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ABSTRACT. Exponential stability analysis via Lyapunov method is extended
to the one-dimensional heat and wave equations with time-varying delay in the
boundary conditions. The delay function is admitted to be time-varying with
an a priori given upper bound on its derivative, which is less than 1. Sufficient
and explicit conditions are derived that guarantee the exponential stability.
Moreover the decay rate can be explicitly computed if the data are given.

1. Introduction. Time-delay often appears in many biological, electrical engineer-
ing systems and mechanical applications, and in many cases, delay is a source of
instability [B]. In the case of distributed parameter systems, even arbitrarily small
delays in the feedback may destabilize the system (see e.g. [3, @ 5, [0]). The
stability issue of systems with delay is, therefore, of theoretical and practical im-
portance.

There are only a few works on Lyapunov-based technique for Partial Differential
Equations (PDEs) with delay. Most of these works analyze the case of constant
delays. Thus, stability conditions and exponential bounds were derived for some
scalar heat and wave equations with constant delays and with Dirichlet boundary
conditions without delay in [I6, [[7]. Stability and instability conditions for the
wave equations with constant delay can be found in [I0, [T2]. The stability of linear
parabolic systems with constant coefficients and internal constant delays has been
studied in [6] in the frequency domain.

Recently the stability of PDEs with time-varying delays was analyzed in [2, G, [[3]
via Lyapunov method. In the case of linear systems in the Hilbert space, the
conditions of [2 Bl [T3] assume that the operator acting on the delayed state is
bounded, which means that this condition can not be applied to boundary delays.
These conditions were applied to PDEs without delays in the boundary conditions
(to 2D Navier-Stokes and to a scalar heat equations in [2], to a scalar heat and to
a scalar wave equations in [l [[3]).
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In the present paper we analyze exponential stability of the heat and wave equa-
tions with time-varying boundary delay. Our main novel contribution is an ex-
tension of previous results from [0, [[2] to time-varying delays. This extension is
not straightforward due to the loss of translation-invariance. In the constant delay
case the exponential stability was proved in [I0, 2] by using the observability in-
equality which can not be applicable in the time-varying case (since the system is
not invariant by translation). Hence we introduce new Lyapunov functionals with
exponential terms and an additional term for the wave equation, which take into
account the dependence of the delay with respect to time. For the treatment of
other problems with Lyapunov technique see H [[3, [[1]. Note further that to the
best of our knowledge the heat equation with boundary delay has not been treated
in the literature. Contrary to [I0, [[2], the existence results do not follow from stan-
dard semi-group theory because the spatial operator depends on time due to the
time-varying delay. Therefore we use the variable norm technique of Kato [, 8.
Finally for each problem we give explicit sufficient conditions that guarantee the
exponential decay and for the first time we characterize the optimal decay rate that
can be explicitly computed once the data are given.

The paper is mainly decomposed in two parts treating the heat equation (section
2) and the wave equation (section 3). In the first subsection, we set the problem
under consideration and prove existence results by using semigroup theory. In the
second subsection we find sufficient conditions for the strict decay of the energy and
finally in the last subsection we show that these conditions yield an exponential
decay.

2. Exponential stability of the delayed heat equation. First, we consider the
system described by

us(x, t) — augy(x, t) =0, O<z<m t>0,
u(0, 1) = 0, £>0,
Ug(m, t) = —pou(m, t) — pu(rm, t — 7(t)), t>0, (1)
u(z, 0) = u’(z), 0<z<m,
u(m, t —7(0)) = fO(t — 7(0)), 0<t<7(0),

with the constant parameter a > 0 and where pg, 11 > 0 are fixed nonnegative real
numbers, the time-varying delay 7(¢) satisfies

7(t) < 1, Vt > 0, (2)
and
M >0:0<71 <7(t) <M, Vt>0. (3)
Moreover, we assume that
e W2>([0, T]), VT > 0. (4)

The boundary-value problem () describes the propagation of heat in a homoge-
neous one-dimensional rod with a fixed temperature at the left end. Here a stands
for the heat conduction coefficient, u(z,t) is the value of the temperature field of
the plant at time moment ¢ and location x along the rod. In the sequel, the state
dependence on time ¢t and spatial variable x is suppressed whenever possible.
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2.1. Well-posedness of the problem. We aim to show that problem () is well-
posed. For that purpose, we use semi-group theory and adapt the ideas from [I0)].
We introduce the Hilbert space

V ={¢ec H (0, ) : $(0) = 0}.
We transform our system ([l) as follows. Let us introduce the auxiliary variable
z(p,t) = u(m, t — 7(t)p) for p € (0, 1) and ¢ > 0. Note that z verifies the transport
equation for 0 < p<landt >0
T(t)ze(p, t) + (1 = 7(t)p)zp(p, t) =0,
2(0, t) = u(m, t), (5)
z(p, 0) = fO(=7(0)p).

Therefore, the problem () is equivalent to

u(z, t) — auge(z, t) =0, O<zxz<m,t>0,
T(t)ze(p, t) + (1 = 7(t)p)zp(p, t) =0, 0<p<l,t>0,
w(0, t) =0, ug(m, t) = —pou(m, t) — p12(1, t), t>0, (6)
z(0, t) = u(m, t), t>0,
u(z, 0) = u’(z), 0<z<m,
2(p, 0) = O(~7(0)p), 0<p<l.
If we introduce
U:=(u, 2)",
then U satisfies )
U = (ug, zt)T = (QUyy, %ZP)T.
Consequently the problem (Il) may be rewritten as the first order evolution equation
U = At)U
Lo = b pEr o = "

where the time dependent operator A(t) is defined by
AUy
At < Y > = | #p-1 ;
@1 . W1,

