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Abstract. Exponential stability analysis via Lyapunov method is extended
to the one-dimensional heat and wave equations with time-varying delay in the
boundary conditions. The delay function is admitted to be time-varying with
an a priori given upper bound on its derivative, which is less than 1. Sufficient
and explicit conditions are derived that guarantee the exponential stability.
Moreover the decay rate can be explicitly computed if the data are given.

1. Introduction. Time-delay often appears in many biological, electrical engineer-
ing systems and mechanical applications, and in many cases, delay is a source of
instability [5]. In the case of distributed parameter systems, even arbitrarily small
delays in the feedback may destabilize the system (see e.g. [3, 9, 15, 10]). The
stability issue of systems with delay is, therefore, of theoretical and practical im-
portance.

There are only a few works on Lyapunov-based technique for Partial Differential
Equations (PDEs) with delay. Most of these works analyze the case of constant
delays. Thus, stability conditions and exponential bounds were derived for some
scalar heat and wave equations with constant delays and with Dirichlet boundary
conditions without delay in [16, 17]. Stability and instability conditions for the
wave equations with constant delay can be found in [10, 12]. The stability of linear
parabolic systems with constant coefficients and internal constant delays has been
studied in [6] in the frequency domain.

Recently the stability of PDEs with time-varying delays was analyzed in [2, 4, 13]
via Lyapunov method. In the case of linear systems in the Hilbert space, the
conditions of [2, 4, 13] assume that the operator acting on the delayed state is
bounded, which means that this condition can not be applied to boundary delays.
These conditions were applied to PDEs without delays in the boundary conditions
(to 2D Navier-Stokes and to a scalar heat equations in [2], to a scalar heat and to
a scalar wave equations in [4, 13]).
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In the present paper we analyze exponential stability of the heat and wave equa-
tions with time-varying boundary delay. Our main novel contribution is an ex-
tension of previous results from [10, 12] to time-varying delays. This extension is
not straightforward due to the loss of translation-invariance. In the constant delay
case the exponential stability was proved in [10, 12] by using the observability in-
equality which can not be applicable in the time-varying case (since the system is
not invariant by translation). Hence we introduce new Lyapunov functionals with
exponential terms and an additional term for the wave equation, which take into
account the dependence of the delay with respect to time. For the treatment of
other problems with Lyapunov technique see [4, 13, 11]. Note further that to the
best of our knowledge the heat equation with boundary delay has not been treated
in the literature. Contrary to [10, 12], the existence results do not follow from stan-
dard semi-group theory because the spatial operator depends on time due to the
time-varying delay. Therefore we use the variable norm technique of Kato [7, 8].
Finally for each problem we give explicit sufficient conditions that guarantee the
exponential decay and for the first time we characterize the optimal decay rate that
can be explicitly computed once the data are given.

The paper is mainly decomposed in two parts treating the heat equation (section
2) and the wave equation (section 3). In the first subsection, we set the problem
under consideration and prove existence results by using semigroup theory. In the
second subsection we find sufficient conditions for the strict decay of the energy and
finally in the last subsection we show that these conditions yield an exponential
decay.

2. Exponential stability of the delayed heat equation. First, we consider the
system described by























ut(x, t) − auxx(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = 0, t > 0,

ux(π, t) = −µ0u(π, t) − µ1u(π, t − τ(t)), t > 0,

u(x, 0) = u0(x), 0 < x < π,

u(π, t − τ(0)) = f0(t − τ(0)), 0 < t < τ(0),

(1)

with the constant parameter a > 0 and where µ0, µ1 ≥ 0 are fixed nonnegative real
numbers, the time-varying delay τ(t) satisfies

τ̇ (t) < 1, ∀t > 0, (2)

and

∃M > 0 : 0 < τ0 ≤ τ(t) ≤ M, ∀t > 0. (3)

Moreover, we assume that

τ ∈ W 2,∞([0, T ]), ∀T > 0. (4)

The boundary-value problem (1) describes the propagation of heat in a homoge-
neous one-dimensional rod with a fixed temperature at the left end. Here a stands
for the heat conduction coefficient, u(x, t) is the value of the temperature field of
the plant at time moment t and location x along the rod. In the sequel, the state
dependence on time t and spatial variable x is suppressed whenever possible.
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2.1. Well-posedness of the problem. We aim to show that problem (1) is well-
posed. For that purpose, we use semi-group theory and adapt the ideas from [10].

We introduce the Hilbert space

V = {φ ∈ H1(0, π) : φ(0) = 0}.

We transform our system (1) as follows. Let us introduce the auxiliary variable
z(ρ, t) = u(π, t − τ(t)ρ) for ρ ∈ (0, 1) and t > 0. Note that z verifies the transport
equation for 0 < ρ < 1 and t > 0







τ(t)zt(ρ, t) + (1 − τ̇ (t)ρ)zρ(ρ, t) = 0,

z(0, t) = u(π, t),
z(ρ, 0) = f0(−τ(0)ρ).

(5)

Therefore, the problem (1) is equivalent to






























ut(x, t) − auxx(x, t) = 0, 0 < x < π, t > 0,

τ(t)zt(ρ, t) + (1 − τ̇ (t)ρ)zρ(ρ, t) = 0, 0 < ρ < 1, t > 0,

u(0, t) = 0, ux(π, t) = −µ0u(π, t) − µ1z(1, t), t > 0,

z(0, t) = u(π, t), t > 0,

u(x, 0) = u0(x), 0 < x < π,

z(ρ, 0) = f0(−τ(0)ρ), 0 < ρ < 1.

(6)

If we introduce

U := (u, z)⊤,

then U satisfies

Ut = (ut, zt)
⊤ = (auxx,

τ̇(t)ρ − 1

τ(t)
zρ)

⊤.

Consequently the problem (1) may be rewritten as the first order evolution equation
{

Ut = A(t)U
U(0) = (u0, f0(−τ(0)))⊤ = U0,

(7)

where the time dependent operator A(t) is defined by

A(t)

(

u

z

)

=

(

auxx
τ̇(t)ρ−1

τ(t) zρ

)

,

with domain

D(A(t)) := {(u, z) ∈ (V ∩ H2(0, π)) × H1(0, 1) :
z(0) = u(π), ux(π) = −µ0u(π) − µ1z(1)}.

Notice that the domain of the operator A(t) is independent of the time t, i.e.

D(A(t)) = D(A(0)), ∀t > 0. (8)

Now, we introduce the Hilbert space

H = L2(0, π) × L2(0, 1)

equipped with the usual inner product
〈(

u

z

)

,

(

ũ

z̃

)〉

=

∫ π

0

uũdx +

∫ 1

0

z(ρ)z̃(ρ)dρ.

