, t)∥L2(0,1)∥ẑx(·, t)∥L2(0,1)

Young’s
≤ ∥e(·, t)∥L2(0,1)

[
1
2
∥ex(·, t)∥2

L2(0,1) +
1
2
∥ẑx(·, t)∥2

L2(0,1)

]
.

(4.20)

Due to gk(xk) = fj(x̄j) = 0, we further apply Wirtinger’s
inequality (Lemma 3.1). For any positive constants µi(i = 1, 2)
we have

0 ≤ µ1

N−1∑
j=0

∫
Ωuj

[
ẑ2x (x, t) −

π2

4∆2
u
f 2j (x, t)

]
dx, (4.21)

0 ≤ µ2

M−1∑
k=0

∫
Γk

[
e2x (x, t) −

π2

4∆2
y
g2
k (x, t)

]
dx. (4.22)

Moreover, under the homogeneous Dirichlet boundary conditions
(since ẑ(0, t) = ẑ(1, t) = e(0, t) = e(1, t) = 0)

0 ≤ µ3

[
∥ẑx(·, t)∥2

L2(0,1) − π2
∥ẑ(·, t)∥2

L2(0,1)

]
, (4.23)

0 ≤ µ4

[
∥ex(·, t)∥2

L2(0,1) − π2
∥e(·, t)∥2

L2(0,1)

]
(4.24)

hold, where µ3 ≥ 0 and µ4 ≥ 0.
Set

ηj = col
{
ẑ(x, t), fj(x, t), e(x, t)

}
,

σk = col
{
ẑ(x, t), gk(x, t), e(x, t)

}
.

Substituting (4.16), (4.17), (4.20) into the right-hand side of
(4.15), and adding (4.21)–(4.24) to (4.15), for any β ∈ (0, 1) we
obtain

V̇ (t) + 2δV (t)

≤

N−1∑
j=0

∫
Ωuj

η⊤

j Θ1ηjdx +

M−1∑
k=0

∫
Γk

σ⊤

k Θ2σkdx

−

(
γ − µ1 − µ3 −

α

2
∥e∥L2(0,1)

) ∫ 1

0
ẑ2x (x, t)dx

−

(
γ − µ2 − µ4 −

α

2
∥e∥L2(0,1)

) ∫ 1

0
e2x (x, t)dx,

(4.25)

where Θ1 and Θ2 are given by (4.9), (4.10) respectively.
We next prove that (4.13) is satisfied. Similar to [21], we first

assume that

∥e(·, t)∥L2(0,1) < α−1C, ∀t ≥ 0. (4.26)
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Then from (4.25), it follows that

V̇ (t) + 2δV (t) ≤ 0 (4.27)

if Θ1 ≤ 0, Θ2 ≤ 0, and (4.7), (4.8) hold.
Moreover, (4.27) implies

∥(ẑ(·, t), e(·, t))∥2
H ≤ e−2δt

∥(ẑ(·, 0), e(·, 0))∥2
H, (4.28)

that together with Minkowski’s inequality leads to

∥z(·, t)∥L2(0,1) = ∥ẑ(·, t) − e(·, t)∥L2(0,1)

≤
√
2∥(ẑ(·, t), e(·, t))∥H ≤

√
2e−δt

∥(ẑ(·, 0), e(·, 0))∥H

≤
√
2e−δt

∥z0∥L2(0,1).

Now we prove (4.26). Due to V (t) =
1
2
∥(ẑ(·, t), e(·, t))∥2

H, it is
sufficient to show that

V (t) <
1
2
(α−1C)2, ∀t ≥ 0. (4.29)

Indeed, for t = 0, the inequality (4.29) holds. Let (4.29) be false

for some t1 > 0. Then V (t1) ≥
1
2
(α−1C)2 > V (0). Since V is

continuous in time, there must exist t∗ ∈ (0, t1] such that

V (t) <
1
2
(α−1C)2 ∀t ∈ [0, t∗) and V (t∗) =

1
2
(α−1C)2. (4.30)

The first relation of (4.30), together with the feasibility of Θ1 ≤ 0,
Θ2 ≤ 0 and (4.7), (4.8), guarantees that V̇ (t) + 2δV (t) ≤ 0 on

[0, t∗). Therefore, V (t∗) ≤ V (0) <
1
2
(α−1C)2. This contradicts the

second relation of (4.30). Thus, (4.29) and consequently, (4.26),
(4.27) are true, which implies (4.13) provided that ∥z0∥L2(0,1) <

α−1C .
Note that the feasibility of LMIs (4.9), (4.10) with δ = 0 implies

its feasibility with a small enough δ > 0. Therefore, if LMIs
(4.9), (4.10) hold for δ = 0 and (4.7), (4.8) are satisfied, then
the closed-loop system is exponentially stable with a small decay
rate.