D(A(t)) :={(u, z) € (VN H*0, 7)) x H(0, 1) :
2(0) = u(m), uz(7) = —pou(m) — prz(1)}
Notice that the domain of the operator A(t) is independent of the time ¢, i.e.
D(A(t)) = D(A(0)), Vt > 0. (8)
Now, we introduce the Hilbert space
H = L0, 7) x L*(0, 1)

equipped with the usual inner product

<< ; ) ( ’z >> :/Oﬂuadwr/olz(p)i(p)dp-

A general theory for equations of type ([d) has been developed using semigroup
theory [0, 8, [T4]. The simplest way to prove existence and uniqueness results is to
show that the triplet {A, H,Y}, with A = {A(t) : t € [0, T']}, for some fixed T" > 0
and Y = D(A(0)), forms a CD-system (or constant domain system, see [7, §]). More

with domain
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precisely, the following theorem gives the existence and uniqueness results and is
proved in Theorem 1.9 of [7] (see also Theorem 2.13 of [§] or [I])

Theorem 2.1. Assume that

(1) Y = D(A(0)) is a dense subset of H,

(i) @) holds,

(iii) for all t € [0, T, A(t) generates a strongly continuous semigroup on H and
the family A = {A(t) : t € [0, T} is stable with stability constants C' and m inde-
pendent of t (i.e. the semigroup (Si(s))s>0 generated by A(t) satisfies ||Si(s)u| g <
Ce™||ullm, for alluw € H and s > 0),

(iv) O A belongs to L¥([0, T], B(Y, H)), the space of equivalent classes of es-
sentially bounded, strongly measure functions from [0, T| into the set B(Y, H) of
bounded operators from'Y into H.

Then, problem [@) has a unique solution U € C([0, T],Y)NC ([0, T], H) for any

initial datum in Y .
Lemma 2.2. D(A(0)) is dense in H.
Proof. Let (f, h)" € H be orthogonal to all elements of D(.A(0)), namely

o_<(j>,(£>>—AZmM+AQ@mw@,

for all (u, 2)T € D(A(0)).
We first take u = 0 and z € D(0, 1). As (0, z) € D(A(0)), we get

/0 z(p)h(p)dp = 0.

Since D(0, 1) is dense in L?(0, 1), we deduce that h = 0.
In the same manner, by taking z = 0 and u € D(0, 7) we see that f = 0. O

Let us suppose now that the speed of the delay satisfies
T(t) <d<1,Vt>0 (9)
and that ug, pp satisfy
1 < (1—d)yid. (10)
Under these conditions, we will show that the operator A(t) generates a
Co-semigroup in H and using the variable norm technique of Kato from [, that

problem (@) (and then ([l)) has a unique solution.
For that purpose, we introduce the following time-dependent inner product on

()2} [ [ e

where ¢ is a positive constant chosen later on, with associated norm denoted by

11l -

Theorem 2.3. For an wnitial datum Uy € H, there exists a unique solution U €
C(|0, +00), H) to problem [@). Moreover, if Uy € D(A(0)), then

U € C([0, +00), D(A(0))) N C*(]0, +00), H).

H

w2
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Proof. We first prove that

»

where ¢ = (u, z) " and c is a positive constant. For all s, t € [0, T], we have

™ 1
1= 612 e~ = (1= 51 [atdoiq (vt - ()5 ) [ 202,
0 0

We notice that 1 — e7o!"~*l < 0. Moreover 7(t) — 7(s)e7 " ~*I < 0 for some ¢ > 0.
Indeed,

7(t) =7(s) + 7(a)(t — s), wherea € (s, t),
and thus,

7(t)

—= <1+

7(s
By @), 7 is bounded and therefore,

|7 (a)l
7(s)

[t —s|.

~

T(t

(s

~—

S lt—s
)

c "
<14+ —|t—s|<ew
T0

~

2

by @), which proves ().
Now we calculate (A(t)U, U); for a t fixed. Take U = (u, 2)T € D(A(t)). Then

7(t)p—1 ,
T(t) Zp ) z +

a / waruds — q [ 2,(p)2(p)(1 = HOp)dp.

0

(AU, U),

By integrating by parts in space in the first term of this right hand side, we have

(AU, U),

—a [ wde+afunds —a [ (o))~ 00
0] 0

—a/ uldr — apou(r, t)? — apyu(r, tu(r, t —7(t))
0

1
~ [ 5000 - 0o

Moreover, we have by integrating by parts in p:

1 ) 1 10 ) )
2p(p)z(p)(L = 7(t)p)dp = 55 (2(p)") (1 = 7(t)p)dp
0 0o 2 54)

_ 2(p)2dp + %u2(7r, t—1()(1—7(t)
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Therefore

i . 1
(AU, U), —a/o ude — %(t)/o 2(p)3dp — apou(m, t)?

—apyu(m, tyu(m, t — 7(t)) — gu(w, t—71(t)*(1 —7(t))

—i-gu(w, t)?

—a/o u?dx + (% — apo)u?(m, t) — apyu(m, tyu(m, t —7(t))
q 2 q|7(t)] e

—Eu(w, t—7(t)°(1—d) + 27 (1) T(t)/o z(p)“dp.