A general theory for equations of type (7) has been developed using semigroup
theory [7, 8, 14]. The simplest way to prove existence and uniqueness results is to
show that the triplet {A, H, Y }, with A = {A(t) : t ∈ [0, T ]}, for some fixed T > 0
and Y = D(A(0)), forms a CD-system (or constant domain system, see [7, 8]). More
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precisely, the following theorem gives the existence and uniqueness results and is
proved in Theorem 1.9 of [7] (see also Theorem 2.13 of [8] or [1])

Theorem 2.1. Assume that
(i) Y = D(A(0)) is a dense subset of H,
(ii) (8) holds,
(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and

the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m inde-
pendent of t (i.e. the semigroup (St(s))s≥0 generated by A(t) satisfies ‖St(s)u‖H ≤
Cems‖u‖H, for all u ∈ H and s ≥ 0),

(iv) ∂tA belongs to L∞
∗ ([0, T ], B(Y, H)), the space of equivalent classes of es-

sentially bounded, strongly measure functions from [0, T ] into the set B(Y, H) of
bounded operators from Y into H.

Then, problem (7) has a unique solution U ∈ C([0, T ], Y )∩C1([0, T ], H) for any
initial datum in Y .

Lemma 2.2. D(A(0)) is dense in H.

Proof. Let (f, h)⊤ ∈ H be orthogonal to all elements of D(A(0)), namely

0 =

〈(

u

z

)

,

(

f

h

)〉

=

∫ π

0

ufdx +

∫ 1

0

z(ρ)h(ρ)dρ,

for all (u, z)⊤ ∈ D(A(0)).
We first take u = 0 and z ∈ D(0, 1). As (0, z) ∈ D(A(0)), we get

∫ 1

0

z(ρ)h(ρ)dρ = 0.

Since D(0, 1) is dense in L2(0, 1), we deduce that h = 0.

In the same manner, by taking z = 0 and u ∈ D(0, π) we see that f = 0.

Let us suppose now that the speed of the delay satisfies

τ̇ (t) ≤ d < 1, ∀t > 0 (9)

and that µ0, µ1 satisfy

µ2
1 ≤ (1 − d)µ2

0. (10)

Under these conditions, we will show that the operator A(t) generates a
C0-semigroup in H and using the variable norm technique of Kato from [7], that
problem (6) (and then (1)) has a unique solution.

For that purpose, we introduce the following time-dependent inner product on
H

〈(

u

z

)

,

(

ũ

z̃

)〉

t

=

∫ π

0

uũdx + qτ(t)

∫ 1

0

z(ρ)z̃(ρ)dρ,

where q is a positive constant chosen later on, with associated norm denoted by
‖.‖t .

Theorem 2.3. For an initial datum U0 ∈ H, there exists a unique solution U ∈
C([0, +∞), H) to problem (7). Moreover, if U0 ∈ D(A(0)), then

U ∈ C([0, +∞), D(A(0))) ∩ C1([0, +∞), H).
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Proof. We first prove that

‖φ‖t

‖φ‖s

≤ e
c

2τ0
|t−s|

, ∀t, s ∈ [0, T ] (11)

where φ = (u, z)⊤ and c is a positive constant. For all s, t ∈ [0, T ], we have

‖φ‖
2
t −‖φ‖

2
s e

c

τ0
|t−s|

=
(

1 − e
c

τ0
|t−s|

)

∫ π

0

u2dx+q
(

τ(t) − τ(s)e
c

τ0
|t−s|

)

∫ 1

0

z(ρ)2dρ.

We notice that 1 − e
c

τ0
|t−s| ≤ 0. Moreover τ(t) − τ(s)e

c

τ0
|t−s| ≤ 0 for some c > 0.

Indeed,

τ(t) = τ(s) + τ̇(a)(t − s), where a ∈ (s, t),

and thus,

τ(t)

τ(s)
≤ 1 +

|τ̇ (a)|

τ(s)
|t − s| .

By (4), τ̇ is bounded and therefore,

τ(t)

τ(s)
≤ 1 +

c

τ0
|t − s| ≤ e

c

τ0
|t−s|

,

by (3), which proves (11).
Now we calculate 〈A(t)U, U〉t for a t fixed. Take U = (u, z)⊤ ∈ D(A(t)). Then

〈A(t)U, U〉t =

〈(

auxx
τ̇(t)ρ−1

τ(t) zρ

)

,

(

u

z

)

〉

t

= a

∫ π

0

uxxudx − q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ.

By integrating by parts in space in the first term of this right hand side, we have

〈A(t)U, U〉t = −a

∫ π

0

u2
xdx + a[uux]π0 − q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ

= −a

∫ π

0

u2
xdx − aµ0u(π, t)2 − aµ1u(π, t)u(π, t − τ(t))

−q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ.

Moreover, we have by integrating by parts in ρ:

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ =

∫ 1

0

1

2

∂

∂ρ
(z(ρ)2)(1 − τ̇(t)ρ)dρ

=
τ̇(t)

2

∫ 1

0

z(ρ)2dρ +
1

2
u2(π, t − τ(t))(1 − τ̇ (t))

−
1

2
u2(π, t).
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Therefore

〈A(t)U, U〉t = −a

∫ π

0

u2
xdx −

qτ̇(t)

2

∫ 1

0

z(ρ)2dρ − aµ0u(π, t)2

−aµ1u(π, t)u(π, t − τ(t)) −
q

2
u(π, t − τ(t))2(1 − τ̇ (t))

+
q

2
u(π, t)2

≤ −a

∫ π

0

u2
xdx + (

q

2
− aµ0)u

2(π, t) − aµ1u(π, t)u(π, t − τ(t))

−
q

2
u(π, t − τ(t))2(1 − d) +

q |τ̇ (t)|

2τ(t)
τ(t)

∫ 1

0

z(ρ)2dρ.

We can see that this inequality can be written

〈A(t)U, U〉t ≤ −a

∫ π

0

u2
xdx + (u(π, t), u(π, t− τ(t)))Ψq(u(π, t), u(π, t− τ(t)))⊤

+ κ(t) 〈U, U〉t ,

where

κ(t) =
(τ̇ (t)2 + 1)

1
2

2τ(t)
(12)

and where Ψq is the 2 × 2 matrix defined by

Ψq =
1

2

(

q − 2aµ0 −aµ1

−aµ1 −q(1 − d)

)

. (13)

As −q(1 − d) < 0, we notice that the matrix Ψq is negative (in the sense that
XΨqX

⊤ ≤ 0, for all X = (x1, x2) ∈ R
2) if and only if

q2 − 2aµ0q +
a2µ2

1

1 − d
≤ 0. (14)

The discriminant of this second order polynomial (in q) is

∆ = 4a2

(

µ2
0 −

µ2
1

1 − d

)

,

which is non negative if and only if (10) holds. Therefore, the matrix Ψq is negative
for some q > 0 if and only if (10) is satisfied. Hence, we choose q satisfying (14) or
equivalently such that

aµ0 − a

√

µ2
0 −

µ2
1

1 − d
≤ q ≤ aµ0 + a

√

µ2
0 −

µ2
1

1 − d
.

Such a choice of q yields

〈A(t)U, U〉t − κ(t) 〈U, U〉t ≤ 0, (15)

which proves the dissipativeness of Ã(t) = A(t)− κ(t)I for the inner product 〈·, ·〉t.