The proof of (i) and (ii) are completed. □

Remark 4.1. If the LMIs of Theorem 4.1 are feasible for α = 0,
then the results are global: for any initial function z0 ∈ H2(0, 1)∩
H1

0 (0, 1), the system (3.1), (3.2) under the observer-based con-
troller (4.4) governed by (4.5) is exponentially stable meaning
that the solution of the closed-loop system satisfies (4.13).

Remark 4.2. For the case of the Neumann boundary conditions:

zx(0, t) = zx(1, t) = 0, (4.31)

Wirtinger’s inequality (Lemma 3.1) is not applicable. Hence, (4.23)
and (4.24) hold iff µ3 = µ4 = 0. Therefore, diffusion-reaction
equation (3.1) with α = 0 and the Neumann boundary conditions
(4.31) under the observer-based controller (4.4) with (4.5) is
exponentially stable if the LMIs of Theorem 4.1 hold with µ3 =

µ4 = 0. Note that due to additional terms in Agmon’s inequality
under the Neumann boundary conditions, (4.20) cannot be ob-
tained, and hence, it is not clear how to extend Theorem 4.1 for
α ̸= 0.

Remark 4.3. Given any desirable decay rate δ > 0, L > λ + δ,
and a bound C < 2γ on the initial conditions ∥z0∥L2(0,1) < α−1C ,
the LMIs in Theorem 4.1 are always feasible for large enough
K and small enough ∆u and ∆y (i.e. the number of the sensors
and actuators is large enough). Indeed, consider Θ1 and Θ2 given
by (4.9) and (4.10) respectively. Choose µ1 = µ2, µ3 = µ4 =

γ − µ1 −
C
2

that satisfy (4.7) and (4.8). Then for β = 0.5, LMIs
(4.9) and (4.10) are feasible for large enough K > λ+δ and small
enough ∆u and ∆y.

Remark 4.4. From the LMI conditions of Theorem 4.1, it can be
seen that
(i) If γ becomes larger, for the same estimate on the set of initial
conditions (inside the domain of attraction), a larger decay rate δ
can be achieved.
(ii) If γ becomes larger, for the same decay rate δ, a larger domain
of attraction can be obtained.
(iii) If α becomes smaller, for the same decay rate δ, a larger
domain of attraction can be obtained.

5. Constrained control: regional stabilization

In this section, we consider (3.1), (3.2) with the point control
law which is subject to the following amplitude constraint:

|uj(t)| ≤ ū, (j = 0, . . . ,N − 1). (5.1)

We design the observer-based feedback controller in the form:

usat
j (t) = sat(uj(t), ū), j = 0, . . . ,N − 1, (5.2)

where the saturation function is defined by

sat(uj, ū) = sign(uj)min(|uj|, ū),

and uj(t) is given by (4.4).
We will find domain of attraction for the closed-loop system

(4.1), (4.3) subject to (5.2). Denoting the state trajectory of closed-
loop system (4.1), (4.3) subject to (5.2) with the initial condition
(0,−z0) by (ẑ(x, t; 0), e(x, t; −z0)), the domain of attraction of the
closed-loop system is then the set

S = {(0,−z0) ∈ (H2(0, 1) ∩ H1
0 (0, 1))

2
:

lim
t→∞

∥(ẑ(x, t; 0), e(x, t; −z0))∥H = 0}.

For α > 0, we will obtain an estimate X̃C ⊂ S on the domain of
attraction, where

X̃C = {(0,−z0) ∈ (H2(0, 1) ∩ H1
0 (0, 1))

2
: ∥z0∥L2(0,1) < α−1C},

and C is a scalar that will be maximized in the sequel.

Theorem 5.1. Consider the system (3.1), (3.2) under the observer-
based constrained controller (5.2) governed by (4.1), (4.3). For α >
0, given positive scalars K , L,∆u,∆y, δ, ū and tuning parameters 0 <
β < 1, C > 0, assume that there exist positive scalars µi(i = 1, 2)
and nonnegative scalars µi(i = 3, 4) such that (4.7)–(4.10) and

ū ≥ K (∆u)
1
2 α−1C (5.3)

hold. Then for any initial condition z0 from the set

XC = {z0 ∈ H2(0, 1) ∩ H1
0 (0, 1) : ∥z0∥L2(0,1) < α−1C}, (5.4)

a unique solution of the closed-loop system exists. Moreover, the
closed-loop system initialized with z0 ∈ XC is exponentially stable:

∥z(·, t)∥L2(0,1) ≤
√
2e−δt

∥z0∥L2(0,1), ∀t ≥ 0. (5.5)

Proof. From (4.4), the Cauchy–Schwarz inequality yields

|uj(t)| = K
⏐⏐⏐∫Ωuj

ẑ(ξ, t)dξ
⏐⏐⏐ ≤ K |Ωuj |

1
2 · ∥ẑ∥L2(Ωuj )

≤ K (∆u)
1
2 ∥ẑ∥L2(Ωuj )

≤ K (∆u)
1
2 ∥(ẑ, e)∥H.