We can see that this inequality can be written

IN

(AU, U), < —a/ow u2dx 4 (u(m, t), u(r, t—7(t))¥q(u(m, t), u(m, t—T(t)))T

+r(t) U, U),,

where
(7(t)° +1)?

t) = 12
(t) = (12)

and where ¥, is the 2 x 2 matrix defined by

L qg—2apo  —am

Y, == . 13
2 ( —apr —q(1—d) (13)

As —q(1 — d) < 0, we notice that the matrix ¥, is negative (in the sense that
XU, X" <0, for all X = (z1,22) € R?) if and only if

a’p3
<. 14
1-d = (14)

The discriminant of this second order polynomial (in ¢) is

2
I
A—4a2<ﬂ(2)—1_1d),

q* — 2apoq +

which is non negative if and only if () holds. Therefore, the matrix ¥, is negative
for some ¢ > 0 if and only if ([[) is satisfied. Hence, we choose ¢ satisfying ([[d) or
equivalently such that

T i
apo —a u%—l_dﬁqéaqura #3—1_d-

Such a choice of ¢ yields

(AU, U), = £(t) (U, U), <0, (15)
which proves the dissipativeness of A(t) = A(t) — s(t)I for the inner product (-, -);.
. . . . 1
Moreover /() = — 07O T(t)(g(t)2jl)2 is bounded on [0, T for all T > 0
27 (£) (+(£)+1) 2 (1)

(by @) and we have

T(t

d 0
— t = 7(t)T —7 T —
SAMU ( OrOp=r)Cwp-1) )
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with 20— O bounded on [0, 7] by @). Thus

%A(t} e L=([0, T], B(D(A(0)), H)), (16)

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T] into B(D(A(0)), H).

Let us prove that A(t) is maximal, i.e., that A\ — A(t) is surjective for some
A>0andt>0.

Let (f, h)T € H. We look for U = (u, 2)T € D(A(t)) solution of

or-a0(2)-(1)

{ AU — AUy, = f

or equivalently

_; 17
Az 4 = (g)pzp = h. (17)
Suppose that we have found u with the appropriate regularity. We can then

determine z, indeed z satisfies the differential equation

1—7(t)p
AN+ ———=——z,=h
z+ Q) Zp
and the boundary condition z(0) = u(m). Therefore z is explicitly given by

p
2(p) = u(m)e AP 4 T(t)e_’\T(t)”/ AW (g)do,
0

if #(t) = 0, and

B AZD In(1—#(0)p) | AT In(1—F(t)p )/p R(o)T(t) _x7® n(1—#(t)o)
= (1) 7 (1) — 7 7(t) d
z(p) = u(m)e +e 1o %(t)ae o,

otherwise. This means that once u is found with the appropriate properties, we can
find z. In particular, we have if 7(t) = 0,

1
2(1) = u(m)e O 4 7r(t)e  ® / AW (g)do = u(m)e N 4 20,
0

where 20 = 7(t)e= (") fol MO (o)do is a fixed real number depending only on
h, and if #(t) # 0

1
(1) = u(ﬂ_)e)\%ln(lf%(t))+e>\:(—31n(177‘-(t))/ h(o)7(t) B Wm(1-#(0)0) g
_ u(ﬂ_)e)\%ln(lff(t))_kzo
where 20 = A ¥ In(1=7(®) f T—? —ME I(1-+(0)) gy depends only on h.

It remains to find . By (), v must satisfy
AU — QUgy = f.
Multiplying this identity by a test function ¢, integrating in space and using inte-

gration by parts, we obtain

/ " O atuy )b = / (b + )i — (1)) + aua (0)(0).
0 0
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But using the fact that (u, )T must belong to D(A(t)), we have

/ﬂ(/\u — QUgg)pdr = /W()\U(b + augdy)dr + apou(m)p(m) + apr z(1)p(m).
0 0
Therefore
|| 0o+ auadu)ds + apou(m)o(m) + mz(o(m) = [ fod.
0 0

Using the above expression for z(1), we arrive at the problem

/QM@+mu%Mw+Mm+uw”“%MﬂMﬂ
0

- " fode — amo(n), Vo eV (18)
0

if 7(t) = 0, or otherwise

(1)

/O (A + augy)dz + alpo + pre 70 Ty () ()

= /F fodr — ap 2°¢(m), Vo € V. (19)
0

These problems have a unique solution v € V' by Lax-Milgram’s lemma, because
the left-hand side of (&) or ([[M) is coercive on V.
If we consider ¢ € D(0, 7) C V, then u satisfies

AU — g, = fin D'(0, ).
This directly implies that u € H?(0, ) and then u € V N H?(0, 7). Coming back
to (¥ and by integrating by parts, we find, for 7(¢) = 0,
alug (1) + (po + pre A )u(m)]g(r) = —ap2°(m),
and then
welm) = — (a0 + e O u(r) — iy 20
= —pou(r) — (e Ou(r) + 29)
= —pou(m) — paz(1).
We find the same result if 7(¢) # 0.
In summary we have found (u, z) T € D(A(t)) satisfying [[0) and thus AI — A(t)
is surjective for some A > 0 and ¢ > 0. Since x(t) > 0, we directly deduce that
M — A(t) = (A + k(t))I — A(t) is surjective (20)
for some A > 0 and ¢ > 0. . .
Then, (), (@) and @0) imply that the family A = {A(t) : ¢ € [0, T]} is a stable
family of generators in H with stability constants independent of ¢, by Proposition
1.1 from [7]. Therefore, the assumptions (i)-(iv) of Theorem Bl are verified by (),

@), @), @), @) and Lemma Z2A and thus, the problem
{@_Amﬁ
7(0) = Us.
has a unique solution U € C([0, +00), H) and, if Uy € D(A(0)),
U € ([0, +00), D(A(0))) N C([0, +00), H).

Setting
U(t) = ’DU(1)
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with 8(t) = fot k(s)ds, we remark that it is a solution of () because

Uit) = w(t)ePOT(t) +POT(1)
= w()POU(1) + PO AT (t)
= SO(s()U @)+nA()U(ﬂ{
= SOANT(t) = A)e” DT ()
= AMU),
which concludes the proof. |

2.2. The decay of the energy. We here suppose that
2 < (1—d)i2. (21)

Let us choose the following energy

™ 1
Et) = %/o u?(z, t)de + qT_2(t)/O u?(m, t — 7(t)p)dp, (22)

where ¢ is a positive constant chosen later.
Proposition 1. Let @) and (Z) be satisfied. Then for all regular solution of
problem ), the energy is decreasing and satisfies

E'(t) < —a /077 u?(z, t)dz+(u(n, t), u(m, t — 7(t))) U, (u(m, t), u(m, t — T(t)))T <0,

(23)
where W, is the matric defined in (I3).