Moreover κ′(t) = τ̈(t)τ̇(t)

2τ(t)(τ̇(t)+1)
1
2
− τ̇(t)(τ̇(t)2+1)

1
2

2τ(t)2 is bounded on [0, T ] for all T > 0

(by (4)) and we have

d

dt
A(t)U =

(

0
τ̈(t)τ(t)ρ−τ̇(t)(τ̇(t)ρ−1)

τ(t)2 zρ

)
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with τ̈(t)τ(t)ρ−τ̇(t)(τ̇(t)ρ−1)
τ(t)2 bounded on [0, T ] by (4). Thus

d

dt
Ã(t) ∈ L∞

∗ ([0, T ], B(D(A(0)), H)), (16)

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T ] into B(D(A(0)), H).

Let us prove that A(t) is maximal, i.e., that λI − A(t) is surjective for some
λ > 0 and t > 0.

Let (f, h)T ∈ H. We look for U = (u, z)T ∈ D(A(t)) solution of

(λI −A(t))

(

u

z

)

=

(

f

h

)

or equivalently
{

λu − auxx = f

λz + 1−τ̇(t)ρ
τ(t) zρ = h.

(17)

Suppose that we have found u with the appropriate regularity. We can then
determine z, indeed z satisfies the differential equation

λz +
1 − τ̇(t)ρ

τ(t)
zρ = h

and the boundary condition z(0) = u(π). Therefore z is explicitly given by

z(ρ) = u(π)e−λτ(t)ρ + τ(t)e−λτ(t)ρ

∫ ρ

0

eλτ(t)σh(σ)dσ,

if τ̇(t) = 0, and

z(ρ) = u(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)ρ) + e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t)ρ)

∫ ρ

0

h(σ)τ(t)

1 − τ̇(t)σ
e
−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)σ)
dσ,

otherwise. This means that once u is found with the appropriate properties, we can
find z. In particular, we have if τ̇(t) = 0,

z(1) = u(π)e−λτ(t) + τ(t)e−λτ(t)

∫ 1

0

eλτ(t)σh(σ)dσ = u(π)e−λτ(t) + z0,

where z0 = τ(t)e−λτ(t)
∫ 1

0
eλτ(t)σh(σ)dσ is a fixed real number depending only on

h, and if τ̇(t) 6= 0

z(1) = u(π)eλ
τ(t)
τ̇(t) ln(1−τ̇(t)) + e

λ
τ(t)
τ̇(t) ln(1−τ̇(t))

∫ 1

0

h(σ)τ(t)

1 − τ̇ (t)σ
e
−λ

τ(t)
τ̇(t) ln(1−τ̇(t)σ)

dσ

= u(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)) + z0,

where z0 = e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t)) ∫ 1

0
h(σ)τ(t)
1−τ̇(t)σ e

−λ
τ(t)
τ̇(t)

ln(1−τ̇(t)σ)
dσ depends only on h.

It remains to find u. By (17), u must satisfy

λu − auxx = f.

Multiplying this identity by a test function φ, integrating in space and using inte-
gration by parts, we obtain

∫ π

0

(λu − auxx)φdx =

∫ π

0

(λuφ + auxφx)dx − aux(π)φ(π) + aux(0)φ(0).
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But using the fact that (u, z)⊤ must belong to D(A(t)), we have
∫ π

0

(λu − auxx)φdx =

∫ π

0

(λuφ + auxφx)dx + aµ0u(π)φ(π) + aµ1z(1)φ(π).

Therefore
∫ π

0

(λuφ + auxφx)dx + aµ0u(π)φ(π) + aµ1z(1)φ(π) =

∫ π

0

fφdx.

Using the above expression for z(1), we arrive at the problem
∫ π

0

(λuφ + auxφx)dx + a(µ0 + µ1e
−λτ(t))u(π)φ(π)

=

∫ π

0

fφdx − aµ1z
0φ(π), ∀φ ∈ V (18)

if τ̇(t) = 0, or otherwise
∫ π

0

(λuφ + auxφx)dx + a(µ0 + µ1e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t)))u(π)φ(π)

=

∫ π

0

fφdx − aµ1z
0φ(π), ∀φ ∈ V. (19)

These problems have a unique solution u ∈ V by Lax-Milgram’s lemma, because
the left-hand side of (18) or (19) is coercive on V .

If we consider φ ∈ D(0, π) ⊂ V , then u satisfies

λu − auxx = f in D′(0, π).

This directly implies that u ∈ H2(0, π) and then u ∈ V ∩ H2(0, π). Coming back
to (18) and by integrating by parts, we find, for τ̇ (t) = 0,

a[ux(π) + (µ0 + µ1e
−λτ(t))u(π)]φ(π) = −aµ1z

0φ(π),

and then
ux(π) = −(µ0 + µ1e

−λτ(t))u(π) − µ1z
0

= −µ0u(π) − µ1(e
−λτ(t)u(π) + z0)

= −µ0u(π) − µ1z(1).

We find the same result if τ̇ (t) 6= 0.
In summary we have found (u, z)⊤ ∈ D(A(t)) satisfying (17) and thus λI −A(t)

is surjective for some λ > 0 and t > 0. Since κ(t) > 0, we directly deduce that

λI − Ã(t) = (λ + κ(t))I −A(t) is surjective (20)

for some λ > 0 and t > 0.

Then, (11), (15) and (20) imply that the family Ã = {Ã(t) : t ∈ [0, T ]} is a stable
family of generators in H with stability constants independent of t, by Proposition
1.1 from [7]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by (8),
(11), (15), (16), (20) and Lemma 2.2, and thus, the problem

{

Ũt = Ã(t)Ũ

Ũ(0) = U0.

has a unique solution Ũ ∈ C([0, +∞), H) and, if U0 ∈ D(A(0)),

Ũ ∈ C([0, +∞), D(A(0))) ∩ C1([0, +∞), H).

Setting

U(t) = eβ(t)Ũ(t)
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with β(t) =
∫ t

0 κ(s)ds, we remark that it is a solution of (7) because

Ut(t) = κ(t)eβ(t)Ũ(t) + eβ(t)Ũt(t)

= κ(t)eβ(t)Ũ(t) + eβ(t)Ã(t)Ũ(t)

= eβ(t)(κ(t)Ũ(t) + Ã(t)Ũ (t))

= eβ(t)A(t)Ũ(t) = A(t)eβ(t)Ũ(t)
= A(t)U(t),

which concludes the proof.

2.2. The decay of the energy. We here suppose that

µ2
1 < (1 − d)µ2

0. (21)

Let us choose the following energy

E(t) =
1

2

∫ π

0

u2(x, t)dx +
qτ(t)

2

∫ 1

0

u2(π, t − τ(t)ρ)dρ, (22)

where q is a positive constant chosen later.

Proposition 1. Let (9) and (21) be satisfied. Then for all regular solution of
problem (1), the energy is decreasing and satisfies

E′(t) ≤ −a

∫ π

0

u2
x(x, t)dx+(u(π, t), u(π, t − τ(t))) Ψq (u(π, t), u(π, t − τ(t)))⊤ < 0,

(23)
where Ψq is the matrix defined in (13).