(5.6)

Given ū > 0, we define the following set:

L(K , ū) = {(ẑ, e) ∈ H : K (∆u)
1
2 ∥(ẑ, e)∥H ≤ ū}. (5.7)

Then from the inequality (5.6) and the definition above, we can
obtain the following implication: if (ẑ, e) ∈ L(K , ū), then |uj(t)| ≤

ū, (j = 0, . . . ,N − 1), and the saturation is avoided. Thus, the
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Fig. 1. Closed-loop system (with observer-based constrained controller) with
λ = 10.7 under point actuation and measurements.

closed-loop system (4.1), (4.3) subject to (5.2) admits the linear
representation (4.5).

From Theorem 4.1, we find that if there exists δ > 0 such that
the strict LMIs (4.9), (4.10) are feasible and (4.7), (4.8) hold, then
(4.28) is satisfied. Hence, the trajectories (ẑ(x, t; 0), e(x, t; −z0))
starting from initial function (0,−z0) ∈ X̃C (i.e. z0 ∈ XC ) remain
within

X = {(ẑ, e) ∈ H : ∥(ẑ, e)∥H < α−1C}.

The ‘‘ball’’ X is contained in L(K , ū), if the following implication
holds

∥(ẑ, e)∥H < α−1C H⇒ K (∆u)
1
2 ∥(ẑ, e)∥H < ū

for all (ẑ, e) ∈ H, i.e. if

K (∆u)
1
2 ∥(ẑ, e)∥H ≤ (α−1C)−1ū∥(ẑ, e)∥H.

The latter inequality is guaranteed if (5.3) is satisfied. Therefore,
the inequality (5.3) guarantees the saturation avoidance, and
together with Theorem 4.1 imply that

lim
t→∞

∥(ẑ(x, t; 0), e(x, t; −z0))∥H = 0.

Hence, (5.5) holds. The proof is completed. □

Consider the system (3.1), (3.2) with α = 0. Then for the heat
equation, we obtain the following result:

Corollary 5.1. Consider the system (3.1), (3.2) with α = 0 under
the observer-based constrained controller (5.2) governed by (4.1),

Fig. 2. Closed-loop system (with observer-based constrained controller) with
λ = 26 under point actuation and measurements.

(4.3). Given positive scalars ∆u, ∆y, δ, ū and tuning parameters
0 < β < 1, C1 > 0, assume that there exist positive scalars K ,
L, µi(i = 1, 2) and nonnegative scalars µi(i = 3, 4) such that (4.7)–
(4.10) and ū ≥ K (∆u)

1
2 C1 hold. Then for any initial condition z0

from the set

XC1 = {z0 ∈ H2(0, 1) ∩ H1
0 (0, 1) : ∥z0∥L2(0,1) < C1},

a unique solution of the closed-loop system exists. Moreover, the
closed-loop system initialized with z0 ∈ XC1 is exponentially stable.

Remark 5.1. From Remark 4.2 and Corollary 5.1, we obtain the
following result directly:

Diffusion-reaction equation (3.1) with α = 0 and the Neu-
mann boundary conditions (4.31) under the observer-based con-
troller (5.2) with (4.1), (4.3) is exponentially stable for any initial
value z0 ∈ XC1 if the LMIs of Corollary 5.1 hold with µ3 = µ4 = 0.

6. Example

Consider the system (3.1), (3.2) with parameters γ = α = 1,
λ = 10.7 > γπ2 under the point measurements. The open-loop
system is unstable. For the observer-based constrained control
law (5.2) governed by (4.1), (4.3) with K = 21 and ū = 7.5,
by using Yalmip we verify LMI conditions of Theorem 5.1 with
β = 0.5, ∆u = 0.125, ∆y = 1/6, L = 15, δ = 0.1. We obtain
that max C = 1, and find that the closed-loop system (3.1), (3.2),
(4.1), (4.3), (5.2) preserves the exponential stability for any initial
values satisfying ∥z0∥L2(0,1) < 1.
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Next a finite difference method is applied to compute the
state of the closed-loop system (3.1), (3.2) under the observer-
based constrained controller (5.2) governed by (4.1), (4.3). We
choose the same values of parameters and the initial condition
z0(x) = 1.4 sin(πx), 0 ≤ x ≤ 1. Hence, ∥z0∥L2(0,1) < 1.

