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a b s t r a c t

New interval observers are designed for linear systems with time-varying delays in the case of delayed
measurements. Interval observers employ positivity and stability analysis of the estimation error system,
which in the case of delayedmeasurements should be delay-dependent. Newdelay-dependent conditions
of positivity for linear systemswith time-varying delays are introduced. Efficiency of the obtained solution
is demonstrated by examples.
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1. Introduction

An estimation in nonlinear delayed systems is rather com-
plicated (Fridman, 2014; Sipahi, Niculescu, Abdallah, Michiels, &
Gu, 2011), as well as analysis of functional differential equations
(Richard, 2003). Especially the observer synthesis is problemati-
cal for the cases when the model of a nonlinear delayed system
contains parametric and/or signal uncertainties, or when the de-
lay is time-varying and/or uncertain (Briat, Sename, & Lafay, 2011;
Califano, Marquez-Martinez, & Moog, 2011; Zheng, Barbot, Boutat,
Floquet, & Richard, 2011), the frequent applications include biosys-
tems and chemical processes. Delayed measurements usually also
increase complexity of estimators, which is a case in networked
systems. An observer solution for thesemore complex situations is
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highly demanded in these and many others applications. Interval
or set-membership estimation is a promising framework to obser-
vation in uncertain systems (Gouzé, Rapaport, &Hadj-Sadok, 2000;
Jaulin, 2002; Kieffer & Walter, 2004; Mazenc & Bernard, 2011;
Moisan, Bernard, & Gouzé, 2009; Raïssi, Efimov, & Zolghadri, 2012),
when all uncertainty is included in the corresponding intervals or
polytopes, and as a result the set of admissible values (an interval)
for the state is provided at each instant of time.

In this work an interval observer for time-delay systems with
delayed measurements is proposed. A peculiarity of an interval
observer is that in addition to stability conditions, some restric-
tions on positivity of estimation error dynamics have to be im-
posed (in order to envelop the system solutions). The existing
solutions in the field (Efimov, Perruquetti, & Richard, 2013; Efimov,
Polyakov, & Richard, 2015; Mazenc, Niculescu, & Bernard, 2012;
Polyakov, Efimov, Perruquetti, & Richard, 2013) are based on the
delay-independent conditions of positivity from Ait Rami (2009)
and Haddad and Chellaboina (2004). Some results on interval ob-
server design for uncertain time-varying delay can be found in Efi-
mov et al. (2013) and Ait Rami, Schönlein, and Jordan (2013). The
first objective of this work is to use the delay-dependent positiv-
ity conditions (Efimov, Polyakov, Fridman, Perruquetti, & Richard,
2015), which are based on the theory of non-oscillatory solutions
for functional differential equations (Agarwal, Berezansky, Braver-
man, & Domoshnitsky, 2012; Domoshnitsky, 2008). Next, two
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interval observers are designed for linear systems with delayed
measurements (with time-varying delays) in the case of observ-
able and detectable systems (with respect to (Efimov et al., 2015)
the present work contains new result, Theorem 12, relaxed As-
sumption 1, and new examples). Efficiency of the obtained interval
observers is demonstrated on a benchmark example from Mazenc
et al. (2012) and a delayed nonlinear pendulum.

The paper is organized as follows. Some preliminaries and
notation are given in Section 2. The delay-dependent positivity
conditions are presented in Section 3. The interval observer design
is performed for a class of linear time-delay systems (or a class
of nonlinear systems in the output canonical form) with delayed
measurements in Section 4. Examples of numerical simulation are
presented in Section 5.

2. Preliminaries

2.1. Notation

• R is the Euclidean space (R+ = {τ ∈ R : τ ≥ 0}), Cn
τ =

C([−τ , 0], Rn) is the set of continuous maps from [−τ , 0] into
Rn for n ≥ 1; Cn

τ+
= {y ∈ Cn

τ : y(s) ∈ Rn
+
, s ∈ [−τ , 0]};

• xt is an element of Cn
τ defined as xt(s) = x(t + s) for all

s ∈ [−τ , 0];
• |x| denotes the absolute value of x ∈ R, ∥x∥2 is the Euclidean

norm of a vector x ∈ Rn, ∥ϕ∥ = supt∈[−τ ,0] ∥ϕ(t)∥2 for ϕ ∈ Cn
τ ;

• for a measurable and locally essentially bounded input u :

R+ → Rp the symbol ∥u∥[t0,t1) denotes its L∞ norm ∥u∥[t0,t1) =

ess sup{∥u(t)∥2, t ∈ [t0, t1)}, the set of all such inputs u ∈ Rp

with the property ∥u∥[0,+∞) < ∞ will be denoted as L
p
∞;

• for a matrix A ∈ Rn×n the vector of its eigenvalues is denoted as
λ(A);

• In and 0n×m denote the identity and zeromatrices of dimensions
n × n and n × m, respectively;

• aR b corresponds to an elementwise relationR ∈ {<, >,≤, ≥
} (a and b are vectors or matrices): for example a < b (vectors)
means ∀i : ai < bi; for φ, ϕ ∈ Cτ the relation φ R ϕ has to be
understood elementwise for whole domain of definition of the
functions, i.e. φ(s) R ϕ(s) for all s ∈ [−τ , 0];

• for a symmetric matrix Υ , the relation Υ ≺ 0 (Υ ≼ 0) means
that the matrix is negative (semi) definite.