Proof. Differentiating 22) and by (), we obtain

L . 1
/ uurdr + ar(t) / w?(m, t — 7(t)p)dp
0 ) 2 Jo

qr(®) / u(m, t— r(t)p)us(m, t — T(0)p)(1 — #(t)p)dp

™ (¢ 1
= a/ Uty dx + qT—()/ u?(m, t —7(t)p)dp
0 L 2 Jo

+ar(t) [t ¢ = O £ 7)1 = FO)dp.

E'(t)

By integrating by parts in space, we find

a/ Wgpdr = —a/ uldr + afu(z, u,(z, t)]5
0 0

us

—a/ uide — apou®(, t) — apyu(r, tu(m, t — 7(t)).
0
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Setting z(p, t) = u(m, t —7(t)p), we see that z,(p,t) = —7(t)us(w, t —7(t)p), and
by integrating by parts in p, we get

1
/0 u(m, t = T(O)p)un(r, £ — r(B)p)(1 — #(t)p)dp
=== | #0000 00 = 000

1 ! ) ,
= _iT(t) 10 6P(Z(p7 t) )(1 - T(t)pl)dp
= z(p, t)*(—7(t))dp [2%(p, )(1 — 7(t)p)]5
_ 27:()’5)/0/ 2t () 2_7(;)‘ ) 2, ¢ — (t))0+ LI T
T Jy T TP 27 (%) T 2ty

Therefore, we obtain

E'(t) = —a/OTr udx — (apo — g)u2(7r, t) — apyu(m, tyu(m, t — 7(t))
— S = FH O, t = 7(1)),
We can see that this inequality can be written as
E't) < —LL/7T ulde 4 (u(m, t), u(m, t —7(8)) W, (u(r, t), u(r, t — (1)) ".
0

As —q(1 —d) <0, ¥, is negative definite if and only if
a’pi
1-d

¢* — 2apoq + <. (24)

The discriminant of this second order polynomial is A = 4qa? (u% - 1“_? d) , which is
positive if and only if 1) holds. Therefore, the matrix ¥, is negative definite for

some ¢ > 0 if and only if ) is satisfied, and in that case, we choose ¢ such that

i P
allp — a ,ug—l_d<q<auo+a u%—l_d, (25)

which concludes the proof. O

2.3. Exponential stability. In this section, we prove the exponential stability of
the heat equation () by using the following Lyapunov functional

E(t) = E(t) +~v& (), (26)

where v > 0 is a parameter that will be fixed small enough later on, E is the
standard energy defined by ([22)) and &; is defined by

t 1
&) =a [ O s = arlo) [ e HONRn = rlp)dp, (21
t—7(t) 0

where § > 0 is a fixed positive real number.
Remark 1. Let us notice that the energies E and £ are equivalent, since
B(t) < £(t) < (29 + 1)E ().

The result about the decay of the energy E is the following one:
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Theorem 2.4. Let [@) and {Z1) be satisfied. Then the energy E decays exponen-
tially, more precisely there exist two positive constants o and C such that

E(t) < Ce™E(0), ¥t > 0.
Proof. First, we differentiate £ to have

1
(t) —2E(t) + qr(t) /0 (=267 (t)p)e 20" OPu2(z, t — 7(t)p)dp + J,

7015

dt

where
J = 2g7(t) /0 =270y t — 2 () p)us(r, t— T(E)p)(1 — #(t)p)dp.

Moreover, by noticing one more time that z(p, t) = u(mw, t—7(t)p) and by integrating
by parts in p, we have

J = _q4) e*QJT(t)Pagp(z(p, t)z)(l _ %(t)p)dp
— a [ #.0-
O30, 10— H) + 420, )
1 ) q )
— q/ (=207 (t)(1 — 7(t)p) — 7(t))u?(m, t — T(t)p)e—msT(t)pdp
(

-T2 (¢ (1)) (1 = 7(t)) + qu?(m, t).

267(t) (1 — #(t)p) — #(£))e~ 2" Ordp

Therefore, we have

%82(0 l?Sz(t) +4q / (=207(t) — 7(1))u?(m, t — T(t)p)e= 27 Pdp

—qe_%T(t)uQ(ﬂ'(,) t—7(t)(1 = 7(t) + qu(m, t)
= —26&(t) — qe 2T Wu2(m, t — 7 (1) (1 — (1)) + qu(m, t).

As 7(t) <1 (see (@), we obtain

%52(15) < —20&5(t) + qu(m, t). (28)
Consequently, gathering [3), 8) and @8), we obtain
GEO < oo = § — (. 1) = §(1 = (. 1= 7(0)
—apyu(m, tu(m, t —7(t)) — a/ u?(x, t)dx — 276Es(t),
or equivalently i
%5(15) < (u(m, t), u(m, t = 7(0))¥q(ulm, 1), ulm, t = ()"
—a /07T u?(x, t)de — 276E(t), (29)
where WU, is the 2 x 2 matrix defined by
v (I it )= (80

Now fix ¢ > 0 such that ¥, is negative definite (consequence of the assumption
&1)). By a perturbation argument, we deduce that for v > 0 small enough, ¥, is
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negative. More precisely, we take v = _T’\, when A is the greatest negative eigenvalue
of W, or equivalently XW¥,X " < A|X|?, for all X € R?. We can easily check that

