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10.1 Introduction

The present lecture is devoted to relay control systems with a relatively big

time delay in the control element.

The relay control systems are widely used thanks to the following main

reasons:
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• the relay control law is one of the simplest control algorithms;

• relay controllers are robust;

• there are control systems in which only sign of variables is observable

([8], [22]);

• sliding motions on a discontinuity surface, a special kind of motions in

discontinuous systems, are quite useful for design of an efficient control.

On the other hand, time delay in control systems is usually present and

must be taken into account. In practice, time delay is caused by the following:

• Measuring devices have time delay. An example of such systems is

the controllers of exhausted gas in the fuel injector automotive control

systems (see for example [8], [22]).

• Actuators have a time delay. An example of such a system is the

controller for stabilization of the fingers of an underwater manipulator

[4].

We distinguish between the two classes of the relay control system with

delay:

• Systems with time delay in the state.

• Systems with time delay in the input.

The usual approach to the systems with delay in the state consists of two

steps ([5],[6]):

(i) definition of the sliding equation;

(ii) application of the sliding mode technique.

We shall concentrate on systems with time delay in the input and describe

in detail what kind of stabilization can be achieved, though the standard

sliding mode technique does not apply here.
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The following simple example shows that the time delay in the relay

control law does not allow to realize an ideal sliding mode and underlines the

meaning of the general results presented in the sequel.

The simplest example of steady modes

The equation

ẋ(t) = −sign [x(t− 1)] (SE)

has a 4-periodic solution

g0(t) =

{
t, for − 1 ≤ t ≤ 1,
2− t, for 1 ≤ t ≤ 3.

g0(t + 4k) = g0(t) , k ∈ Z .

Since

ġ0(t) = −sign[g0(t− 1− 4n)] ,

one we can substitute t for (4n + 1)t and obtain

1

4n + 1
[g0((4n + 1)t)]′ = −sign [

1

4n + 1
g0((4n + 1)t)] ,

hence a 4/(4n + 1)-periodic solution to (SE)

gn(t) =
1

4n + 1
g0((4n + 1)t) , t ∈ R ,

for each integer n ≥ 1. This means that there exists a countable set of

periodic solution, so-called steady modes (briefly, SM).

We shall show later that any solution x(t) 6≡ 0, of (SE) is equivalent to

gn(t + α) for some n ≥ 0, α ∈ R; moreover, a solution gn(t) is stable for

n = 0, and unstable for n ≥ 1. These crucial features persist in more general

situations.
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Statement of the problem

Consider the equation

ẋ(t) = −sign [x(t− 1)] + F (x(t), t), t ≥ 0 (10.1)

|F (x, t)| ≤ p < 1, F ∈ C1(R2) , (10.2)

x(t) = ϕ(t), t ∈ [−1; 0], ϕ ∈ C[−1, 0]. (10.3)

Under condition (10.2), for any ϕ ∈ C[−1; 0], there exists a unique continu-

ous solution xϕ(t), t ∈ [−1;∞), of the problem (10.1), (10.3) [21]. We will

consider further only such solutions.

The time delay does not allow to realize an ideal sliding mode, but im-

plies the oscillations, whose stability is determined by one discrete parameter

– oscillation frequency, which is the number of zeroes on the time interval

with length of delay preceding some zero of xϕ(t). The basic property of

the frequency, its monotone decrease, has been observed in other situations

(see [23], [25]). A specific topic for discontinuous delay equations, infinite

frequency oscillations, have been studied in [27],[1],[26],[9]. Some problem of

qualitative behavior of solutions of relay equation with delay was considered

in [20]. The relay control algorithms for systems with delay have been sug-

gested in [8], [22],[2]. We show also that any motion of system (10.1) turns

into a steady mode, a motion with a constant frequency, as it happens in the

case of usual sliding modes. At the same time this means that there are no

asymptotically decreasing solutions.

All these observations are used in our approach to the following main

questions on relay controllers with delay:

1. What steady modes are stable?

2. How could relay controllers with delay be used for stabilization of

unstable systems?

3. How could relay controllers with delay be used for stabilization of

oscillations in a small neighborhood of constraints for stable systems, in which

perturbations accumulate and take the system rather far from constraints?
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Organization of the material

Section 10.2.1 contains one of the main results, Theorem 4, which says that

any solution of the equation (10.1) can be basically characterized by one

discrete parameter, an average oscillation frequency, which is the number of

zeroes on the time interval, preceding some zero of the solution, of length

equal to the delay. A similar result was obtained for the smooth system in

[23]. It is shown that each solution of the equation (10.1) is equivalent to

steady mode, which is a solution with a constant frequency. That means

we have finite time of input in steady mode. Moreover, in the autonomous

case, there exists a countable set of periodic SM generating all other SM by

translations in t. Another important result consists in a description of classes

of stable and unstable SM (section 10.2.2). A multidimensional singularly

perturbed relay system with time delay is studied in section 10.3, where we

prove the existence of slow stable periodic solutions, which is a generalization

of a similar result for system (SE).

The algorithms of stabilization are presented in section 10.4. After this

section we discuss possible generalization and open problems. The proofs are

presented in section 10.6.

10.2 Steady Modes and Stability

10.2.1 Steady Modes

The main object of this section is a special characteristic of a solution, its

oscillation frequency. Our main result (Theorem 1) states that, for any solu-

tion, its frequency becomes constant after a period of time. Two solutions are

called equivalent if they coincide after some time moment. So, each solution

is equivalent to some steady mode, a solution with a constant frequency.

Here we formulate and discuss the statements. The proofs are presented

in appendix.

Let Zϕ denote a set of zeros of xϕ(t). Put Z+
ϕ = Zϕ ∩ [0; +∞).
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Lemma 1 For any ϕ ∈ C[−1; 0] the set Zϕ is non-empty and unbounded.

Hence we can define the frequency function νϕ : Z+
ϕ −→ N ∪ {0} ∪ {∞}

by

νϕ(t) = card (Zϕ ∩ (t− 1; t)) , t ∈ Z+
ϕ .

Theorem 1 For any ϕ ∈ C[−1; 0] the function νϕ is non-increasing, and

hence there exists a limit

Nϕ
def
= lim

t→∞
t∈Z+

ϕ

νϕ(t).

Lemma 2 If Nϕ < ∞ then Nϕ is even, and C[−1; 0] is divided into sets

U∞ = {ϕ ∈ C[−1; 0] : Nϕ = ∞},

Un = {ϕ ∈ C[−1; 0] : Nϕ = 2n}, n ≥ 0 .

Introduce the following subset of C[−1; 0]:

F = {ϕ ∈ C[−1; 0] : ϕ−1(0) is finite}

It follows immediately from Theorem 1 that

F ⊂
⋃

0≤n<∞
Un

Definition 3 A solution xϕ(t) with νϕ ≡ const is called steady mode (SM).

The set of SM is represented naturally as the union of disjoint sets Sn =

{xϕ(t) : νϕ ≡ 2n}, n ≥ 0, S∞ = {xϕ(t)|νϕ ≡ ∞}.