2.2. Delay-independent conditions of positivity

Consider a time-invariant linear system with time-varying
delay:

ẋ(t) = A0x(t) − A1x(t − τ(t)) + b(t), t ≥ 0, (1)
x(θ) = φ(θ) for − τ ≤ θ ≤ 0, φ ∈ Cn

τ ,

where x(t) ∈ Rn, xt ∈ Cn
τ is the state function; τ : R+ → [−τ , 0]

is the time-varying delay, a Lebesgue measurable function of time,
τ ∈ R+ is the maximum delay; b ∈ Ln

∞
is the input; the constant

matrices A0 and A1 have appropriate dimensions. The matrix A0 is
called Metzler if all its off-diagonal elements are nonnegative. The
system (1) is called positive if for x0 ≥ 0 it has the corresponding
solution x(t) ≥ 0 for all t ≥ 0.

Lemma 1 (Ait Rami, 2009 and Haddad & Chellaboina, 2004). The
system (1) is positive iff A0 is Metzler, A1 ≤ 0 and b(t) ≥ 0 for all
t ≥ 0. A positive system (1) is asymptotically stable for b(t) ≡ 0 for
all τ ∈ R+ iff there are p, q ∈ Rn

+
(p > 0 and q > 0) such that

pT[A0 − A1] + qT = 0.

Under conditions of the above lemma the system has bounded
solutions for b ∈ Ln

∞
. Note that for linear time-invariant systems
the conditions of positive invariance of polyhedral sets have been
similarly given in Dambrine, Richard, and Borne (1995), as well as
conditions of asymptotic stability in the nonlinear case have been
considered in Borne, Dambrine, Perruquetti, and Richard (2003)
and Dambrine and Richard (1993, 1994).

3. Delay-dependent conditions of positivity

Consider a scalar time-varying linear systemwith time-varying
delays (Agarwal et al., 2012):

ẋ(t) = a0(t)x[g(t)] − a1(t)x[h(t)] + b(t), (2)
x(θ) = 0 for θ < 0, x(0) ∈ R, (3)

where a0 ∈ L∞, a1 ∈ L∞, b ∈ L∞, h(t)− t ∈ L∞, g(t)− t ∈ L∞

and h(t) ≤ t , g(t) ≤ t for all t ≥ 0. For the system (2) the
initial condition in (3) is, in general, not a continuous function (if
x(0) ≠ 0).

The following result proposes delay-independent positivity
conditions.

Lemma 2 (Agarwal et al., 2012, Corollary 15.7). Let h(t) ≤ g(t) and
0 ≤ a1(t) ≤ a0(t) for all t ≥ 0. If x(0) ≥ 0 and b(t) ≥ 0 for all
t ≥ 0, then the corresponding solution of (2), (3) x(t) ≥ 0 for all
t ≥ 0.

Recall that in this case positivity is guaranteed for ‘‘discontinuous’’
initial conditions. The peculiarity of the condition 0 ≤ a1(t) ≤

a0(t) is that it may correspond to an unstable system (2). In
order to overcome this issue, delay-dependent conditions can be
introduced.

Lemma 3 (Agarwal et al., 2012, Corollary 15.9). Let h(t) ≤ g(t) and
0 ≤

1
e a0(t) ≤ a1(t) for all t ≥ 0 with

sup
t∈R+

 t

h(t)


a1(ξ) −

1
e
a0(ξ)


dξ <

1
e
,

where e = exp(1). If x(0) ≥ 0 and b(t) ≥ 0 for all t ≥ 0, then
x(t) ≥ 0 for all t ≥ 0 in (2), (3).

These lemmas describe positivity conditions for the system (2),
(3), which is more complex than (1), but scalar, they can also be
extended to the n-dimensional system (1).

Corollary 4. The system (1) with b(t) ≥ 0 for all t ≥ 0 and initial
conditions

x(θ) = 0 for − τ ≤ θ < 0, x(0) ∈ Rn
+
,

is positive if −A1 is Metzler, A0 ≥ 0, and

0 ≤ (A0)i,i ≤ e(A1)i,i < (A0)i,i + τ−1

for all i = 1, . . . , n.

From these corollaries it is easy to conclude that the delay-
dependent case studied in Lemmas 2 and 3 is crucially different
from the delay-independent positivity conditions given first in
Lemma 1, where in the scalar case the restriction a1 ≤ 0 implies
positivity of (1) and the condition a0 < a1 according to Lemma 1
ensures stability for any τ . These results do not contradict to
Remark 3.1 ofHaddad andChellaboina (2004), since x(θ) ≠ 0 for−

τ ≤ θ < 0 there. A graphical illustration of different delay-
independent conditions (positivity from Lemmas 1 and 2) and
delay-dependent ones (from Lemma 3, the stability conditions are
also satisfied in this case) for the system (2) is given in Fig. 1 in
the plane (a0, a1). It is worth stressing that an extension of the
positivity domain in Lemma 3 is also achieved due to restrictions
imposed on initial conditions in (3).
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Fig. 1. Different positivity conditions for (2).

