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On Homogeneous Distributed Parameter Systems
Andrey Polyakov, Denis Efimov, Emilia Fridman, and Wilfrid Perruquetti

Abstract—A geometric homogeneity is introduced for evolution
equations in a Banach space. Scalability property of solutions
of homogeneous evolution equations is proven. Some qualitative
characteristics of stability of trivial solution are also provided.
In particular, finite-time stability of homogeneous evolution equa-
tions is studied. Theoretical results are illustrated on important
classes of partial differential equations.

Index Terms—Distributed parameter systems, stability analysis,
nonlinear dynamical systems.

I. INTRODUCTION

The homogeneity is a sort of symmetry, when an object remains
consistent (in some sense) with respect to a scaling operation (dila-
tion). In the context of ordinary differential equations and inclusions
one encounters three types of homogeneity:

• the standard homogeneity (L. Euler in the 17th century, V. Zubov
[1], W. Hahn [2]) operates with uniform dilations such as x →
λx, where λ > 0 is a real number and x is an element of a real
linear space;

• the weighted homogeneity (V. Zubov [3], H. Hermes [4],
L. Rosier [5], G. Folland [6]) uses non-uniform (anisotropic)
scalings like

(x1, x2, . . . , xn) → (λr1x1, λ
r2x2, . . . , λ

rnxn)

where λ and ri are positive reals, xi is an element of a real linear
space, i = 1, 2, . . . , n;

• the geometric homogeneity (V. Khomenyuk [7], L. Rosier [8], M.
Kawski [9]) considers some generalized dilations of one vector
field with respect to another one.

Homogeneity is a useful tool for advanced analysis of nonlinear
dynamic systems. For instance, it allows local properties of a system
(e.g., asymptotic stability) to be extended globally. Qualitative stability
analysis of homogeneous systems can be enhanced by means of inves-
tigation of homogeneity degree of an asymptotically stable system, for
example, the negative degree corresponds to finite-time stability [1],
[10]–[14]. The control theory applies homogeneous feedbacks for fast
robust stabilization (see, [11], [13]–[16]) and homogeneous dynamic
observers for non-asymptotic state estimation [17], [18]. Homogeneity
provides simple algorithms for robustness analysis of nonlinear control
systems (in the context of Input-to-State Stability see, for example,
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[19]–[21]). Local homogeneity and homogeneous approximations [3],
[4], [14], [22] are considered as a way for simplification of qual-
itative analysis of the essentially nonlinear dynamic systems. It is
worth stressing that investigations of quantitative characteristics (for
example, estimation of the settling time for finite-time stable system)
require conventional tools (e.g., Lyapunov function method). However,
it is well known [3], [5] that any stable homogeneous system always
has a homogeneous Lyapunov function. This property simplifies the
construction of concrete explicit [23], [24] and implicit Lyapunov
functions [25] for homogeneous systems.

The analysis of evolution equations with homogeneous (with respect
to uniform scaling) operator was given in [26]. Some important regu-
larizing effects of homogeneity have been discovered in the mentioned
paper. Weighted homogeneous evolution equations have been studied
in [27] and [28]. The most of results for such systems are devoted to
the integrability analysis. The elements of the theory of sub-elliptic
operators on stratified nilpotent Lie groups is developed in [6] based on
a version of the weighted homogeneity. To the best of our knowledge,
stability properties (in particular, finite-time stability) of evolution
equation have not been studied using homogeneity framework. In the
same time, these issues are very important for control and estimation
problems of distributed parameters systems [29].

This technical note studies a certain analog of geometric homo-
geneity, which has not been studied before for infinite dimensional
systems. It introduces d-homogeneous operators, where d denotes a
group of homogeneous dilations in a Banach space, which must be
agreed with the domain of the operator. The paper demonstrates that
the main features of the homogeneous systems, which are important
for control design in finite-dimensional setting (like stability and
scalability properties of solutions), hold for d-homogeneous evolution
equations in a Banach space. The paper also shows thatd-homogeneity
can be established for many well-known partial differential equations
like KdV, Saint-Venant and Fast Diffusion equations considered in the
paper. The presented results can be utilized in the future for exten-
sion of homogeneity-based feedback control design tools to infinite
dimensional system.