Theorem 2 For any integer n ≥ 0 and real T ≥ 0 there exists g(t) ∈ Sn

such that

g(T ) = 0 , ġ(T ) > 0 . (10.4)

If n = 0 then such SM is unique.
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In the autonomous case, we give a more precise description of the SM set:

Theorem 3 In the autonomous case for any n ≥ 0 the SM are unique in

following sense: there are periodic steady modes g0, g1 . . . gn, . . . such that

Sn = {gn(t + α) : α ∈ R, n ≥ 0},

and their periods satisfy inequalities

τ0 > 2, n−1 > τn > (n + 1)−1, n ≥ 1 . (10.5)

Remark 4 In fact, in the autonomous case S∞ = ∅ if F (0) 6= 0, and

S∞ = {0} if F (0) = 0. This was recently proved by Akian, Bliman [1]

and Nussbaum, Shustin [26]. For the non-autonomous case see [9, 27].

As a consequence of the above statements we obtain

Theorem 4 Any solution xϕ(t) of the (10.1), (10.3) is equivalent to a suit-

able SM.

10.2.2 Stability

Here we study the stability of solutions of our equation with respect to the

standard metric in the space C[−1; 0] of initial functions. First we show

that the zero steady frequency is stable, then from this we derive the non-

asymptotic stability of zero-frequency SM in the autonomous case and give

a condition of the closeness to the autonomous case, where the same type

of stability is present. Finally, we establish that SM with positive frequency

are unstable.

Theorem 5 The set U0 has nonempty interior. Moreover, Int U0 contains

the non-empty set

Ũ0 = U0 ∩ {ϕ ∈ C[−1; 0] : mes(ϕ−1(0)) = 0}.
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In particular, we get that the function N(ϕ) = Nϕ = 0 is stable if

mes(ϕ−1(0)) = 0.

Corollary 6 In the autonomous case all the solutions xϕ(t), ϕ ∈ Ũ0, are

non-asymptotically stable.

Theorem 7 If
∫ ∞

0

max
x

∣∣∣∂F (x, t)

∂t

∣∣∣dt < ∞ (10.6)

then all solutions xϕ(t), ϕ ∈ Ũ0, are non-asymptotically stable.

We should underline that there are unstable solutions xϕ(t) with ϕ ∈ U0.

For example, let ψ ∈ Un, n ≥ 1, then ϕ(t) = max{0; ψ(t)} ∈ U0, but

ϕτ (t) = ϕ(t) + τψ(t) ∈ Un, for any τ > 0.

Theorem 8 If

sup
∣∣∣∂F

∂x

∣∣∣ = Mx < 2(1− p)2(1 + p)−3 (10.7)

or

sup
∣∣∣∂F

∂t

∣∣∣ = Mt < 2(1− p)2(1 + p)−2 (10.8)

then all solutions xϕ(t), ϕ ∈ ⋃
1≤n≤∞

Un, are unstable.

Note that conditions of Theorems 7 and 8 are fulfilled in the autonomous

case.
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10.3 Singular perturbation in relay systems

with time delay

10.3.1 Existence of stable zero frequency periodic steady
modes for a singularly perturbed multidimen-
sional system

Here we study a multidimensional generalization of system (SE). Consider

the system

µ
dz

dt
= f(z, s, x, u),

ds

dt
= g(z, s, x, u),

dx

dt
= h(z, s, x, u), (10.9)

where z ∈ Rm, s ∈ R, x ∈ Rn, u(s) = sign[s(t − 1)]; f, g, h ∈ C2(Z̄), Z ⊂
Rm × R× Rn × [−1, 1]; µ is a small parameter.

Ignoring additional dynamics, accepting µ = 0 and expressing z0 from

the equation

g(z0, s, x, u(s)) = 0 ,

we obtain from the formula z0 = ϕ(s, x, u) that

ds

dt
= g(ϕ(s, x, u), s, x, u) = G(s, x, u) ,

dx

dt
= h(ϕ(s, x, u), s, x, u) = H(s, x, u) , (10.10)

which satisfy the sufficient conditions for the existence of a zero frequency

steady mode.

Suppose that

C1: the function z0 = ϕ(s, x, u), for all (s, x, u) ∈ S̄; S ⊂ R×Rn×[−1, 1],

is a uniformly asymptotically stable isolated equilibrium point of system

dz/dτ = f(z, s, x, u); moreover, the matrix ∂f(z,s,x,u)
∂z

is stable at all (s, x, u) ∈
S̄, and the inequality Re Spec ∂f(z,s,x,u)

∂z
< −α < 0 holds.

Under condition C1 we design the point mapping of surface s = 0 into

itself determined by system (10.10).
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Namely, consider the solution to (10.10) for u = 1 :

ds̄ +
0

dt
= G(s̄ +

0 , x̄ +
0 , 1),

dx̄ +
0

dt
= H(s̄ +

0 , x̄ +
0 , 1) (10.10+)

with the initial conditions

s̄ +
0 (0) = 0, s̄ +

0 (t) < 0, t ∈ [−1, 0); x̄ +
0 (0) = ξ, ξ ∈ V ⊂ S+ = {ξ : G(0, ξ, 1) > 0}.

Suppose that, for t = 1, the relay control u changes its value from +1 to −1

so that the behavior of a solution to (10.10) is described by the system

ds̄ −0
dt

= G(s̄ −0 , x̄ −
0 ,−1),

dx̄ −
0

dt
= H(s̄ −0 , x̄ −

0 ,−1), (10.10−)

s̄ −0 (1) = s̄ +
0 (1), x̄ −

0 (1) = x̄ +
0 (1) .

Suppose that, for all ξ ∈ V , there exists the smallest root of equation

s̄ −0 (θ(ξ)) = 0 such that G(0, x̄ −
0 (θ(ξ)),−1) < 0 and consequently for t =

θ(ξ) + 1 the control low u changes its value from −1 to +1. Then the be-

havior of solution of (10.10) the behavior of the system for t > θ(ξ) + 1 is

described by system (10.10+) with initial condition

s̄ +
0 (θ(ξ) + 1) = s̄ −0 (θ(ξ) + 1), x̄ +

0 (θ(ξ) + 1) = x̄ −
0 (θ(ξ) + 1) .

Suppose also that, for all ξ ∈ V , there exists T (ξ), the smallest root of the

equation s̄ +
0 (T (ξ)) = 0, such that T (ξ) > θ(ξ)+1 and G(0, x̄ +

0 (T (ξ)), 1) > 0.

Then the point mapping Ψ(ξ) : ξ → x̄ +
0 (T (ξ)) is the point mapping of the

domain V on the surface s = 0 produced by system (10.10).

Introduce now the following assumptions

C2: system (10.10) has an isolated zero frequency steady mode (s0(t), x0(t)),

which has exactly two intersection points with the surface s = 0 such that

s0(0) = 0,
ds0

dt
(0) > 0, s0(θ0) = 0,

ds0

dt
(θ0) < 0 ;
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C3: the point mapping Ψ(x) of the surface s = 0 into itself, which made

by system (10.10) , has the stable isolated equilibrium point x0 corresponding

(s0(t), x0(t)) , moreover

‖∂Ψ(x0)

∂x
‖ < q < 1 ;

C4: the points ϕ(s0(1), x0(1),−1) and ϕ(s0(θ0 +1), x0(θ0 +1), 1) are situ-

ated in the attractive domains of stable equilibrium points ϕ(s0(1), x0(1), 1)

and ϕ(s0(θ0 + 1), x0(θ0 + 1),−1), respectively.