In order to use the results of Lemmas 2 and 3 it is necessary to
pass fromdiscontinuous initial conditions in (3) to continuous ones
usually studied (Sipahi et al., 2011). Further, in this section we will
be interested in the case
a0(t) = a0, a1(t) = a1, t − τ ≤ h(t) ≤ t, g(t) = t, (4)
where τ > 0 is maximum delay. Now let us extend the initial
condition (3) with a continuous one (note that all developments
above can be easily adopted for piecewise continuous initial
conditions, such a reformulation is omitted for simplicity):
x(θ) = φ(θ) for θ ∈ [−τ , 0], φ ∈ Cτ (5)
and consider the conditions providing delay-dependent positivity
for (2), (4), (5).

Remark 5. Asmentioned in Liu and Fridman (2014), the first delay
interval 0 ≤ t ≤ τ is important for delay-dependent conditions
giving solution bounds (and not just stability conditions).

Proposition 6. Let 0 ≤ a0 ≤ ea1 < a0 + τ−1. If x(0) ≥ 0, b(t) ≥ 0
for all t ≥ 0 and

b(t) ≥ a1φ[h(t)] ∀t ∈ {0 ≤ t ≤ τ : h(t) < 0},

then the corresponding solution of (2), (4), (5) satisfies x(t) ≥ 0 for
all t ≥ 0.

Proof. Consider the following system

ż(t) = a0z(t) − a1z[h(t)] + b(t) + ϕ(t),
z(θ) = 0 for θ ∈ [−τ , 0), z(0) = φ(0),

ϕ(t) =


−a1φ[h(t)] if h(t) < 0,
0 otherwise,

which is of the form (2), (4), (3)with z(0) = φ(0) and b(t)+ϕ(t) ≥

0 for all t ≥ 0 by the conditions. Since all conditions of Lemma 3
are satisfied, then z(t) ≥ 0 for all t ≥ 0. From another side, it is
easy to check that the solution of (2), (4), (5) x(t) = z(t) for all
t ≥ 0.

The following extension for n-dimensional system (1) can be
obtained.

Corollary 7. The system (1) with b(t) ≥ 0 for all t ≥ 0, x(0) ∈ Rn
+
,

with a Metzler matrix −A1, A0 ≥ 0 and 0 ≤ (A0)i,i ≤ e(A1)i,i <

(A0)i,i + τ−1 for all i = 1, . . . , n, has the corresponding solution
x(t) ≥ 0 for all t ≥ 0 provided that

b(t) ≥ A1φ(t − τ(t)) ∀t ∈ [0, τ ].

Let us show how these conditions can be used for the design of
interval observers.
4. Interval observer design under delayed measurements

In this section a useful inequality for interval analysis and a
statement of the problem are given. Next, a motivating benchmark
example fromMazenc et al. (2012) is investigated, using the results
of the previous section, in order to clarify the main idea. Finally,
a delay-dependent approach for an interval observer design is
presented.

4.1. Interval bounds

Given a matrix A ∈ Rm×n define A+
= max{0, A}, A−

= A+
− A

and |A| = A+
+ A−. Let x ∈ Rn be a vector variable, x ≤ x ≤ x for

some x, x ∈ Rn, and A ∈ Rm×n be a constant matrix, then (Efimov,
Fridman, Raïssi, Zolghadri, & Seydou, 2012)

A+x − A−x ≤ Ax ≤ A+x − A−x. (6)

4.2. Problem statement

Consider a linear system with a time-varying delay:

ẋ(t) = A0x(t) + A1x[h(t)] + b(t), (7)
y(t) = Cx[h(t)] + v(t),

where x(t) ∈ Rn, t − τ ≤ h(t) ≤ t is a known time-varying delay
(t−h(t) ∈ L∞), τ > 0 ismaximumdelay, x0 ∈ Cn

τ ; y(t) ∈ Rp is the
systemoutput available formeasurementswith the noise v ∈ L

p
∞;

b ∈ Ln
∞

is the system input; the constant matrices A0, A1 and C
have appropriate dimensions. It is assumed that for given b and
h the system has a unique solution defined at least locally. In the
state and the output equations of (7) the same delay is used, that
corresponds to a delay-free system with delayed measurements,
for example, or a system closed by an output-based feedback. The
input b(t) can be a function of control, and it can also contain a
delay.

Remark 8. Note that the results to be obtained for (7) can be easily
extended to the case with multiple delays:

ẋ(t) = A0x(t) +

q
i=1

Aix[hi(t)] + b(t),

y(t) = Cx[h1(t)] + v(t),

provided that hi(t) = t − τi(t) and hi(t) ≤ h1(t) for all t ≥ 0 (in
this case an output injection y[t−τi(t)+τ1(t)] = Cx[hi(t)]+v[t−
τi(t) + τ1(t)] can be used in observer). A compact form (7) is used
in the paper for brevity of presentation.

Assumption 1. There exist known functions x0, x0 ∈ Cn
τ such that

x0(θ) ≤ x0(θ) ≤ x0(θ) for all θ ∈ [−τ , 0].

The assumption about a known set [x0, x0] for the initial conditions
x0 is standard for the interval or set-membership estimation theory
(Efimov et al., 2013; Gouzé et al., 2000; Jaulin, 2002; Kieffer &
Walter, 2004; Moisan et al., 2009). We will assume that the values
of matrices A0, A1 and C are known and the instant values of the
signals b(t) and v(t) are unavailable.

Assumption 2. There exist known signals b, b ∈ Ln
∞

and v, v ∈

L
p
∞ such that b(t) ≤ b(t) ≤ b(t) and v(t) ≤ v(t) ≤ v(t) for all

t ≥ 0.