The paper is organized as follows. Model description and basic
assumptions are given in the Section II. The Section III introduces
the notion of homogeneous evolution equation in Banach space. It
presents the generalized dilation group, the homogeneous set and
the homogeneous operator, and studies their properties. Finally, some
concluding remarks are given at the end of the paper.

Notation: The paper uses the following standard notation: R is the
field of real numbers and R+ = [0,+∞); B is a real Banach space
with a norm ‖ · ‖; S = {u ∈ B : ‖u‖ = 1} is the unit sphere in B; Ω̄
denotes the closure of the set Ω ⊂ B; ∂Ω denotes the boundary of the
set Ω ⊂ B.

II. MODEL DESCRIPTION

Let us consider the nonlinear evolution equation

u̇(t) = f (u(t)) , t ∈ R+, u(t) ∈ Ω ⊂ B (1)

with the initial condition

u(0) = ϕ ∈ Ω (2)
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where the dot denotes a time derivative, the operator f : D ⊂ B → B
has the domain D and Ω ⊂ D.

Recall that evolution equation may describe finite or infinite di-
mensional dynamic system. The set Ω restricts admissible solutions.
For example, if it is a positive cone (i.e., Ω = R

n
+), the evolution

equation must describe a positive system. In the case of a partial
differential equation the set Ω can be utilized in order to possess
boundary conditions.

We assume that the Cauchy problem (1), (2) has a solution for any
ϕ ∈ Ω, i.e., there exists a continuous function u : [0, T ) → Ω defined
at least locally (0 < T ≤ +∞), which satisfies (in some sense) the (1)
and the initial condition (2). We do not specify the type of solution.
It can be classical (C1), strong, weak or mild solution. Proofs of
main results are given for mild solutions. The extension to other types
of solutions is straightforward. The same results can be provided for
evolution inclusions.

In general, we do not assume that the Cauchy problem is well-
posed, i.e., the solutions may be non-unique and/or they may depend
discontinuously on the initial condition. Certainly, the results to be
obtained also hold for well-posed models. Existence of solutions and
well-posedness of the Cauchy problem like (1), (2) are discussed in
literature for different types of operators f and Banach spaces B,
see e.g. [30]–[32]. These problems go out of the scope of this paper.
The main aim is to extend the concept of homogeneous systems to
the general evolution equations and to transfer some useful properties
and tools, which are derived for homogeneous ordinary differential
equations, to a more general disturbed dynamical models.

III. HOMOGENEOUS EVOLUTION EQUATIONS

The evolution (1) is uniquely identified by the operator f and the
set Ω. Having the same operator f : D ⊂ B → B for different sets
Ω1 ⊂ D and Ω2 ⊂ D, Ω1 �= Ω2 we may obtain different behaviors
of solutions of evolution equations. Therefore, in the context of the
evolution equation the homogeneity properties must be studied for
both the operator f and the set Ω.

A. Homogeneous Sets in Banach Spaces

Let L(B) be the space of linear bounded operators B → B
equipped with the norm: ‖g‖L = supu∈S ‖g(u)‖ for g ∈ L(B).

Definition 1: A map d : R → L(B) is called dilation in the space
B if it satisfies

• the semigroup property: d(0) = I ∈ L(B) and d(t+ s) =
d(t)d(s) for t, s ∈ R;

• the strong continuity property: the map d(·)u : R → B is
continuous for any u ∈ B;

• the limit property: lims→−∞ ‖d(s)u‖ = 0 and
lims→+∞ ‖d(s)u‖ = ∞ uniformly on u ∈ S.

The dilation d is a strongly continuous group, since the limit
property implies uniqueness of the identity element (see, Proposition
1 given below). The group d has similar topological characterization
as a dilation mappings in Banach (or Frechet) spaces. Indeed, the limit
property given above can be interpreted as a version of the Teresaka’s
condition (see, for example, [33]).