1
A—ZQﬁm+m+¢@m@H@+Mu—mm+w—mw><o (30)

Therefore, for v = %A, we find
%E(t) < —25v&5(t) — a/ u?(x, t)da. (31)
0

As u(0, t) =0 for all t > 0, by the min-max principle, we have

/ u?(z, t)de < 4/ u?(x, t)dz,
0 0

because the first eigenvalue of the Laplace operator with Dirichlet boundary condi-
tion at 0 and Neumann boundary condition at 7 is —%. Therefore

—a/ u?(x, t)dzr < _E/ u?(x, t)da.
0 4 Jo

This estimate in 1) and by the definition @) of £, we obtain
™ 1
—£&(t) < —%/ u?(z, t)dr — 2q677(t)/ e 2TWPy2 (1t — 7(t)p)dp.
0 0
Since 7(t) < M (see @)) and in view of the definition ) of E(t), there exists a
constant 4/ > 0 (depending on v and 6, namely 7 < min(%, 46ve~2°M)) such that

Te) < —Ew),

By applying Remark [l we obtain

This implies that

with

v 1 . (aq —26M
= < —., —4 .
Q@ D 2)\111111(2, Ade )
Remark [M leads to
BE(t) < E&(@) <&(0)e ™ < (2y+1)E(0)e™ ™.
O

Remark 2. In the proof of Theorem B4 we notice that we have explicitely calcu-
lated the decay rate of the energy, given by

o= )Y min (%, —4)\56_26]\/‘,) ,
where A is given by B0), ¢ by [23) and 0 is a positive real number. Therefore, we can
choose 0 so that the decay of the energy is as quick as possible. For that purpose,

we notice that the function § — —4AJe~2°M admits a maximum at § = ﬁ and
that this maximum is % Thus the larger decay rate of the energy is given by

1 . (aq —2X
Qmaz = ——min [ —, — | .
q— 2\ 2 Me
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Obviously, this quantity can be calculated if the data o, p1 and 7 are given.

3. Exponential stability of the delayed wave equation. We now consider the
system described by

ug (2, t) — auge(x, t) =0, O<z<m t>0,
u(0, t) = 0, t>0,
ug(m, t) = —pouy(m, t) — pau(m, t — 7(1)), t>0, (32)
u(z, 0) = u2(x), ut(z, 0) = ul(x), 0<z<m,
u(m, t — 7(0)) = fO(t — 7(0)), 0<t<7(0),

whith the constant parameter a > 0 and where pg, 1 > 0 are fixed nonnegative
real numbers, the time-varying delay 7(¢) still satisfies @), @) and ().

The boundary-value problem (B2) describes the oscillations of a homogeneous
string fixed at 0 and with a feedback law at .

3.1. Well-posedness of the problem. We aim to show that problem (B2) is
well-posed. For that purpose, we use the same ideas than before.

We transform our system (B2) as follows. Let us introduce the auxiliary variable
z(p,t) = wy(m, t —7(t)p) for p € (0, 1) and ¢ > 0. Note that z verifies the transport
equation for 0 < p < 1 and ¢ > 0 (compare with (@))

7(H)ze(p, t) + (1= 7(t)p)2p(p, t) = 0,
2(0, t) = w(m, t), (33)
z(p, 0) = fO(=7(0)p).

Therefore, the problem ([B2) is equivalent to

ug(x, t) — auge(z, t) =0, O<z<m t>0,
T(t)ze(p, t) + (L= 7(t)p)2zp(p, t) =0, 0<p<l1,t>0,
w(0, t) =0, ug(m, t) = —poue(m, t) — u12(1, t), t>0, (34)
2(0, t) = wy(m, t), t>0,
u(z, 0) = u2(x), ui(z, 0) = ul(x), O<z<m,
z(p, 0) = fO(=7(0)p), 0<p<l

If we introduce
U= (u, ug, 2) ",
then U satisfies
T(tl(pt) 1zp)T
Consequently the problem (B2) may be rewritten as the first order evolution equa-
tion

Uy = (Um Utt, Zt)T = (Um AUy,

U(0) = @, !, S2=7(0))T = o
where the time dependent operator A(t) is defined by
u w
A(t) w = QUzy
. 7(t)p—1 .
ONRG

with domain
D(A()) :== {(u, w, z) € (VN H*0, 7)) x V x H (0, 1) :
2(0) = w(r), uz(m) = —pow(m) — p1z(1)},
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where we recall that
V ={¢ec H' (0, ) : $(0) = 0}.
Again, we notice that the domain of the operator A(¢) is independent of the time
t, i.e.
D(A(t)) = D(A(0)), vt > 0. (36)
Now, we introduce the Hilbert space
H =V x L*0, m) x L*(0, 1)

equipped with the usual inner product

u
w )
z

Lemma 3.1. D(A(0)) is dense in H.

e E

> = /Ow(aumam + ww)dx + /01 z(p)Z(p)dp.

Proof. The proof is the same as the one of Lemma 2.1 of [I2], we give it for the
sake of completeness. Let (f, g, h)" € H be orthogonal to all elements of D(.A(0)),

namely
u f T 1
0= < t: ; Z > —/O (aug fo + wg)dx +/0 z(p)h(p)dp,

for all (u, w, 2)7 € D(A(0)).
We first take u = 0 and w =0 and z € D(0, 1). As (0, 0, z) € D(A(0)), we get

1
| =@niorin=o.

Since D(0, 1) is dense in L?(0, 1), we deduce that h = 0.
In the same manner, by taking w =0, 2 =0 and w € D(0, 7) we see that g = 0.
The above orthogonality condition is then reduced to

0= a/o Uy fodx, Y(u, w, z) € D(A(0)).