The steps of space and time are taken as 0.025 and 0.0003,
respectively. Assume that there are 7 in-domain sensors transmit-
ting point measurements at x0 = 0, x1 = 1/6, x2 = 1/3, x3 = 1/2,
x4 = 2/3, x5 = 5/6 and x6 = 1. Here ∆y = 1/6. Simulation
of solutions under the controller uj(t) = −21

∫
Ωuj

ẑ(ξ, t)dξ with

Ωuj =
[ j
8 ,

j+1
8

)
(j = 0, . . . , 7), and ∆u = 0.125, where the spatial

domain is divided into eight sub-domains, shows that the closed-
loop system is exponentially stable (see Fig. 1). By verifying the
LMI conditions of Theorem 5.1, we obtain the maximum value of
λ = 10.7 that preserves the exponential stability. By simulation
of the solution to the closed-loop system starting from the same
initial condition, we find that stability is preserved for essentially
larger values of λ till approximately λ = 25. However, for λ = 26
the solution becomes unbounded (see Fig. 2). The simulations of
the solutions confirm the theoretical results and illustrate their
conservatism.

7. Conclusion

In this paper, an observer for Burgers equation by using the
point measurements was constructed. This allowed to achieve
regional stabilization under the point in-domain constrained con-
troller that employs the averaged values of the observer. An
estimate on the domain of attraction was found by using LMIs.
One of the directions for the future research may be extension
of the obtained results to the observer-based boundary control of
coupled ODE-PDE system.
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Appendix. Proof of Theorem 4.1(i)

As in [22,23], the proof is based on the Galerkin approximation
method. Given T > 0. Suppose that {φn}

∞

n=1 is an orthonormal
basis for H2(0, 1) ∩ H1

0 (0, 1) with the norm ∥f ∥H2(0,1)∩H1
0 (0,1)

=

∥f ′′
∥L2(0,1)+∥f ′

∥L2(0,1). For any N ∈ Z+, define a finite-dimensional
subspace of H1

0 (0, 1) by VN = span{φ1, φ2, . . . , φN}. A Galerkin
approximation solution to (4.5) is constructed as follows:

(
ẑN (x, t), eN (x, t)

)
=

(
N∑

n=1

aNn (t)φn(x),
N∑

n=1

gN
n (t)φn(x)

)

which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ẑNt (·, t), φ⟩ + α⟨ẑN (·, t)ẑNx (·, t), φ⟩ + γ ⟨ẑNx (·, t), φ
′
⟩

−λ⟨ẑN (·, t), φ⟩ = −L
M−1∑
k=0

eN (xk, t)
∫
Γk

φ(ξ )dξ

−K
N−1∑
j=0

φ(x̄j)
∫
Ωuj

ẑN (ξ, t)dξ,

⟨eNt (·, t), ϕ⟩ + α⟨eN (·, t)ẑNx (·, t), ϕ⟩ + α⟨ẑN (·, t)eNx (·, t), ϕ⟩

−α⟨eN (·, t)eNx (·, t), ϕ⟩ + γ ⟨eNx (·, t), ϕ
′
⟩ − λ⟨eN (·, t), ϕ⟩

= −L
M−1∑
k=0

eN (xk, t)
∫
Γk

ϕ(ξ )dξ, ∀ φ, ϕ ∈ VN ,

aNn (0) = 0, gN
n (0) = −⟨z0, φn⟩, n = 1, . . . ,N.

(A.1)

Set X1(t) = (aN1 (t), . . . , a
N
N (t))

T , X2(t) = (gN
1 (t), . . . , g

N
N (t))

T and
X(t) = (X1(t), X2(t))T . From (A.1), substituting φ = ϕ = φn, n =

1, . . . ,N we obtain that X(t) satisfies a nonlinear ODE system:

Ẋ(t) = (A + B)X(t) + F (X1(t), X2(t)), (A.2)

with

A =

[
Φ 0
0 Φ

]
, F =

[
F1
F2

]
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K
N−1∑
j=0

∫
Ωuj
φ1(ξ )dξ · c2 −L

M−1∑
k=0

∫
Γk
φ1(ξ )dξ · c1

...
...

−K
N−1∑
j=0

∫
Ωuj
φN (ξ )dξ · c2 −L

M−1∑
k=0

∫
Γk
φN (ξ )dξ · c1

−L
M−1∑
k=0

∫
Γk
φ1(ξ )dξ · c1

0
...