Proposition 1: If d is a dilation then

1) ‖d(s)‖L �= 0 for s ∈ R;
2) infu∈S ‖d(s)u‖ < 1 for s < 0 and ‖d(s)‖L =

supu∈S ‖d(s)u‖ > 1 for s > 0;
3) d(s) �= I ∈ L(B) for s �= 0.

Proof: 1) The positivity of the operator norm of the dilation
immediately follows from the semigroup property. Indeed, if there
exists s0 ∈ R such that ‖d(s0)‖L = 0 then d(s0) = 0 ∈ L(B) and
I = d(0) = d(s0 − s0) �= d(−s0)d(s0) = 0.

2) Let us consider, initially, the case s ∈ R+. Suppose the contrary,
i.e., there exists s0 ∈ R+ such that ‖d(s0)‖L ≤ 1. On the one hand,
due to the limit property we have limn→+∞ ‖d(ns0)u‖L = +∞ for
any u ∈ S. On the other hand,

‖d(ns0)u‖= ‖d (s0+(n−1)s0)u‖=‖d(s0)d ((n−1)s0)u‖
≤ ‖d(s0)‖L · ‖d ((n− 1)s0)u‖ ≤ · · · ≤ ‖u‖ = 1

i.e., the sequence ‖d(ns0)u‖ is bounded for any n and we obtain the
contradiction.

Consider the case s < 0 and suppose the contrary, i.e., there exists
s0 ∈ R+ such that ‖d(−s0)u‖ ≥ 1 for any u ∈ S. If u0 ∈ S then

un =
d(−s0)un−1

‖d(−s0)un−1‖
∈ S, n ≥ 1.

So, we have

1 ≤ ‖d(−s0)un‖ =

∥∥∥∥ d(−2s0)un−1

‖d(−s0)un−1‖

∥∥∥∥ ≤ ‖d(−2s0)un−1‖

≤ . . . ≤ ‖d (−(n+ 1)s0)u0‖ .

Therefore, ‖d(−(n+ 1)s0)u0‖ ≥ 1 for any n ≥ 1 and we derive the
contradiction to the limit property.

3) Suppose the contrary, i.e., there exists s′ ∈ R \ {0} such that
d(s′) = I . Then the semigroup property implies d(ns′) = I and
‖d(ns′)u‖ = 1 for any n = 1, 2, . . . and any u ∈ S. This contradicts
the limit property. �

The next definition introduces domains of evolution operators to be
studied in this paper. The domain should be invariant with respect to
dilation.

Definition 2: A nonempty set Ω is said to be d-homogeneous iff
d(s)Ω ⊆ Ω for any s ∈ R, where d : R → L(B) is a dilation in B.

A d-homogeneous set Ω becomes a homogeneous space [34], if the
dilation d is a transitive group on Ω. The operators d(s) for s ∈ R are
called symmetries in this case.

Let us give some examples of d-homogeneous sets and their
dilations.

• Uniform dilation (L. Euler):
Ω = R

n, d(s) = es.
• Weighted dilation (V. Zubov [3]):

Ω = R
n, d(s) = diag{eris}, ri > 0, i = 1, 2, . . . , n.

• Geometric dilation (L. Rosier [8], M. Kawski [9])
Ω = R

n, d is the flow of an Euler vector field.1

• Generalized dilation in a Banach space:
Ω = {u ∈ C([0, p],R) : u(0) = u2(p)} and (d(s)u)(x) =

es−0.5sx/pu(x), where x ∈ [0, p]. Indeed, (d(s)u)(0) =
esu(0) and (d(s)u)(p) = e0.5su(p) imply (d(s)u)(0) =
[(d(s)u)(p)]2 for any u ∈ Ω and any s ∈ R. Such dilations
have never been studied before in the context of homogeneous
systems.

Note that d- homogeneity can be considered as an analog of
geometric homogeneity known for finite-dimensional vector fields.
Indeed, in a particular case, a group d may be generated by some
evolution operator in the Banach space B.