Therefore, the uncertain inputs b(t), h(t) and v(t) in (7) belong to
known intervals [b(t), b(t)], [t − τ , t] and [v(t), v(t)] respectively
for all t ≥ 0.
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It is required to design an interval observer,
ξ̇ (t) = F [ξt , b(t), b(t), v(t), v(t), y(t)], ξt ∈ Cs

τ ,

x(t) = G[ξt , b(t), b(t), v(t), v(t), y(t)],

x(t) = G[ξt , b(t), b(t), v(t), v(t), y(t)],
such that x(t) ≤ x(t) ≤ x(t) for all t > 0 provided that x0 ≤ x0 ≤

x0, and x−x, x−x ∈ Ln
∞
, s > 0. A similar problemhas been studied

in Mazenc et al. (2012) but for constant delays.

4.3. Motivating example

Consider a motivating example introduced in Mazenc et al.
(2012), where the problem of a 1-framer1 design has been posed
for a scalar system
ẋ(t) = −x(t − τ) (8)
with initial condition x0 ∈ Cτ . This system is globally asymptot-
ically stable if τ < π

2 . It has been proven in Mazenc et al. (2012)
(Proposition 3.2) that this system has no 1-framer of the form
F(ξt) = F1ξ(t) + F2ξ(t − τ),

G(ξt) = H1ξ(t), G(ξt) = H2ξ(t), (9)
where ξt ∈ Cs

τ for any s ≥ 1 and Fi, Hi (i = 1, 2) are matrices of
appropriate dimensions.

Applying the result of Proposition 6, the system (8) has positive
solutions for a discontinuous initial condition (3) with x(0) ≥ 0 if
τ < 1

e . Actually in this case it has a non-oscillating solution which
is asymptotically converging to zero (since 1

e < π
2 ), andwhich does

not cross the zero level for all t ∈ R+. Further, using the result of
Proposition 6, we can design a 1-framer for (8) having the form (9)
for t ≥ τ .

Claim 9. For the system (8) with any initial condition x0 ∈ Cτ and
τ < 1

e , the system

ẋ(t) = −x(t − τ) − δ(∥x0 − x0∥),

ẋ(t) = −x(t − τ) + δ(∥x0 − x0∥),

δ(s) =


s if t ≤ τ ,
0 otherwise

is a 1-framer, i.e. x(t) ≤ x(t) ≤ x(t) for all t > 0, provided that
x0 ≤ x0 ≤ x0, x0, x0 ∈ Cτ , and x, x ∈ Ln

∞
.

Proof. Introducing the interval estimation errors e = x − x and
e = x − xwe obtain

ė = −e(t − τ) + δ(∥x0 − x0∥),

ė = −e(t − τ) + δ(∥x0 − x0∥)

with e0 ≥ 0 and e0 ≥ 0. All conditions of Proposition 6 are satisfied
for the equations describing the error dynamics with τ < 1

e , then
e(t) ≥ 0 and e(t) ≥ 0 for all t ≥ 0.
Therefore, a 1-framer of a form similar to (9) can be designed for
(8) with a restricted value of delay τ < 1

e (it differs from (9) only
on the interval [0, τ ]). The results of simulation for this example
are given in Section 5.

Let us extend this idea of interval observer design to a more
generic system (7).

4.4. Delay-dependent conditions for interval estimation

The Eq. (7) can be rewritten as follows:
ẋ(t) = A0x(t) + (A1 − LC)x[h(t)] + Ly(t) + b(t) − Lv(t),
where L ∈ Rn×p is an observer gain to be designed.

1 The definition of a 1-framer can be found in Mazenc et al. (2012), roughly
speaking it is an interval open-loop estimator independent of y(t).
Assumption 3. There exist an invertible matrix S ∈ Rn×n and
L ∈ Rn×p such that S(A1 − LC)S−1

= R1, where R1 is a Metzler
matrix and

R1 = RĎ1 + R≀

1, RĎ1 = diag[−r1,1, . . . ,−r1,n], R≀

1 ≥ 0

with RĎ1 is the diagonal matrix composed by all elements on the
main diagonal of R1, r1,i > 0 for all i = 1, . . . , n, and R≀

1 is formed
by the rest elements of R1 out of the main diagonal.

The conditions of existence of such matrices S and L can be found
in Raïssi et al. (2012), in particular Assumption 3 is satisfied if the
pair (A1, C) is observable, then they can be expressed as a LMIwith
respect to S ∈ Rn×n and W ∈ Rn×p for a fixed Metzler matrix R1:
SA1 − WC = R1S (10)
with L = S−1W (if the matrix R1 is considered as a variable, then
it is a bilinear matrix inequality; for its solution a grid of admissi-
ble values of R1 can be used with posterior resolution of the LMI
(10) for each candidate of R1). Under this assumption in the new
coordinates z = Sx the system (7) takes the form:
ż(t) = R0z(t) + R1z[h(t)] + SLy(t) + β(t), (11)
where R0 = SA0S−1 and β(t) = S[b(t) − Lv(t)] is a new additive
uncertain input, the initial condition z0 = Sx0 ∈ Cn

τ and
z0 ≤ z0 ≤ z0,
where z0 = S+x0 − S−x0 and z0 = S+x0 − S−x0 are calculated
using (6), z0, z0 ∈ Cn