−L
M−1∑
k=0

∫
Γk
φN (ξ )dξ · c1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Φ = −γ ({⟨φ′

i , φ
′

j ⟩}
N
i,j=1)

T
+ λIN ,

F1 = −α
(
⟨XT

1 ({φiφ
′

j }
N
i,j=1)X1, φk⟩

N
k=1

)T
,

F2 = −α
(
⟨XT

1 ({φiφ
′

j }
N
i,j=1)X2, φk⟩

N
k=1

)T
−α

(
⟨XT

2 ({φiφ
′

j }
N
i,j=1)X1, φk⟩

N
k=1

)T
+α

(
⟨XT

2 ({φiφ
′

j }
N
i,j=1)X2, φk⟩

N
k=1

)T
,

c1 = (φ1(xk), φ2(xk), . . . , φN (xk)),
c2 = (φ1(x̄j), φ2(x̄j), . . . , φN (x̄j)).

Hence, there exist functions aN1 (t), . . . , a
N
N (t), g

N
1 (t), . . . , g

N
N (t) on

some interval [0, TN ). We will show next that these functions can
be extended for all t ≥ 0.

Lemma A.1. For any t ≥ 0, the following inequality holds:

sup
t≥0

sup
N

[
∥ẑN (·, t)∥2

L2
+ ∥eN (·, t)∥2

L2

+
∫ t
0 [∥ẑNx (·, s)∥

2
L2

+ ∥eNx (·, s)∥
2
L2

]ds
]
< ∞.

(A.3)
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Proof. For t ≥ 0, substitute (φ, ϕ) = (ẑN (x, t), eN (x, t)) into (A.1).
Then from (4.25), the feasibility of LMIs (4.7)–(4.10) lead to

d
dt

∥(ẑN (·, t), eN (·, t))∥2
H + 2δ∥(ẑN (·, t), eN (·, t))∥2

H

≤ −

(
γ − µ1 − µ3 −

α

2
∥eN (·, t)∥L2

)
∥ẑNx (·, t)∥

2
L2

−

(
γ − µ2 − µ4 −

α

2
∥eN (·, t)∥L2

)
∥eNx (·, t)∥

2
L2

≤ 0,

which implies (A.3). □

In order to pass to the limits as N → ∞, we need
N-independent a-priori-estimates via several lemmas.

Lemma A.2. For any z0 ∈ H2(0, 1) ∩ H1
0 (0, 1), the following

inequality holds:

sup
N

[
∥ẑNt (·, 0)∥L2 + ∥eNt (·, 0)∥L2

]
< ∞. (A.4)

Proof. Set t = 0 in (A.1). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ẑNt (·, 0), φ⟩ + α⟨ẑN (·, 0)ẑNx (·, 0), φ⟩ + γ ⟨ẑNx (·, 0), φx⟩

−λ⟨ẑN (·, 0), φ⟩ = −L
M−1∑
k=0

eN (xk, 0)
∫
Γk

φ(ξ )dξ

−K
N−1∑
j=0

φ(x̄j)
∫
Ωuj

ẑN (ξ, 0)dξ,

⟨eNt (·, 0), ϕ⟩ + α⟨eN (·, 0)ẑNx (·, 0), ϕ⟩ + α⟨ẑN (·, 0)eNx (·, 0), ϕ⟩

−α⟨eN (·, 0)eNx (·, 0), ϕ⟩ + γ ⟨eNx (·, 0), ϕx⟩ − λ⟨eN (·, 0), ϕ⟩

= −L
M−1∑
k=0

eN (xk, 0)
∫
Γk

ϕ(ξ )dξ .

(A.5)

Due to ẑN (·, 0) =
∑N

n=1 a
N
n (t)φn(0) = 0, substituting φ = ẑNt (x, 0)

and ϕ = eNt (x, 0) into (A.5), we obtain

∥ẑNt (·, 0)∥
2
L2

= −L
M−1∑
k=0

⟨eN (xk, 0), bk(·)ẑNt (·, 0)⟩,

∥eNt (·, 0)∥
2
L2

= ⟨γ eNxx(·, 0) + λeN (·, 0) − αeN (·, 0)ẑNx (·, 0)

−αẑN (·, 0)eNx (·, 0) + αeN (·, 0)eNx (·, 0), e
N
t (·, 0)⟩

−L
M−1∑
k=0

⟨eN (xk, 0), bk(·)eNt (·, 0)⟩.