Proof. Differentiating (22) and by (1), we obtain

E′(t) =

∫ π

0

uutdx +
qτ̇ (t)

2

∫ 1

0

u2(π, t − τ(t)ρ)dρ

+qτ(t)

∫ 1

0

u(π, t − τ(t)ρ)ut(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ

= a

∫ π

0

uuxxdx +
qτ̇ (t)

2

∫ 1

0

u2(π, t − τ(t)ρ)dρ

+qτ(t)

∫ 1

0

u(π, t − τ(t)ρ)ut(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ.

By integrating by parts in space, we find

a

∫ π

0

uuxxdx = −a

∫ π

0

u2
xdx + a[u(x, t)ux(x, t)]π0

= −a

∫ π

0

u2
xdx − aµ0u

2(π, t) − aµ1u(π, t)u(π, t − τ(t)).



568 SERGE NICAISE, JULIE VALEIN AND EMILIA FRIDMAN

Setting z(ρ, t) = u(π, t− τ(t)ρ), we see that zρ(ρ, t) = −τ(t)ut(π, t− τ(t)ρ), and
by integrating by parts in ρ, we get

∫ 1

0

u(π, t − τ(t)ρ)ut(π, t − τ(t)ρ)(1 − τ̇(t)ρ)dρ

= −
1

τ(t)

∫ 1

0

z(ρ, t)zρ(ρ, t)(1 − τ̇ (t)ρ)dρ

= −
1

2τ(t)

∫ 1

0

∂ρ(z(ρ, t)2)(1 − τ̇(t)ρ)dρ

=
1

2τ(t)

∫ 1

0

z(ρ, t)2(−τ̇ (t))dρ −
1

2τ(t)
[z2(ρ, t)(1 − τ̇ (t)ρ)]10

= −
τ̇ (t)

2τ(t)

∫ 1

0

u2(π, t − τ(t)ρ)dρ −
1 − τ̇ (t)

2τ(t)
u2(π, t − τ(t)) +

1

2τ(t)
u2(π, t).

Therefore, we obtain

E′(t) = −a

∫ π

0

u2
xdx − (aµ0 −

q

2
)u2(π, t) − aµ1u(π, t)u(π, t − τ(t))

−
q

2
(1 − τ̇ (t))u2(π, t − τ(t)).

We can see that this inequality can be written as

E′(t) ≤ −a

∫ π

0

u2
xdx + (u(π, t), u(π, t − τ(t)))Ψq(u(π, t), u(π, t − τ(t)))⊤.

As −q(1 − d) < 0, Ψq is negative definite if and only if

q2 − 2aµ0q +
a2µ2

1

1 − d
< 0. (24)

The discriminant of this second order polynomial is ∆ = 4a2
(

µ2
0 −

µ2
1

1−d

)

, which is

positive if and only if (21) holds. Therefore, the matrix Ψq is negative definite for
some q > 0 if and only if (21) is satisfied, and in that case, we choose q such that

aµ0 − a

√

µ2
0 −

µ2
1

1 − d
< q < aµ0 + a

√

µ2
0 −

µ2
1

1 − d
, (25)

which concludes the proof.

2.3. Exponential stability. In this section, we prove the exponential stability of
the heat equation (1) by using the following Lyapunov functional

E(t) = E(t) + γE2(t), (26)

where γ > 0 is a parameter that will be fixed small enough later on, E is the
standard energy defined by (22) and E2 is defined by

E2(t) = q

∫ t

t−τ(t)

e2δ(s−t)u2(π, s)ds = qτ(t)

∫ 1

0

e−2δτ(t)ρu2(π, t − τ(t)ρ)dρ, (27)

where δ > 0 is a fixed positive real number.

Remark 1. Let us notice that the energies E and E are equivalent, since

E(t) ≤ E(t) ≤ (2γ + 1)E(t).

The result about the decay of the energy E is the following one:
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Theorem 2.4. Let (9) and (21) be satisfied. Then the energy E decays exponen-
tially, more precisely there exist two positive constants α and C such that

E(t) ≤ Ce−αtE(0), ∀t > 0.

Proof. First, we differentiate E2 to have

d

dt
E2(t) =

τ̇ (t)

τ(t)
E2(t) + qτ(t)

∫ 1

0

(−2δτ̇(t)ρ)e−2δτ(t)ρu2(π, t − τ(t)ρ)dρ + J,

where

J = 2qτ(t)

∫ 1

0

e−2δτ(t)ρu(π, t − τ(t)ρ)ut(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ.

Moreover, by noticing one more time that z(ρ, t) = u(π, t−τ(t)ρ) and by integrating
by parts in ρ, we have

J = −q

∫ 1

0

e−2δτ(t)ρ ∂

∂ρ
(z(ρ, t)2)(1 − τ̇(t)ρ)dρ

= q

∫ 1

0

z2(ρ, t)(−2δτ(t)(1 − τ̇(t)ρ) − τ̇(t))e−2δτ(t)ρdρ

−qe−2δτ(t)z2(1, t)(1 − τ̇(t)) + qz2(0, t)

= q

∫ 1

0

(−2δτ(t)(1 − τ̇ (t)ρ) − τ̇ (t))u2(π, t − τ(t)ρ)e−2δτ(t)ρdρ

−qe−2δτ(t)u2(π, t − τ(t))(1 − τ̇(t)) + qu2(π, t).

Therefore, we have

d

dt
E2(t) =

τ̇ (t)

τ(t)
E2(t) + q

∫ 1

0

(−2δτ(t) − τ̇(t))u2(π, t − τ(t)ρ)e−2δτ(t)ρdρ

−qe−2δτ(t)u2(π, t − τ(t))(1 − τ̇(t)) + qu2(π, t)

= −2δE2(t) − qe−2δτ(t)u2(π, t − τ(t))(1 − τ̇ (t)) + qu2(π, t).

As τ̇ (t) < 1 (see (2)), we obtain

d

dt
E2(t) ≤ −2δE2(t) + qu2(π, t). (28)

Consequently, gathering (23), (26) and (28), we obtain

d

dt
E(t) ≤ −(aµ0 −

q

2
− qγ)u2(π, t) −

q

2
(1 − d)u2(π, t − τ(t))

−aµ1u(π, t)u(π, t − τ(t)) − a

∫ π

0

u2
x(x, t)dx − 2γδE2(t),

or equivalently

d

dt
E(t) ≤ (u(π, t), u(π, t − τ(t)))Ψ̃q(u(π, t), u(π, t − τ(t)))⊤

− a

∫ π

0

u2
x(x, t)dx − 2γδE2(t), (29)

where Ψ̃q is the 2 × 2 matrix defined by

Ψ̃q =
1

2

(

q(1 + 2γ) − 2aµ0 −aµ1

−aµ1 −q(1 − d)

)

= Ψq + γ

(

q 0
0 0

)

.