Theorem 9 Under conditions C1-C4 system (10.9) has an orbitally asymp-

totically stable isolated periodic solution close to (s0(t), x0(t)) with a period

T (µ) which tends to T as µ → 0, and the boundary layers close to t = 1,

t = θ0 + 1.

Remark 5 An algorithm for the asymptotic representation of a zero fre-

quency periodic steady mode [34], based on the boundary layer method is

suggested in [17].

10.3.2 Existence of stable zero frequency steady modes
in systems of arbitrary order

Consider the system

µ
dz1

dt
= −z1 + u, u(s) = −sign[s(t− 1)] ,

µ
dz2

dt
= z1 − z2, ..., µ

dzk

dt
= zk−1 − zk; (10.11)

ds

dt
= x,

dx

dt
= −x + zk,

where z1, ..., zk, s, x ∈ R, µ is the small parameter. It is obvious that system

(10.11) is system with relative degree (k + 2) with respect to output vari-

able s. Let’s show that for system (10.11) the conditions of Theorem 9 hold

and consequently system (10.11) has an orbitally asymptotically stable zero

frequency steady mode at least for the small µ.
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For µ = 0 system (10.11) has the form

z̄1 = z̄2 = ... = z̄k = u,

ds̄0

dt
= x̄0,

dx̄0

dt
= −x̄0 + u. (10.12)

Then for the solution of (10.12) with initial conditions

x̄ +
0 (0) = ξ, s̄ +

0 (0) = 0,

sign [s̄ +
0 (t− 1)] = −1, u = 1 for t ∈ [−1, 0]

we have

x̄0
+(t, ξ) = e−t(ξ − 1) + 1; s̄ +

0 (t, ξ) = (1− e−t)(ξ − 1) + t;

and consequently

x̄ +
0 (1, ξ) = e−1(ξ − 1) + 1; s̄ +

0 (1, ξ) = (1− e−1)(ξ − 1) + 1.

For t > 1, u = −1 and until switching of sign(u)

x̄ −
0 (t, ξ) = e−(t−1)(x̄ +

0 (1, ξ) + 1)− 1;

s̄ −0 (t, ξ) =

= (1− e−(t−1))(x̄ +
0 (1, ξ) + 1)− (t− 1) + (1− e−1)(ξ − 1) + 1.

In this case the switching moment θ(ξ) is defined by equation s −0 (θ(ξ), ξ) = 0.

Taking into account the symmetry of system (10.12) with respect to the point

s = x = 0, we can conclude that the semi-period of the desired periodic

solution θ0 and the fixed point ξ0 of the point mapping Ψ(ξ) are described

by equation

s̄ −0 (θ0, ξ0) = 0, x̄ −
0 (θ0, ξ0) = −ξ0 ,

hence

ξ0 = 1− 2
e−θ0+1

1 + e−θ0
; θ0 = 4− 4

e−θ0+1

1 + e−θ0
.
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This system has the solution θ0 ≈ 3, 75, ξ0 ≈ 0, 87. Here ξ0 is the fixed point

of point mapping Ψ(ξ), corresponding the 2θ0− periodic solution of (10.12)

determined by the equations

(s̄0(t), x̄0(t)) =

{
(s̄ +

0 (t, ξ0), x̄
+
0 (t, ξ0)), for − θ0 + 1 ≤ t ≤ 1,

(s̄ −0 (t, ξ0), x̄
−
0 (t, ξ0)), for 1 ≤ t ≤ θ0 + 1.

Moreover,

dΨ

dξ
(ξ0) =

(dx−(θ(ξ), ξ)

dξ
(θ0, ξ0)

)2

=
(
e−θ0−2

e−θ0+1(1− e−θ0)

e−θ0 + 1− 2e−θ0+1

)2

≈ 0, 0144.

Then the conditions of Theorem 9 hold for system (10.11), therefore system

(10.11) has an orbitally asymptotically stable periodic zero frequency steady

mode at least for the small µ. This means that for any k there exists at list

one orbitally asymptotically stable zero frequency periodic steady mode of

(k + 2)-th order.

10.4 Design of delay controllers of relay type

10.4.1 Stabilization of the simplest unstable system

Consider the stabilization problem for the simplest unstable system

ẋ = kx, (x ∈ R, k > 0) (US)

by means of a delay relay control law of the form u = −sign [x(t− γ)], where

γ is time delay. In this case the equation for control system has the form

ẋ(t) = −sign [x(t− γ)] + kx, (CS)

Let us compute the constant A > 0 for which the system (CS) with initial

function

ϕ(t) = A, t ∈ [−γ, 0] (IF)

has stable periodic solution for t > 0.
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Before the switching moment we have

x(t) =
1

k
+ (A− 1

k
) ekt.

The function x(t) could change its sign if and only if the condition

A− 1

k
< 0

holds. In this case we can rewrite equation for τ − which is the root of

equation x(τ) = 0 in form ekτ = 1
1−kA

. From periodicity of x(t) we have the

equation for the switching moment of the control law in the form x(τ + γ) =

−A. Then
1

k
+ (A− 1

k
)ekτekγ = −A,

and consequently A = (ekγ − 1)/k. This means that sufficient condition for

existence of the periodic solution has he form

kγ < log 2. (SC)

This implies that for any positive feedback coefficient k we can choose the

time delay γ for which there exist zero frequency stable periodic steady mode

of (CS). Moreover the equation (CS) has a countable set of steady modes in

the interior of the strip |x| < (ekγ−1)/k. System (CS) has unstable solutions

x = ±1/k, and unbounded solutions in the regions |x| > 1/k.

This means that Cauchy problem (CS), (10.3) has bounded solution if for

any t ∈ [0, γ], k|xϕ(t)| < 1. This means that if ϕ(0) > 0, then

k|xϕ(t)| = | − 1 + (kϕ(0) + 1)ekt| < 1.

This implies

Theorem 10 If condition (CS) holds and |ϕ(0)| < 2−ekγ

kekγ , than the solution

xϕ(t) of (CS), (10.3) is bounded.
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10.4.2 Stable systems with bounded perturbation and
relay controllers with delay

Consider the simplest stable system with bounded perturbations

ẋ = −kx + F (t, x), (x ∈ R, k > 0). (PS)

Here |F (t, x)| ≤ ε is bounded perturbation. Suppose that we have the pos-

sibility to use the relay control with delay γ in form u(s) = −λ · sign[x(t −
γ)], λ > ε. The behavior of the control system is described by equation

ẋ = −kx + F (t, x)− λ · sign[x(t− γ)]. (CPS)

Than for the amplitude of the we have the following estimation

|x(γ)| ≤
∫ γ

0

e−k(γ−τ)(|λ|+ |F (τ, x(τ)|)dτ ≤ λ + ε

k
(1− e−kγ) ≤ γ(λ + ε).