(A.6)

Due to eN (·, 0) =
∑N

n=1⟨−z0(·), φn⟩φn, from (A.6), the Minkowski
and Cauchy-Schwarz inequalities lead to

∥eNt (·, 0)∥L2 ≤ γ ∥eNxx(·, 0)∥L2 + λ∥eN (·, 0)∥L2

+α∥eN (·, 0)ẑNx (·, 0)∥L2 + α∥ẑN (·, 0)eNx (·, 0)∥L2

+α∥eN (·, 0)eNx (·, 0)∥L2 + Lmax0≤x≤1 |eN (·, 0)|
≤ K1∥eN (·, 0)∥H2 + α∥eN (·, 0)∥L∞∥eNx (·, 0)∥L2

+L∥eN (·, 0)∥L∞

(A.7)

for some positive constant K1 > 0.
By using Sobolev inequality, we obtain

∥eN (·, 0)∥L∞ ≤ ∥eN (·, 0)∥H1 . (A.8)

From (A.7) and (A.8) it follows that supN ∥eNt (·, 0)∥L2 < ∞.
Together with (A.6), it implies (A.4). □

Lemma A.3. For any z0 ∈ H2(0, 1) ∩ H1
0 (0, 1) and t ≥ 0, the

following inequality holds:

sup
N

[
∥ẑNt (·, t)∥

2
L2

+ ∥eNt (·, t)∥
2
L2

+
∫ t
0

(
∥ẑNxt (·, s)∥

2
L2

+ ∥eNxt (·, s)∥
2
L2
)
ds
]
< ∞.

(A.9)

Proof. For t ≥ 0, differentiating the first and second equation of
(A.1) with respect to t , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ẑNtt (·, t), φ⟩ + α⟨ẑNt (·, t)ẑ
N
x (·, t), φ⟩ + α⟨ẑN (·, t)ẑNxt (·, t), φ⟩

+γ ⟨ẑNxt (·, t), φx⟩ − λ⟨ẑNt (·, t), φ⟩

= −L
M−1∑
k=0

eNt (xk, t)
∫
Γk

φ(ξ )dξ

−K
N−1∑
j=0

φ(x̄j)
∫
Ωuj

ẑNt (ξ, t)dξ,

⟨eNtt (·, t), ϕ⟩ + α⟨eNt (·, t)ẑ
N
x (·, t), ϕ⟩ + α⟨eN (·, t)ẑNxt (·, t), ϕ⟩

+α⟨ẑt (·, t)eNx (·, t), ϕ⟩ + α⟨ẑN (·, t)eNxt (·, t), ϕ⟩

−α⟨eNt (·, t)e
N
x (·, t), ϕ⟩ − α⟨eN (·, t)eNxt (·, t), ϕ⟩

+γ ⟨eNxt (·, t), ϕx⟩ − λ⟨eNt (·, t), ϕ⟩

= −L
M−1∑
k=0

eNt (xk, t)
∫
Γk

ϕ(ξ )dξ .

(A.10)

Substituting (φ, ϕ) = (ẑNt (·, t), e
N
t (·, t)) into (A.10) we obtain

1
2

d
dt

[
∥ẑNt (·, t)∥

2
L2 + ∥eNt (·, t)∥

2
L2
]

≤ −γ
[
∥ẑNxt (·, t)∥

2
L2

+ ∥eNxt (·, t)∥
2
L2
]

+λ
[
∥ẑNt (·, t)∥

2
L2

+ ∥eNt (·, t)∥
2
L2
]

+α
[
⟨ẑN (·, t)ẑNxt (·, t), ẑ

N
t (·, t)⟩ − ⟨eN (·, t)eNxt (·, t), e

N
t (·, t)⟩

]
+α

[
⟨eNt (·, t)ẑ

N
x (·, t), e

N
t (·, t)⟩ + ⟨eN (·, t)eNt (·, t), ẑ

N
xt (·, t)⟩

]
+α

[
⟨ẑNt (·, t)e

N
x (·, t), e

N
t (·, t)⟩ + ⟨ẑN (·, t)eNxt (·, t), e

N
t (·, t)⟩

]
+L∥eNt (·, t)∥L∞∥ẑNt (·, t)∥L2 + L∥eNt (·, t)∥L∞∥eNt (·, t)∥L2

+K∥ẑNt (·, t)∥L∞∥ẑNt (·, t)∥L2 .

(A.11)

By using Sobolev inequality, we have

∥ẑN (·, t)∥L∞ ≤ ∥ẑN (·, t)∥H1 , ∥eN (·, t)∥L∞ ≤ ∥eN (·, t)∥H1 ,

∥ẑNt (·, t)∥L∞ ≤ ∥ẑNt (·, t)∥H1 , ∥eNt (·, t)∥L∞ ≤ ∥eNt (·, t)∥H1 .