Now fix q > 0 such that Ψq is negative definite (consequence of the assumption

(21)). By a perturbation argument, we deduce that for γ > 0 small enough, Ψ̃q is
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negative. More precisely, we take γ = −λ
q

, when λ is the greatest negative eigenvalue

of Ψq, or equivalently XΨqX
⊤ ≤ λ|X |2, for all X ∈ R

2. We can easily check that

λ =
1

4

(

−2aµ0 + dq +
√

4a2(µ2
0 + µ2

1) + 4a(d − 2)µ0q + (d − 2)2q2

)

< 0. (30)

Therefore, for γ = −λ
q

, we find

d

dt
E(t) ≤ −2δγE2(t) − a

∫ π

0

u2
x(x, t)dx. (31)

As u(0, t) = 0 for all t > 0, by the min-max principle, we have
∫ π

0

u2(x, t)dx ≤ 4

∫ π

0

u2
x(x, t)dx,

because the first eigenvalue of the Laplace operator with Dirichlet boundary condi-
tion at 0 and Neumann boundary condition at π is − 1

4 . Therefore

−a

∫ π

0

u2
x(x, t)dx ≤ −

a

4

∫ π

0

u2(x, t)dx.

This estimate in (31) and by the definition (27) of E2, we obtain

d

dt
E(t) ≤ −

a

4

∫ π

0

u2(x, t)dx − 2qδγτ(t)

∫ 1

0

e−2δτ(t)ρu2(π, t − τ(t)ρ)dρ.

Since τ(t) ≤ M (see (3)) and in view of the definition (22) of E(t), there exists a
constant γ′ > 0 (depending on γ and δ, namely γ′ ≤ min(a

2 , 4δγe−2δM )) such that

d

dt
E(t) ≤ −γ′E(t).

By applying Remark 1, we obtain

d

dt
E(t) ≤ −

γ′

2γ + 1
E(t).

This implies that
E(t) ≤ E(0)e−αt,

with

α =
γ′

2γ + 1
≤

1

q − 2λ
min

(aq

2
, −4λδe−2δM

)

.

Remark 1 leads to

E(t) ≤ E(t) ≤ E(0)e−αt ≤ (2γ + 1)E(0)e−αt.

Remark 2. In the proof of Theorem 2.4, we notice that we have explicitely calcu-
lated the decay rate of the energy, given by

α =
1

q − 2λ
min

(aq

2
, −4λδe−2δM

)

,

where λ is given by (30), q by (25) and δ is a positive real number. Therefore, we can
choose δ so that the decay of the energy is as quick as possible. For that purpose,
we notice that the function δ → −4λδe−2δM admits a maximum at δ = 1

2M
and

that this maximum is −2λ
Me

. Thus the larger decay rate of the energy is given by

αmax =
1

q − 2λ
min

(

aq

2
,
−2λ

Me

)

.
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Obviously, this quantity can be calculated if the data µ0, µ1 and τ are given.

3. Exponential stability of the delayed wave equation. We now consider the
system described by























utt(x, t) − auxx(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = 0, t > 0,

ux(π, t) = −µ0ut(π, t) − µ1ut(π, t − τ(t)), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < π,

ut(π, t − τ(0)) = f0(t − τ(0)), 0 < t < τ(0),

(32)

whith the constant parameter a > 0 and where µ0, µ1 ≥ 0 are fixed nonnegative
real numbers, the time-varying delay τ(t) still satisfies (2), (3) and (4).

The boundary-value problem (32) describes the oscillations of a homogeneous
string fixed at 0 and with a feedback law at π.

3.1. Well-posedness of the problem. We aim to show that problem (32) is
well-posed. For that purpose, we use the same ideas than before.

We transform our system (32) as follows. Let us introduce the auxiliary variable
z(ρ, t) = ut(π, t− τ(t)ρ) for ρ ∈ (0, 1) and t > 0. Note that z verifies the transport
equation for 0 < ρ < 1 and t > 0 (compare with (5))







τ(t)zt(ρ, t) + (1 − τ̇ (t)ρ)zρ(ρ, t) = 0,

z(0, t) = ut(π, t),
z(ρ, 0) = f0(−τ(0)ρ).

(33)

Therefore, the problem (32) is equivalent to






























utt(x, t) − auxx(x, t) = 0, 0 < x < π, t > 0,

τ(t)zt(ρ, t) + (1 − τ̇ (t)ρ)zρ(ρ, t) = 0, 0 < ρ < 1, t > 0,

u(0, t) = 0, ux(π, t) = −µ0ut(π, t) − µ1z(1, t), t > 0,

z(0, t) = ut(π, t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < π,

z(ρ, 0) = f0(−τ(0)ρ), 0 < ρ < 1.

(34)

If we introduce

U := (u, ut, z)⊤,

then U satisfies

Ut = (ut, utt, zt)
⊤ = (ut, auxx,

τ̇ (t)ρ − 1

τ(t)
zρ)

⊤.

Consequently the problem (32) may be rewritten as the first order evolution equa-
tion

{

Ut = A(t)U
U(0) = (u0, u1, f0(−τ(0).))⊤ = U0,

(35)

where the time dependent operator A(t) is defined by

A(t)





u

ω

z



 =





ω

auxx
τ̇(t)ρ−1

τ(t) zρ



 ,

with domain

D(A(t)) := {(u, ω, z) ∈ (V ∩ H2(0, π)) × V × H1(0, 1) :
z(0) = ω(π), ux(π) = −µ0ω(π) − µ1z(1)},
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where we recall that
V = {φ ∈ H1(0, π) : φ(0) = 0}.

Again, we notice that the domain of the operator A(t) is independent of the time
t, i.e.

D(A(t)) = D(A(0)), ∀t > 0. (36)

Now, we introduce the Hilbert space

H = V × L2(0, π) × L2(0, 1)

equipped with the usual inner product
〈





u

ω

z



 ,





ũ

ω̃

z̃





〉

=

∫ π

0

(auxũx + ωω̃)dx +

∫ 1

0

z(ρ)z̃(ρ)dρ.

Lemma 3.1. D(A(0)) is dense in H.

Proof. The proof is the same as the one of Lemma 2.1 of [12], we give it for the
sake of completeness. Let (f, g, h)⊤ ∈ H be orthogonal to all elements of D(A(0)),
namely

0 =

〈





u

ω

z



 ,





f

g

h





〉

=

∫ π

0

(auxfx + ωg)dx +

∫ 1

0

z(ρ)h(ρ)dρ,

for all (u, ω, z)⊤ ∈ D(A(0)).
We first take u = 0 and w = 0 and z ∈ D(0, 1). As (0, 0, z) ∈ D(A(0)), we get

∫ 1

0

z(ρ)h(ρ)dρ = 0.

Since D(0, 1) is dense in L2(0, 1), we deduce that h = 0.

In the same manner, by taking u = 0, z = 0 and ω ∈ D(0, π) we see that g = 0.

The above orthogonality condition is then reduced to

0 = a

∫ π

0

uxfxdx, ∀(u, ω, z) ∈ D(A(0)).

By restricting ourselves to ω = 0 and z = 0, we obtain
∫ 1

0

uxfxdx = 0, ∀(u, 0, 0) ∈ D(A(0)).