τ . From Assumption 2 and the relations (6) we
obtain that
β(t) ≤ β(t) ≤ β(t) ∀t ≥ 0,

where β(t) = S+b(t) − S−b(t) − (SL)+v(t) + (SL)−v(t) and
β(t) = S+b(t)− S−b(t)− (SL)+v(t)+ (SL)−v(t). Then the follow-
ing interval observer can be proposed for the representation (11):

ż(t) = R+

0 z(t) − R−

0 z(t) + R1z[h(t)] + SLy(t) + β(t) − δ,

ż(t) = R+

0 z(t) − R−

0 z(t) + R1z[h(t)] + SLy(t) + β(t) + δ,

δ = [δ1, . . . , δn]
T, (12)

δi =


r1,i∥z0,i − z0,i∥ if t ≤ τ

0 otherwise, i = 1, . . . , n

with initial conditions z0, z0 for the variables z(t), z(t) respec-
tively. Finally interval estimates for the variable x(t) can also be
obtained using (6):
x(t) = (S−1)+z(t) − (S−1)−z(t), (13)
x(t) = (S−1)+z(t) − (S−1)−z(t),
whichmay be conservative, see discussion and improved solutions
in Rapaport and Gouzé (2003). For all i = 1, . . . , n denote
r0,i = (R+

0 )i,i.

Proposition 10. Let Assumptions 1–3 be satisfied and

r0,i ≤ er1,i < r0,i + τ−1

for all i = 1, . . . , n. Then the relations

x(t) ≤ x(t) ≤ x(t) ∀t ≥ 0 (14)

hold for the system (7) and the interval observer (12), (13). If in
addition there exist symmetric matrices P ∈ R2n×2n, Σ ∈ R2n×2n,
Ξ ∈ R2n×2n and Θ ∈ R2n×2n such that the LMIs
Ξ Θ

Θ Ξ


≽ 0, P ≻ 0, Σ ≻ 0, Ξ ≻ 0, (15)

ΦT
0 P + PΦ0 + Σ − Ξ Θ PΦ1 + Ξ − Θ τΦT

0 Ξ

Θ −Σ − Ξ Ξ − Θ 02n×2n

ΦT
1 P + Ξ − Θ Ξ − Θ Θ + ΘT

− 2Ξ τΦT
1 Ξ

τΞΦ0 02n×2n τΞΦ1 −Ξ

 ≺ 0,



D. Efimov et al. / Automatica 72 (2016) 123–130 127
where

Φ0 =


R+

0 R−

0
R−

0 R+

0


, Φ1 =


R1 0n×n

0n×n R1


,

are satisfied, then x − x, x − x ∈ Ln
∞
.

Proof. Introduce the interval estimation errors e = z − z and
e = z − z for the observer (12) and (11):

ė(t) = R+

0 e(t) + R−

0 e(t) + R1e[h(t)] + β(t) − β(t) + δ,

ė(t) = R+

0 e(t) + R−

0 e(t) + R1e[h(t)] + β(t) − β(t) + δ,

which for any i = 1, . . . , nmay be rewritten as follows:

ėi(t) = r0,iei(t) − r1,iei[h(t)] + χ
i
(t)

+ βi(t) − β
i
(t) + δi, (16)

ėi(t) = r0,iei(t) − r1,0ei[h(t)] + χ i(t)

+ β i(t) − βi(t) + δi, (17)

where

χ
i
(t) =

n
j=1,j≠i

(R+

0 )i,jej(t) +

n
k=1

(R−

0 )i,kek(t) +

n
j=1

(R≀

1)i,jej(t),

χ i(t) =

n
j=1,j≠i

(R+

0 )i,jej(t) +

n
k=1

(R−

0 )i,kek(t) +

n
j=1

(R≀

1)i,jej(t).

The relations βi(t) − β
i
(t) ≥ 0, β i(t) − βi(t) ≥ 0 for all t ≥ 0 and

δ ≥ 0 are satisfied by construction, for all i = 1, . . . , n. The signals
χ

i
(t) ≥ 0 and χ i(t) ≥ 0 for all t ≥ 0 and i = 1, . . . , n provided

that e(t) ≥ 0 and e(t) ≥ 0. Note that for the systems (16), (17)
all conditions of Proposition 6 are satisfied due to the selection of
δ, thus by induction if e(0) ≥ 0 and e(0) ≥ 0, this property is
preserved for all t ≥ 0:

e(t) ≥ 0, e(t) ≥ 0.

Therefore, from (13) the required property (14) is valid.
In order to prove boundedness of x−x, x−x consider a Lyapunov

functional candidate from Fridman (2014) and Park, Ko, and Jeong
(2011):

V (t, ζt , ζ̇t) = ζ T (t)Pζ (t) +

 t

t−τ

ζ T (s)Σζ (s)ds

+ τ

 0

−τ

 t

t+θ

ζ̇ T (s)Ξ ζ̇ (s)dsdθ, (18)

where ζ =

eT eT

T is thecombined error vector of the observer
(12), and dynamics of ζ have the form:

ζ̇ (t) = Φ0ζ (t) + Φ1ζ [h(t)] +


β(t) − β(t)
β(t) − β(t)


+


In
In


δ,

where the matrices Φ0 and Φ1 are defined in the proposition
formulation. The LMIs (15) imply stability of this system (Fridman,
2014; Park et al., 2011), and boundedness of ζ (t) for any bounded
input.