1A C1 vector field ν : Rn → R
n is called Euler if it is complete and −ν is

globally asymptotically stable.
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The set

Sd(r) = {u ∈ Ω : ‖d (ln(r))u‖ = 1} , r > 0 (3)

is called the homogeneous sphere of the radius r.
Homogeneous sets and spheres have some useful properties to be

utilized below for analysis of evolution (1).
Proposition 2: If d-homogeneous set Ω is non-trivial2 then

1) the set Sd(1) is non-empty and for any u ∈ Ω \ {0} there exists
u0 ∈ Sd(1) such that u = d(s)u0 for some s ∈ R;

2) Sd(r) = d(ln(1/r))Sd(1) for r > 0;
3) supy∈Sd(r) ‖y‖ → 0 as r → 0;
4) Ω \ {0} =

⋃
r>0 Sd(r).

Proof: 1) Let u be an arbitrary element of the nonempty set
Ω \ {0}. If ‖u‖ = 1 then u ∈ Sd(1). Since the group d is strongly
continuous then the limit property implies that for ‖u‖ > 1 there
exists s < 0: ‖d(s)u‖ = 1, and for 0 < ‖u‖ < 1 there exists s > 0:
‖d(s)u‖ = 1. Since d(s)u ∈ Ω for any s ∈ R then d(s)u ∈ Sd(1),
i.e., Sd(1) �= ∅.

2) On the one hand, y ∈ Sd(r) means that there exists u ∈
Sd(1) ⊆ S such that y = d(ln(r))u. On the other hand, u ∈
Sd(1) means that 1 = ‖u‖ = ‖d(0)u‖ = ‖d(ln(r)− ln(r))u‖ =
‖d(ln(r))d(ln(1/r))u‖, i.e., d(ln(1/r))u ∈ Sd(r).

3) The limit property guarantees ‖d(ln(r))u‖ → 0 as r → 0 uni-
formly on S. This immediately implies the third claim.

4) If u ∈ Ω \ {0} and u0 ∈ Sd(1) is such that d(s)u = u0 for
some s ∈ R then the semigroup property guarantees d(−s)d(s)u =
d(−s)u0 or equivalently u = d(−s)u0. Therefore, u ∈ Sd(r) with
r = e−s, i.e., each element from Ω \ {0} belongs to a homogeneous
sphere. �

B. Homogeneous Operators and Equations

The definition given below presents the class of operators to be
studied in this paper. It utilizes the conventional identity (4) in order
to introduce the homogeneity relation (see, for example, [35]).

Definition 3: An operator f : D ⊂ B → B is said to be
d-homogeneous of degree ν on the set Ω ⊂ D if Ω is d-homogeneous
and

f(d(s)u) = eνsd(s)f(u) s ∈ R, u ∈ Ω (4)

where d is a dilation in B and ν ∈ R.
The evolution (1) is said to be d-homogeneous on Ω iff the corre-

sponding operator f : D ⊂ B → B is d-homogeneous on Ω.
Homogeneity can be discovered in many physical models. Exam-

ples of homogeneous ordinary differential equations can be found
in the literature, see e.g., [3], [12], [13], [17]. Let us consider two
examples of homogeneous partial differential equations, which appear
in mathematical physics.

• Korteweg-de Vries equation (KdV equation) is the homoge-
neous partial differential equation ([28], [36]):

∂u

∂t
= −∂3u

∂x3
− u

∂u

∂x

where u is a scalar function of time t ∈ R+ and space x ∈
R+ variables. KdV equation describes waves on shallow water
surfaces. Let the boundary condition has the form u|x=0 = 0.
The operator f : C3(R+,R) → C(R+,R) defined by f(u) =
−u′′′ − uu′ for u ∈ C3(R+,R) is d-homogeneous of degree
ν = 3 on Ω = {z ∈ C3(R+,R) : z

′(0) = 0} with the dilation

2The set Ω is non-trivial if it contains some elements different from 0.