But we easily check that (u, 0, 0) ∈ D(A(0)) if and only if u ∈ D(∆) = {v ∈
H2(0, π) : v(0) = 0, v′(1) = 0}, the domain of the Laplace operator with mixed
boundary conditions. Since it is well known that D(∆) is dense in V (equipped
with the inner product < ., . >V ), we conclude that f = 0.

As before we suppose that the speed of the delay satisfies (9) and (10). Under
these conditions, we will show that the operator A(t) generates a C0-semigroup in
H and the unique solvability of problem (35).

For that purpose, we introduce the following time-dependent inner product on
H

〈





u

ω

z



 ,





ũ

ω̃

z̃





〉

t

=

∫ π

0

(auxũx + ωω̃)dx + qτ(t)

∫ 1

0

z(ρ)z̃(ρ)dρ,

where q is a positive constant chosen such that Ψq is negative (guaranteed by the
assumptions (9) and (10)), with associated norm denoted by ‖.‖t .
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Theorem 3.2. For an initial datum U0 ∈ H, there exists a unique solution U ∈
C([0, +∞), H) to problem (35). Moreover, if U0 ∈ D(A(0)), then

U ∈ C([0, +∞), D(A(0))) ∩ C1([0, +∞), H).

Proof. We first notice that

‖φ‖t

‖φ‖s

≤ e
c

2τ0
|t−s|

, ∀t, s ∈ [0, T ] (37)

where φ = (u, ω, z)⊤ and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we
have

‖φ‖
2
t − ‖φ‖

2
s e

c

τ0
|t−s| =

(

1 − e
c

τ0
|t−s|

)

∫ π

0

(au2
x + ω2)dx

+ q
(

τ(t) − τ(s)e
c

τ0
|t−s|

)

∫ 1

0

z(ρ)2dρ,

and we conclude as in the proof of Theorem 2.3.
Now we calculate 〈A(t)U, U〉t for a t > 0 fixed. For an arbitrary U = (u, ω, z)⊤ ∈

D(A(t)), we have

〈A(t)U, U〉t =

〈





ω

auxx
τ̇(t)ρ−1

τ(t) zρ



 ,





u

ω

z





〉

t

=

∫ π

0

(aωxux + auxxω)dx − q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ.

By integrating by parts in space, we have

〈A(t)U, U〉t = a[ωux]π0 − q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇(t)ρ)dρ

= −aµ0z(0)2 − aµ1z(0)z(1) − q

∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ.

Moreover, we have by integrating by parts in ρ:
∫ 1

0

zρ(ρ)z(ρ)(1 − τ̇ (t)ρ)dρ =

∫ 1

0

1

2

∂

∂ρ
(z(ρ)2)(1 − τ̇ (t)ρ)dρ

=
τ̇ (t)

2

∫ 1

0

z(ρ)2dρ +
1

2
z(1)2(1 − τ̇ (t)) −

1

2
z2(0).

These two identities yield

〈A(t)U, U〉t = −aµ0z(0)2 − aµ1z(0)z(1)−
q

2
z(1)2(1 − τ̇ (t)) +

q

2
z2(0)

−
qτ̇(t)

2

∫ 1

0

z(ρ)2dρ.

We can see, that this identity implies that

〈A(t)U, U〉t ≤ (z(0), z(1))Ψq(z(0), z(1))⊤ + κ(t) 〈U, U〉t ,

where Ψq is the matrix defined by (13) and κ(t) is given by (12). As we have chosen
q such that the matrix Ψq is negative, we have

〈A(t)U, U〉t − κ(t) 〈U, U〉t ≤ 0, (38)

which proves the dissipativeness of Ã(t) = A(t)− κ(t)I for the inner product 〈·, ·〉t.
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As in the proof of Theorem 2.3, we see that (4) implies that

d

dt
Ã(t) ∈ L∞

∗ ([0, T ], B(D(A(0)), H)). (39)

Let us finally prove that A(t) is maximal, i.e., that λI − A(t) is surjective for
some λ > 0 and t > 0.

Let (f, g, h)T ∈ H. We look for U = (u, ω, z)T ∈ D(A(t)) solution of

(λI −A(t))





u

ω

z



 =





f

g

h





or equivalently






λu − ω = f

λω − auxx = g

λz + 1−τ̇(t)ρ
τ(t) zρ = h.

(40)

Suppose that we have found u with the appropriate regularity. Then, we have

ω = −f + λu ∈ V.

We can then determine z, indeed z satisfies the differential equation

λz +
1 − τ̇(t)ρ

τ(t)
zρ = h

and the boundary condition z(0) = ω(π) = −f(π)+λu(π). Therefore z is explicitly
given by

z(ρ) = λu(π)e−λτ(t)ρ − f(π)e−λτ(t)ρ + τ(t)e−λτ(t)ρ

∫ ρ

0

eλτ(t)σh(σ)dσ,

if τ̇(t) = 0, and

z(ρ) = λu(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)ρ) − f(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)ρ)

+e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t)ρ)

∫ ρ

0

h(σ)τ(t)

1 − τ̇ (t)σ
e
−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)σ)
dσ,

otherwise. This means that once u is found with the appropriate properties, we can
find z and ω. In particular, we have if τ̇ (t) = 0,

z(1) = λu(π)e−λτ(t)−f(π)e−λτ(t)+τ(t)e−λτ(t)

∫ 1

0

eλτ(t)σh(σ)dσ = λu(π)e−λτ(t)+z0,

where z0 = −f(π)e−λτ(t) + τ(t)e−λτ(t)
∫ 1

0 eλτ(t)σh(σ)dσ is a fixed real number de-
pending only on f and h, and if τ̇ (t) 6= 0

z(1) = λu(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)) − f(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t))

+e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t))

∫ 1

0

h(σ)τ(t)

1 − τ̇ (t)σ
e
−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)σ)
dσ

= λu(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)) + z0,

where

z0 = −f(π)eλ
τ(t)
τ̇(t)

ln(1−τ̇(t)) + e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t))
∫ 1

0

h(σ)τ(t)

1 − τ̇ (t)σ
e
−λ

τ(t)
τ̇(t)

ln(1−τ̇(t)σ)
dσ

depends only on f and h.
It remains to find u. By (40), u must satisfy

λ2u − auxx = g + λf.
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Multiplying this identity by a test function φ, integrating in space and using inte-
gration by parts, we obtain

∫ π

0

(λ2u − auxx)φdx =

∫ π

0

(λ2uφ + auxφx)dx − aux(π)φ(π) + aux(0)φ(0).

But using the fact that (u, ω, z)⊤ must belong to D(A(t)), we have
∫ π

0

(λ2u − auxx)φdx =

∫ π

0

(λ2uφ + auxφx)dx + aµ0ω(π)φ(π) + aµ1z(1)φ(π).

Therefore
∫ π

0

(λ2uφ + auxφx)dx + aµ0ω(π)φ(π) + aµ1z(1)φ(π) =

∫ π

0

(g + λf)φdx.