The LMIs (15) ensure stability of (16), (17), they can be modified
(Fridman, 2014) in order to ensure a desired gain from the inputs
β − β , β − β to the estimation errors e, e optimizing the interval
estimation accuracy. Such a modification is omitted for brevity of
presentation.

Remark 11. The restrictions imposed in Proposition 10 on all
matrices S, L, P , Σ , Ξ and Θ , which are needed to design interval
observer (12), are interrelated and nonlinear, therefore, it is hard
to represent them in a LMI form directly. It is proposed to decouple
these conditions: on the LMI (10) from Assumption 3 (if L and S are
fixed, then the matrices R0 and R1 become given, and vice versa)
and the LMI (15) with respect to P , Σ , Ξ and Θ . Such a two step
scheme can be iterated for different selections ofR1, until a solution
is found.

An alternative procedure can be provided assuming that S = In
and Ξ = µP for some scalar tuning parameter µ > 0, then the
above conditions can be rewritten as a series of bilinear matrix
inequalities:

PΦ1 − W

C
C


+ Υ ≥ 0, P > 0, Σ ≻ 0, Υ ≥ 0,

µP Θ

Θ µP


≽ 0, Φ0 =


A+

0 A−

0
A−

0 A+

0


, Φ1 =


A1 0n×n

0n×n A1


,

ΦT
0 P + PΦ0 + Σ − µP Θ Φ2 τµΦT

0 P
Θ −Σ − µP µP − Θ 02n×2n

ΦT
2 µP − Θ Θ + ΘT

− 2µP ΦT
3

τµPΦ0 02n×2n Φ3 −µP

 ≺ 0,

Φ2 = PΦ1 − W

C
C


+ µP − Θ, Φ3 = τµ


PΦ1 − W


C
C


,

for symmetric matrices P ∈ R2n×2n, Σ ∈ R2n×2n, Υ ∈ R2n×2n and
Θ ∈ R2n×2n,Υ and P should also be declared diagonal,W ∈ R2n×2p

is a matrix block-diagonal variable, then L = P−1W . For any fixed
value ofµ the above system becomes a LMI and it can be efficiently
solved with respect to L, P , Σ and Θ (and W , Υ ).

The result of Proposition 10 is based on a rather restrictive
Assumption 3, that thematrix A1−LC is Hurwitz. Inmany cases (if,
for example, the output ymeasurements are available with delays,
but the system itself has no delayed dynamics) this assumption
cannot be verified and may be relaxed as follows.

Assumption 4. There exist an invertible matrix S ∈ Rn×n and
L ∈ Rn×p such that

S(A1 − LC)S−1
= Q1 =


Q 1 0l×n−l

0n−l×l 0n−l×n−l


,

SA0S−1
= Q0 =


Q0,1 Q0,2
Q0,3 Q0,4


,

Q0,1 ∈ Rl×l, Q0,2 ∈ Rl×n−l, Q0,3 ∈ Rn−l×l,

Q0,4 ∈ Rn−l×n−l, Q 1 = Q
Ď

1 + Q
≀

1, Q0,4 = Q Ď
0,4 + Q ≀

0,4,

where Q
Ď

1 = diag[−q1,1, . . . ,−q1,l] with q1,k > 0 for all k =

1, . . . , l, Q
≀

1 ≥ 0, and 0 < l ≤ n.

As before Q
Ď

1,Q
Ď
0,4 are diagonal matrices composed by all elements

on the main diagonals of Q 1 and Q0,4 respectively, and Q
≀

1,Q
≀

0,4

are formed by the rest elements of Q 1 and Q0,4 out of the main
diagonals. In this case it is assumed that some part of the system
(7) cannot be stabilized by a linear output injection. In the new
coordinates z = Sx = [zT1 zT2]

T, z1 ∈ Rl, z2 ∈ Rn−l the system
(7) takes the form:

ż1(t) = Q 0z(t) + Q 1z1[h(t)] + Λ1y(t) + β1(t), (19)
ż2(t) = Q0,3z1(t) + Q0,4z2(t) + Λ2y(t) + β2(t),

where Q 0 = [Q0,1 Q0,2] and SL = [ΛT
1 ΛT

2]
T are the matrices of

appropriate dimensions; and the input β(t) = [βT
1(t) βT

2(t)]
T

=

S[b(t) − Lv(t)] with the initial condition z0 = [zT01 zT02]
T

= Sx0 ∈

Cn
τ have the same form and interval bounds as for (11). Then the
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following interval observer can be proposed for the representation
(19) instead of (12):

ż1(t) = Q
+

0 z(t) − Q
−

0 z(t) + Q 1z1[h(t)] + Λ1y(t) + β
1
(t) − δl,

ż1(t) = Q
+

0 z(t) − Q
−

0 z(t) + Q 1z1[h(t)] + Λ1y(t) + β1(t) + δl,

ż2(t) = Q+

0,3z1(t) − Q−

0,3z1(t) + Q Ď
0,4z2(t) + (Q ≀

0,4)
+z2(t)

− (Q ≀

0,4)
−z2(t) + Λ2y(t) + β

2
(t), (20)

ż2(t) = Q+

0,3z1(t) − Q−

0,3z1(t) + Q Ď
0,4z2(t) + (Q ≀

0,4)
+z2(t)

− (Q ≀

0,4)
−z2(t) + Λ2y(t) + β2(t),

δl
= [δl

1, . . . , δ
l
l]
T,

δl
k =


q1,k∥z0,k − z0,k∥ if t ≤ τ

0 otherwise, k = 1, . . . , l

with initial conditions z0, z0 ∈ Cn
τ for the variables z(t) =

[zT1(t) zT2(t)]
T, z(t) = [zT1(t) zT2(t)]

T respectively. Finally interval
estimates for the variable x(t) can also be obtained using (13). For
all k = 1, . . . , l denote

q0,k = (Q
+

0 )k,k.