It allows us to conclude that the motions in stable systems are in the O(ε)

neighborhood from constraints. If we are using the relay control with delay,

the amplitude of oscillation is O((λ + ε)γ). It is important in the case of

sufficiently small λ, ε, γ.

10.4.3 Statement of the adaptive control problem

Consider the system

ẋ(t) = F (x, t) + u(t). (10.13)

u(t) = α(t) · sign [x(t− 1)].

A real controller operates with an unavoidable time delay. Here we develop

the direct adaptive delay control of relay type u(t) = −α · sign [x(t− 1)] with

a step function α depending on the only information on the time interval

(−1, t−1) provides exponentially decreasing oscillations even in the presence

of disturbances. Here we restrict ourselves to those systems satisfying (cf.

[20])

F (0, t) ≡ 0 .
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and everywhere below in section 10.3 we suppose this equality.

Note that here we lose the restriction (10.2), and solutions may be un-

bounded and inextensible to the infinite interval. On the other hand, there

are SM with sufficiently big frequency and small amplitude. It turns out

that the existence of stable SM with zero frequency implies the existence of

a wide class of bounded solutions. Namely,

Lemma 6 Let

F (0, t) ≡ 0 (10.14)

∂F

∂x
(x, t) ≤ k < ln 2, t ∈ R, |x| < α/k. (10.15)

Then all the solutions of equation

ẋ(t) = F (x, t) + α · sign [x(t− 1)]

with initial condition (10.3), where

|x(0)| = |ϕ(0)| < α(2 exp(−k)− 1)/k, (10.16)

are extensible to the interval (−1;∞) and satisfy inequalities

|xϕ(t)| ≤ α

k
(ek − 1), |ẋϕ(t)| ≤ αek. (10.17)

These solutions hold all properties mentioned in sections 10.2.

In a non-ideal situation we’ll use the following simple estimate:

Proposition 7 Under the conditions of Lemma 6, let T be a zero of some

solution x(t) of (10.1), and |T ∗ − T | < δ. Then

|x(T ∗)| < α(ekδ − 1)/k .
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10.4.4 The case of definite systems

Assume F (x, t) holds (10.15), and we know a complete information on F (x, t)

and have the observer, which indicates zeros of x(t) and signs of x(t) with the

delay 1. We design the desired control by means of the following algorithm.

Let (10.16) hold with some constant α = α0. Put α(t) = α0, t ≥ 0, and

consider the equation

ẋ(t) = −α0 · sign[x(t− 1)] + F (x(t), t), t ≥ 0.

We fix a time moment t1 + 1, when the observer indicates the first zero t1 of

x(t) greater than 1. Using the distribution of zeros and signs of x(t) on the

segment [0; t1], we extrapolate x(t) on the interval t > t1 and compute the

first zero t2 of x(t) greater than t1 +1. Now in the ideal situation we can put

α(t) = α1, t ≥ t2

where α1 is an anyhow small positive constant, and, according to (10.17), we

obtain a solution x(t) anyhow close to zero.

Assume we compute t2 with error δ. Let δ satisfy the condition

ρ
def
=

ekδ − 1

2e−k − 1
< 1 ⇐⇒ δ <

ln 2

k
− 1. (10.18)

From Proposition 7 it follows immediately the property (10.16) at t2 with

the constant α = α0ρ. Now we put α(t) = α0ρ, t ≥ t2 and repeat our

algorithm from the beginning. After m steps we get from (10.17)

|x(t)| ≤ ek − 1

k
α0ρ

m =
km−1(ek − 1)

(2e−k − 1)m
δm + O(δm+1) (10.19)

The left side of (10.19) tend to zero for m →∞.

10.4.5 The case of indefinite systems

Having the error δ0 of the observer and the property (10.15) as only an

information on F (x, t), we really have to solve a single problem in using
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the previous algorithm: to construct a zeros sequence on an interval (t;∞)

having a zeros sequence on (−1; t− 1).

In the autonomous case Theorem 8 provides (with the probability 1)

turning any bounded solution of the equation

ẋ(t) = −α · sign[x(t− 1)] + F (x(t))

into some zero frequency SM. Assume that by the time moment t2n + 1 our

observer indicated consequent zeros t0, t1, . . . , t2n such that ti + 1 < ti+1, i =

0, . . . , 2n− 1. According to periodicity of SM (see Theorem 4), the following

zero equals t2n+1 = t2n−1 + (t2n − t0)/n > t2n + 1 with error δ = δ0(1 + 2/n).

If δ satisfies (10.18) then, repeating such steps, we stabilize the zero solution

as above.

10.5 Generalizations and open problems

10.5.1 The case when |F (x)| > 1 for some x

In [29] it was shown that the results of section 10.2 for system (10.1) hold

for the case when for some x the function F (x) has values out of [−1, 1], but

satisfies the following conditions.

(i) x+
−1 ≤ x+

1 or
∫ x+

1

0
dx

1+F (x)
> 1,

and

(ii) x−1 ≥ x−−1 or
∫ 0

x−−1

dx
1−F (x)

> 1,

where

x+
1 = inf{x > 0 : F (x) = 1}, x+

−1 = inf{x > 0 : F (x) = −1},
x−1 = inf{x < 0 : F (x) = 1}, x−−1 = inf{x < 0 : F (x) = −1}.

Systems with different delays are more complicated [3]. This is a very

interesting subject for study.
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10.5.2 Systems and steady modes of the second order.

Relay control systems with delay of second order are considered in the form

d2x

dt2
= −dx

dt
+ F (x)− sign[x(t− 1)], (SONRCSD)

x(t) = ϕ(t), t ∈ [−1, 0], ε = const > 0, ẋ(0) = x0

|F (x, t)| < p < 1, F ∈ C1(R2).

was considered in [18]. It is shown that if the frequency ν of solution of

(SONRCSD) is even, then ν does not increase. If the frequency ν is odd it

could increase by 1. This allows us to introduce the notion of frequency for

the second order relay control systems with delay in the form ψ = [(ν +1)/2]

(here [·] is the entire part), which is a non-increasing function. It is shown

that for each solution of (SONRCSD) there exists the limit value of frequency

N = limt→∞ ψ. It is proved that in the case when F is autonomous for any

integer ψ > 0 there exists a periodic steady mode.

Second order linear relay control system with delay

ε
d2x

dt2
= −dx

dt
+ kx− sign[x(t− 1)] (SOLRCSD)

was considered in [15], [16], [18], [19], [33]. For such system there have been

found conditions providing that

• the frequency ψ is non-increasing;

• there exists a countable set of periodic steady modes for any integer

nonnegative value of ψ;

• the zero frequency periodic steady modes are orbitally asymptotically

stable.

The natural sufficient conditions for orbital asymptotic stability of zero fre-

quency steady modes for (SOLDRCS) was found in [15],[16],[18], [19],[33].