Using the above expression for z(1) and ω = λu − f , we arrive at the problem
∫ π

0

(λ2uφ + auxφx)dx + a(µ0 + µ1e
−λτ(t))λu(π)φ(π)

=

∫ π

0

(g + λf)φdx + a(µ0f(π) − µ1z
0)φ(π), ∀φ ∈ V (41)

if τ̇(t) = 0, or otherwise
∫ π

0

(λ2uφ + auxφx)dx + a(µ0 + µ1e
λ

τ(t)
τ̇(t)

ln(1−τ̇(t)ρ))λu(π)φ(π)

=

∫ π

0

(g + λf)φdx + a(µ0f(π) − µ1z
0)φ(π), ∀φ ∈ V. (42)

These problems have a unique solution u ∈ V by Lax-Milgram’s lemma, because
the left-hand side of (41) or (42) is coercive on V .

If we consider φ ∈ D(0, π) ⊂ V , then u satisfies

λ2u − auxx = g + λf in D′(0, π).

This directly implies that u ∈ H2(0, π) and then u ∈ V ∩ H2(0, π). Coming back
to (41) and by integrating by parts, we find, for τ̇ (t) = 0,

a[ux(π) + (µ0 + µ1e
−λτ(t))λu(π)]φ(π) = a(µ0f(π) − µ1z

0)φ(π),

and then

ux(π) = −(µ0 + µ1e
−λτ(t))λu(π) − (µ1z

0 − µ0f(π))
= −µ0(λu(π) − f(π)) − µ1(e

−λτ(t)λu(π) + z0)
= −µ0ω(π) − µ1z(1).

We find the same result if τ̇ (t) 6= 0.
In summary we have found (u, ω, z)⊤ ∈ D(A(t)) satisfying (40) and thus λI −

A(t) is surjective for some λ > 0 and t > 0. Again as κ(t) > 0, this proves that

λI − Ã(t) = (λ + κ(t))I −A(t) is surjective (43)

for some λ > 0 and t > 0.

Then, (37), (38) and (43) imply that the family Ã = {Ã(t) : t ∈ [0, T ]} is a stable
family of generators in H with stability constants independent of t, by Proposition
1.1 from [7]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by (36),
(37), (38), (39), (43) and Lemma 3.1, and thus, the problem

{

Ũt = Ã(t)Ũ

Ũ(0) = U0.
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has a unique solution Ũ ∈ C([0, +∞), H) and, if U0 ∈ D(A(0)),

Ũ ∈ C([0, +∞), D(A(0))) ∩ C1([0, +∞), H).

As before, the requested solution of (35) is given by

U(t) = eβ(t)Ũ(t)

with β(t) =
∫ t

0
κ(s)ds.

3.2. The decay of the energy. As for the heat equation, we restrict the hypoth-
esis (10) to obtain the decay of the energy. Namely we suppose that (21) holds.

Let us choose the following energy (which corresponds to the time-dependent
inner product in H)

E(t) =
1

2

∫ π

0

(

u2
t (x, t) + au2

x(x, t)
)

dx +
qτ(t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ, (44)

where q is a positive constant chosen such that Ψq is negative definite (possible if
(9) and (21) hold).

Proposition 2. Let the assumptions (9) and (21) be satisfied. Then for all regular
solution of problem (32), the energy is decreasing and verifies

E′(t) ≤ (ut(π, t), ut(π, t − τ(t))) Ψq (ut(π, t), ut(π, t − τ(t)))
⊤

< 0, (45)

where Ψq is the matrix defined in (13).

Remark 3. In the case where the delay is constant in time, i.e. τ(t) = τ for all
t > 0 and thus d = 0, we recover the results from [10, 12]. Indeed in [10, 12], the
energy is decreasing under the assumption µ1 < µ0.

Proof. Differentiating (44) and integrating by parts in space, we obtain

E′(t) =

∫ π

0

(ututt + auxuxt)dx +
qτ̇(t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ

+qτ(t)

∫ 1

0

ut(π, t − τ(t)ρ)utt(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ

=

∫ π

0

ut(utt − auxx)dx + a[uxut]
π
0 +

qτ̇ (t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ

+qτ(t)

∫ 1

0

ut(π, t − τ(t)ρ)utt(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ

= aux(π, t)ut(π, t) +
qτ̇(t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ

+qτ(t)

∫ 1

0

ut(π, t − τ(t)ρ)utt(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ.

Recalling that z(ρ, t) = ut(π, t − τ(t)ρ), we see that

∫ 1

0

ut(π, t − τ(t)ρ)utt(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ = −
τ̇(t)

2τ(t)

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ

−
1 − τ̇(t)

2τ(t)
u2

t (π, t − τ(t)) +
1

2τ(t)
u2

t (π, t).
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Therefore, we obtain

E′(t) = aux(π, t)ut(π, t) +
qτ̇ (t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ

−
qτ̇ (t)

2

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ − q

1 − τ̇(t)

2
u2

t (π, t − τ(t)) +
q

2
u2

t (π, t),

which implies

E′(t) = −aµ0u
2
t (π, t) − aµ1ut(π, t − τ(t))ut(π, t) −

q

2
(1 − τ̇(t))u2

t (π, t − τ(t))

+
q

2
u2

t (π, t).

By the condition (9) we can see that this identity yields

E′(t) ≤ (ut(π, t), ut(π, t − τ(t))) Ψq (ut(π, t), ut(π, t − τ(t)))
⊤

.

This concludes the proof as Ψq is negative definite.

3.3. Exponential stability. In this section, under the assumptions (9) and (21),
we prove the exponential stability of the wave equation (32) by using the following
Lyapunov functional

E(t) = E(t) + γ

(

2

∫ π

0

xutuxdx + E2(t)

)

, (46)

where γ > 0 is a parameter that will be fixed small enough later on, E is the
standard energy defined by (44) with q a positive constant fixed such that Ψq is
negative definite and E2 is defined by

E2(t) = q

∫ t

t−τ(t)

e2δ(s−t)u2
t (π, s)ds = qτ(t)

∫ 1

0

e−2δτ(t)ρu2
t (π, t − τ(t)ρ)dρ, (47)

where δ > 0 is a fixed positive real number.
The Lyapunov functional E(t) + 2γ

∫ π

0 xutuxdx is standard in problems with
boundary conditions with memory (see for instance [11]). We have added the two
terms to the standard energy E(t) in order to take into account the dependence of
τ with respect to t.

First we notice that the energies E and E are equivalent.

Lemma 3.3. For γ small enough, there exist two positive constants C1(γ) and
C2(γ) such that

C1(γ)E(t) ≤ E(t) ≤ C2(γ)E(t).

Proof. We have

2γ

∫ π

0

xuxutdx ≤ γπ

∫ π

0

(u2
x + u2

t )dx ≤ γπc

∫ π

0

(au2
x + u2

t )dx,

where c = max(1, 1
a
) and

γqτ(t)

∫ 1

0

e−2δτ(t)ρu2
t (π, t − τ(t)ρ)dρ ≤ γqτ(t)

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ.

As c ≥ 1, these estimates yield

E(t) ≤ (1 + 2γcπ)E(t).