Then, the Young inequality leads to

L∥eNt (·, t)∥L∞∥ẑNt (·, t)∥L2

≤
L
2
[ϵ0∥eNxt (·, t)∥

2
L2 +

1
ϵ0

∥ẑNt (·, t)∥
2
L2 ],

L∥eNt (·, t)∥L∞∥eNt (·, t)∥L2

≤
L
2
[ϵ0∥eNxt (·, t)∥

2
L2 +

1
ϵ0

∥eNt (·, t)∥
2
L2 ],

K∥ẑNt (·, t)∥L∞∥ẑNt (·, t)∥L2

≤
K
2

[ϵ0∥ẑNxt (·, t)∥
2
L2 +

1
ϵ0

∥ẑNt (·, t)∥
2
L2 ], ∀ϵ0 > 0.
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From Lemma A.1, together with the latter inequality and Young’s
inequality we have

⟨ẑN (·, t)ẑNxt (·, t), ẑ
N
t (·, t)⟩ − ⟨eN (·, t)eNxt (·, t), e

N
t (·, t)⟩

+⟨eN (·, t)eNt (·, t), ẑ
N
xt (·, t)⟩ + ⟨ẑN (·, t)eNxt (·, t), e

N
t (·, t)⟩

≤ K2
[
∥ẑNxt (·, t)∥L2∥ẑNt (·, t)∥L2 + ∥eNxt (·, t)∥L2∥eNt (·, t)∥L2

]
+K2

[
∥ẑNxt (·, t)∥L2∥eNt (·, t)∥L2 + ∥eNxt (·, t)∥L2∥eNt (·, t)∥L2

]
≤ K2

[
2ϵ1∥ẑNxt (·, t)∥

2
L2

+
1
ϵ1

∥ẑNt (·, t)∥
2
L2 + 2ϵ1∥eNxt (·, t)∥

2
L2

+
3
ϵ1

∥eNt (·, t)∥
2
L2

]
∀ϵ1 > 0

(A.12)

for some constant K2 > 0.
Similarly,

⟨eNt (·, t)ẑ
N
x (·, t), e

N
t (·, t)⟩ + ⟨ẑNt (·, t)e

N
x (·, t), e

N
t (·, t)⟩

≤ K3

[
ϵ2∥eNxt (·, t)∥

2
L2

+ ϵ2∥ẑNxt (·, t)∥
2
L2

+
2
ϵ2

∥eNt (·, t)∥
2
L2

]
(A.13)

holds for any ϵ2 > 0 for some constant K3 > 0.

Choose ϵi > 0(i = 0, 1, 2) such that γ > (L+
K
2
)ϵ0 + (2K2ϵ1 +

K3ϵ2)α. Then from (A.11)–(A.13), we get

1
2

d
dt

[
∥ẑNt (·, t)∥

2
L2 + ∥eNt (·, t)∥

2
L2
]

≤ −

(
γ − Lϵ0 −

Kϵ0
2

− 2αK2ϵ1 − αK3ϵ2

)
×
[
∥ẑNxt (·, t)∥

2
L2

+ ∥eNxt (·, t)∥
2
L2
]

+

(
λ+

L
ϵ0

+
K
2ϵ0

+
3K2

ϵ1
α +

2K3

ϵ2
α

)
×
[
∥ẑNt (·, t)∥

2
L2

+ ∥eNt (·, t)∥
2
L2
]

Application of the Gronwall inequality and Lemma A.2 yield (A.9).
Continuation of proof of Theorem 4.1(i):

Given T > 0. From Lemmas A.1–A.3, and Corollary 4.19 and
Proposition 4.17 of [24] (see pp. 104, 106), we can extract a
subsequence, which is still denoted by N , such that⎧⎪⎨⎪⎩

(ẑN , eN )⇀ (ẑ, e) in L∞(0, T ;H1) weak star,

(ẑNt , e
N
t )⇀ (ẑt , et ) in L∞(0, T ;H) weak star,

(ẑNt , e
N
t )⇀ (ẑt , et ) in L2(0, T ;H1) weak

(A.14)

Indeed, let us first recall the following results from [24]:
Corollary 4.19 of [24] (Reflexive weak compactness): Let X be a
reflexive Banach space and xn a bounded sequence in X . Then xn
has a subsequence that converges weakly in X .
Proposition 4.17 of [24]: Weak convergence implies weak−∗

convergence.
It should be noticed that in Corollary 4.19 of [24], the subse-

quence converges weakly in the original space. From Lemma A.1,
it follows that (ẑN , eN ) is bounded sequence in H1. Then, from
Corollary 4.19 and Proposition 4.17 of [24], we have

(ẑN , eN )⇀ (ẑ, e) in L∞(0, T ;H1) weak star,

Similarly, from Corollary 4.19 and Proposition 4.17 of [24], and
Lemmas A.2–A.3, we have{

(ẑNt , e
N
t )⇀ (ẑt , et ) in L∞(0, T ;H) weak star,

(ẑNt , e
N
t )⇀ (ẑt , et ) in L2(0, T ;H1) weak

For any ψ ∈ C∞

0 (0, T ) and (φ, ϕ) ∈ H1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T
0 ⟨ẑNt (·, t), φ⟩ψ(t)dt + α