Fig. 1. Water channel with two spillways.

group defined by (d(s)u)(x) = e2su(esx), where x ∈ R+,
u ∈ C(R+,R) and s ∈ R is the dilation argument. Obvi-
ously, d(s)Ω ⊆ Ω. Due to (d(s)u′)(x) = e2su′(y)|y=esx and
[d(s)u]′(x) = [e2su(esx)]

′
= e3su′(y)|y=esx for x ∈ R+ we

derive

[f (d(s)u)] (x) = −
[
e2su(esx)

]′′′ − e2su(esx)
[
e2su(esx)

]′
= −e5su′′′(y)− e5su(y)u′(y)

∣∣
y=esx

=
[
e3sd(s)f(u)

]
(x)

for any s ∈ R.
• The Saint-Venant equation is an example of a system of

conservation laws studied in [37]. In the field of hydraulics, it
represents the flow in open-channels by the following model

∂H

∂t
= − ∂

∂x
(HV )

∂V

∂t
= − ∂

∂x

(
1

2
V 2 + gH

)
(5)

where H and V are scalar functions of time and space variables.
The quantity H(t, x) is the water level at the instant of time t ∈
R+ in the point x ∈ R, and V (t, x) is the water velocity in the
same position. The parameter g denotes the gravitation constant.
Let us consider the case when the water channel is supported
by two overflow spillways (Fig. 1), which adjust an input and
output flows in a pool (between spillways). The space argument
is restricted on the segment [0, 1], where x = 0 and x = 1 are
positions of spillways, and the (5) is supported with the boundary
conditions [37]

H(t, 0)V (t, 0)− (Z0 − L0)
3
2 =0

H(t, 1)V (t, 1)− (H(t, 1)− L1)
3
2 =0

where Z0 is the water level above the pool and L0, L1 are
spillways.

Let us show that for L0 = Z0 and L1 = 0 the corresponding
evolution equation is homogeneous. Let us consider the operator f :
D → C([0, 1],R)× C([0, 1],R) defined on D = C1([0, 1],R+)×
C1([0, 1],R) by

f(u) =

( − ∂
∂x

(u1u2)

− ∂
∂x

(
gu1 +

1
2
u2
2

))

where u = (u1, u2) ∈ D. The operator f is d-homogeneous of degree
ν = 1 on the set

Ω =

{
u = (u1, u2) ∈ D :

u1(0)u2(0) = 0;

u1(1)u2(1) = u
3
2
1 (1)

}
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with respect to the weighted dilation d(s)u = (e2su1, e
su2), where

u = (u1, u2) ∈ C([0, 1],R)× C([0, 1],R) and s ∈ R. Indeed

f (d(s)u) =

( − ∂
∂x

(e2su1e
su2)

− ∂
∂x

(
ge2su1 +

1
2
[esu2]2

))

=

( −e3s ∂
∂x

(u1u2)

−e2s ∂
∂x

(
gu1 +

1
2
u2
2

)) = esd(s)f(u).

Finally, the equality (d(s)u)(x) = (e2su1(x), e
su2(x)), x ∈ R im-

plies that for any u ∈ Ω one has d(s)u ∈ Ω, i.e., the set Ω is
d-homogeneous.

Remark 1: If the operator g : D ⊂ B → B is d-homogeneous, then
the set Ker(g) = {u ∈ D : g(u) = 0} is d-homogeneous. Indeed, if
u ∈ Ker(g) then g(d(s)u) = eνsd(s)g(u) = 0, i.e., d(s)u ∈ Ker(g).
So, the kernel of homogeneous operator is d-homogeneous set.

C. Properties of Solutions to Homogeneous Evolution Equations

Homogeneity may simplify a qualitative analysis of partial differ-
ential equations. This subsection studies some properties of solutions
to homogeneous evolution equations. The next theorem provides the
most important scalability property of solutions. Its proof is given for
mild solutions of (1), (2), i.e., u(t, ϕ) = limε→0 u

ε(t, ϕ) uniformly on
t, where uε(t, ϕ) is a so-called ε-solution

uε(0, ϕ) =u0 = ϕ, uε(t, ϕ) = ui ∈ Ω for t ∈ [ti, ti+1)

ui+1 − ui

ti+1 − ti
= f(ui) for i = 0, 1 . . . , k − 1, tk = T

where ti+1 − ti ≤ ε for i = 0, . . . , k − 1. The proof can be repeated
for classical solutions, strong or weak solutions.