For second order relay control systems with delay the problem of instability

of steady modes with nonzero frequency is still open.
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10.5.3 Stability and instability of steady modes for
multidimensional case.

In [14] was considered the multidimensional relay control systems with delay

in form
{

ṡ(t) = −sign[s(t− 1)] + F (s(t), x(t)),
ẋ(t) = As(t) + Bx(t),

(MDRCSD)

s ∈ R, x ∈ Rn, |F (s, x)| < p < 1.

It is shown that if B is a stable matrix, then, for any even value of frequency,

there exists a periodic steady mode. In [14] the problem of stability of zero

frequency steady modes of (MDRDCS) is reduced to the problem of con-

tractibility of point mapping of the surface s = 0 into itself made by the

original system. In fact, it is practically impossible to check this property of

(MDRCSD) and the problem of stability is open. As in the previous case the

problem of instability is open too.

Conclusions

1. The notions of frequency and steady modes are introduced. The existence

of steady modes for any even frequency are established.

2. The steady modes possess properties similar to that of sliding modes:

• (i) the set of switches of any steady mode is unbounded, thus, a steady

mode is not equivalent to any solution of a continuous part of the given

equation;

• (ii) for any solution there exists a finite time preceding its input into a

steady mode;

• (iii) the shift operator is not invertible;

• (iv) the properties (i)-(iii) are invariant with respect to bounded per-

turbations which satisfy the conditions (10.2).
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3. Stability criteria for steady modes with zero frequency are established.

4. It is proved that all steady modes with the positive frequency are unstable

under some mild conditions.

5. The existence of a slow stable periodic solution of the multidimensional

singularly perturbed relay system with time delay, which corresponds to the

stable zero frequency steady mode, is proved.

6. A direct adaptive control of relay type with time delay that extinguishes

parasite auto-oscillations in this model is designed.

10.6 Appendix. Proofs

Lemma 1 is obvious.

Proof of Theorem 1. If t1 < t2, t1, t2 ∈ Z+
ϕ , then, according to Rolle’s

theorem and (10.1), (10.2), there exists ξ ∈ (t1 − 1; t2 − 1) ∩ Zϕ. Therefore

card (Zϕ ∩ (t1 − 1; t2 − 1)) ≥ card
(
Z+

ϕ ∩ (t1; t2)
)

+ 1 ,

hence

νϕ(t1) = card (Zϕ ∩ (t1 − 1; t1)) ≥ card (Zϕ ∩ (t2 − 1; t2)) = νϕ(t2).

Proof of Lemma 2. Let νϕ(t) = Nϕ < ∞, when t ≥ T . Then xϕ(t)

changes its sign at every point t ∈ Zϕ ∩ [T ; +∞). Indeed, if t1 < t2 are

neighboring points from Zϕ∩[T +1;∞) then, according to above assumption,

there is a unique z ∈ (t1 − 1; t2 − 1) ∩ Zϕ, and hence xϕ(t) changes its sign

at z. Let us suppose, for example, that z ∈ Z+
ϕ and xϕ(z) change its sign

at some point from plus to minus. Hence ẋ(z) is negative. This means that

xϕ(z − 1) is positive. It is possible only in case when number of switches is

even.

Proof of Theorem 2. In the case N = 0 the desired statement is

obvious. Fix even N > 0. Put

Σ = {(a0, . . . , aN) ∈ RN+1 : a0 ≥ 0, . . . aN ≥ 0, , a0 + · · ·+ aN = 1} .
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Let Zϕ ∩ [T ; +∞) be locally finite, and

T = t1 < t2 < t3 < . . .

be all zeros of xϕ(t) in [T ; +∞). Let us define the operators of ’step forward”

and ”step back”. Assume that νϕ(tk) = νϕ(tk+1) = N . Define the following

vectors of sign changes: a = (a0, . . . , aN), b = (b0, . . . , bN) ∈ Σ, where

a0 = tk − tk−1, a1 = tk−1 − tk−2, . . . , aN−1 = tk−N+1 − tk−N ,

aN = tk−N − (tk − 1)

b0 = tk+1 − tk, b1 = tk − tk−1, . . . , bN−1 = tk−N+2 − tk−N+1,

bN = tk−N+1 − (tk+1 − 1).

Hence we obtain a correspondence

Γ : (a, α, ε) → (b, β,−ε) ,

where α = tk, β = tk+1, ε = sign ẋϕ(tk).

Proposition 8 For a fixed ε, the correspondence inverse to Γ, is a smooth

map

Mε : Σ×R → Σ×R.

Proof. Denote by xε(t0, x0, a), ε = ±1, the solution of the Cauchy prob-

lem
dx

da
= ε + F (x, t0 + a), x(0) = x0.

Define functions T = λε(t, a), ε = ±1, by equations

x−ε(t + a, xε(t, 0, a), b) = 0, T = t + a + b . (10.20)

It is easy to see that for a fixed t0, the function λ±(t0, a) increases strictly,

and λ±(t0, a) > a if a > 0. Therefore, for a fixed t0, we can define positive

functions of b > 0:
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• ρε(t0, b) inverse to b = λε(t0, ρε);

• σε(t0, b) = b− ρε(t0, b).

Hence (a, α) = Mε(b, β) can be defined as

a0 = b1, a1 = b2, . . . , aN−2 = bN−1 ,

aN−1 = bN + σε(β − b0, b0), aN = ρε(β − b0, b0),

α = β − b0 (10.21)

Thereby Proposition 8 defines the operator of step back with a constant

frequency independently from initial assumption νϕ(tk) = νϕ(tk+1) = N .

So, given a triple (a, α, ε), we can construct a solution of (10.1) for t ≥ α,

and using maps M± we can extend this solution on the interval (−∞, α) with

a constant frequency function. Now let us introduce the decreasing sequence

of closed connected sets

Π0 = Σ×R, Πn+1 = (M−M+)(Πn), n ≥ 0.

The set Π = Π0 ∩ Π1 ∩ Π2 ∩ · · · is an invariant set of operator of step back.

The statement of Theorem 2 is equivalent to Π ∩ (Σ × {α}) 6= ∅ for any

α ∈ R. It is obvious that, for any k > 0,

Πk ∩ (Σ× {β}) 6= ∅,

for β both anyhow big and anyhow small, because the time decrease in one

step is absolutely bounded. Then (10.21) is fulfilled for any k ≥ 0, β ∈ R,

because Πk, k ≥ 0, are connected. Thus, Π ∩ (Σ × {α}) 6= ∅, because

Πk ∩ (Σ× {α}) 6= ∅, k ≥ 0, are non-empty compacts.

Proof of Theorem 3. We shall prove that, for any n ≥ 1 and a fixed

T ∈ R, there is a unique gn,T ∈ Sn with property (10.4). Since Mε, defined

by (10.21), doesn’t depend on β we get a map Mε : Σ → Σ such that

a = Mε(b); a, b ∈ Σ,
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a0 = b1, a1 = b2, . . . , aN−2 = bN−1,

aN−1 = bN + σε(b0), aN = ρε(b0) (10.22)

where N = 2n and according to the definition of ρε, σε (see Proposition 8)

and (10.2)

1− p

2
≤ ρ′ε(b) ≤

1 + p

2
,

1− p

2
≤ σ′ε(b) ≤

1 + p

2
. (10.23)

We have to show that the intersection of a decreasing sequence of compacts

(M− ◦M+)k(Σ), k ≥ 0,

is one point.