∫ T
0 ⟨ẑN (·, t)ẑNx (·, t), φ⟩ψ(t)dt

+γ
∫ T
0 ⟨ẑNx (·, t), φx⟩ψ(t)dt − λ

∫ T
0 ⟨ẑN (·, t), φ⟩ψ(t)dt

+L
M−1∑
k=0

∫ T

0
eN (xk, t)

∫
Γk

φ(ξ )dξψ(t)dt

+K
N−1∑
j=0

∫ T

0
φ(x̄j)

∫
Ωuj

ẑN (ξ, t)dξψ(t)dt = 0,

∫ T
0 ⟨eNt (·, t), ϕ⟩ψ(t)dt + α

∫ T
0 ⟨eN (·, t)ẑNx (·, t), ϕ⟩ψ(t)dt

+α
∫ T
0 ⟨ẑN (·, t)eNx (·, t), ϕ⟩ψ(t)dt

−α
∫ T
0 ⟨eN (·, t)eNx (·, t), ϕ⟩ψ(t)dt

+γ
∫ T
0 ⟨eNx (·, t), ϕx⟩ψ(t)dt − λ

∫ T
0 ⟨eN (·, t), ϕ⟩ψ(t)dt

+L
M−1∑
k=0

∫ T

0
eN (xk, t)

∫
Γk

ϕ(ξ )dξψ(t)dt = 0.

(A.15)

From (A.14), we have

(ẑN , eN )⇀ (ẑ, e) in L∞(0, T ;H1) weak star,

Thus, the convergence of ẑNx and eNx can be obtained in L2-norm
in the sense that

(ẑNx , e
N
x )⇀ (ẑx, ex) in L∞(0, T ;H) weak star,

Note that
∥ẑN ẑNx − ẑẑx∥ = ∥ẑN ẑNx − ẑẑNx + ẑẑNx − ẑẑx∥

≤ ∥ẑN ẑNx − ẑẑNx ∥ + ∥ẑẑNx − ẑẑx∥
≤ ∥ẑN − ẑ∥ · ∥ẑNx ∥ + ∥ẑNx − ẑx∥ · ∥ẑ∥.

Passing to the limits as N → ∞ in the above inequality, we obtain

ẑN ẑNx ⇀ ẑẑx,

Similarly, we have

eNeNx ⇀ eex,

Thus, passing to the limits as N → ∞ in (A.15), it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ẑt , φ⟩ + α⟨ẑẑx, φ⟩ + γ ⟨ẑx, φx⟩ − λ⟨ẑ, φ⟩

= −L
M−1∑
k=0

e(xk, t)
∫
Γk

φ(ξ )dξ − K
N−1∑
j=0

φ(x̄j)
∫
Ωuj

ẑ(ξ, t)dξ,

⟨et , ϕ⟩ + α⟨eẑx + ẑex − eex, ϕ⟩ + γ ⟨ex, ϕx⟩ − λ⟨e, ϕ⟩

= −L
M−1∑
k=0

e(xk, t)
∫
Γk

ϕ(ξ )dξ, t ∈ [0, T ] a.e.

(A.16)

for any (φ, ϕ) ∈ H1.
Hence,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ẑt , φ⟩ + α⟨ẑẑx, φ⟩ + γ ⟨ẑx, φx⟩ − λ⟨ẑ, φ⟩

= −L
M−1∑
k=0

e(xk, t)⟨bk, φ⟩

−
∑N−1

j=0 K ⟨δ(x − x̄j), φ⟩
∫
Ωuj

ẑ(ξ, t)dξ,

⟨et , ϕ⟩ + α⟨eẑx + ẑex − eex, ϕ⟩ + γ ⟨ex, ϕx⟩ − λ⟨e, ϕ⟩

= −L
M−1∑
k=0

e(xk, t)⟨bk, ϕ⟩, t ∈ [0, T ] a.e.

(A.17)
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Taking φ, ϕ ∈ C∞

0 (0, 1) in (A.17), we obtain the generalized
derivatives ẑxx and exx exist, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑt (x, t) = γ ẑxx(x, t) − αẑ(x, t)ẑx(x, t) + λẑ(x, t)

−L
M−1∑
k=0

bk(x)e(xk, t) −

N−1∑
j=0

δ(x − x̄j)K
∫
Ωuj

ẑ(ξ, t)dξ,

et (x, t) = γ exx(x, t) − αe(x, t)ẑx(x, t) − αẑ(x, t)ex(x, t)

+αe(x, t)ex(x, t) + λe(x, t) − L
M−1∑
k=0

bk(x)e(xk, t),

for almost all t ∈ [0, T ]. Therefore, for any T > 0, there exists
a solution to the system (4.5) for all t ∈ [0, T ] in the sense that
(4.12) holds. □
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