Moreover, by definition we have

γE2(t) ≥ 0
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and by Cauchy-Schwarz’s inequality

2γ

∫ π

0

xuxutdx ≥ −γπ

∫ π

0

(u2
x + u2

t )dx.

Then

E(t) ≥ E(t) − cγπ

∫ π

0

(au2
x + u2

t )dx,

and therefore, for γ small enough (γ < 1
2cπ

), we obtain

E(t) ≥ (1 − 2cπγ)E(t).

We are ready to state our result about the decay of the energy E:

Theorem 3.4. Let (9) and (21) be satisfied. Then the energy E decays exponen-
tially, more precisely there exist two positive constants α and C such that

E(t) ≤ Ce−αtE(0), ∀t > 0.

Proof. First we remark that

d

dt

(

2

∫ π

0

xutuxdx

)

= 2

∫ π

0

xuttuxdx + 2

∫ π

0

xutuxtdx

= 2a

∫ π

0

xuxxuxdx + 2

∫ π

0

xutuxtdx

= a

∫ π

0

x∂x(u2
x)dx + 2

∫ π

0

xutuxtdx

= −a

∫ π

0

u2
xdx + aπu2

x(π, t) + 2

∫ π

0

xutuxtdx.

But by integrating by parts in space and by (32), we have
∫ π

0

xutuxtdx = −

∫ π

0

xuxtutdx −

∫ π

0

u2
tdx + πu2

t (π, t),

that is to say

2

∫ π

0

xutuxtdx = −

∫ π

0

u2
t dx + πu2

t (π, t).

Thus

d

dt

(

2

∫ π

0

xutuxdx

)

= −

∫ π

0

(u2
t + au2

x)dx + πu2
t (π, t) + aπu2

x(π, t).

By the boundary conditions in (32) and Cauchy-Schwarz’s inequality, we finally find

d

dt

(

2

∫ π

0

xutuxdx

)

≤ −

∫ π

0

(u2
t + au2

x)dx + π(1 + 2aµ2
0)u

2
t (π, t)

+ 2aπµ2
1u

2
t (π, t − τ(t)). (48)

Then, we differentiate E2 to have

d

dt
E2(t) =

τ̇ (t)

τ(t)
E2(t) + qτ(t)

∫ 1

0

(−2δτ̇(t)ρ)e−2δτ(t)ρu2
t (π, t − τ(t)ρ)dρ + Jw,

where

Jw = 2qτ(t)

∫ 1

0

e−2δτ(t)ρut(π, t − τ(t)ρ)utt(π, t − τ(t)ρ)(1 − τ̇ (t)ρ)dρ.
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As in the proof of Theorem 2.4, by integration by parts, we have

Jw = q

∫ 1

0

(−2δτ(t)(1 − τ̇ (t)ρ) − τ̇ (t))ut(π, t − τ(t)ρ)e−2δτ(t)ρdρ

−qe−2δτ(t)u2
t (π, t − τ(t))(1 − τ̇ (t)) + qu2

t (π, t).

These identities yield

d

dt
E2(t) =

τ̇ (t)

τ(t)
E2(t) + q

∫ 1

0

(−2δτ(t) − τ̇ (t))u2
t (π, t − τ(t)ρ)e−2δτ(t)ρdρ

−qe−2δτ(t)u2
t (π, t − τ(t))(1 − τ̇(t)) + qu2

t (π, t)

=
τ̇ (t)

τ(t)
E2(t) +

−2δτ(t) − τ̇(t)

τ(t)
E2(t) − qe−2δτ(t)u2

t (π, t − τ(t))(1 − τ̇(t))

+qu2
t (π, t).

As τ̇ (t) < 1 (see (2)), we obtain

d

dt
E2(t) ≤ −2δE2(t) + qu2

t (π, t). (49)

Consequently, gathering (46), (48) and (49), we obtain

d

dt
E(t) ≤ −γ

∫ π

0

(u2
t + au2

x)dx − 2γδE2(t)

+ (ut(π, t), ut(π, t − τ(t))) Φ̃q (ut(π, t), ut(π, t − τ(t)))
⊤

,

where Φ̃q is the matrix defined by

Φ̃q = 1
2

(

q(1 + 2γ) − 2aµ0 + 2γπ(1 + 2aµ2
0) −aµ1

−aµ1 4aγπµ2
1 − q(1 − d)

)

= Ψq + γ

(

q + π(1 + 2aµ2
0) 0

0 2aπµ2
1

)

.

Noticing that max
(

q + π(1 + 2aµ2
0), 2aπµ2

1

)

= q + π(1 + 2aµ2
0) by (21), for γ

sufficiently small, i.e. γ ≤ −λ
q+π(1+2aµ2

0)
, where λ is the greatest negative eigenvalue

of Ψq given by (30), Φ̃q is negative and therefore

d

dt
E(t) ≤ −γ

∫ π

0

(u2
t + au2

x)dx − 2δγE2(t).

By the definition (47) of E2, this estimate becomes

d

dt
E(t) ≤ −γ

∫ π

0

(u2
t + au2

x)dx − 2δγqτ(t)e−2δτ(t)

∫ 1

0

u2
t (π, t − τ(t)ρ)dρ.

Since τ(t) ≤ M (see (3)), in view of the definition of E, there exists a constant
γ′ > 0 (depending on γ and δ: γ′ ≤ 2γ min

(

1, 2δe−2δM
)

) such that

d

dt
E(t) ≤ −γ′E(t).

By applying Lemma 3.3, we arrive at

d

dt
E(t) ≤ −αE(t),

where α is explicitely given by α = γ′

1+2γcπ
. Therefore

E(t) ≤ E(0)e−αt,
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and Lemma 3.3 allows to conclude the proof:

E(t) ≤
1

1 − 2cπγ
E(t) ≤

1

1 − 2cπγ
E(0)e−αt ≤

1 + 2γcπ

1 − 2cπγ
E(0)e−αt.

Remark 4. In the case where the delay is constant in time and a = 1, we recover
some results from [10, 12]. Moreover, in [10, 12], the energy is defined by

E(t) =
1

2

∫ π

0

(u2
t (x, t) + u2

x(x, t))dx +
ξ

2

∫ 1

0

u2
t (π, t − τρ)dρ,

where ξ is a positive constant satisfying

τµ1 ≤ ξ ≤ τ(2µ0 − µ1),

under the condition (21), which corresponds to the definition (44) of E with q = ξ
τ
.

Remark 5. In the proof of Theorem 3.4, we notice that we can explicitely calculate
the decay rate α of the energy, given by

α =
2γ

1 + 2γcπ
min

(

1, 2δe−2δM
)

,

with

γ <
1

2cπ
and γ ≤

−λ

q + π(1 + 2aµ2
0)

(by Lemma 3.3 and Theorem 3.4) and c = max
(

1, 1
a

)

where λ is given by (30), q

by (25) and δ is a positive real number. Therefore, we can choose δ such that the
decay of the energy is as quick as possible. By Remark 2, we get that the larger
decay rate of the energy is given by

αmax =
2γ

1 + 2γcπ
min

(

1,
1

Me

)

.
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