Proposition 9 For the metric

‖a− b‖ =
N∑

i=0

|ai − bi|

the operator

M = (M− ◦M+)N2−1 : Σ −→ Σ

is a contraction with a coefficient 1− γ, where

γ =
1

N

(
1− p

2

)N2−1

.

Proof. If a, b ∈ Σ then the vector a−b has at least one pair of coordinates

with different signs. Let

aj − bj = max
i
{ai − bi} > 0 , ak − bk = min

i
{ai − bi} < 0.

It is easy to see that

aj − bj ≥ ‖a− b‖
2N

, bk − ak ≥ ‖a− b‖
2N

.
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According to (10.22), c = Mε(a)−Mε(b) can be defined by

c0 = ρ′ε(θ) · (a0 − b0), c1 = a1 − b1, . . . , cN−1 = aN−1 − bN−1,

cN = aN − bN + σ′ε(θ) · (a0 − b0).

Thus, the transformation a− b 7→ c can be described as a multiplication by

a matrix {αij} (depending on a, b), where according to (10.23)

αij ≥ 0, 0 ≤ i, j ≤ N

N∑
i=0

αij = 1, j = 0, . . . , N (10.24)

with

min{αij : αij > 0} ≥ 1− p

2
. (10.25)

A product of matrices of type (10.24) is of the same type. Also it is not

difficult to see that the product of N + 1 matrices of type (10.24) does not

contain zeros on the principal diagonal and on the next upper diagonal.

Hence the product of the N2 − 1 matrices of type (10.24) contains the first

string with, by (10.25),

min
k=0,...,N

{m0k} ≥
(

1− p

2

)N2−1

= Nγ.

This implies immediately that

|M(a)−M(b)‖ =
N∑

i=0

∣∣∣
N∑

q=0

miq(aq − bq)
∣∣∣ ≤

≤
(

N∑
q=0

m0q|aq − bq| − 2Nγ · ‖a− b‖
2N

)
+

N∑
i=1

N∑
q=0

miq‖aq − bq‖ ≤

< ‖a− b‖ − γ · ‖a− b‖ = (1− γ)‖a− b‖.
This uniqueness and the autonomy imply the equality gn,T (t) = gn,0(t− T ),

t, T ∈ R, as well as the periodicity of gn,0. Inequalities (10.5) follow from

that the frequency of gn,0 is equal to 2n.
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Proof of Theorem 4. It is easy to deduce from the proof of Proposition

8 that every solution g(t), t ≥ T , of (10.1) with a constant finite frequency

can be extended on [−1;∞) with the same frequency. That finishes the proof

according to Lemmas 1, 2 and Theorem 2.

Proof of Theorem 5 and Corollary 6. The set Ũ0 is non-empty,

because it contains S0 6= ∅. Now let ϕ ∈ U0, and mes(ϕ−1(0)) = 0. Then

xϕ(t) = g0,T (t), t ≥ T , for a relevant T ∈ R. That means

xϕ(T ) = 0, ẋϕ(t) > 0, t ∈
(

T ; T +
2

1 + p

)
.

If ψ ∈ C[−1; 0] is close to ϕ, then ψ−1(0) is contained in a sufficiently small

neighborhood of ϕ−1(0), and

mes({ϕ > 0} ◦ {ψ > 0}), mes({ϕ < 0} ◦ {ψ < 0})

are small enough, where A◦B denotes (A\B)∪ (B\A). Hence Zψ ∩ [0; T +2]

is contained in a sufficiently small neighborhood of Zϕ∩ [0; T +2]. Therefore

xψ(t) > 0, t ∈
(

T + δ; T +
2

1 + p
− δ

)
, 2δ <

2

1 + p
− 1

that implies ψ ∈ U0. The statement of Corollary 6 follows from this imme-

diately.

Proof of Theorem 7. Let ϕ ∈ Ũ0, and xϕ(t) = g0α(t), t ≥ T . We have

just showed that if ψ is sufficiently close to ϕ then xψ(t) = g0β(t), t ≥ T ,

where |β − α| is small enough. Let

α = t1 < t2 < · · · , β = t′1 < t′2 < · · ·

be all zeros of the functions g0α, g0β respectively in the interval [T ;∞). It is

enough to prove that

C1 · |β − α| < |tk − t′k| < C2 · |β − α|, C1, C2 = const, k = 1, 2, . . .
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According to the definition of the functions λ±(t0, a)

tk+1 = λ±(tk, 1) , t′k+1 = λ±(t′k, 1),

hence

t′k+1 − tk+1 =
∂λ±(θk, 1)

∂t
· (t′k − tk) , |θk − tk| < |t′k − tk| , k ≥ 1,

t′n − tn =
n−1∏

k=1

∂λ±(θk, 1)

∂t
· (β − α).

The desired statement follows from

Proposition 10 Under condition (10.6), the product

∞∏

k=1

∂λ±
∂t

(θk, 1)

converges uniformly when

θk+1 ≥ θk + 1 , k = 1, 2, 3, . . . (10.26)

Proof. We will show that the series

∞∑

k=1

(
∂λ±
∂t

(θk, 1)− 1

)

converges uniformly. Put

µ(t) = max
x

∣∣∣∂F

∂t
(x, t)

∣∣∣ , t ≥ 0.

It follows from (10.20) and well-known formulae for the derivatives of solu-

tions with respect to initial data , that

∂λε

∂t
(t, a) = 1− (−ε + F (0, τ))−1 · exp

∫ τ

t+a

∂F

∂x
(x−ε, t)dt
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×
(∫ τ

t+a

∂F

∂t
(x−ε, t)dt +

∫ t+a

t

∂F

∂t
(xε, t)dt · exp

∫ t+a

t

∂F

∂x
(xε, t)dt

)
,

where τ = λε(t, a) , hence
∣∣∣∂λε

∂t
(θ, 1)− 1

∣∣∣ ≤ 1

1− p
exp

∫ τ

θ+1

∂F

∂x
(x−ε, t)dt

×
(∫ τ

θ+1

µ(t)dt +

∫ θ+1

θ

µ(t)dt · exp

∫ θ+1

θ

∂F

∂x
(xε, t)dt

)
. (10.27)

According to (10.26), one may admit

θ À 0 ,

∫ ∞

θ

µ(t)dt ≤ 1.

Then ∫ τ

θ+1

∂F

∂x
(x−ε, t)dt =

∫ τ

θ+1

dF

dt
· (−ε + F (x−ε, t))

−1dt

−
∫ τ

θ+1

∂F

∂t
·(−ε+F (x−ε, t))

−1dt ≤ log
1 + p

1− p
+

1

1− p
·
∫ τ

θ+1

µ(t)dt ≤ log
1 + p

1− p
+

1

1− p
,

∫ θ+1

θ

∂F

∂x
(xε, t)dt ≤ log

1 + p

1− p
+

1

1− p
.