By restricting ourselves to w = 0 and z = 0, we obtain

/1 s fodz = 0, ¥(u, 0, 0) € D(A(0)).
0

But we easily check that (u, 0,0) € D(A(0)) if and only if u € D(A) = {v €
H?(0,7) : v(0) = 0,9'(1) = 0}, the domain of the Laplace operator with mixed
boundary conditions. Since it is well known that D(A) is dense in V' (equipped
with the inner product < ., . >y ), we conclude that f = 0. O

As before we suppose that the speed of the delay satisfies @) and ([[@). Under
these conditions, we will show that the operator A(t) generates a Cp-semigroup in
H and the unique solvability of problem (B).

For that purpose, we introduce the following time-dependent inner product on
u T 1
o | — [ @i, +wd)de +art) [ 2(0)20)dp
P , 0 0
where ¢ is a positive constant chosen such that ¥, is negative (guaranteed by the
assumptions () and ([[d)), with associated norm denoted by |.||, -

[STRESUIEY
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Theorem 3.2. For an initial datum Uy € H, there exists a unique solution U €
C([0, +00), H) to problem [Z4). Moreover, if Uy € D(A(0)), then

U € C([0, +00), D(A(0))) N C*([0, +00), H).
Proof. We first notice that

[l
Il

where ¢ = (u, w, z)" and c is a positive constant. Indeed, for all s, t € [0, T], we
have

ol = 1ol 7= = (1 - el=)) / (au2 + w?)dz
0

<em ' vt s €0, T) (37)

+q (7(t) = rls)e ) / (P

and we conclude as in the proof of Theorem
Now we calculate (A(t)U,U), for at > 0 fixed. For an arbitrary U = (u, w, 2)" €
D(A(t)), we have

w U

Alt U, U = AUgy , w
(AU, U), < L >
T(t) Zp Z t

= /W(awxux + augpw)dr — q/ zp(p)z(p) (1 —7(t)p)dp.
0 0

By integrating by parts in space, we have
1
(AU, U), = alwu.lg — Q/O 2p(p)z(p)(L = 7(t)p)dp

1
= a0 —a=0):0) ~a | 2,(p)=(0)(1 = H0)p)dp.

Moreover, we have by integrating by parts in p:

1 ) 1 10 ) )
[ =00 = omar = 3,0 = 00k
= T2 [ srars o020 - 0) - 320
These two identities yield
(AWMU, U), = =a0=(0) = apn=(0)z(1) = Z2(1)°(1 = #(8)) + 32°(0)
_qT2(t)/0 Z(p)2dp

We can see, that this identity implies that
(AU, U), < (2(0), 2(1)¥q(2(0), 2(1) " +&(t) (U, U),,

where U, is the matrix defined by ([[3) and «(t) is given by ([[2). As we have chosen
g such that the matrix ¥, is negative, we have

(AU, U), — &(t) (U, U), <0, (38)
which proves the dissipativeness of A(t) = A(t) — x(t)I for the inner product (-, -);.
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As in the proof of Theorem 23 we see that ) implies that
d o0
A1) € LE([0, T], B(D(A(0)), H)). (39)

Let us finally prove that A(t) is maximal, i.e., that A\ — A(t) is surjective for
some A > 0 and t > 0.
Let (f, g, h)T € H. We look for U = (u, w, 2)T € D(A(t)) solution of

u f
M =AW [ w | =1 9
z h
or equivalently
AM—w=f
A — AUy = g (40)

)\Z —|— 1_7_7251;)pr = h,

Suppose that we have found u with the appropriate regularity. Then, we have

w=—f+ueV

We can then determine z, indeed z satisfies the differential equation

/\Zm:h

and the boundary condition z(0) = w(w) = —f(7) + Au(r). Therefore z is explicitly
given by

p
2(p) = Mu(m)e ™ MBP — f(m)e  THP 4 T(t)ef)”'(t)p/ D (g)do,

0
if 7(¢) = 0, and
2p) = Au(m)erFBRA—TWR) _ g () A In(1-F(0)0)
LA ER M=) >/p Ma)T(l) ~azma-+)o) g,
o 1—=7(t)o

otherwise. This means that once u is found with the appropriate properties, we can
find z and w. In particular, we have if 7(¢) = 0,

1
2(1) = Mu(m)e= >0 — f(m)e A0 Lr()e ) / A0 () dor = Au(r)e— 0420,
0

where 20 = — f(7)e @) 4 7(t)e A7) fol A (o)do is a fixed real number de-
pending only on f and h, and if 7(¢) # 0
A1) = /\u(ﬂ_)e)\%l n(1=#(1) _ fim)e )\(—) In(1—7(t))
_'_eA%ln(lf%(t))/ h(o)T(t) T(t) n(1-7(6)9) g,
o 1— T(t)o

_ /\u(qr)eA:E:; Im(1=#(1)) | 0 7
where

t . T t 1 T(t .

20 = _f () MH MA—FHO) | AHB (-7 (0) / M) AFE ma-+1)0) 4,
o 1—7(t)o

depends only on f and h.
It remains to find . By (), u must satisfy

MU — augy = g + M.
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Multiplying this identity by a test function ¢, integrating in space and using inte-
gration by parts, we obtain

/ (AU — atg,)pdr = / (N2ud + auy¢p)dr — au, (1)d(T) + aug (0)¢(0).
0 0
But using the fact that (u, w, )T must belong to D(A(t)), we have

/ﬂ()\2u — AUy )Odx = /ﬂ(/\zugb + auz ¢y )dx + apow(m)d(m) + apr z(1) (7).
0 0
Therefore
| 0%u6 + aus0.)ds + apow(mo(m) + ap2()olr) = [ g+ Af)oda,
0 0

Using the above expression for z(1) and w = Au — f, we arrive at the problem
/ (NPud + augds)de + apo + pre™ ™) Xu()p(m)
0

- / "9+ A)éde + a(uof(m) — m)d(x), Yo €V (41)

if 7(t) = 0, or otherwise
/ (N2u¢ + auy ¢, )dr + alpg + uleA% ln(k*(t)p)))\u(w)(b(ﬁ)
0

-/ "9+ AP)odz + alpof(r) — m)é(n), Yo € V. (42)

These problems have a unique solution u € V' by Lax-Milgram’s lemma, because
the left-hand side of (I or [EZ) is coercive on V.
If we consider ¢ € D(0, m) C V, then u satisfies
N — atg, = g+ MNf in D'(0, 7).