Theorem 1 (On Homogeneous Dilation of Solutions): Let an opera-
tor f : Ω ⊂ B → B be d-homogeneous of degree ν ∈ R and u(·, ϕ) :
[0, T ) → Ω be a solution of the Cauchy problem (1), (2).

Then for any s ∈ R the function us : [0, T/eνs) → Ω defined by
the equality us(τ ) = d(s)u(eνsτ, ϕ) is a solution of the evolution (1)
with the initial condition u(0) = d(s)ϕ.

Proof: Let uε(·, ϕ) be an arbitrary ε-solution of the Cauchy
problem (1), (2). For an arbitrary s ∈ R let us construct a func-
tion uε

s : [0, T/eνs) → Ω using the following relation uε
s(τ ) =

d(s)uε(eνsτ, ϕ), where τ ∈ [0, T/eνs).
Let us denote τi = e−νsti and us i = d(s)ui ∈ Ω. On the one

hand, we have (us i+1 − us i)/(τi+1 − τi) = eνsd(s)(ui+1 − ui)/
(ti+1 − ti). On the other hand, the homogeneity of the operator f
provides f(d(s)ui) = f(us i) = eνsd(s)f(ui). Hence, we derive

us i+1 − us i

τi+1 − τi
= f(us i)

i.e., the function uε
s is ε-solution of the evolution (1) with the initial

condition u(0) = d(s)ϕ.
Finally, since ‖d(s)‖ < +∞ for any s ∈ R, then the in-

equality ‖uε
s(τ )− us(τ )‖ ≤ ‖d(s)‖L · ‖(uε(t)− u(t))‖ implies that

us(τ ) = limε→0 u
ε
s(τ ) uniformly on τ . �

Note that under conditions of Theorem 1 the function uT ′
s : [0, (T −

T ′)/eνs) → Ω defined by uT ′
s (τ ) = d(s)u(T ′ + eνsτ, ϕ) is the so-

lution of the evolution (1) with the initial value d(s)u(T ′, ϕ). If
T = +∞ then uT ′

s (·) is defined on [0,+∞).
Theorem 1 yields several corollaries, which expand the local prop-

erties of the solutions making them global. For instance, Theorem 1
and Proposition 2 immediately imply the following.

Corollary 1 (On Existence and Prolongation of Solutions): Let the
operator f :Ω⊂B→B be a d-homogeneous operator on a set Ω ⊂ B.
If there exists a set M ⊂ Ω such that

⋃
s∈R

d(s)M = Ω and the

Cauchy problem (1), (2) has a solution u(·, ϕ) : [0, Tϕ) → B for any
ϕ ∈ M then it has a solution for any ϕ ∈ Ω. Moreover, if Tϕ = +∞
for all solutions with ϕ ∈ M then all solutions of the evolution (1) with
ϕ ∈ Ω exist on R+.

D. Stability of Homogeneous Evolution Equations

Homogeneity is a supporting tool for analysis of the qualitative be-
havior of the system. For example, it helps to classify the convergence
rate. However, the homogeneity arguments cannot be used without
some conventional stability analysis.

Recall that the solution u0 : R+ → Ω of the evolution (1) is said
to be Lyapunov stable if there exists a monotone increasing function
σ : [0,+∞) → [0,+∞), σ(0) = 0 and a number h ∈ R+ such that
‖u(t, ϕ)− u0(t)‖ ≤ σ(‖ϕ− u0(0)‖) for all t ∈ R+ and for any ϕ ∈
Ω : ‖ϕ− u(0)‖ < h.

For asymptotic stability of the solution u0 we need to ask addi-
tionally the local attractivity of u0, i.e., u(t, ϕ) → u0(t) as t → +∞
if ϕ ∈ Ω : ‖ϕ − u0(0)‖ < h, where the number h ∈ R+ defines the
domain of attraction.

The solution u0 : R+ → Ω of the evolution (1) is said to be uni-
formly asymptotically stable if it is asymptotically stable and, in
addition, for any r ∈ (0, h) and any ε ∈ (0, r) there exists T̃ ∈ R+

such that ‖u(t, ϕ)− u0(t)‖ < ε for all t > T̃ and all solutions of the
Cauchy problem (1), (2) with ϕ ∈ Ω : ‖ϕ− u0(0)‖ < r.