Put q = exp(2p + 1/(1− p)), N = [(1 + p)/(1− p)] + 1. Then (10.27) implies

∣∣∣∂λε

∂t
(θ, 1)− 1

∣∣∣ ≤ q2

1− p

∫ τ

θ

µ(t)dt,

∑

θi>θ

∣∣∣∂λ±
∂t

(θi, 1)− 1
∣∣∣ ≤ q2N

1− p

∫ ∞

θ

µ(t)dt
θ→∞−→ 0 ,

because τ ≤ θ +(1+ p)/(1− p) according to (10.2), that completes the proof

of Theorem 7.

Proof of Theorem 8. We shall use the two following propositions.

Proposition 11 If

a ≤ 1 + p

2
(10.28)

and one of (10.7), (10.8) is fulfilled, then

∂λε

∂a
(t, a) ≥ q > 1 , ε = ±1. (10.29)
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Proof. It is not difficult to derive that

∂λε

∂a
(t, a) = 1 + (1− εF (0, T ))−1 exp

∫ T

t+a

∂F

∂x
(x−ε, t)dt

×
(

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

)
,

where T = λε(t, a). Therefore (10.8) implies

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

> 1− p− (T − t− a)Mt ≥ 1− p− aMt
1 + p

1− p
> 0 ,

∫ T

t+a

∂F

∂x
(x−ε, t)dt =

∫ T

t+a

(
dF

dt
− ∂F

∂t

)
· (ẋ−ε)

−1dt

=

∫ T

t+a

dF

dt
· (−ε + F (x−ε, t))

−1dt−
∫ T

t+a

∂F

∂t
· (−ε + F (x−ε, t))

−1dt

≥ − log
1 + p

1− p
−Mt

T − t− a

1− p
≥ − log

1 + p

1− p
−Mta

1 + p

(1− p)2

≥ − log
1 + p

1− p
−Mt

(1 + p)2

2(1− p)2
,

that implies (10.29). Analogously (10.7) implies

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

= 1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

dF

dt
dt− ε

∫ T

t+a

∂F

∂x
· ẋ−εdt

≥ 1 + ε · F (0, T )−Mx(1 + p)(T − t− a) ≥ 1− p−Mxa
(1 + p)2

1− p
> 0,

∫ t0+a

t0

∂F

∂x
(xε, t)dt ≥ −Mxa ≥ −Mx(1 + p)/2,

that implies (10.29).
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Proposition 12 Under conditions of Theorem 8 the measure of the set Π

from the proof of Theorem 2 is zero.

Proof. First we show that any a = (a0, . . . , aN) = Mε(b), b ∈ Σ, satisfies

aN ≤ (1 + p)/2. Indeed, we have aN ≤ aN−1(1 + p)/(1− p), that implies the

above inequality.

Now from (10.21) the Jacobian |M ′
ε| of the map Mε is equal to

∂ρε

∂b
(t, b)

∣∣∣
t=α,b=b0

=

(
∂λε

∂a
(t, a)

∣∣∣
t=α,a=aN

)−1

≤ 1

q
< 1

according to Proposition 11. Then

|(M− ◦M+)′ :≤ q−2 < 1. (10.30)

Fix A ∈ R and T > A. Then

Π ∩ (Σ× (−∞; A]) ⊂
⋃

k≥n

(M− ◦M+)k(Σ× [T ; T + 1]) ,

where n might be chosen big enough, because T > A is arbitrary. Thus, we

obtain from (10.30)

mes(Π ∩ (Σ× (−∞; A])) ≤ q−2(n−1) mes(Σ)

q2 − 1

n→∞−→ 0,

that completes the proof.

Now we can finish the proof of Theorem 8. Now fix ϕ ∈ Un and a

neighborhood V of ϕ in C[−1; 0]. The set F is dense in C[−1; 0], evidently.

Put

m = min{k : F ∩ Uk ∩ V 6== ∅}.
Assume m ≥ 1, and ψ ∈ F ∩ Um ∩ V . Then there is ξ ∈ Sm such that

xψ(t) = ξ(t), t ≥ T, ξ(T ) = 0. Let 2k be a number of sign changes of ψ in

[−1; 0], and a ∈ Σk ⊂ R2k+1 be a vector of sign changes of ψ, constructed as

in the proof of Theorem 2, as well as b ∈ Σm ⊂ R2m+1 be a vector of sign
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changes of ξ in (T −1; T ). Suppose c ∈ Σt, d ∈ Σs are vectors of sign changes

of xψ(t) in intervals (tn − 1; tn) and (tn+1 − 1; tn+1) respectively. If r = s

then, according to the proof of Theorem 2, the equation (10.1) generates a

diffeomorphism of neighborhoods of (c, tn), (d, tn+1) in Σr×R. If r < s then

it is possible to deduce, following arguments from the proof of Theorem 2,

c0 = d1, . . . , c2s−1 = d2s, c2r = λ (d0, c2s, . . . , c2r−2, tn+1) ,

c2r−1 = 1− c0 − . . .− c2r−2 − c2r, tn = tn+1 − d0,

where Λ is some smooth function. Hence an inverse image of
(
d, tn+1

)
in a

neighborhood of (c, tn) in Σr × R has the codimension 2s + 1. That implies

the measure of an inverse image of Π∩(Σm×R) in Σk×R is zero. Therefore,

after a suitable small variation of (a, 0) in Σk×R an image of (a, 0) in Σm×R

leaves Π, i.e. a limit frequency of the changed solution is less than 2m, what

contradicts to definition of m, and hence to our assumption m > 0.

Thus, we get that U0 ∩ F is dense in F , and also in C[−1; 0], because F
is dense in C[−1; 0]. According to Theorem 5, it means that U∞ ∪

⋃
k≥1

Uk is

dense nowhere in C[−1; 0].

Proof of Lemma 6. From (10.15) we deduce that

F (x, t)

x
≤ k, x 6= 0 (10.31)

In particular, that means: if x(t) is a solution of (10.1) then, for x(T ) ≥
0, x(t) ≤ ω(t), t ≥ T , where ω(t) = ((α+kx(T ))ek(t−T )−α)/k is the solution

of Cauchy problem

ω̇(t) = α + kω(t), ω(T ) = x(T ),

and, for x(T ) ≤ 0, x(t) ≥ ω(t), t ≥ T , where ω(t) = ((−α + kx(T ))ek(t−T ) +

α)/k is the solution of Cauchy problem

ω̇(t) = −α + kω(t), t ≥ T



32CHAPTER 10. STEADY MODES IN RELAY SYSTEMS WITH DELAY

Those inequalities and (10.31) imply that |F (x, t), t)| < α when t ∈ [0, 1] and

x(0) = ϕ(0) satisfies (10.16), and that x(t) satisfies (10.17) when t ∈ [T, T +

1], x(T ) = 0, and secondly, x(t) does not leave the strip |x| ≤ α(ek− 1)/k for

t ≤ T.

Proof of Theorem 9. Let us study the point mapping Φ(z, x, µ) of the

switching surface s = 0 into itself induced by the full order system (10.9).