This directly implies that v € H?(0, w) and then v € V N H?(0, 7). Coming back
to ) and by integrating by parts, we find, for 7(¢) = 0,
afug () + (po + pne AT Au(m)]é(m) = alpo f () — p1z°)g(x),
and then
us(m) = —(po + e ) xu(m) = (m1z° — po f(m))
= —po(Mu(m) = f(m)) = pa (e () + 2°)
= —pow(m) — pz(1).
We find the same result if 7(¢) # 0.
In summary we have found (u, w, 2)T € D(A(t)) satisfying @) and thus A\ —
A(t) is surjective for some A > 0 and ¢ > 0. Again as x(t) > 0, this proves that
M — A(t) = (A + k(t))I — A(t) is surjective (43)
for some A > 0 and ¢ > 0. ~ ~
Then, (87), B) and @) imply that the family A = {A(¢) : ¢ € [0, T]} is a stable
family of generators in H with stability constants independent of ¢, by Proposition
1.1 from [[7]. Therefore, the assumptions (i)-(iv) of Theorem Tl are verified by (B0,

B2, B3, B9, E3) and Lemma BIl and thus, the problem
Uy = A(t)U
U(0) = Up.
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has a unique solution U € C([0, +00), H) and, if Uy € D(A(0)),
U € C([0, +o0), D(A(0))) N C*([0, +00), H).
As before, the requested solution of (B3 is given by
U(t) = PDT(t)
with () = fot k(s)ds. O
3.2. The decay of the energy. As for the heat equation, we restrict the hypoth-
esis () to obtain the decay of the energy. Namely we suppose that [ZII) holds.

Let us choose the following energy (which corresponds to the time-dependent
inner product in H)

1

1 /" t
E(t) = 5/ (uf(z, t) + aul(z, t)) dz + qTT()/ ul(m, t —7(t)p)dp, (44)
0 0
where ¢ is a positive constant chosen such that ¥, is negative definite (possible if
@) and ) hold).

Proposition 2. Let the assumptions (@) and (Z1) be satisfied. Then for all regular
solution of problem [ZA), the energy is decreasing and verifies

E/(t) < (ut(ﬂa t)a ut(ﬂ-v t— T(t))) \I/q (ut(ﬂ-v t)a ut(Tra t— T(t)))T <0, (45)
where U, is the matrix defined in ([I3).

Remark 3. In the case where the delay is constant in time, i.e. 7(t) = 7 for all
t > 0 and thus d = 0, we recover the results from [0, [2]. Indeed in [0, I2], the
energy is decreasing under the assumption p; < ppo.

Proof. Differentiating [l) and integrating by parts in space, we obtain

B = [ o+ anede+ T [ -
+0r(t) [ b= Oy, = r(0)0) (1 = HOp)dp
= /F e (Uge — QUpg)dx + alugu] q7’2(t 1 ul(m, t —71(t)p)dp
0 1 0
—wﬂﬂAzwwt—T@MWAwt—d)MG—TU)
= aug(m, t)us(m, t) + q7'2(t) /0 ui(m, t —7(t)p)dp

-mﬂwA w(m, £ — 7(t)p)uss (. £ — 7(8)p) (1 — #(t)p)dp.

Recalling that z(p,t) = us(m, t — 7(¢t)p), we see that

1 : G
/0 w(m, t = 7(t)p)un(m.t = 7(B)p) (1 = HB)p)dp = ~5 o5 /0 ui (m,t = 7(t)p)dp
12—72;(;) u(m, t —1(t) + 27’1(t) ul(m, t).
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Therefore, we obtain

E'(t) = aug(m, thu(m, t) + qTT(t) /O W(m, t —7(t)p)dp
_q7"2(t) /0 ui(m, t —7(t)p)dp — q1 _27.’(0 ui(m, t —7(t)) + %Uf(m t),

which implies
E'(t) = —a,uouf(w, t) — aprug(m, t — 7(¢))ue(m, t) — %(1 - %(t))uf(w, t—7(t))

+ %uf(w, t).

By the condition (@) we can see that this identity yields
El(t) < (ut(ﬂ-v t)v ut(Tra [ T(t))) ‘Ilq (ut(ﬂa t)v ut(ﬂ-v [ T(t)))T :
This concludes the proof as ¥, is negative definite. O

3.3. Exponential stability. In this section, under the assumptions [{@) and EII),
we prove the exponential stability of the wave equation ([B2) by using the following
Lyapunov functional

(1) = B(t) +4 <2 /O " vtsunds + 52@)) , (46)

where v > 0 is a parameter that will be fixed small enough later on, E is the
standard energy defined by ) with ¢ a positive constant fixed such that ¥, is
negative definite and & is defined by

t 1
Ex(t) =4 / P Dud(r, s)ds = qr(t) / e 0Py (7, t — 7(t)p)dp, (A7)
t—7(t) 0

where § > 0 is a fixed positive real number.

The Lyapunov functional E(t) + 2 foﬂ rurugde is standard in problems with
boundary conditions with memory (see for instance [I1]). We have added the two
terms to the standard energy F(t) in order to take into account the dependence of
7 with respect to t.

First we notice that the energies E and £ are equivalent.

Lemma 3.3. For v small enough, there exist two positive constants Cy(y) and
Ca(y) such that
Cr(v)E(t) < £(t) < Co()E(1).