We refer the reader to [38] for more explanations of different
stability properties of evolution equations in Banach spaces.

Below we study the stability property of the zero solution (i.e.,
u0(·) = 0) of the (1). Note that the conditions 0 ∈ Ω and f(0) = 0
guarantee existence of the zero solution.

Corollary 2 (On Expansion of Attraction Domain): Let f : Ω ⊂
B → B be d-homogeneous operator and 0 ∈ Ω, f(0) = 0. If the zero
solution of the evolution (1) is locally attractive, then it is globally
attractive (i.e., h = +∞). If, in addition, the zero solution is Lyapunov
stable then it is globally asymptotically stable.

The presented corollary can be easily extended to the case of
uniform asymptotic stability. Homogeneity also simplifies a finite-time
stability [39], [40] analysis of the zero solution of evolution equations.
Finite-time stability (also known as Super-Stability [41] for infinite
dimensional systems) is the version of the asymptotic stability with a
finite reaching time of the stable solution, i.e., for any ϕ ∈ Ω \ {0} :
‖ϕ− u0(0)‖ < h there exists T ∈ R+ such ‖u(t, ϕ)− u0(t)‖ = 0
for all t ≥ T .

To the best of our knowledge, the next property of homogeneous
systems has been discovered by V. I. Zubov in 1957 for ordinary dif-
ferential equations and standard (Euler) homogeneity [1, Corollary 3,
Page 110].

Theorem 2 (On Finite-Time Stability): Let f : Ω ⊂ B → B be
d-homogeneous operator of negative degree ν<0 and 0 ∈ Ω, f(0) =
0. If the zero solution of the evolution (1) is uniformly asymptotically
stable then it is globally finite-time stable.

Proof: By Corollary 2 the local uniform asymptotic stability of
homogeneous evolution equation implies the global one and we have
‖u(t, ϕ)‖ ≤ 1 for t ≥ T̃ , where a finite non-negative number T̃ exists
for each ϕ ∈ Ω.

Proposition 1 implies existence of a number s > 0 such that
‖d(s)‖L = c > 1. Since the zero solution is uniformly asymptotically
stable then there exists T ′ > 0 such that ‖u(t, ϕ)‖ ≤ 1/c for all t ≥
T ′ and any ϕ ∈ Ω : ‖ϕ‖ ≤ 1, where u(t, ϕ) is a solution of (1), (2).

Let us introduce the following notation:

• ΔT0 = T ′ and ΔTi = eνsΔTi−1 for i = 1, 2, . . .;
• T0 = 0 and Ti = Ti−1 +ΔTi−1 for i = 1, 2, . . .;
• xi = u(Ti, ϕ) for i = 1, 2, . . ..
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Obviously, since u(T1, ϕ) = x1 then ‖x1‖ ≤ 1/c. By Theorem 1
we have that u1(t) = d(s)u(T1 + eνst, ϕ) is also solution of (1)
defined on R+. Moreover, u1(0) = d(s)u(T1, ϕ) = d(s)x1 and
‖u1(0)‖ ≤ ‖d(s)‖L · ‖x1‖ ≤ 1. In this case, the uniform asymptotic
stability implies

‖u1(T
′)‖ = ‖d(s)u(T1 + eνsT ′, ϕ)‖

= ‖d(s)u(T1 +ΔT1, ϕ)‖ = ‖d(s)x2‖ ≤ 1

c

and ‖d(2s)x2‖ ≤ ‖d(s)‖L‖d(s)x2‖ ≤ 1.
Repeating the same consideration by induction we obtain

‖d(is)xi‖ ≤ 1 and

‖u(Ti, ϕ)‖ = ‖d(−is)d(is)xi‖ ≤ ‖d(−is)‖L → 0

as i → ∞ due to the limit property of the dilation.
Evidently, ΔTi = T ′eiνs and for ν < 0 we obtain

Ti = T ′
i−1∑
n=0

enνs → T ′

1− eνs
as i → ∞.