First we show that under the conditions of the Theorem 9 there exists a

neighborhood of the point (ϕ(0, x0, 1), 0, x0) in the z, x space on the surface

s = 0 mapped into itself.

It follows from the continuous dependence of the solutions to differential

equations on the parameters and initial conditions that there exists Ū(α),

the closed ball with the center at the point x0 and radius α on the surface

s = 0 in the x space such that for some q′ for all x′ ∈ U(α)

• the point ϕ(s−0 (1), x−0 (1),−1) is situated in the interior of the attractive

domain of the equilibrium point ϕ(s−0 (1), x−0 (1), 1), where (s̄−0 (t), x̄−0 (t))

is the solution of system (10.10) for u = −1 with the initial conditions

s̄−0 (0) = 0, x̄−0 (0) = x0, s̄−0 (t) < 0, t ∈ [−1, 0);

• there exists the smallest root θ0 of the equation s̄+
0 (θ0) = 0 such that

ds̄+
0 (θ0)/dt < 0; here (s̄+

0 (t), x̄+
0 (t)) is the solution of system (10.10) for

u = 1 with the initial conditions s̄+
0 (1) = s̄−0 (1), x̄+

0 (1) = x̄−0 (1);

• the point ϕ(s+
0 (θ0 + 1), x+

0 (θ0 + 1), 1) is situated in the interior of the

attractive domain of the equilibrium point ϕ(s+
0 (θ0+1), x+

0 (θ0+1),−1);

• there exists the smallest root T (x0) of the equation s̄−0 (T (x0)) = 0

such that T (x0) > θ + 1, ds̄−0 (T (x0))/dt > 0; here (s−0 (t), x−0 (t)) is the

solution of system (10.10) with u = −1 and initial conditions (s−0 (θ0 +

1), x−0 (θ0 + 1)) = (s+
0 (θ0 + 1), x+

0 (θ0 + 1));

• ‖∂Ψ(x0)/∂x‖ < q′ < 1.
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Consider the set A = co(ϕ(0, Ū(α),−1))× Ū(α) and arbitrary (z0, x0) ∈
A. Then according to Tichonov’s theorem [34] and the implicit function the-

orem, there exists µ(z0, x0) such that, for all µ ∈ [0, µ(z0, x0)],

• there exists the unique solution (z−(t, µ), s−(t, µ), x−(t, µ)) of system

(10.9) for u = −1 on [0, 1] with the initial conditions

z−(0, µ) = z0, s−(0, µ) = 0, x−(0, µ) = x0, s−(t, µ) < 0, t ∈ [−1, 0);

• the point z−(t, µ) is situated in the interior of the attractive domain of

the equilibrium point ϕ(s−0 (1), x−0 (1), 1)

• there exists the smallest root θ(µ, z0, x0) of the relations

s+(θ(µ, z0, x0), µ) = 0,
ds+(θ(µ, z0, x0), µ)

dt
< 0,

where (z+(t, µ), s+(t, µ), x+(t, µ)) is the solution of system (10.9) for

u = 1 with the initial conditions

z+(1, µ) = z−(1, µ), s+(1, µ) = s−(1, µ), x+(1, µ) = x−(1, µ);

• the point z+(θ(µ, z0, x0) + 1, µ) is situated in the interior of the attrac-

tive domain of the equilibrium point ϕ(s̄+
0 (θ0 + 1), x̄+

0 (θ0 + 1),−1);

• there exists the smallest root T (µ, z0, x0) of the relations

s−(T (µ, z0, x0), µ) = 0,
ds̄−(T (µ, z0, x0))

dt
> 0, T (µ, z0, x0) > θ(µ, z0, x0)+1,

where (z−(t, µ), s−(t, µ), x−(t, µ)) is the solution of system (10.9) with

u = −1 and the initial conditions

(z−(θ(µ, z0, x0) + 1, µ), s−(θ(µ, z0, x0) + 1, µ), x−(θ(µ, z0, x0) + 1), µ) =

= (z+(θ(µ, z0, x0)+1), µ), s+((θ(µ, z0, x0)+1, µ), x+((θ(µ, z0, x0)+1, µ);
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• at last,

(z−(T (µ, z0, x0), µ), x−(T (µ, z0, x0), µ)) ∈ {ϕ(0, Ū((1+q′)α/2),−1), Ū((1+q′)α/2)} ⊂ A.

This means that the image of the set A by the point mapping

Φ(z0, x0, µ) = (Φ1(z
0, x0, µ), Φ2(z

0, x0, µ)) =

= (z−(T (µ, z0, x0), µ), x−(T (µ, z0, x0), µ))

induced by system (10.9) for all µ ∈ [0, µ(z0, x0)] is a subset of the interior

of A. Moreover, for all µ ∈ [0, µ(z0, x0)],

Φ(z0, x0, 0) = lim
µ→0

Φ(z0, x0, µ) = (ϕ(0, x−(T (x0)),−1), x−(T (x0))), (10.32)

and

Φ(ϕ(0, x0,−1), x0, 0) = (ϕ(0, x0,−1), x0).

This means that the point mapping Φ is continuous on A × [0, µ′], µ′ > 0,

and at all µ ∈ [0, µ′] has a fixed point which corresponds to a periodic

solution of system (10.9) close to (s0(t), x0(t)). Let us show that this periodic

solution is stable and unique. The derivative of the point mapping Φ is a

smooth function of the derivatives of the functions θ(µ, x0, z0), T (µ, x0, z0),

z−(1, µ), x−(1, µ), z−(T (µ, x0, z0), µ), x−(T (µ, x0, z0), µ), z+(θ(µ, x0, z0) +

1, µ), x+(θ(µ, x0, z0) + 1, µ), hence the derivatives of Φ exist and they are

continuous.

Let us consider the new variable η = z0 − ϕ(0, x−(T (x0)),−1) and the

auxiliary point mapping

Ξ(η, x0, µ) = (Ξ1(η, x0, µ), Ξ2(η, x0, µ))

= (Φ1(η + ϕ(0, x−(T (x0)),−1), x0, µ)− ϕ(0, x−(T (x0)),−1),

Φ2(η + ϕ(0, x−(T (x0)),−1), x0, µ)).
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The point (0, x0) is a fixed point of Ξ for µ = 0. For a sufficiently small

µ > 0 the point mapping takes the set

B(β, α, µ”) = {(η, x, µ) : ‖η‖ ≤ β, x ∈ Ū(α), µ ∈ [0, µ”]}

into itself.

It follows from (10.32) that the value of Ξ(η, x0, 0) does not depend on η.

Then
∂Ξ

∂(η, x)
=

(
O(µ) O(µ)
O(µ) ∂Ψ/∂x(x0) + O(µ)

)
.

This means that for some q1 < 1

sup
B(α,β,µ′′)

‖ ∂Ξ

∂(η, x)
‖ < q1 < 1.

Consequently the point mapping Ξ is a contaction and Φ has a unique fixed

point, thus, the desired periodic solution of system (10.9) is unique and

orbitally asymptotically stable.
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