Theorem 12. Let Assumptions 1, 2 and 4 be satisfied and

q0,k ≤ eq1,k < q0,k + τ−1

for all k = 1, . . . , l. Then the interval observer (13), (20) for the sys-
tem (7) admits the relations (14). If in addition there exist symmetric
matrices P ∈ R2n×2n, Σ ∈ R2n×2n, Ξ ∈ R2n×2n and Θ ∈ R2n×2n

such that the LMIs (15) are satisfied for

Φ0 =


Q+

01 Q−

01 Q+

02 Q−

02
Q−

01 Q+

01 Q−

02 Q+

02
Q+

0,3 Q−

0,3 Q Ď
0,4 + (Q ≀

0,4)
+ (Q ≀

0,4)
−

Q−

0,3 Q+

0,3 (Q ≀

0,4)
− Q Ď

0,4 + (Q ≀

0,4)
+

 ,

Φ1 =

 Q 1 0l×l 0l×n−l 0l×n−l

0l×l Q 1 0l×n−l 0l×n−l
0n−l×l 0n−l×l 0n−l×n−l 0n−l×n−l
0n−l×l 0n−l×l 0n−l×n−l 0n−l×n−l

 ,

then x − x, x − x ∈ Ln
∞
.

Proof. Introduce the interval estimation errors e = z − z =

[eT1 eT2]
T and e = z − z = [eT1 eT2]

T for the observer (20) and (19):

ė1(t) = Q
+

0 e(t) + Q
−

0 e(t) + Q 1e1[h(t)] + β1(t) − β
1
(t) + δl,

ė1(t) = Q
+

0 e(t) + Q
−

0 e(t) + Q 1e1[h(t)] + β1(t) − β1(t) + δl,

ė2(t) = Q+

0,3e1(t) + Q−

0,3e1(t) + [Q Ď
0,4 + (Q ≀

0,4)
+
]e2(t)

+ (Q ≀

0,4)
−e2(t) + β2(t) − β

2
(t),

ė2(t) = Q+

0,3e1(t) + Q−

0,3e1(t) + [Q Ď
0,4 + (Q ≀

0,4)
+
]e2(t)

+ (Q ≀

0,4)
−e2(t) + β2(t) − β2(t).

It is easy to see that positivity analysis for the variables e1(t) and
e1(t) is similar to the one given in the proof of Proposition 10,while
for the variables e2(t) and e2(t) the positivity follows the fact that
the matrix Q Ď

0,4 + (Q ≀

0,4)
+ is Metzler by construction and the rest

terms on the right-hand side of ė2, ė2 are nonnegative provided that
e(t) ≥ 0 and e(t) ≥ 0. By induction, if e(0) ≥ 0 and e(0) ≥ 0, then
the relations e(t) ≥ 0, e(t) ≥ 0 are preserved for all t ≥ 0 (Smith,
1995). Therefore, from (13) the inclusion (14) is valid.
In order to prove boundedness of x, x consider a Lyapunov
functional candidate (18) from Fridman (2014) and Park et al.
(2011), where ζ =


eT1 eT1 eT2 eT2

T with

ζ̇ (t) = Φ0ζ (t) + Φ1ζ [h(t)] +


β1(t) − β

1
(t)

β1(t) − β1(t)
β2(t) − β

2
(t)

β2(t) − β2(t)

 +

 Il
Il

0n−l×l
0n−l×l

 δl,

and the matrices Φ0 and Φ1 are defined in the theorem
formulation. The LMIs (15) imply stability of this system (Fridman,
2014; Park et al., 2011), and boundedness of solutions for any
bounded inputs.

Remark 13. It has been assumed before that the delay h(t) is time-
varying and known, the latter restriction can be relaxed rewriting
the Eqs. (19) as follows:

ż1(t) = Q 0z(t) + Q 1z1[t − τ ] + Q 1{z1[h(t)] − z1[t − τ ]}

+ Λ1y(t) + β1(t),
ż2(t) = Q0,3z1(t) + Q0,4z2(t) + Λ2y(t) + β2(t),

where as in Efimov et al. (2013) it is possible to calculate an interval
inclusion:

q
1
(t) ≤ Q 1{z1[h(t)] − z1[t − τ ]} ≤ q1(t),

q
1
(t) = min

s∈[t−τ ,t]


Q

Ď

1(z1[s] − z1[t − τ ]) + Q
≀

1(z1[s] − z1[t − τ ])


,

q1(t) = max
s∈[t−τ ,t]


Q

Ď

1(z1[s] − z1[t − τ ]) + Q
≀

1(z1[s] − z1[t − τ ])


provided that z1(θ) ≤ z1(θ) ≤ z1(θ) for all θ ≥ −τ , where
q
1
(t) and q1(t) can be derived on-line. Then the term containing

uncertain time-varying delayQ 1{z1[h(t)]−z1[t−τ ]} can be treated
as a part of β1(t), and interval observer (13), (20) can be applied
taking into account only the maximal admissible delay τ (see the
pendulum example in Section 5). Another approach that can be
used to treat uncertain time-varying delays (skipping q

1
(t) and

q1(t)) is presented in Ait Rami et al. (2013).