Proof. We have

us

27/ ruzurdr < ’)/7T/ (u? 4 ui)dr < ch/ (au? + u?)dz,
0 0 0

where ¢ = max(1, 1) and

1 1
var(®) [ O, t = r(t)o)dp < var(t) [ ot = r(Op)dp.
0 0
As ¢ > 1, these estimates yield
Et) < (14 2vyem)E(t).
Moreover, by definition we have

VE2(t) > 0
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and by Cauchy-Schwarz’s inequality

27/ TUpurdr > —’}/ﬂ'/ (u2 4+ u?)dz.
0 0
Then -
E(t) > E(t) — c*ﬂr/ (au? + u?)dz,
0

and therefore, for v small enough (v < ﬁ), we obtain

E(t) > (1 = 2emy)E(t).

We are ready to state our result about the decay of the energy E:

Theorem 3.4. Let [@) and {Z1) be satisfied. Then the energy E decays exponen-
tially, more precisely there exist two positive constants o and C such that

E(t) < Ce ™ E(0), ¥t > 0.
Proof. First we remark that

d iy v v
— (2/ xutumd:v> = 2/ xuttumd:v+2/ TU UL AT
dt 0 0. 0

= 2(1/ TUgppUpdr + 2 TUL UL AT
0

9 e
= a/ x@z(ui)d:c—FZ/ TUULrdT
0o . 0 .
= —a/ udr + aru?(m, t) + 2/ TUL Uz T,
0 0

But by integrating by parts in space and by [B2), we have

™ us ™
/ LU U dr = —/ TUgpUr AT —/ uldx + mul(m, t),
0 0 0
that is to say
us s
2/ TUpUgrdr = —/ ulde + mul(r, t).
0 0

Thus

d T T
pn (2/ xutuwdx) = —/ (u? + au?)dx + mul(m, t) + amu’(w, t).
0 0

By the boundary conditions in [B2) and Cauchy-Schwarz’s inequality, we finally find

d T T

7 (2/ xutumd:c) < —/ (u? + au?)dr + w(1 + 2apd)u?(x, t)
0 0
+ 2ampiui(m, t —7(t)). (48)

Then, we differentiate £ to have

ig — @g ' — 957 —207(t)p,,2 _

() = 0 2(t) +q7(t) | (=207(t)p)e ug(m, t = 7(t)p)dp + Ju,

0

where

Jw = 2q7(1) /O e 2TWPy (1, t — 7(t) p)ug (m, t — 7(£)p) (1 — 7(t)p)dp.
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As in the proof of Theorem B4, by integration by parts, we have

1
Jy = Q/ (—=267(t)(1 — 7(t)p) — 7(t))ug(m, t — 7(t)p)e~207DPdp

0
—qe " 2TW2 (m, t—7(1) (1 — 7(t)) 4+ qui(m, t).
These identities yield

G = Te a [ (<2570~ HO)dr, 1= rip)e Ty
—0e it ()L #0) +gui (1
= W ey 4 22T =0 g ) e 2502, £ — (1)1 - +(0)
o), (0)
+qui(m, t).
As 7(t) <1 (see (@), we obtain
%52(15) < —26E(t) + qui(rm, t). (49)

Consequently, gathering (@), @J) and @), we obtain

G0 < = [ + adyde - o6t
+ (ug(m, t), ue(mw, t — 7(t))) fi)q (ug(m, t), ug(m, t — T(t)))T ,

where fi)q is the matrix defined by

b o 1 q(1 4 27v) — 2apo + 2ym(1 + 2au?) —ap
a 2 —ap daympi — q(1 —d)
_ g+ (14 2au) 0
= Yotn ( 0 2amp?

Noticing that max (¢ + (1 + 2a,u0) 2ampi) = q + m(1 + 2apd) by @), for v

sufficiently small, i.e. 7 < m, where A is the greatest negative eigenvalue

of ¥, given by Bl), ¢, is negative and therefore

_5( ) < y/ow(ut + au?)dx — 207E(t).

By the definition @) of &£, this estimate becomes

T 1
L) < / (W2 + au?)dz — 25yqr(t)e 7 / &, t — (t)p)dp.
0 0

Since 7(t) < M (see (@), in view of the definition of FE, there exists a constant
7' > 0 (depending on v and §: 7/ < 2ymin (1, 20e~2°M)) such that

%awg—yE@.

By applying Lemma B33 we arrive at
d
—E&(t) < —a&(t
L) < —ogl),

where « is explicitely given by o = 73— +2'y¢27r Therefore

E(t) < E(0)e™,
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and Lemma allows to conclude the proof:

L ey<—1  go)ee

- 1+ 2verm
— 1—2cmy

E(t) <
®) — 1—2cmy

—_— E(0)e .
— 1—2cmy (0)e

O

Remark 4. In the case where the delay is constant in time and a = 1, we recover
some results from [0, [[2]. Moreover, in [I0, [[2], the energy is defined by

T 1
E(t) = %/0 (uf(:ﬂ, t)+ ui(x, t))dx + g/o uf(w, t —7p)dp,

where £ is a positive constant satisfying
T < €< T(2p0 — ),
under the condition II), which corresponds to the definition ) of E with ¢ = §

Remark 5. In the proof of Theorem B4l we notice that we can explicitely calculate
the decay rate « of the energy, given by

Y . —26M
= 1,20
« 1+ZFYCWmm(, e ),

with
—A

q+ m(1+2au?)

(by Lemma and Theorem BZ) and ¢ = max (1, 1) where X is given by @), ¢
by [3) and ¢ is a positive real number. Therefore, we can choose ¢ such that the
decay of the energy is as quick as possible. By Remark Bl we get that the larger
decay rate of the energy is given by

B 2y . 1 1
amam_1+2wcwmm " Me )’
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