In other words, u(t, ϕ) → 0 as t → T̃ + (T ′/(1 − eνs)), where
s ∈ R+ is such that ‖d(s)‖L = c > 1 and ϕ ∈ Ω. �

This theorem is very useful for qualitative stability analysis of
homogeneous systems. Indeed, finite-time stability can be predicted
by means of negative degree of homogeneity. Moreover, finite-time
stabilizing control design can done using homogeneous feedback
design with negative degree. The related problems appear in control
theory (for models represented by ordinary differential equations see,
for example, [11]–[13], [16]).

Remark 2: Note that finite-time blow-up of all solutions of homoge-
neous evolution (1) with positive degree can be proven by analogy with
Theorem 2 under some additional condition on uniform divergence of
solutions.

Let us present some examples of finite-time stable evolution equa-
tions, which are homogeneous with negative degree.

Fast Diffusion Equation: The equation of the form

∂u

∂t
−Δ(uα) = 0, α ∈ (0, 1)

where Δ is the Laplace operator, v is a scalar nonnegative function
of time t ∈ R+ and the space variables x ∈ R

n, is known as fast
diffusion equation [42]–[44], which occurs in modeling of plasmas.
The considered equation is studied with the homogeneous Dirichlet
conditions u(t, x) = 0 for x ∈ ∂M , where M ∈ R

n is a bounded
connected domain with a smooth boundary. The considered system
was studied in [44] under the assumption [n− 2]+/(n+ 2) < α < 1,
where [·]+ is the projector to R+ ∪ {0}, which was required for
existence of a weak solution for any nonnegative initial condition
u(0, x) = u0(x), x ∈ M , where u0 ∈ Lp(M,R), p ≥ 1. Finite-time
stability of fast diffusion equation has been proven in [44].

Let us show that the system is d-homogeneous of negative degree.
Indeed, it has an operator f : D ⊂ L1(M,R) → L1(M,R) defined
by f(u) = Δ(uα) using weak derivatives, where D = L1(M,R+).
The operator f is d-homogeneous of negative degree α− 1 on
L1(M,R) with the uniform dilation d(s) = es, where s ∈ R. In-
deed, f(d(s)u) = Δ((esu)α) = eαsΔ(us) = e(α−1)sd(s)f(u) for
any s ∈ R.

Finite-Time Stabilization of Heat Equation on Semi-Axis: The
simplest example of distributed homogeneous control design can be
presented for heat equation

∂u

∂t
=

∂2u

∂x2
+ g

where u is a scalar function of time t > 0 and space x > 0 variables, g
is a distributed control input. The heat equation is studied with the
homogeneous Dirichlet conditions u(t, 0) = 0. The simplest finite-
time stabilizing homogeneous distributed feedback can be designed
as follows:

g = −u
1
3 .

In the paper [45] the finite-time stability of the considered sys-
tem has been proven. Let us show that the corresponding evolu-
tion (1) with f(u) = (∂2u/∂x2)− u1/3 is d-homogeneous for the
dilation group (d(s)u)(x) = e3su(e−sx). Indeed, [f(d(s)u)](x) =
[e3su(e−sx)]

′′ − esu1/3(esx) = e−2s[d(s)f(u)](x). Since homo-
geneity degree is negative, then uniform asymptotic stability of the
zero solution will imply its finite-time stability.

IV. CONCLUSION

The notion of d-homogeneous evolution equation introduced in this
paper can be considered as a certain analog of geometric homogeneity
well-known for finite-dimensional vector fields. The obtained results
about stability and scalability properties of homogeneous evolution
equations provide a background required for expansion of homoge-
neous methods (like Input-to-State Stability) to evolution equations in
a Banach space. The d-homogeneity in this case will play an important
role in the analysis and design of fast (finite-time) and robust control
and observation algorithms for distributed parameter systems. In par-
ticular, Implicit Lyapunov Function method for finite-time stabilizing
control design [25] can be extended to homogeneous evolution equa-
tions. We consider this as an important problem for future research.
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