Remark 14. Though all results in the paper are formulated for
a linear system (7), they can also be applied to nonlinear ones,
provided that nonlinearities are functions ofmeasured outputs and
inputs. Such a case is illustrated by the pendulum example below.

5. Examples

5.1. Motivating example

To illustrate the result of Claim 9 for the system (8) let us con-
sider (7) for n = 1

ẋ(t) = u(t) + d(t), y(t) = x(t − τ(t)) + v(t),

where x(t) ∈ R is the state, u(t) = sin(t) is the system known in-
put, d(t) ∈ [−0.1, 0.1] is the input disturbance, v(t) ∈ [−0.1, 0.1]
is the measurement noise, and τ(t) =

1
2.02e (1 + sin(0.5t)) with

τ =
1

1.01e . We can rewrite this system as follows:

ẋ(t) = −x(t − τ(t)) + b(t),
b(t) = y(t) + u(t) + d(t) − v(t)

with b(t) = y(t) + u(t) − 0.2 and b(t) = y(t) + u(t) + 0.2, where
now x(θ) = x(0) for all θ ∈ [−τ , 0). Assume that ∥x0∥ ≤ 5. For
L = 0 and S = 1 the interval observer (12) takes a form similar
to the 1-framer from Claim 9, and all conditions of this claim or
Proposition 10 are satisfied. The results of simulation for

d(t) = 0.1 cos(3t), v(t) = 0.1 sin(5t)
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Fig. 2. The results of simulation for the motivating example. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

are shown in Fig. 2. The red solid curve represents a trajectory of
the system x(t), the blue and green dash–dot lines correspond to
the interval estimates x(t) and x(t) generated by the interval ob-
server. As we can conclude from Fig. 2, the inclusion x(t) ≤ x(t) ≤

x(t) is ensured for all t ≥ 0, and asymptotically the width of the
interval [x(t), x(t)] is proportional to the system uncertainty.

5.2. A pendulum example

Consider an example of (7) for n = 2

ẋ1(t) = x2(t), y(t) = x1(t − τ(t)),
ẋ2(t) = 0.1x1(t) − 0.5x2(t) − 0.35 sin[x1(t − τ̂ (t))] + sin(1.25t),

where 0 ≤ τ(t) ≤ τ is a delay of measurements and 1 ≤ τ̂ (t) ≤ 2
is an uncertain time varying delay in the state equation (for simula-
tionwe selected τ(t) = 0.24+0.12 sin(t) and τ̂ (t) = 1+sin2(2t)).
The models of nonlinear delayed pendulums appear in microgrid
control systems (Efimov, Ortega, & Schiffer, 2015). Thus, in this case

A0 =


0 1
0.1 −0.5


, A1 = 0,

h(t) = t − τ(t), τ = 0.36, v(t) = 0,

b(t) =


0

−0.35 sin[y(t − τ̂ (t) + τ(t))] + sin(1.25t)


,

and Assumption 2 is satisfied for:

b(t) =


0

min
θ∈[1,2]

{−0.35 sin[y(t − θ + τ(t))]} + sin(1.25t)


,

b(t) =


0

max
θ∈[1,2]

{−0.35 sin[y(t − θ + τ(t))]} + sin(1.25t)


.

The results of simulation in Fig. 3 show that for the initial condi-
tions ∥x10∥ ≤ 1, ∥x20∥ ≤ 1 Assumption 1 is also satisfied. For
L = [1 0]T and S = I2 the conditions of Assumption 4 are ver-
ified, then z = x. The LMIs of Theorem 12 are satisfied for the
given value of τ = 0.36. The results of simulation are shown in
Fig. 3, they confirm efficiency of interval estimation and validity
of delay-dependent positivity conditions (the stability conditions
of Theorem 12 are satisfied for τ ≤ 1.3 in this example, but for
0.37 ≤ τ ≤ 1.3 the positivity conditions of Proposition 6 are not
satisfied and the interval estimation cannot be guaranteed).

6. Conclusion

In the paper, new interval observers for linear time-delay sys-
tems with delayed measurements have been designed extending
Fig. 3. The results of simulation for the delayed pendulum.

the theory of Efimov et al. (2013, 2015) and Mazenc et al. (2012).
For this goal, new delay-dependent positivity conditions for lin-
ear systems with time-varying delays have been proposed. These
conditions are related with non-oscillatory behavior of solutions
(Agarwal et al., 2012). They nicely complement the existing delay-
independent conditions of Haddad and Chellaboina (2004) (see
Fig. 1). The results have been applied for the benchmark system
from Mazenc et al. (2012). Two interval observers have been pro-
posed for the cases of observable or detectable systems. The effi-
cacy of observers has been illustrated by numerical experiments.
Extension of these results for the case of sampled-data measure-
ments is a direction of future research.
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